JP2006266172A - 圧縮機容量制御装置および冷凍サイクル装置 - Google Patents

圧縮機容量制御装置および冷凍サイクル装置 Download PDF

Info

Publication number
JP2006266172A
JP2006266172A JP2005085576A JP2005085576A JP2006266172A JP 2006266172 A JP2006266172 A JP 2006266172A JP 2005085576 A JP2005085576 A JP 2005085576A JP 2005085576 A JP2005085576 A JP 2005085576A JP 2006266172 A JP2006266172 A JP 2006266172A
Authority
JP
Japan
Prior art keywords
control
pressure
compressor
capacity
pressure value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005085576A
Other languages
English (en)
Inventor
Masataku Imazu
正▲琢▼ 今津
Yoshitaka Kume
祥隆 久米
Atsushi Hasegawa
敦 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2005085576A priority Critical patent/JP2006266172A/ja
Priority to DE200610013189 priority patent/DE102006013189A1/de
Priority to ITMI20060553 priority patent/ITMI20060553A1/it
Priority to CN200610068089A priority patent/CN100580250C/zh
Publication of JP2006266172A publication Critical patent/JP2006266172A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • F25B49/022Compressor control arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B27/00Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders
    • F04B27/08Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis
    • F04B27/14Control
    • F04B27/16Control of pumps with stationary cylinders
    • F04B27/18Control of pumps with stationary cylinders by varying the relative positions of a swash plate and a cylinder block
    • F04B27/1804Controlled by crankcase pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B27/00Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders
    • F04B27/08Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis
    • F04B27/14Control
    • F04B27/16Control of pumps with stationary cylinders
    • F04B27/18Control of pumps with stationary cylinders by varying the relative positions of a swash plate and a cylinder block
    • F04B27/1804Controlled by crankcase pressure
    • F04B2027/184Valve controlling parameter
    • F04B2027/185Discharge pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B27/00Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders
    • F04B27/08Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis
    • F04B27/14Control
    • F04B27/16Control of pumps with stationary cylinders
    • F04B27/18Control of pumps with stationary cylinders by varying the relative positions of a swash plate and a cylinder block
