JP2006283099A - 希土類合金微粉の製造方法 - Google Patents

希土類合金微粉の製造方法 Download PDF

Info

Publication number
JP2006283099A
JP2006283099A JP2005103723A JP2005103723A JP2006283099A JP 2006283099 A JP2006283099 A JP 2006283099A JP 2005103723 A JP2005103723 A JP 2005103723A JP 2005103723 A JP2005103723 A JP 2005103723A JP 2006283099 A JP2006283099 A JP 2006283099A
Authority
JP
Japan
Prior art keywords
rare earth
fine powder
earth alloy
alloy fine
pulverization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005103723A
Other languages
English (en)
Inventor
Tetsuya Hidaka
徹也 日▲高▼
Hideki Nakamura
英樹 中村
Motohisa Murata
素久 村田
Kazuya Sakamoto
一也 坂元
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP2005103723A priority Critical patent/JP2006283099A/ja
Publication of JP2006283099A publication Critical patent/JP2006283099A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Disintegrating Or Milling (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)

Abstract

【課題】 高磁気特性用の酸素含有量の低い原料合金微粉を得るとともに、粉砕システム内に残存した原料合金微粉の取扱いを容易なものとする。
【解決手段】 粉砕システムを用いて希土類元素を含む原料合金粗粉を気流粉砕する希土類合金微粉の製造方法である。例えば、前記粉砕システムの閉回路内の酸素濃度を0.2%未満に保持した状態で前記気流粉砕を行うとともに、前記気流粉砕中及び/又は前記気流粉砕後、前記粉砕システムを構成する配管の少なくとも一部に振動を与える。また、前記粉砕システムを構成する配管の少なくとも一部の内壁を、日本工業規格R6001で規定される粒度#100以上の研磨材を用いた研削といしによって研磨加工された面粗さとしてもよい。さらに、前記粉砕システムを構成する配管の少なくとも一部を接地してもよい。さらにまた、前記粉砕システムを構成する配管の少なくとも一部を非磁性材料により構成し、前記気流粉砕中、非磁性材料により構成した前記配管に外部から交流磁界を印加してもよい。
【選択図】 図1

Description

本発明は、希土類元素を含む原料合金粗粉を気流粉砕する希土類合金微粉の製造方法に関する。
例えばNd−Fe−B磁石等のR−T−B系(Rは、Y、希土類元素から選ばれる1種以上である。Tは、Feを必須とし、必要に応じてその他の遷移金属元素を含む。)焼結磁石は、磁気特性に優れていること、主成分であるNdが資源的に豊富で比較的安価であること等の利点を有することから、近年、その需要は益々拡大する傾向にある。このような状況から、R−T−B系焼結磁石の磁気特性を向上するための研究開発や、品質の高い希土類焼結磁石を製造するための製造方法の改良等が各方面において進められている。
希土類焼結磁石の製造方法としては粉末冶金法が一般的であり、溶解→鋳造→合金塊粗粉砕→微粉砕→プレス成形→焼結の各工程からなるプロセスが広く適用されている。具体的には、原料合金を粗粉砕及び微粉砕した後、磁場中にて加圧成形し、焼結及び熱処理することにより磁石体を得ている。
合金粗粉を微粉砕する工法としては種々のものが存在するが、乾式粉砕法と湿式粉砕法との2種類に大きく分けられる。希土類合金は非常に酸化され易く、酸化によってその磁気特性が低下することから、粉砕時から回収時にはできるだけ酸素と触れないようにし、粉砕後の微粉に含まれる酸素量を極力低減することが望ましい。
一般に、微粉砕を行うための粉砕ラインは、材料である合金粗粉の投入口から粉砕機、さらには材料の回収機まで配管で接続されるとともに、基本的には酸素が外部から入らないような閉鎖系のラインで構成されている。近年、磁気特性のさらなる高特性化が要求されてきており、これに対処するため、前記粉砕ライン内の粉砕雰囲気をより一層低酸素化して、合金粉末の酸素量をさらに低減する傾向にある。また、合金粉末の粒径の微細化も進んでいる。
しかしながら、酸素含有量の低く且つ微細な合金微粉は、その表面が活性であるために、微粉同士の凝集及び再結合を引き起こし易く、あるいは粉砕ライン内部の配管壁等に非常に付着し易い傾向にあり、合金粉末製造上、大きな障害となっている。例えば、連続的に合金粗粉を微粉砕する場合において、内壁付着により配管詰まりを起こし、合金粉末の生産に支障をきたすおそれがある。また、前記配管への付着は、投入材料量に対する収率低下の原因にもなる。配管への付着は、サイクロン等の粉砕物回収機における分級カットポイントの変化を引き起こし、さらなる収率低下と磁気特性の変動につながる。
さらに、合金組成の異なる複数種類の原料合金微粉を作製するために粉砕システムを共用する場合、先の粉砕による配管付着物は、原料合金粗粉の次の粉砕時に脱落し、次の粉砕により得られる合金粉末に混入することにより、合金組成のズレを引き起こす原因にもなる。前記先の粉砕で得られる合金微粉よりも次の粉砕で得られる合金微粉の組成を高磁気特性用に設定していた場合、次の粉砕で得られる合金微粉において、所望の磁気特性を満足できなくなることもある。これとは逆に、先の粉砕で得られる合金微粉よりも次の粉砕で得られる合金微粉の組成を低く設定していた場合、高磁気特性用合金微粉が混入することになるため、次の粉砕で得られる合金微粉の磁気特性が所望の値より高くなり、例えば規格外となるといった不具合が生じる。同様に、酸素含有量の異なる複数種類の原料合金微粉の作製に粉砕システムを共用する場合であって、先の粉砕で得られる微粉の酸素含有量が後の粉砕よりも低い場合、先の粉砕による配管付着物が、次の粉砕で得られる酸素含有量の高い合金微粉に混入し、大気中に取り出したとき等に発熱・発火を引き起こす原因にもなる。
配管内への粉体の付着防止についてはこれまでに様々な検討が行われている。例えば、配管を有する粉体の輸送経路において、粉体と接触する接粉部の少なくとも一部にテフロン加工を施した粉体輸送システム(例えば特許文献1参照)や、ホッパーやスパウト(樋)などの粉体搬送路の壁に設置した超音波振動子によって、搬送路の壁を超音波振動させ、壁面に付着した粉体を離脱させて搬送する超音波粉体搬送器(例えば特許文献2参照)等が提案されている。
特開平8−12073号公報 特開平6−50299号公報
しかしながら、前記特許文献1及び特許文献2の両者とも、希土類磁石の原料である希土類合金微粉の搬送を考慮した技術ではない。希土類磁石の合金微粉は、配管に非常に付着し易い材料であり、しかも、粉砕雰囲気中の酸素濃度を例えば0.2%未満とほぼゼロに近い値まで低下させると、希土類合金微粉の活性が著しく高まり、配管付着の問題が非常に深刻となる。このような低酸素の粉砕で得られる粉体の配管付着を防止する技術としては、従来の対策は不十分である。
本発明は、このような従来の実情に鑑みて提案されたものであり、高磁気特性用の酸素含有量の低い希土類合金微粉を高い収率で得ることが可能な希土類合金微粉の製造方法を提供することを目的とする。
前述の課題を解決するために、本発明の請求項1に係る希土類合金微粉の製造方法は、粉砕システムを用いて希土類元素を含む原料合金粗粉を気流粉砕する希土類合金微粉の製造方法であって、前記粉砕システムの閉回路内の酸素濃度を0.2%未満に保持した状態で前記気流粉砕を行うとともに、前記気流粉砕中及び/又は前記気流粉砕後、前記粉砕システムを構成する配管の少なくとも一部に振動を与えることを特徴とする。
酸素濃度を0.2%未満に保持した状態で希土類合金粗粉の気流粉砕を行うと、配管内壁への希土類合金微粉付着の問題が顕著になるので、請求項1に係る発明は、粉砕システムを構成する配管の少なくとも一部に振動を与えることでこれを解消する。気流粉砕を行う間に配管に振動を与えれば、配管内で搬送される希土類合金微粉の配管内壁への付着が抑制される。これにより、希土類合金微粉は配管内壁に付着することなく、速やかに粉砕物回収機等、粉砕システムの各部へ搬送される。また、気流粉砕を行った後の配管に振動を与えれば、既に付着した希土類合金微粉を配管内壁から除去することができる。
また、本発明の請求項11に係る希土類合金微粉の製造方法は、粉砕システムを用いて希土類元素を含む原料合金粗粉を気流粉砕する希土類合金微粉の製造方法であって、前記粉砕システムを構成する配管の少なくとも一部の内壁を、日本工業規格R6001で規定される粒度#100以上の研磨材を用いた研削といしによって研磨加工された面粗さとし、前記閉回路内の酸素濃度を0.2%未満に保持した状態で前記気流粉砕を行うことを特徴とする。
配管の内壁を粒度#100以上の研磨材を用いた研削といしで研磨し、内壁表面の平滑性を高めることで、配管内で搬送される希土類合金微粉の配管内壁への付着が抑制される。
さらに、本発明の請求項13に係る希土類合金微粉の製造方法は、粉砕システムを用いて希土類元素を含む原料合金粗粉を気流粉砕する希土類合金微粉の製造方法であって、前記粉砕システムの閉回路内の酸素濃度を0.2%未満に保持した状態で前記気流粉砕を行うとともに、前記粉砕システムを構成する配管の少なくとも一部を接地することを特徴とする。
配管を接地し、配管内で搬送される前記低酸素希土類合金微粉の帯電を除去して凝集を抑制することで、希土類合金微粉の配管内壁への付着が抑制される。
さらにまた、本発明の請求項15に係る希土類合金微粉の製造方法は、粉砕システムを用いて希土類元素を含む原料合金粗粉を気流粉砕する希土類合金微粉の製造方法であって、前記粉砕システムの閉回路内の酸素濃度を0.2%未満に保持した状態で前記気流粉砕を行うとともに、前記粉砕システムを構成する配管の少なくとも一部を非磁性材料により構成し、前記気流粉砕中、非磁性材料により構成した前記配管に外部から交流磁界を印加すること特徴とする。
配管を非磁性材料により構成し、配管外から交流磁界を印加することにより、配管内で搬送される低酸素希土類合金微粉を消磁して凝集を抑制する。その結果、希土類合金微粉の配管内壁への付着を抑制される。
以上のような希土類合金微粉の製造方法によれば、酸素濃度を0.2%未満に保持した状態での気流粉砕時の配管詰まり等を解消することができ、高磁気特性磁石用の酸素量の低い合金粉末を高い収率で得ることが可能である。また、本発明によれば、配管詰まり等による粉砕システムの故障を減少させることができ、希土類磁石の生産性の向上にも繋がる。