    • F04B27/1804Controlled by crankcase pressure
    • F04B2027/184Valve controlling parameter
    • F04B2027/1859Suction pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B2201/00Pump parameters
    • F04B2201/12Parameters of driving or driven means
    • F04B2201/1206Rotational speed of a rotating inclined plate
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B2205/00Fluid parameters
    • F04B2205/01Pressure before the pump inlet
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B2205/00Fluid parameters
    • F04B2205/05Pressure after the pump outlet
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/023Compressor control controlling swash plate angles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/17Speeds
    • F25B2700/171Speeds of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/193Pressures of the compressor
    • F25B2700/1931Discharge pressures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/193Pressures of the compressor
    • F25B2700/1933Suction pressures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2104Temperatures of an indoor room or compartment
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/005Arrangement or mounting of control or safety devices of safety devices

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Control Of Positive-Displacement Pumps (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)
  • Separation By Low-Temperature Treatments (AREA)
  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

【課題】 圧縮機保護のための容量制御を的確に実行する。
【解決手段】 圧縮機の容量制御手段を制御する制御装置を備え、この制御装置は、高圧圧力に対する制御圧力値として、第1制御圧力値Pd1と、第1制御圧力値Pd1よりも所定値高い第2制御圧力値Pd2とを設定し、制御装置は、高圧圧力が第1制御圧力値Pd1を超えると、吐出容量が減少して高圧圧力が第1制御圧力値Pd1に近づくように容量制御手段を制御し、一方、高圧圧力が第2制御圧力値Pd2を超えると、圧縮機を停止状態にする。
【選択図】 図7

Description

本発明は、可変容量型圧縮機の容量制御装置および冷凍サイクル装置に関するもので、車両用空調装置に用いて好適なものである。
従来、車両空調用の冷凍サイクル装置では、圧縮機を車両走行用エンジンにより駆動するようにしているので、圧縮機回転数を制御できない。そこで、圧縮機の吐出容量を電気的制御により変更できる容量制御弁を設定して、吐出容量の制御により圧縮機の吐出能力を制御する方式が種々提案されている(例えば、特許文献1参照)。
特許文献1においては、斜板の傾斜角度を変更してピストンストロークを変更し、それにより、吐出容量を変更する斜板式可変容量型圧縮機において、圧縮機の保護制御を行う必要があるか否かを、圧縮機の回転数に関する値と圧縮機の実働情報の両方に基づいて判定する。
そして、圧縮機の所定の高回転域で、かつ、圧縮機が高実働状態である場合に圧縮機の吐出容量を減少側へ制御し、一方、圧縮機の所定の高回転域であっても、圧縮機が低実働状態である場合は、圧縮機の吐出容量を減少側へ制御しないようにしている。
特開2003−129956号公報
しかし、特許文献1によると、冷媒流量を圧縮機回転数、容量制御弁の電流値、サイクル高圧圧力等の情報に基づいて間接的に推定し、さらに、この冷媒流量、回転数等の情報に基づいて運転トルクを間接的に推定し、この運転トルクの情報に基づいて、圧縮機が高実働状態であるか否かを判定している。