以下、本発明を適用した希土類合金微粉の製造方法について、図面を参照して詳細に説明する。
先ず、本発明の製造対象となる希土類合金微粉を原料とする希土類磁石について、その概略を説明する。
希土類磁石、中でも希土類焼結磁石は、希土類元素、遷移金属元素を主成分とするものである。ここで、磁石組成(合金組成)は、目的に応じて任意に選択すればよい。例えば、R−T−B(Rは希土類元素の1種又は2種以上、但し希土類元素はYを含む概念である。TはFeまたはFe及びCoを必須とする遷移金属元素の1種または2種以上であり、Bはホウ素である。)系希土類焼結磁石とする場合、磁気特性に優れた希土類焼結磁石を得るためには、焼結後の磁石組成において、希土類元素Rが20〜40質量%、ホウ素Bが0.5〜4.5質量%、残部が遷移金属元素Tとなるような配合組成とすることが好ましい。ここで、Rは、希土類元素、すなわちY、La、Ce、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Yb及びLuから選ばれる1種、または2種以上である。中でも、Ndは、資源的に豊富で比較的安価であることから、主成分をNdとすることが好ましい。また、Dyの含有は異方性磁界を増加させるため、保磁力Hcjを向上させる上で有効である。
あるいは、添加元素Mを加えて、R−T−B−M系希土類焼結磁石とすることも可能である。この場合、添加元素Mとしては、Al、Cr、Mn、Mg、Si、Cu、C、Nb、Sn、W、V、Zr、Ti、Mo、Bi、Ga等を挙げることができ、これらの1種または2種以上を選択して添加することができる。これら添加元素Mの添加量は、残留磁束密度等の磁気特性を考慮して、3質量%以下とすることが好ましい。添加元素Mの添加量が多すぎると、磁気特性が劣化するおそれがある。
勿論、これら組成に限らず、希土類焼結磁石として従来公知の組成全般に適用可能であることは言うまでもない。
前述の希土類焼結磁石を製造するには、粉末冶金法が採用される。粉末冶金法による希土類焼結磁石の製造プロセスは、基本的には、合金化工程、粗粉砕工程、微粉砕工程、磁場中成形工程、焼結工程、時効工程、加工工程、及び表面処理工程とにより構成される。なお、酸化防止のために、時効後までの各工程は、ほとんどの工程を真空中、あるいは非酸化性ガス雰囲気中(窒素雰囲気中、Ar雰囲気中等)で行う。
合金化工程では、原料となる金属、あるいは合金を磁石組成に応じて配合し、真空あるいは不活性ガス、例えばAr雰囲気中で溶解し、鋳造することにより合金化する。鋳造法としては、溶融した高温の液体金属を回転ロール上に供給し、合金薄板を連続的に鋳造するストリップキャスト法(連続鋳造法)が生産性等の観点から好適であるが、それに限られるものではない。原料金属(合金)としては、純希土類元素、希土類合金、純鉄、フェロボロン、さらにはこれらの合金等を使用することができる。
合金は、ほぼ最終磁石組成である単一の合金を用いても良いし、最終磁石組成になるように、組成の異なる複数種類の合金を混合しても良い。混合は、合金・原料粗粉・原料微粉のどの工程でもよい。
粗粉砕工程では、先ず、鋳造した原料合金の薄板、あるいはインゴット等をある程度粉砕して、合金塊とし、水素吸蔵に供する。合金塊の寸法、形状に特に制限はないが、5〜50mm角程度とすることが好ましい。この粉砕は、例えばジョークラッシャ等により行えばよい。
粗粉砕工程では、前記合金塊に対して水素吸蔵させ、粉砕を行う。原料合金塊に水素を吸蔵させると、相によって水素吸蔵量が異なり、これにより表面から自己崩壊的に粉砕が進行する。粗粉砕工程では、前記水素吸蔵処理の後、熱処理することが一般的である。更にディスクミル等の機械的粉砕を行なうこともある。
前述の粗粉砕工程が終了した後、通常、粗粉砕した原料合金粗粉に粉砕助剤を添加する。粉砕助剤としては、例えばステアリン酸亜鉛、オレイン酸アミドといった脂肪酸系化合物あるいは金属せっけん等の添加剤を使用することができるが、特に、脂肪酸アミドを粉砕助剤として用いることで、良好な磁気特性を有する希土類焼結磁石を得ることができる。粉砕助剤の添加量としては、0.01〜0.3質量%程度とすることが好ましい。この範囲内で粉砕助剤を添加した場合、焼結後の残留炭素の量を抑制することができ、希土類焼結磁石の磁気特性を向上させる上で有効である。
粗粉砕工程の後、微粉砕工程を行う。微粉砕工程は、後述するような粉砕システムにおいて、例えばジェットミル等の気流式粉砕機を使用した気流粉砕により行われる。微粉砕の際の条件は、用いる気流式粉砕機等に応じて適宜設定すればよいが、本発明では、高磁気特性用の酸素含有量の低い希土類合金微粉(原料合金微粉)を得るために、微粉砕雰囲気中の酸素濃度を0.2%未満に制御する。原料合金粗粉は、平均粒径が1〜10μm程度、例えば3〜6μmとなるまで微粉砕する。ジェットミルは、高圧の不活性ガス(例えば窒素ガス)を狭いノズルより開放して高速のガス流を発生させ、この高速の搬送ガス流により粉体の粒子を加速し、粉体の粒子同士の衝突や、衝突板あるいは容器壁との衝突を発生させて粉砕する方法である。ジェットミルは、一般的に、流動層を利用するジェットミルや渦流を利用するジェットミル等の気流生成手法により、或いは衝突板を用いるジェットミル等作用物もしくは機構により分類される。気流生成手法や作用物等の組合せ並びに条件により粉砕粒径等を設定・制御している。
微粉砕工程の後、磁場中成形工程において、希土類合金微粉を磁場中にて成形する。具体的には、微粉砕工程にて得られた希土類合金微粉を電磁石を配置した金型内に充填し、磁場印加によって結晶軸を配向させた状態で磁場中成形する。磁場中成形は、プレス方向に平行磁界を印加する縦磁場成形、プレス方向に垂直磁界を印加する横磁場成形のいずれであってもよい。この磁場中成形は、例えば400〜1600kA/mの磁場中で、50〜260MPa前後の圧力で行えばよい。磁場配向にはパルス磁界を用いても良く、また静磁界とパルス磁界の組み合わせでも良い。パルス磁界としては2400kA/m以上が望ましい。
雰囲気中の酸素濃度を0.2%未満に制御して微粉砕を行っているので、得られる希土類合金微粉の酸素含有量は低く、活性度が高い。したがって、本発明では、磁場中成形工程を例えば0.2%未満の低酸素濃度雰囲気下で行うことが望ましい。
次に焼結工程・時効工程において、焼結及び時効処理を実施する。すなわち、焼結工程は希土類合金微粉を磁場中成形後、成形体を真空または不活性ガス雰囲気中で焼結する。焼結温度は、組成、粉砕方法、粒度と粒度分布の違い等、諸条件により調整する必要があるが、例えば1000〜1150℃で5時間程度焼結すればよい。焼結後、得られた焼結体に時効処理を施すことが好ましい。この時効工程は、得られる希土類焼結磁石の保磁力Hcjを制御する上で重要な工程であり、例えば不活性ガス雰囲気中あるいは真空中で時効処理を施す。時効処理としては、2段時効処理が好ましく、1段目の時効処理工程では、800℃前後の温度で1〜3時間保持する。次いで、室温〜200℃の範囲内にまで冷却する第1冷却工程を設ける。2段目の時効処理工程では、550℃前後の温度で1〜3時間保持する。次いで、室温まで冷却する第2冷却工程を設ける。600℃近傍の熱処理で保磁力Hcjが大きく増加するため、時効処理を一段で行う場合には、600℃近傍の時効処理を施すとよい。
前記焼結工程・時効工程の後、加工工程及び表面処理工程を行う。加工工程は、得られた焼結体に切断加工、研削加工、研磨加工等を行い、所望の形状に機械的に加工する工程である。表面処理工程は、得られた希土類焼結磁石の酸化や割れ・クラックなどを抑えるため、あるいは接着性を改善させるためなどに行う工程であり、例えばメッキ被膜や樹脂被膜を希土類焼結磁石の表面に形成する。なお、前記焼結工程後、加工工程を行い、時効工程、表面処理工程を行ってもよい。
以下、前述の微粉砕工程で用いられる粉砕システムの基本的な構成について、図1を参照しながら説明する。