このため、圧縮機の高実働状態の判定は多段階の推定の下に行われることになり、その結果、圧縮機の高実働状態の判定が実際の圧縮機の負荷状態とずれてしまい、圧縮機の保護制御を本当に必要とするときに保護制御(吐出容量減少側への制御)を実行できないとか、逆に、圧縮機の保護制御を必要としないときに保護制御を実行してしまう等の不具合が生じる。
本発明は、上記点に鑑み、圧縮機保護のための容量制御を的確に実行することを目的とする。
上記目的を達成するため、請求項1に記載の発明では、電気的に制御可能な容量制御手段(10b)により吐出容量を連続的に変化させるように構成された可変容量型圧縮機(10)を制御する冷凍サイクル装置の圧縮機容量制御装置であって、
冷凍サイクルの高圧圧力を検出する高圧側圧力検出手段(22)と、
前記高圧側圧力検出手段(22)の検出信号が入力され、前記高圧圧力に応じて前記容量制御手段(10b)を制御する制御装置(25)とを備え、
前記制御装置(25)は、前記高圧圧力に対する制御圧力値として、第1制御圧力値(Pd1)と、前記第1制御圧力値(Pd1)よりも所定値高い第2制御圧力値(Pd2)とを設定し、
前記制御装置(25)は、前記高圧圧力が前記第1制御圧力値(Pd1)を超えると、前記吐出容量が減少して前記高圧圧力が前記第1制御圧力値(Pd1)に近づくように前記容量制御手段(10b)を制御し、
一方、前記高圧圧力が前記第2制御圧力値(Pd2)を超えると、前記圧縮機(10)を停止状態にすることを特徴としている。
これによると、高圧側圧力検出手段(22)により検出される高圧圧力を直接用いて、圧縮機吐出容量を減少側に制御するから、高圧圧力上昇に対する圧縮機保護のための吐出容量制御を必要時に的確に実行できる。
このことから、圧縮機吐出容量を保護制御の必要ないときに圧縮機吐出容量を減少させるということがなくなり、圧縮機能力を冷房能力発揮のために有効活用できる。
また、圧縮機(10)の吐出容量制御を行っても、高圧圧力が第2制御圧力値(Pd2)を超えてしまう場合、つまり、高圧圧力が大きくオーバーシューする場合は、圧縮機(10)を停止することにより高圧圧力を強制的に引き下げることができる。よって、高圧圧力上昇に対する圧縮機保護をより確実に行うことができる。
また、上記オーバーシュートが発生しない通常の運転条件では、圧縮機(10)の吐出容量制御によって高圧圧力を第2制御圧力値(Pd2)以内に制御できるから、圧縮機(10)を停止することなく連続的に運転できる。そのため、冷凍サイクル装置の冷房運転を連続的に継続できるので、冷房対象の室内への吹出空気温度の変動や室内温度上昇といった不具合を抑制できる。
このように冷凍サイクル装置の冷房運転を連続的に継続しながら圧縮機保護制御を行うことができるので、大容量の連続可変容量型圧縮機を用意すれば、この大容量の圧縮機をそのまま用いて、冷房能力の小さい冷凍サイクル装置においても、冷房運転を連続的に継続しながら圧縮機保護制御を同様に行うことができる。従って、大能力の冷凍サイクル装置から中小能力の冷凍サイクル装置に至るまで、共通の圧縮機を使用して対応できる。
なお、本発明における「圧縮機(10)の停止」とは、圧縮機(10)の作動を完全に停止する場合の他に、圧縮機(10)の吐出容量を0%付近の最小容量に設定して、圧縮機(10)の吐出能力を実質的に停止状態と同等にする場合も包含している。
請求項2に記載の発明では、請求項1に記載の冷凍サイクル装置の圧縮機容量制御装置において、前記圧縮機(10)の回転数に関連した情報値を検出し、その検出信号を前記制御装置(25)に入力する回転検出手段(24)を備え、
前記制御装置(25)は、前記高圧圧力に対する制御圧力値として、前記第1制御圧力値(Pd1)を前記圧縮機(10)の第1制御回転数(Nx)よりも低い低回転領域で設定し、一方、前記圧縮機(10)の第1制御回転数(Nx)よりも高い高回転領域では第3制御圧力値(Pd3)を設定し、
前記第3制御圧力値(Pd3)は、前記第1制御圧力値(Pd1)よりも低い圧力であって、前記圧縮機(10)の回転数上昇に応じて低下するようになっており、
前記圧縮機(10)の回転数が前記第1制御回転数(Nx)よりも高い高回転領域にあるときに、前記高圧圧力が前記第3制御圧力値(Pd3)を超えると、前記吐出容量が減少して前記高圧圧力が前記第3制御圧力値(Pd3)に近づくように前記容量制御手段(10b)を制御することを特徴とする。
これによると、圧縮機(10)の回転数が第1制御回転数(Nx)よりも低い低回転領域では、圧縮機(10)の吐出容量制御によって高圧圧力を第1制御圧力値(Pd1)付近に制御できる。
ところで、圧縮機(10)の内部機構に加わる負荷は、圧力負荷だけでなく、圧縮機(10)の回転数上昇に伴って実質的に増大する関係にあるから、低回転領域における第1制御圧力値(Pd1)をそのまま高回転領域においても設定すると、高回転領域では圧縮機(10)の内部機構にとって過負荷状態が生じる恐れがある。
そこで、圧縮機(10)の回転数が第1制御回転数(Nx)よりも高い高回転領域では、
第1制御圧力値(Pd1)よりも低い圧力であって、かつ、圧縮機(10)の回転数上昇に応じて低下する第3制御圧力値(Pd3)を設定し、高圧圧力を圧縮機(10)の吐出容量制御によって第3制御圧力値(Pd3)付近に制御している。
従って、高回転領域では、圧縮機(10)の回転数上昇に応じて高圧圧力を低い圧力に制御できる。これにより、回転数上昇に伴う負荷増大をも考慮した圧縮機保護制御を実行できるので、高回転領域における圧縮機保護をより的確に行うことができる。
請求項3に記載の発明では、請求項1に記載の冷凍サイクル装置の圧縮機容量制御装置において、冷凍サイクルの低圧圧力を検出し、その検出信号を前記制御装置(25)に入力する低圧側圧力検出手段(23)と、
前記圧縮機(10)の回転数に関連した情報値を検出し、その検出信号を前記制御装置(25)に入力する回転検出手段(24)とを備え、
前記制御装置(25)は、前記低圧圧力に対する所定の制御圧力値(Ps4)を設定し、
前記圧縮機(10)の回転数が所定の制御回転数(Ny)よりも高い高回転領域にあるときに、前記低圧圧力が前記所定制御圧力値(Ps4)より低下すると、前記吐出容量が減少して前記低圧圧力が前記所定制御圧力値(Ps4)に近づくように前記容量制御手段(10b)を制御することを特徴とする。
ところで、サイクル低圧圧力が過度に低下すると、サイクル高低圧差が拡大して圧縮機(10)の内部機構に加わる負荷が増大する関係にある。
そこで、請求項3に記載の発明では、圧縮機(10)の回転数が所定の制御回転数(Ny)よりも高い高回転領域にあるときに、低圧圧力が所定制御圧力値(Ps4)より低下すると、吐出容量を減少して低圧圧力が所定制御圧力値(Ps4)に近づくようにしている。
これにより、高回転領域におけるサイクル低圧圧力の過度な低下を抑えて、圧縮機保護制御をより一層的確に行うことができる。
なお、冷媒洩れ発生時にも低圧圧力が過度に低下する現象が起きるが、請求項3では圧縮機(10)の高回転領域を判定しているから、サイクル内への冷媒封入量の正常時における低圧圧力の過度な低下を吐出容量制御によって抑えることができる。
請求項4に記載の発明では、請求項2に記載の冷凍サイクル装置の圧縮機容量制御装置において、冷凍サイクルの低圧圧力を検出し、その検出信号を前記制御装置(25)に入力する低圧側圧力検出手段(23)を備え、
前記制御装置(25)は、前記低圧圧力に対する所定の制御圧力値(Ps4)を設定するとともに、前記第1制御回転数(Nx)より所定値だけ高い第2制御回転数(Ny)を設定し、
前記圧縮機(10)の回転数が前記第2制御回転数(Ny)よりも高い高回転領域にあるときに、前記低圧圧力が前記所定制御圧力値(Ps4)より低下すると、前記吐出容量が減少して前記低圧圧力が前記所定制御圧力値(Ps4)に近づくように前記容量制御手段(10b)を制御することを特徴とする。
これによると、請求項1、2、3を組み合わせた容量制御によって、圧縮機保護制御を的確に実行できる。
請求項5に記載の発明では、電気的に制御可能な容量制御手段(10b)により吐出容量を連続的に変化させるように構成された可変容量型圧縮機(10)を制御する冷凍サイクル装置の圧縮機容量制御装置であって、
冷凍サイクルの高圧圧力を検出する高圧側圧力検出手段(22)と、
前記圧縮機(10)の回転数に関連した情報値を検出する回転検出手段(24)と、
前記高圧側圧力検出手段(22)および前記回転検出手段(24)の検出信号が入力され、前記高圧圧力および前記圧縮機(10)の回転数に応じて前記容量制御手段(10b)を制御する制御装置(25)とを備え、
前記制御装置(25)は、前記高圧圧力に対する制御圧力値として、前記圧縮機(10)の所定制御回転数(Nx)よりも低い低回転領域で用いる第1制御圧力値(Pd1)と、前記圧縮機(10)の所定制御回転数(Nx)よりも高い高回転領域で用いる第3制御圧力値(Pd3)とを設定し、
前記第3制御圧力値(Pd3)は、前記第1制御圧力値(Pd1)よりも低い圧力であって、前記圧縮機(10)の回転数上昇に応じて低下するようになっており、
前記圧縮機(10)の回転数が前記所定制御回転数(Nx)よりも低い低回転領域にあるときに、前記高圧圧力が前記第1制御圧力値(Pd1)を超えると、前記吐出容量が減少して前記高圧圧力が前記第1制御圧力値(Pd1)に近づくように前記容量制御手段(10b)を制御し、
一方、前記圧縮機(10)の回転数が前記所定制御回転数(Nx)よりも高い高回転領域にあるときに、前記高圧圧力が前記第3制御圧力値(Pd3)を超えると、前記吐出容量が減少して前記高圧圧力が前記第3制御圧力値(Pd3)に近づくように前記容量制御手段(10b)を制御することを特徴とする。
これによると、請求項2と同様に、高回転領域では、圧縮機(10)の回転数上昇に応じて高圧圧力を低い圧力に制御できる。従って、回転数上昇に伴う負荷増大をも考慮した圧縮機保護制御を実行できるので、高回転領域における圧縮機保護をより的確に行うことができる。
請求項6に記載の発明では、電気的に制御可能な容量制御手段(10b)により吐出容量を連続的に変化させるように構成された可変容量型圧縮機(10)を制御する冷凍サイクル装置の圧縮機容量制御装置であって、
冷凍サイクルの低圧圧力を検出する低圧側圧力検出手段(23)と、
前記圧縮機(10)の回転数に関連した情報値をを検出する回転検出手段(24)と、
前記高圧側圧力検出手段(22)および前記回転検出手段(24)の検出信号が入力され、前記低圧圧力および前記圧縮機(10)の回転数に応じて前記容量制御手段(10b)を制御する制御装置(25)とを備え、
前記制御装置(25)は、前記低圧圧力に対する所定の制御圧力値(Ps4)を設定し、
前記圧縮機(10)の回転数が所定制御回転数(Ny)よりも高い高回転領域にあるときに、前記低圧圧力が前記所定制御圧力値(Ps4)より低下すると、前記吐出容量が減少して前記低圧圧力が前記所定制御圧力値(Ps4)に近づくように前記容量制御手段(10b)を制御することを特徴とする。