図1に示す粉砕システムは、原料合金粗粉を粉砕システムの系(閉回路)L内に供給するためのフィーダ(供給装置)10、フィーダ10から送り込まれた原料合金粗粉をキャリアガスで搬送し、粉砕する粉砕機(気流式粉砕機)20、粉砕機20で粉砕された希土類合金微粉(粉砕物)のうち、所定の範囲の粒径のものを回収するサイクロン(粉砕物回収機)30、サイクロン30で回収された希土類合金微粉を収容するホッパー40、ホッパー40に収容された後、粉砕初期の段階で粉砕された希土類合金微粉と粉砕終了の段階で粉砕された希土類合金微粉とを均一に撹拌・混合するためのミキサ50、ミキサ50で撹拌・混合された希土類合金微粉末を系L外へ取り出すための回収保管容器51、サイクロン30で回収されなかった希土類合金微粉を回収するバグフィルタ(捕集装置)60及びアフターフィルタ61、アフターフィルタ61を通過したキャリアガスを再度粉砕機20に循環させ、系Lを閉回路とするための低圧タンク62、コンプレッサ63及び高圧タンク64を備えている。
また、粉砕システムは、系L内に窒素ガス等の不活性ガスを供給する不活性ガス供給装置71、系L内に酸素ガスを供給する酸素含有ガス供給装置72、不活性ガスと酸素含有ガスとを混合するガス混合器73を備えている。なお、ガス混合器73を設けずに不活性ガス供給装置71、酸素含有ガス供給装置72によりそれぞれのガスを個別に系L内に供給するようにしてもよい。また、粉砕システムは、ガス混合器73における酸素濃度を測定する酸素濃度計74、系L内のガスを回収するガス回収タンク75を備えている。さらに、粉砕システムは、サイクロン30で回収した微粉の粒度分布を測定するためのオンラインの粒度分布測定装置80を備えている。
図1に示す粉砕機20は、ジェットミルである。この粉砕機20は、いわゆる縦型の粉砕機であり、上下方向に軸線を有する外筒(容器)21と、外筒21の軸線方向に沿って設けられた内筒22と、外筒21の底部に設けられたエジェクタノズル(図示せず)と、内筒22の内径側に取り付けられた内筒22の衝突板23とを備えるものである。外筒21内において、内筒22の上端部の上方には、粉砕された希土類合金微粉を分級する分級ロータ24が設けられる。分級ロータ24は、略水平方向(粉砕装置内において希土類合金微粉の流れに略直交する方向)に軸線を有した円筒状で、その外周面には、所定幅のスリットが複数形成されており、外筒21の外部に設けられた図示しない駆動モータにより、その軸線周りに回転駆動されるようになっている。また、分級ロータ24の側方には、分級ロータ24の内部空間に連通し、分級された希土類合金微粉をサイクロン30に送り込む配管25が設けられている。
ここで、粉砕機20とサイクロン30とを接続する配管(以下、微粉搬送配管と称する。)25は、粉砕機20での粉砕物である希土類合金微粉を気流中で搬送するための配管である。微粉搬送配管25は、例えばストレート配管25a、屈曲配管25b等を有して構成される。ストレート配管25aは例えばステンレス製の配管である。屈曲配管25bはステンレス製の配管である。屈曲配管25bの内壁面には、摩耗性向上のためのセラミックを配してもよい。
フィーダ10から配管11を介して送り込まれ、外筒21内に投入された原料合金粗粉は、エジェクタノズルからキャリアガスとともに噴出され、衝突板23に当たって粉砕される。粉砕の結果得られた希土類合金微粉は、キャリアガスの流れに乗って上昇し、分級ロータ24において分級される。分級ロータ24のスリットを通過した所定寸法以下の希土類合金微粉のみが微粉搬送配管25を通ってサイクロン30へ送り込まれる一方、残りの希土類合金微粉は外筒21と内筒22との隙間を通って落下し、粉砕機20内を再び循環する。
粉砕機20で粉砕して得られた希土類合金微粉は、サイクロン30において、重量に基づき、さらに所定の粒径範囲のもののみが回収され、配管31を介してホッパー40に回収される。
サイクロン30から希土類合金微粉をホッパー40に供給する配管31には、開閉可能なダンパーが2段階に設けられたダブルダンパ41が設けられる。このダブルダンパ41を適宜作動させることで、系L内とホッパー40とのガス圧を遮断可能としている。また、粉砕システムは、ホッパー40の入り口側にバルブ43を備え、このバルブ43により系L内とホッパー40とのガスの流通を遮断可能としている。ホッパー40に回収された希土類合金微粉は、配管42を介してミキサ50に送り込まれる。
ミキサ50で撹拌・混合された希土類合金微粉は、回収保管容器51へ送り込まれ、回収保管容器51の弁を閉じることによって系L外へ取り出されて磁場中成形工程に供給される。回収保管容器51に送り込まれた希土類合金微粉を系L外に取り出す際、配管42の弁を閉じることにより、系L内への大気の侵入を防ぎ、系Lの雰囲気を所定酸素濃度に維持することができる。なお、粉砕システムは、回収保管容器51を複数個備えるとともに、回収保管容器51を任意のタイミング(例えばロット毎)で交換可能な構成とされている。図1においては、回収保管容器51を1つだけ図示する。
配管31には、サイクロン30で回収した希土類合金微粉の粒度分布を測定するための粒度分布測定装置80が設けられる。粒度分布測定装置80は、配管31の壁面に開口した開口部(図示無し)に接続されたサンプリング管(流路)81と、このサンプリング管81内にレーザ光等を照射し、その透過度合いに基づいて粒度分布を測定する測定装置本体(粒度分布測定計)82と、測定装置本体82を通過した希土類合金微粉を回収するサイクロン83とを備えている。なお、粒度分布測定装置80としては、図1に示すような配管31とサイクロン83との間にサンプリング管81を設ける形式に限定されるものではなく、希土類合金微粉をサンプリング可能であればいかなる形式であってもよい。例えば、粒度分布測定装置80は、微粉搬送配管25から分岐してサイクロン30に至る形式でも構わない。
低圧タンク62とコンプレッサ63とをつなぐ配管65には、ガス混合器73で混合された不活性ガスを供給するためのガス供給管76が接続される。不活性ガス供給装置71及び酸素含有ガス供給装置72からそれぞれ供給されたガスは、ガス混合器73で所望の酸素含有量等に調整された後、ガス供給管76を通って配管65(系L内)へ供給される。ガス混合器73を備えずに不活性ガス供給装置71及び酸素含有ガス供給装置72を直接配管65へ供給してもよい。酸素濃度計74は、ガス混合器73中の酸素濃度を測定する。なお、図1においては、ガス混合器73に酸素濃度計74を設けた例を図示したが、粉砕システムは酸素濃度計74を系Lの各部に複数備える構成であってもよい。こうすることによって、所望の酸素含有量等に調整されていることが確認し易くなる。ガス混合器73を備えずに不活性ガス供給装置71及び酸素含有ガス供給装置72を直接配管65へ供給する場合であっても同様である。低圧タンク62とガス回収タンク75、及び高圧タンク64とガス回収タンク75との間の配管には、それぞれバルブ77,78が設けられている。
前述の構成を有する粉砕システムを用いて原料合金粗粉を微粉砕する際には、不活性ガス供給装置71、酸素含有ガス供給装置72等から供給したガスをキャリアガスとして、フィーダ10から供給された原料合金粗粉を粉砕機20において連続的に気流粉砕する。得られた粉砕物(希土類合金微粉)は、分級ロータ24、微粉搬送配管25を介してサイクロン30へ送られ、サイクロン30において所定の粒径のものが順次回収される。回収した希土類合金微粉は、ホッパー40又は回収保管容器51内に収容される。この気流粉砕の間、系L内の雰囲気の酸素濃度を0.2%未満に保持する。
以上のように、系L内の酸素濃度を0.2%未満に保持して微粉砕を行ったとき、粉砕システムを構成する配管内壁への希土類合金微粉の付着が大きな問題となるので、本発明では、以下に説明する第1の方法〜第4の方法のいずれかを実施する。なお、配管内壁への希土類合金微粉の付着は、粉砕システムの閉回路を構成するあらゆる配管において起こり得るが、中でも粉砕機20とサイクロン30とを接続する微粉搬送配管25において最も顕著に認められる。したがって、微粉付着の問題を効率的に解消する観点では、微粉搬送配管25に以下の第1の方法〜第4の方法を適用することが好ましく、以下では微粉搬送配管25を例に挙げて説明するが、本発明は微粉搬送配管25以外の配管に適用した場合も有効であることは言うまでもない。