これによると、請求項3、4と同様に、高回転領域におけるサイクル低圧圧力の過度な低下を抑えて、圧縮機保護制御をより一層的確に行うことができる。
請求項7に記載の発明では、請求項1ないし5のいずれか1つに記載の冷凍サイクル装置の圧縮機容量制御装置において、前記高圧圧力と前記第1制御圧力値(Pd1)との差に応じて前記吐出容量の変更幅が増減することを特徴とする。
これによると、高圧圧力と第1制御圧力値(Pd1)との差が大きいときは、吐出容量の変更幅を増大して、高圧圧力を素早く第1制御圧力値(Pd1)に近づけることができる。逆に、高圧圧力と第1制御圧力値(Pd1)との差が小さいときは、吐出容量の変更幅を小さくできるので、室内への吹出空気温度や室内温度の変動を小さくできる。
請求項8に記載の発明では、請求項2または5に記載の冷凍サイクル装置の圧縮機容量制御装置において、前記高圧圧力と前記第3制御圧力値(Pd3)との差に応じて前記吐出容量の変更幅が増減することを特徴とする。
これによると、高圧圧力と第3制御圧力値(Pd3)との差が大きいときは、吐出容量の変更幅を増大して、高圧圧力を素早く第3制御圧力値(Pd3)に近づけることができる。逆に、高圧圧力と第3制御圧力値(Pd3)との差が小さいときは、吐出容量の変更幅を小さくできるので、室内への吹出空気温度や室内温度の変動を小さくできる。
請求項9に記載の発明では、請求項1ないし5のいずれか1つに記載の冷凍サイクル装置の圧縮機容量制御装置において、前記第2制御圧力値(Pd2)を前記第1制御圧力値(Pd1)よりも0.01MPa以上高い値とすることを特徴とする。
請求項9による第2制御圧力値(Pd2)の設定値によれば、通常時には圧縮機容量制御によって高圧圧力を第2制御圧力値(Pd2)以内に制御でき、圧縮機停止を回避できる。
請求項10に記載の発明では、冷却対象空気から吸熱して冷媒が蒸発する蒸発器(19)と、
前記蒸発器(19)を通過した冷媒を吸入して圧縮する圧縮機(10)と、
前記圧縮機(10)に電気的に制御可能に設けられ、前記圧縮機(10)の吐出容量を連続的に変化させることができる容量制御手段(10b)と、
冷凍サイクルの高圧圧力を検出する高圧側圧力検出手段(22)と、
前記高圧側圧力検出手段(22)の検出信号が入力され、前記高圧圧力に応じて前記容量制御手段(10b)を制御する制御装置(25)とを備え、
前記制御装置(25)は、前記高圧圧力に対する制御圧力値として、第1制御圧力値(Pd1)と、前記第1制御圧力値(Pd1)よりも所定値高い第2制御圧力値(Pd2)とを設定し、
前記制御装置(25)は、前記高圧圧力が前記第1制御圧力値(Pd1)を超えると、前記吐出容量が減少して前記高圧圧力が前記第1制御圧力値(Pd1)に近づくように前記容量制御手段(10b)を制御し、
一方、前記高圧圧力が前記第2制御圧力値(Pd2)を超えると、前記圧縮機(10)を停止状態にする冷凍サイクル装置を特徴としている。
このように請求項10に記載の発明は請求項1に対応する冷凍サイクル装置を対象とするものであって、請求項1と同様の作用効果を発揮できる。
請求項11に記載の発明では、冷却対象空気から吸熱して冷媒が蒸発する蒸発器(19)と、
前記蒸発器(19)を通過した冷媒を吸入して圧縮する圧縮機(10)と、
前記圧縮機(10)に電気的に制御可能に設けられ、前記圧縮機(10)の吐出容量を連続的に変化させることができる容量制御手段(10b)と、
冷凍サイクルの高圧圧力を検出する高圧側圧力検出手段(22)と、
前記圧縮機(10)の回転数に関連した情報値を検出する回転検出手段(24)と、
前記高圧側圧力検出手段(22)および前記回転検出手段(24)の検出信号が入力され、前記高圧圧力および前記圧縮機(10)の回転数に応じて前記容量制御手段(10b)を制御する制御装置(25)とを備え、
前記制御装置(25)は、前記高圧圧力に対する制御圧力値として、前記圧縮機(10)の所定制御回転数(Nx)よりも低い低回転領域で用いる第1制御圧力値(Pd1)と、前記圧縮機(10)の所定制御回転数(Nx)よりも高い高回転領域で用いる第3制御圧力値(Pd3)とを設定し、
前記第3制御圧力値(Pd3)は、前記第1制御圧力値(Pd1)よりも低い圧力であって、前記圧縮機(10)の回転数上昇に応じて低下するようになっており、
前記圧縮機(10)の回転数が前記所定制御回転数(Nx)よりも低い低回転領域にあるときに、前記高圧圧力が前記第1制御圧力値(Pd1)を超えると、前記吐出容量が減少して前記高圧圧力が前記第1制御圧力値(Pd1)に近づくように前記容量制御手段(10b)を制御し、
一方、前記圧縮機(10)の回転数が前記所定制御回転数(Nx)よりも高い高回転領域にあるときに、前記高圧圧力が前記第3制御圧力値(Pd3)を超えると、前記吐出容量が減少して前記高圧圧力が前記第3制御圧力値(Pd3)に近づくように前記容量制御手段(10b)を制御する冷凍サイクル装置を特徴としている。
このように請求項11に記載の発明は請求項5に対応する冷凍サイクル装置を対象とするものであって、請求項5と同様の作用効果を発揮できる。
請求項12に記載の発明では、冷却対象空気から吸熱して冷媒が蒸発する蒸発器(19)と、
前記蒸発器(19)を通過した冷媒を吸入して圧縮する圧縮機(10)と、
前記圧縮機(10)に電気的に制御可能に設けられ、前記圧縮機(10)の吐出容量を連続的に変化させることができる容量制御手段(10b)と、
冷凍サイクルの低圧圧力を検出する低圧側圧力検出手段(23)と、
前記圧縮機(10)の回転数に関連した情報値をを検出する回転検出手段(24)と、
前記高圧側圧力検出手段(22)および前記回転検出手段(24)の検出信号が入力され、前記低圧圧力および前記圧縮機(10)の回転数に応じて前記容量制御手段(10b)を制御する制御装置(25)とを備え、
前記制御装置(25)は、前記低圧圧力に対する所定の制御圧力値(Ps4)を設定し、
前記圧縮機(10)の回転数が所定制御回転数(Ny)よりも高い高回転領域にあるときに、前記低圧圧力が前記所定制御圧力値(Ps4)より低下すると、前記吐出容量が減少して前記低圧圧力が前記所定制御圧力値(Ps4)に近づくように前記容量制御手段(10b)を制御する冷凍サイクル装置を特徴としている。
このように請求項12に記載の発明は請求項6に対応する冷凍サイクル装置を対象とするものであって、請求項6と同様の作用効果を発揮できる。
なお、上記各手段の括弧内の符号は、後述する実施形態に記載の具体的手段との対応関係を示すものである。
以下本発明の一実施形態を図に基づいて説明する。図1は本実施形態による車両用空調装置の冷凍サイクルとその制御システムを示す。本実施形態は特に車室内の車両前後方向に多数のシートを配置するバス車両に用いる空調装置に関する。冷凍サイクルの圧縮機10は駆動力を断続するクラッチ手段をなす電磁クラッチ10aを有している。圧縮機10は、この電磁クラッチ10a、ベルト11等を介して車両走行用エンジン12により回転駆動され、冷媒を吸入圧縮するものである。
圧縮機10は外部からの制御信号により吐出容量を連続的に変化できる可変容量型圧縮機であり、電磁式の容量制御弁10bを備えている。
圧縮機10の吐出側には凝縮器13、受液器14、過冷却器15および電動冷却ファン16を有する凝縮ユニット17が設けられている。凝縮器13は圧縮機1から吐出された高圧ガス冷媒を電動冷却ファン16の送風空気(外気)により冷却して凝縮する。
受液器14は、凝縮器13の出口冷媒の気液を分離して、液冷媒を過冷却器15へ向けて導出する。また、余剰液冷媒を受液器14のタンク形状内部の底部側に蓄える。過冷却器15は、受液器14からの液冷媒(飽和液)を電動冷却ファン16の送風空気(外気)により冷却して過冷却する。
過冷却器15の出口側には減圧手段をなす膨張弁18が設けられている。この膨張弁18は、過冷却器15出口側の高圧液冷媒(過冷却液)を低圧の気液2相状態に減圧するもので、膨張弁18の弁開度は周知の機構により蒸発器19の出口冷媒の過熱度が所定値に維持されるように自動調整される。
蒸発器19は冷房用熱交換器であって、電動送風機20とともに冷却ユニット21のケース(図示せず)内に配置される。電動送風機20はバス車両の車室内空気を吸入して蒸発器19に送風する。蒸発器19では、低圧の気液2相冷媒がこの送風空気から吸熱して蒸発する。これにより、送風空気は冷却され冷風となる。この冷風がバス車室内の天井部に配置された冷風ダクト(図示せず)に送り込まれ、この冷風ダクトの冷風吹出口から冷風が車室内へ吹き出される。
圧縮機10の吐出側冷媒通路には高圧圧力Pdを検出する高圧側圧力センサ22が配置され、また、圧縮機10の吸入側冷媒通路には低圧圧力Psを検出する低圧側圧力センサ23が配置されている。この圧力センサ22、23は冷媒圧力の変化により電気抵抗値が連続的に変化し、それに基づいて電圧を連続的に変化させるものである。
圧縮機10のハウジング内部には圧縮機10の回転センサ24が内蔵されている。この回転センサ24は圧縮機10内部の磁性体回転部分が回転することにより圧縮機回転数に応じた周波数のパルス状出力電圧を電磁コイルに発生するものである。
これらセンサ22、23、24の検出信号は空調用制御装置25に入力される。この空調用制御装置10の入力側には、さらに、バス車両の車室内温度Trを検出する室内温度センサ26等のセンサ群や空調操作パネル27が接続される。空調操作パネル27は車室内の計器盤(インパネ)付近に配置され、運転者のマニュアル操作に基づく種々な空調操作信号を空調用制御装置25に入力する。
具体的には、空調操作パネル27に、車室内の希望温度Tsetをマニュアル設定する温度設定スイッチ27a、冷却ユニット21の電動送風機6の風量をマニュアル設定する風量切替スイッチ27b等が設けられている。
空調用制御装置25は、マイクロコンピュータおよびその周辺回路等から構成され、予め設定されたプログラムに従って所定の演算処理を行って、空調機器の作動を制御する。このため、空調用制御装置25の出力側に、圧縮機10の電磁クラッチ10a、容量制御弁10b、凝縮ユニット17の電動冷却ファン16、冷却ユニット21の電動送風機20等の空調機器が接続され、これらの空調機器の作動を空調用制御装置25により制御する。
次に、可変容量型圧縮機10について具体的に述べる。本実施形態の可変容量型圧縮機10は、斜板式圧縮機として公知のものであり(例えば、特開平11ー78510号公報参照)、電磁式容量制御弁10bに加える制御電流値Iを変化させることにより、斜板室の制御圧力Pcを変化させ、これにより、斜板の傾斜角度の変化→ピストンストロークの変化→吐出容量の変化を行うようになっている。ここで、吐出容量は冷媒の吸入圧縮を行う作動空間の幾何学的な容積であり、具体的には、ピストンストロークの上死点と下死点との間のシリンダ容積である。