先ず、第1の方法について説明する。第1の方法では、前記気流粉砕中及び/又は前記気流粉砕後、粉砕システムを構成する配管の少なくとも一部、例えば微粉搬送配管25の少なくとも一部に振動を与える。気流粉砕中に振動を与える場合、微粉搬送配管25内で連続的に搬送されている希土類合金微粉の微粉搬送配管25内壁への付着を抑え、サイクロン30へ速やかに搬送する。その結果、配管内部での詰まりを減少させ、且つ酸素含有量の少ない磁気特性に優れた合金粉末を、収率良く得ることが可能である。気流粉砕後に振動を与える場合、微粉搬送配管25の内壁に付着している希土類合金微粉を効率的に除去することができ、配管内部での詰まり等の不都合が解消される。
図2に示すように、微粉搬送配管25は、例えばストレート配管25aと、屈曲配管25bと、配管同士を連結固定する継ぎ手部25cとを有する。継ぎ手部25cは、ストレート配管25a及び屈曲配管25bの端部に形成されるフランジ25dの端面同士を、弾性材からなるシール部材25eを配置した状態で突き合わせるとともに、フランジ25dの任意の箇所に設けられた貫通孔(図示せず)にボルト25fを挿入し、締結することにより構成される。そして、微粉搬送配管25に振動を与えるには、例えば図2に示すように、微粉搬送配管25の外壁面等に振動装置90を取り付け、この振動装置90によって微粉搬送配管25に対し振動を与えればよい。なお、振動装置90としては、微粉搬送配管25に振動を付与できる装置であれば特に問わないが、例えばエアシリンダを用いた振動装置は、対象物である微粉搬送配管25に対し、間欠的に強力な衝撃を付与できるので、希土類合金微粉の付着防止及び除去に有効である。エアシリンダを用いた振動装置による振動の間隔は、配管内壁への付着の程度に応じて適宜設定すればよいが、例えば10秒〜120秒間隔とすることが好ましい。振動の間隔が120秒を越えると、希土類合金微粉の付着抑制効果や除去効果が不十分となるおそれがある。逆に振動の間隔が10秒未満であると微粉搬送配管25が短期間で金属疲労を起こすおそれがある。
また、振動装置90として、超音波振動を発生する超音波振動装置を用いてもよい。超音波振動の周波数は20kHz〜100kHzとすることが好ましい。20kHz未満の周波数は可聴周波数であり、騒音の原因となるおそれがある。逆に周波数が100kHzを超える場合、振動エネルギーが小さくなり、付着防止及び付着物の除去効果が不十分となるおそれがある。
振動装置90は、前述のエアシリンダを用いた振動装置、超音波振動装置等をそれぞれ単独で用いてもよいし、これら複数種類の振動装置を併用してもよい。
振動装置90がエアシリンダを用いた振動装置である場合、振動装置90は、微粉搬送配管25の全長に対し少なくとも1箇所に取り付ければよい。ただし、付着防止効果を効果的に得る観点では、図3に示すように、複数箇所に振動装置を取り付けることが好ましい。振動装置90を複数取り付ける場合、振動を発生させるタイミングについては、上流側に配置された振動装置90から下流側の振動装置90へ、例えば15秒間隔毎に順次動作させればよい。各振動装置90は、60〜90秒間隔で動作するように設定するとよい。設置間隔は、微粉搬送配管25内のキャリアガスの流れ方(例えば圧力、流量、流速、螺旋流や渦の発生等)や微粉搬送配管25の材質や長さ等を考慮して適宜定めればよいが、2m〜5m間隔とすることが好ましい。2m未満の場合、頻繁に打撃音が発生することとなり騒音が問題となるおそれがあり、逆に5mを超えると、微粉搬送配管25内全体へ振動が充分に伝わらないおそれがある。
振動装置90は、一対の継ぎ手部25cに挟まれる領域内において1〜3箇所取り付けることが好ましい。継ぎ手部25cにはシール部材25eとして弾性体が使用されることが多いため、振動装置90の振動が継ぎ手部25cを挟んで隣接する配管(ストレート配管25a)へ伝達されないおそれがあるためである。さらに、振動装置90は、ストレート配管25aに取り付けることが好ましい。屈曲配管25bは、その内壁に希土類合金微粉に対する耐摩耗性を高める目的でセラミックが配される場合があり、振動装置90の衝撃に対してストレート配管25aに比べ強度に劣る。屈曲配管25bに振動装置90を取り付けることによってセラミックが破損するおそれがあるためである。
また、振動装置90として超音波振動装置を使用する場合も、微粉搬送配管25の全長に対し少なくとも1箇所に取り付ければよいが、好ましくは継ぎ手部25cと継ぎ手部25cとの間に1箇所ずつ、全体で複数箇所に取り付ける。超音波振動装置は、連続的に動作させても良いし、適当な時間間隔でオン/オフを切り替えてもよい。
また、微粉搬送配管25に振動を与える時期は、気流粉砕中、気流粉砕後のいずれであってもよいが、気流粉砕後の微粉搬送配管25に振動を与えることが好ましい。中でも、気流粉砕後、希土類合金微粉の回収を行う回収工程、系L内の残粉を徐酸化する徐酸化工程等を行う場合、希土類合金微粉の付着防止効果を効率的に得る観点から、回収工程中及び/又は徐酸化工程中、微粉搬送配管25に振動を与えることが好ましい。特に、徐酸化工程中は微粉搬送配管25内壁に付着した希土類合金微粉が脱落し易い状態とされるので、徐酸化工程中に振動を与えることで、微粉搬送配管25内壁に付着した希土類合金微粉を効果的に除去し、振動を付与する回数やエネルギーを最小限とすることができる。
ここで、回収工程とは、いわゆる空運転を行う工程のことであり、系L内に供給した原料合金粗粉の粉砕を終了した後、系L内に原料合金粗粉を新たに供給することなくキャリアガスを所定時間流すことにより系L内に残存している希土類合金微粉(残粉)をホッパー40や回収保管容器51に回収する工程のことである。また、本発明の回収工程とは、気流粉砕直後(徐酸化前)の残粉の回収に限定されるものではなく、徐酸化した後の残粉の回収も含む意味である。
大部分の希土類合金微粉は、気流粉砕中に既に回収されているが、前記回収工程を行うことで、希土類合金微粉の収率を高めることができる。回収工程でキャリアガスを系Lに流す時間は、例えば20分間〜60分間とすることが好ましい。特に、回収工程を徐酸化工程の前に行えば、残粉を既に回収されている大部分の希土類合金微粉とほぼ同じ酸素含有量にて回収することができる。
また、徐酸化工程とは、前記回収工程の後、系L内の酸素濃度を0.8%〜2.0%に所定時間保持し、系L内に残存した希土類合金微粉(残粉)を徐酸化させる工程のことである。徐酸化工程を行うことにより、系L内の残粉が徐酸化され、活性度が低減される。その結果、残粉を大気中の酸素と接触させた場合であっても発熱・発火が起こりにくく安全性が高められ、大気中での残粉の取扱いが容易なものとなる。また、徐酸化工程を行うことにより、系L内の残粉が脱落しやすくなるため、残粉の回収も容易なものとなる。
系L内の残粉を徐酸化させるには、系L内の雰囲気中の酸素濃度を0.8%〜2.0%に上昇させることが必要である。前記範囲未満であると、残粉の徐酸化に長時間を要したり、残粉の徐酸化が不十分となり、大気中で酸化し、発熱・発火する等の問題がある。逆に前記範囲を上回る場合、残粉の酸化反応が急速に進行して発熱・発火するおそれがある。
系L内の雰囲気中の酸素濃度を0.8%〜2.0%に保持する時間は、大気中で系L内の残粉が発熱・発火しない程度に残粉が酸化される時間に設定すればよく、例えば20分間〜180分間とすることができる。系Lの規模にもよるが、効率的な徐酸化条件に雰囲気を設定しておけば20分間〜150分間程度でよい。