また、斜板式可変容量型圧縮機10においては制御圧Pcの調整により斜板の傾斜角度を連続的に変化させ、それにより、吐出容量を100%の最大容量から略0%付近の最小容量まで連続的に変化させることができる。
電磁式容量制御弁10bに加える制御電流値Iは、図2に示すように車室内温度Tr(室内温度センサ26の検出温度)と温度設定スイッチ27aの設定温度Tsetとの温度差の関数により決定される。ここで、温度差(Tr−Tset)が大きいほど冷房負荷が大きいという関係にあるので、温度差(Tr−Tset)は冷房負荷を表す指標(情報値)であり、温度差(Tr−Tset)が大きいほど、制御電流値Iが増大する関係にある。
電磁式容量制御弁10bでは制御電流値Iにより電磁コイルの電磁力が変化して制御圧力Pcを制御する弁位置を調整するようになっている。より具体的には、図3に示すように制御電流値Iが増大するにつれて、冷凍サイクルの目標低圧圧力(目標吸入圧)が低くなるように設定される。
そして、この目標低圧圧力に応じて電磁式容量制御弁10bの弁位置が調整され、これにより、制御圧Pcが調整されて吐出容量が変化する。この吐出容量の変化により冷凍サイクルの実際の低圧圧力が目標低圧圧力と一致するように調整される。
従って、温度差(Tr−Tset)の増大→制御電流値Iの増大→目標低圧圧力の低下→制御圧Pcの低下→斜板の傾斜角度の増大→吐出容量の増大という挙動が生じる。温度差(Tr−Tset)が減少すれば、これとは逆の挙動が生じて吐出容量が減少する。
容量制御弁10bの電流制御は、具体的には、図4に示す矩形波出力によるデューティ比制御で行うようになっている。従って、上記制御電流値Iの増減はデューティ比の増減を意味している。デューティ比=t/t0である。なお、このようなデューティ比制御によらず制御電流Iの値を直接、連続的(アナログ的)に変化させてもよい。
次に、本実施形態による圧縮機容量制御の具体例を図5、図6により説明する。図5、図6は空調制御装置25により実行される制御ルーチンであり、車両エンジン12が運転状態にあって、空調制御装置25に電源が供給されると、図5、図6の制御ルーチンがスタートする。まず、各種センサ22〜24、26、空調操作パネル27の各種操作信号等を読み込む(S10)。
次に、圧縮機回転数Ncが第1制御回転数Nx以上であるか判定する(S20)。ここで、第1制御回転数Nxは、図7に示す高圧制御域Aと第1高回転保護制御域Bとを区分する回転数であり、例えば、3000rpmである。そして、高圧制御域Aは高圧圧力Pdのみにより圧縮機10の保護制御を行う領域であり、これに対し、第1高回転保護制御域Bは高圧圧力Pdと回転数Ncに応じて圧縮機10の保護制御を行う領域である。
なお、本実施形態では、圧縮機回転数Ncの使用最高回転数は6500rpm程度であるから、第1制御回転数Nxは使用最高回転数の1/2を若干上回る程度の回転数である。
図7の縦軸は冷媒圧力であり、本実施形態では冷凍サイクルの冷媒としてR134aを用いているので、冷媒圧力=0.3MPa付近で冷媒温度は0℃付近となる。
圧縮機回転数Ncが第1制御回転数Nx未満であるときはS20の判定がNOとなり、図5の高圧制御ロジックL1の制御処理を実行する。これに対し、圧縮機回転数Ncが第1制御回転数Nx以上であるときはS20の判定がYESとなり、図5の第1高回転保護制御ロジックL2の制御処理を実行する。
最初に、高圧制御ロジックL1について説明すると、まず、高圧側圧力センサ22により検出される高圧圧力Pdが図7に示す第1制御圧力値Pd1以上であるか判定する(S30)。ここで、第1制御圧力値Pd1は、圧縮機内部機構に加わる圧力負荷荷重を軽減するための圧縮機保護制御を開始する圧力であって、本実施形態では、第1制御圧力値Pd1を例えば、2.7MPa(図7参照)に設定している。
これに対し、第2制御圧力値Pd2は、第1制御圧力値Pd1よりも所定値Pddだけ高い圧力値であって、圧縮機保護のために圧縮機を直ちに停止するレベルの圧力である。本実施形態では、所定値Pdd=0.1MPaとし、第2制御圧力値Pd2を2.8MPa(図7参照)に設定している。ここで、所定値Pddは以下述べる理由により0.01MPa以上に設定すればよい。
本発明者の実験検討によると、通常の運転条件でも、圧縮機容量制御時に第1制御圧力値(Pd1)を上回るような高圧圧力のオーバーシュートが発生することがある。オーバーシュートが所定の幅以下であれば、圧縮機を停止させる圧縮機保護制御を起動する必要はない。このような、圧縮機保護制御を起動するほどではないようなオーバーシュートの幅は、冷凍サイクルの適用対象毎に異なるので、この圧縮機保護制御を起動するほどではないオーバーシュートの幅を適用対象毎に設定し、その幅を、あるいはその幅にさらに安全率を見込んだ幅を上記所定値Pddとして設定することができる。
このような見地から、所定値Pddは、例えば0.01MPa以上に設定することができる。そして、所定値Pddを本実施形態のように、0.1MPa程度、あるいはそれ以上に設定することができる。例えば、所定値Pddの幅は、第1制御圧力値Pd1に所定値Pddを加えた圧力値が、例え一時的であっても回避すべき高圧圧力の値以下になるように設定してもよい。
第2制御圧力値Pd2は第1制御圧力値P1に所定値Pddを加えた値とすることにより、圧縮機を即座に停止すべき圧力に対応するように設定することができる。そして、第1制御圧力値Pd1は、第2制御圧力値Pd2より所定値Pddだけ低く、しかも冷凍サイクルの通常運転条件下では、第1制御圧力値Pd1以下の領域において必要とされる圧縮機能力を発揮し調節できる程度の高さをもつように設定する。