なお、回収工程と徐酸化工程とを行う順序については、酸素含有量の低い希土類合金微粉の収率を高める観点では回収工程、徐酸化工程の順序とすることが好ましいが、徐酸化工程、回収工程の順序でも構わない。ただし、徐酸化工程、回収工程の順序とする場合、回収工程、徐酸化工程の順序の場合に比べて、酸素含有量の高い希土類合金微粉(残粉)の回収量が多くなるので、その回収量等に応じて取扱い方法を決めることが好ましい。例えば、酸素含有量の高い残粉の回収量が比較的少ない場合、既に回収されている酸素含有量の低い希土類合金微粉に混合し、希土類磁石原料として使用することができる。また、酸素含有量の高い残粉の回収量が比較的多く、酸素含有量の低い希土類合金微粉に混合すると当該希土類合金微粉の磁気特性低下を招きかねない場合には、酸素含有量の高い残粉を別の希土類合金微粉(例えば、酸素含有量が同程度の希土類合金微粉)に混合し、別の希土類磁石の原料として使用してもよい。
次に、第2の方法について説明する。前記第1の方法は、微粉搬送配管25に対して振動を付与することで残粉を脱落させる方法であるため、微粉搬送配管25の材質、特に内壁面については特に考慮していなかったが、第2の方法では、微粉砕を行うための粉砕システムを構成する配管のうち少なくとも一部、例えば図4に示すように、微粉搬送配管25の内壁25dの少なくとも一部を日本工業規格R6001で規定される粒度#100以上の研磨材を用いた研削といしによって研磨加工された面粗さとする。微粉搬送配管25の内壁25dを研磨し、前述のように平滑性を高めておくことで、微粉搬送配管25内で搬送される希土類合金微粉の付着を抑制することができる。その結果、微粉搬送配管25での配管詰まりを減少させ、且つ酸素含有量の少ない磁気特性に優れた合金粉末を収率良く得ることが可能である。微粉搬送配管25の内壁25dが粒度#100未満の研磨材を用いた研削といしにより研磨加工された面粗さであると、微粉搬送配管25の内壁25dへの付着抑制効果が不十分となり、配管詰まりによる故障や希土類合金微粉の収率低下につながる。
第2の方法では、微粉搬送配管25の全ての内壁25dを前記面粗さとしてもよいが、微粉搬送配管25を構成するストレート配管25aの内壁を前記面粗さとすることが好ましい。屈曲配管25bの内壁には希土類合金微粉に対する耐摩耗性を高める目的でセラミックが配される場合があり、この場合内壁を前記面粗さとすることが困難である。
次に、第3の方法について説明する。第3の方法では、微粉搬送配管25内で搬送される希土類合金微粉の帯電を除去するために、配管の少なくとも一部、例えば微粉搬送配管25の少なくとも一部に接地手段を設け、気流粉砕中の微粉搬送配管25を接地する。通常、継ぎ手部25cにはシール部材25eとして絶縁体を構成材料とする弾性体が使用される場合が多いため、図5に示すように、各配管が同電位となるように隣り合う配管を例えば配線100で電気的接続することが好ましい。また、図6に示すように、接地させようとする配管をそれぞれ接地させてもよい。配線100は、ストレート配管25a、屈曲配管25b、継ぎ手部25c等、配管のあらゆる場所に接続することができる。
先に説明したように、微粉砕工程においては、粗粉砕した原料合金粗粉に粉砕助剤等を添加しているため、希土類合金微粉が帯電していることがある。そのため、希土類合金微粉は、微粉搬送配管25内で搬送される間に互いに凝集し、微粉搬送配管25の内壁へ内壁へ付着し易くなる。そこで、第3の方法では、微粉搬送配管25を接地し、微粉搬送配管25内で搬送される希土類合金微粉の帯電を除去することにより、希土類合金微粉同士の凝集を抑制し、微粉搬送配管25の内壁への希土類合金微粉の付着を抑制することができる。したがって、微粉搬送配管25での配管詰まりを減少させ、且つ酸素含有量の少ない磁気特性に優れた合金粉末を収率良く得ることが可能である。
次に、第4の方法について説明する。第4の方法では、微粉砕を行うための粉砕システムを構成する配管のうち少なくとも一部、例えば微粉搬送配管25の少なくとも一部を非磁性材料により構成するとともに、非磁性材料により構成される微粉搬送配管25の外部から交流磁界を印加する。交流磁界の印加は、例えば図7に示すように、非磁性材料により構成される微粉搬送配管25の周囲にソレノイドコイル(磁界印加手段)110を巻き付け、前記ソレノイドコイル110に交流電流を流すことにより実現される。ソレノイドコイル110を取り付ける数は、微粉搬送配管25内のキャリアガスの流れ方(例えば圧力、流量、流速、螺旋流や渦の発生等)や微粉搬送配管25の材質等を考慮して適宜定めればよいが、微粉搬送配管25の全長において少なくとも1箇所に取り付ければ良く、複数箇所に取り付けることが好ましい。発生磁界は、0.8kA/m〜80kA/mとすればよい。ソレノイドコイル110は、ストレート配管25a、屈曲配管25b、継ぎ手部25c等、配管のあらゆる場所に設けることができる。
搬送される希土類合金微粉が帯磁していると、搬送中に互いに凝集し、微粉搬送配管25内壁へ付着し易くなる。そこで、微粉搬送配管25外から交流磁界を印加することにより、微粉搬送配管25内で搬送される希土類合金微粉を消磁して凝集を抑制する。その結果、微粉搬送配管25の内壁への希土類合金微粉の付着を抑制して、微粉搬送配管25での配管詰まりを減少させ、且つ酸素含有量の少ない磁気特性に優れた合金粉末を収率良く得ることが可能である。
以上説明したような第1の方法〜第4の方法のいずれかの方法によって、微粉搬送配管25等、配管内壁への希土類合金微粉の付着による不都合を解消することができる。第1の方法〜第4の方法はそれぞれ単独で実施してもよいが、これらの方法を適宜組み合わせて実施してもよい。例えば、第1の方法及び第2の方法を組み合わせること、すなわち、微粉搬送配管25等に振動装置90を取り付けるとともに、振動装置90が取り付けられた微粉搬送配管25の内壁を、日本工業規格R6001で規定される粒度#100以上の研磨材を用いた研削といしによって研磨加工された面粗さとすることで、希土類合金微粉の付着を効果的に抑制することができる。また、ストレート配管25aが例えばステンレス製配管により構成される場合等、金属疲労を比較的生じにくく、且つ内壁面の研磨加工が容易なため、ストレート配管25aには第1の方法及び第2の方法を適用することが好ましい。一方、屈曲配管25bは、希土類合金微粉に対する耐摩耗性を高める目的で内壁がセラミックで構成される場合等があり、この場合にはストレート配管25aに比べて強度に劣り、内壁面の研磨加工が困難である。したがって、このような構成の屈曲配管25bには、第3の方法及び第4の方法を適用することが好ましい。このように、微粉搬送配管25の構造等に応じて最適な方法を使い分けることにより、コストの上昇や粉砕システムへのダメージ等を最小限に抑えつつ、より効果的に希土類合金微粉の付着を抑制することができる。
以上、第1の方法〜第4の方法を微粉搬送配管25に適用した場合を例に挙げて説明してきたが、微粉搬送配管25に限定されることなく、粉砕システムを構成するあらゆる配管に適用した場合も本発明の効果を得られることは言うまでもない。
本実施形態の希土類合金微粉の製造方法に用いられる粉砕システムを模式的に示す図である。 本発明の第1の方法を説明するための図であり、図1中微粉搬送配管付近を拡大して示す図である。 本発明の第1の方法の変形例を説明するための図であり、図1中微粉搬送配管付近を拡大して示す図である。 本発明の第2の方法を説明するための図であり、図1中微粉搬送配管の断面図である。 本発明の第3の方法を説明するための図であり、図1中微粉搬送配管付近を拡大して示す図である。 本発明の第3の方法の変形例を説明するための図であり、図1中微粉搬送配管付近を拡大して示す図である。 本発明の第4の方法を説明するための図であり、図1中微粉搬送配管付近を拡大して示す図である。
符号の説明
10 フィーダ、20 粉砕機、25 微粉搬送配管、30 サイクロン、40 粉末回収容器、50 ミキサ、51 回収保管容器、60 バグフィルタ、71 不活性ガス供給装置、72 酸素含有ガス供給装置73 ガス混合器、74 酸素濃度計、75 ガス回収タンク、77,78 バルブ、80 粒度分布測定装置、90 振動装置、100 配線、110 ソレノイドコイル

Claims (16)

  1. 粉砕システムを用いて希土類元素を含む原料合金粗粉を気流粉砕する希土類合金微粉の製造方法であって、
    前記粉砕システムの閉回路内の酸素濃度を0.2%未満に保持した状態で前記気流粉砕を行うとともに、前記気流粉砕中及び/又は前記気流粉砕後、前記粉砕システムを構成する配管の少なくとも一部に振動を与えることを特徴とする希土類合金微粉の製造方法。
  2. 前記振動を与える配管が、前記気流粉砕を行う粉砕機と希土類合金微粉を回収する粉砕物回収機とを接続する配管であることを特徴とする請求項1記載の希土類合金微粉の製造方法。
  3. 前記振動はエアシリンダを用いた振動装置により与えられることを特徴とする請求項1又は2記載の希土類合金微粉の製造方法。
  4. 前記振動は超音波を発生する超音波振動装置により与えられることを特徴とする請求項1又は2記載の希土類合金微粉の製造方法。
  5. 前記気流粉砕後、前記閉回路内にキャリアガスを流して閉回路内に残存する希土類合金微粉を回収する回収工程、及び前記閉回路内を酸素濃度0.8%〜2.0%として閉回路内に残存する希土類合金微粉を徐酸化する徐酸化工程を有し、
    前記回収工程及び/又は前記徐酸化工程において、前記振動を与えることを特徴とする請求項1〜4のいずれか1項記載の希土類合金微粉の製造方法。
  6. 前記振動を与える配管の内壁を、日本工業規格R6001で規定される粒度#100以上の研磨材を用いた研削といしによって研磨加工された面粗さとすることを特徴とする請求項1〜5のいずれか1項記載の希土類合金微粉の製造方法。
  7. 粉砕システムを構成する配管が少なくともストレート配管を有し、前記ストレート配管に振動を与えることを特徴とする請求項1〜6のいずれか1項記載の希土類合金微粉の製造方法。
  8. 粉砕システムを構成する配管がさらに屈曲配管を有することを特徴とする請求項7記載の希土類合金微粉の製造方法。
  9. 前記粉砕システムを構成する配管の少なくとも一部を接地することを特徴とする請求項1〜8のいずれか1項記載の希土類合金微粉の製造方法。
  10. 前記粉砕システムを構成する配管の少なくとも一部を非磁性材料により構成し、前記気流粉砕中、非磁性材料により構成した配管に外部から交流磁界を印加すること特徴とする請求項1〜9のいずれか1項記載の希土類合金微粉の製造方法。
  11. 粉砕システムを用いて希土類元素を含む原料合金粗粉を気流粉砕する希土類合金微粉の製造方法であって、
    前記粉砕システムを構成する配管の少なくとも一部の内壁を、日本工業規格R6001で規定される粒度#100以上の研磨材を用いた研削といしによって研磨加工された面粗さとし、前記閉回路内の酸素濃度を0.2%未満に保持した状態で前記気流粉砕を行うことを特徴とする希土類合金微粉の製造方法。
  12. 前記面粗さとした配管が、前記気流粉砕を行う粉砕機と希土類合金微粉を回収する粉砕物回収機とを接続する配管であることを特徴とする請求項11記載の希土類合金微粉の製造方法。
  13. 粉砕システムを用いて希土類元素を含む原料合金粗粉を気流粉砕する希土類合金微粉の製造方法であって、
    前記粉砕システムの閉回路内の酸素濃度を0.2%未満に保持した状態で前記気流粉砕を行うとともに、前記粉砕システムを構成する配管の少なくとも一部を接地することを特徴とする希土類合金微粉の製造方法。
  14. 前記接地する配管が、前記気流粉砕を行う粉砕機と希土類合金微粉を回収する粉砕物回収機とを接続する配管であることを特徴とする請求項13記載の希土類合金微粉の製造方法。
  15. 粉砕システムを用いて希土類元素を含む原料合金粗粉を気流粉砕する希土類合金微粉の製造方法であって、
    前記粉砕システムの閉回路内の酸素濃度を0.2%未満に保持した状態で前記気流粉砕を行うとともに、前記粉砕システムを構成する配管の少なくとも一部を非磁性材料により構成し、前記気流粉砕中、非磁性材料により構成した前記配管に外部から交流磁界を印加すること特徴とする希土類合金微粉の製造方法。
  16. 前記交流磁界を印加する配管が、前記気流粉砕を行う粉砕機と希土類合金微粉を回収する粉砕物回収機とを接続する配管であることを特徴とする請求項15記載の希土類合金微粉の製造方法。
JP2005103723A 2005-03-31 2005-03-31 希土類合金微粉の製造方法 Pending JP2006283099A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005103723A JP2006283099A (ja) 2005-03-31 2005-03-31 希土類合金微粉の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005103723A JP2006283099A (ja) 2005-03-31 2005-03-31 希土類合金微粉の製造方法

Publications (1)

Publication Number Publication Date
JP2006283099A true JP2006283099A (ja) 2006-10-19

Family

ID=37405310

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005103723A Pending JP2006283099A (ja) 2005-03-31 2005-03-31 希土類合金微粉の製造方法

Country Status (1)

Country Link
JP (1) JP2006283099A (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006286859A (ja) * 2005-03-31 2006-10-19 Tdk Corp 希土類磁石の製造方法
JP2011124394A (ja) * 2009-12-10 2011-06-23 Daido Electronics Co Ltd 希土類ボンド磁石の磁性粉回収方法及び希土類ボンド磁石用の磁石材料
WO2014040525A1 (zh) * 2012-09-12 2014-03-20 厦门钨业股份有限公司 稀土磁铁用合金粉末、稀土磁铁的制造方法及制粉装置
US20140334962A1 (en) * 2014-05-11 2014-11-13 Shenyang General Magnetic Co., Ltd. Methods and devices for powdering NdFeB Rare Earth permanent magnetic alloy
JP2016056417A (ja) * 2014-09-10 2016-04-21 本田技研工業株式会社 金属粉末回収供給システム及び金属粉末焼結造形物の製造方法
JP2020099876A (ja) * 2018-12-24 2020-07-02 株式会社アイシンナノテクノロジーズ ジェットミル
CN112139509A (zh) * 2020-09-28 2020-12-29 广东先导稀材股份有限公司 金属粉料的生产系统
JP7043662B1 (ja) 2021-07-06 2022-03-29 株式会社金星 ガス搬送式超音波湧出微粉体定量供給システム、及び、ガス搬送式超音波湧出微粉体定量供給方法
CN114515834A (zh) * 2022-02-18 2022-05-20 河南省远洋粉体科技股份有限公司 一种铝粉进行雾化处理的雾化喷头供料装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62187645A (ja) * 1986-02-13 1987-08-17 Toyota Motor Corp ポンプ起動負荷軽減型液圧供給装置
JPH06102076A (ja) * 1992-09-17 1994-04-12 Fuji Photo Film Co Ltd 磁性液用コリオリ質量流量計とそれを用いた磁性液の送液設備
JP2004321914A (ja) * 2003-04-23 2004-11-18 Tdk Corp 微粉処理方法、粉砕方法、粉砕システム、回収装置
JP2004337742A (ja) * 2003-05-15 2004-12-02 Tdk Corp 粉砕システム、r−t−b系永久磁石の製造方法、r−t−b系永久磁石
JP2005046696A (ja) * 2003-07-31 2005-02-24 Toto Ltd 複合構造物作製用ノズル

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62187645A (ja) * 1986-02-13 1987-08-17 Toyota Motor Corp ポンプ起動負荷軽減型液圧供給装置
JPH06102076A (ja) * 1992-09-17 1994-04-12 Fuji Photo Film Co Ltd 磁性液用コリオリ質量流量計とそれを用いた磁性液の送液設備
JP2004321914A (ja) * 2003-04-23 2004-11-18 Tdk Corp 微粉処理方法、粉砕方法、粉砕システム、回収装置
JP2004337742A (ja) * 2003-05-15 2004-12-02 Tdk Corp 粉砕システム、r−t−b系永久磁石の製造方法、r−t−b系永久磁石
JP2005046696A (ja) * 2003-07-31 2005-02-24 Toto Ltd 複合構造物作製用ノズル

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006286859A (ja) * 2005-03-31 2006-10-19 Tdk Corp 希土類磁石の製造方法
JP4640585B2 (ja) * 2005-03-31 2011-03-02 Tdk株式会社 希土類磁石の製造方法
JP2011124394A (ja) * 2009-12-10 2011-06-23 Daido Electronics Co Ltd 希土類ボンド磁石の磁性粉回収方法及び希土類ボンド磁石用の磁石材料
WO2014040525A1 (zh) * 2012-09-12 2014-03-20 厦门钨业股份有限公司 稀土磁铁用合金粉末、稀土磁铁的制造方法及制粉装置
US20140334962A1 (en) * 2014-05-11 2014-11-13 Shenyang General Magnetic Co., Ltd. Methods and devices for powdering NdFeB Rare Earth permanent magnetic alloy
EP2944403A1 (en) * 2014-05-11 2015-11-18 Shenyang General Magnetic Co., Ltd. Methods and devices for powdering NdFeB rare earth permanent magnetic alloy
JP2016056417A (ja) * 2014-09-10 2016-04-21 本田技研工業株式会社 金属粉末回収供給システム及び金属粉末焼結造形物の製造方法
JP2020099876A (ja) * 2018-12-24 2020-07-02 株式会社アイシンナノテクノロジーズ ジェットミル
JP7360645B2 (ja) 2018-12-24 2023-10-13 株式会社アイシンナノテクノロジーズ ジェットミル
CN112139509A (zh) * 2020-09-28 2020-12-29 广东先导稀材股份有限公司 金属粉料的生产系统
JP7043662B1 (ja) 2021-07-06 2022-03-29 株式会社金星 ガス搬送式超音波湧出微粉体定量供給システム、及び、ガス搬送式超音波湧出微粉体定量供給方法
WO2023282044A1 (ja) * 2021-07-06 2023-01-12 株式会社金星 ガス搬送式超音波湧出微粉体定量供給システム、及び、ガス搬送式超音波湧出微粉体定量供給方法
JP2023008494A (ja) * 2021-07-06 2023-01-19 株式会社金星 ガス搬送式超音波湧出微粉体定量供給システム、及び、ガス搬送式超音波湧出微粉体定量供給方法
CN114515834A (zh) * 2022-02-18 2022-05-20 河南省远洋粉体科技股份有限公司 一种铝粉进行雾化处理的雾化喷头供料装置
CN114515834B (zh) * 2022-02-18 2023-01-17 河南省远洋粉体科技股份有限公司 一种铝粉进行雾化处理的雾化喷头供料装置

Similar Documents

Publication Publication Date Title
JP2006283099A (ja) 希土類合金微粉の製造方法
JP4640585B2 (ja) 希土類磁石の製造方法
US10056188B2 (en) Producing method of R-T-B-based sintered magnet
US8979973B2 (en) Method and device for recovering hydrogen pulverized powder of raw-material alloy for rare-earth magnet
EP0651401A1 (en) Preparation of permanent magnet
WO2006004014A1 (ja) 磁気異方性希土類焼結磁石の製造方法及び製造装置
JP6455238B2 (ja) 保磁力に優れたSmFeN磁石
JP6432406B2 (ja) R−t−b系合金粉末およびr−t−b系焼結磁石
JPWO2015146888A1 (ja) R−t−b系合金粉末およびその製造方法ならびにr−t−b系焼結磁石およびその製造方法
JP2006351688A (ja) サマリウム−鉄−窒素系磁石微粉末の製造方法
JP2013120798A (ja) 希土類磁石厚膜および低温固化成形方法
WO1998036428A1 (fr) Aimant sous forme de mince plaquette a structure microcristalline
JP2012160545A (ja) 希土類系磁石用原料合金の水素粉砕粉の製造方法及び製造装置
JPH10125518A (ja) 微細結晶組織を有する薄板磁石
JP4403998B2 (ja) 希土類合金微粉の製造方法
JP2005197299A (ja) 希土類焼結磁石及びその製造方法
JP2005197301A (ja) 希土類焼結磁石及びその製造方法
JP2006265609A (ja) R−t−b系焼結磁石用原料合金及びr−t−b系焼結磁石の製造方法
WO2005043558A1 (ja) 希土類焼結磁石の製造方法
JP4591748B2 (ja) 希土類焼結磁石の製造方法及び製造装置
JP4282002B2 (ja) R−t−b系焼結磁石用合金粉末、その製造方法及びr−t−b系焼結磁石の製造方法
JP3954062B2 (ja) R−t−b系永久磁石用原料粉末の製造方法、r−t−b系永久磁石及び粉砕処理システム
JP4076080B2 (ja) 希土類永久磁石の製造方法
JP2005288493A (ja) 合金薄板の製造方法及び製造装置、合金粉末の製造方法
JP2005197300A (ja) 希土類焼結磁石及びその製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20071122

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Effective date: 20090825

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20091013

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20091214

Free format text: JAPANESE INTERMEDIATE CODE: A523

A131 Notification of reasons for refusal

Effective date: 20100809

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101008

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110523