高圧圧力Pdが図7の高圧(1)(2)のように第1制御圧力値Pd1未満であれば、圧縮機保護制御の必要がないので、圧縮機容量の通常制御を行う(S40)。この通常制御は、冷房負荷の増減に応じて圧縮機10の吐出容量を変化させ、低圧圧力を調整する制御である。
具体的には、前述の図2に示すように、車室内温度Trと温度設定スイッチ27aの設定温度Tsetとの温度差(Tr−Tset)の関数により電磁式容量制御弁10bの制御電流値Iを決定し、この制御電流値Iにより冷凍サイクルの目標低圧圧力を図3のように決定する。
そして、この目標低圧圧力(電磁コイルの電磁力)と実際の低圧圧力に応じて、電磁式容量制御弁10bの弁位置が調整され、これにより、制御圧Pcが調整されて吐出容量が変化する。この吐出容量の変化により実際の低圧圧力が目標低圧圧力と一致するように調整される。
冷凍サイクルの低圧圧力により蒸発器19での冷媒蒸発温度が決定されるので、吐出容量の変化により低圧圧力を調整することにより蒸発器19の冷却能力を冷房負荷に対応した能力となるように制御できる。
一方、高圧圧力Pdが図7の高圧(3)のように第1制御圧力値Pd1を超えるときは、S30の判定がYESとなり、高圧圧力Pdが第2制御圧力値Pd2以上であるか判定する(S50)。この判定がNOのときはS60にて圧力差ΔPaに基づいて高圧制御のための容量制御を行う。
具体的には、圧力差ΔPa=第1制御圧力値Pd1−実際の高圧圧力Pdを求め、この圧力差ΔPaに基づいて制御電流増減値を求める。この制御電流増減値とは現状(前回算出)の制御電流に対する増減幅である。
但し、S60の高圧制御は、PdがPd1を超えるとき、すなわち、圧力差ΔPaのマイナス領域で行われるから、実際の高圧圧力Pdが第1制御圧力値Pd1を超えている量に応じて制御電流Iの減少量(デューティ比減少量)を決定することになる。
これによると、第1制御圧力値Pd1に対する実際の高圧圧力Pdの超過量が大きいほど(圧力差ΔPaが大きいほど)、それに応じて制御電流Iの減少量も大きくできるから、吐出容量の減少度合いを大きくできる。この結果、高圧圧力Pdを第1制御圧力値Pd1に向かって素早く引き下げることができる。
これに対し、第1制御圧力値Pd1に対する実際の高圧圧力Pdの超過量が小さいときは、制御電流Iの減少量も小さくなって吐出容量の減少度合いが小さいので、車室内への吹出空気温度の変動、ひいては室温の変動を小さくでき、空調フィーリングへの悪影響を抑制できるという利点がある。
ところで、通常の車両走行条件であれば、上記S60の高圧制御の実行により高圧圧力Pdを図8(a)の実線に示すように第2制御圧力値Pd2未満に抑制できるので、空調装置を停止することなく連続的に運転したまま、圧縮機10の保護制御を行うことができる。従って、圧縮機10の保護制御に伴う室温上昇や吹出温度変動といった不具合を回避できる。
一方、上記S60の高圧制御の実行中に容量制御の過大な応答遅れ(オーバーシュート)が発生すると、高圧圧力Pdが上がりすぎて第2制御圧力値Pd2を超過してしまう場合が生じる(図7の高圧(3)および図8(a)の破線を参照)。このような容量制御の応答遅れは、例えば、高外気温によって凝縮ユニット17の冷媒冷却能力が低下しているときに、車両の急加速が行われ、車両エンジン12の回転数が急上昇して圧縮機10の回転数も急上昇するような条件の際に発生しやすい。
上記の場合は、S50の判定がYESとなり、S70にて冷凍サイクルの運転を停止する。具体的には、圧縮機10の電磁クラッチ10aへの通電を遮断し、圧縮機10を停止する。これと同時に、凝縮ユニット冷却ファン16を停止する。この圧縮機10の運転停止により圧縮機内部機構の過大負荷を確実に解消でき、圧縮機10を保護できる。なお、冷却ユニット21の電動送風機20は上記冷凍サイクルの停止時にも作動を継続するので、車室内への空気吹出は継続される。
次に、S20の判定がYESとなり、図5の第1高回転保護制御ロジックL2の制御処理を実行する場合を説明する。この制御処理では、まず、高圧圧力Pdが第3制御圧力値Pd3以上であるか判定する(S80)。
ここで、第3制御圧力値Pd3は、高圧制御ロジックL1における第1制御圧力値Pd1と同様に、圧縮機内部機構に加わる圧力負荷荷重を軽減する圧縮機保護制御を開始する圧力である。但し、第3制御圧力値Pd3は、図7に示すように、圧縮機回転数Ncの上昇に応じて第1制御圧力値Pd1のレベル(2.7MPa)から徐々に低下するように右肩下がりで決定されるものであり、この点で第1制御圧力値Pd1と相違している。
このように第3制御圧力値Pd3を決定するのは次の理由からである。すなわち、圧縮機10の信頼性に影響を及ぼす負荷は、高圧圧力と低圧圧力との圧力差、および回転数で代用できる。つまり、この高低圧差が大きいほど圧縮機内部機構に加わる圧力負荷荷重が大きくなる。また、圧縮機回転数Ncが高いほど、圧縮機内部機構の摩擦部温度が上昇する等の理由から圧縮機10の実質上の負荷がさらに上昇するためである。そこで、第3制御圧力値Pd3を圧縮機回転数Ncの上昇に応じて右肩下がりとなるように決定している。
そして、実際の高圧圧力Pdが図7の高圧(1)のように第3制御圧力値Pd3未満であれば、圧縮機保護制御の必要がないので、通常制御を行う(S90)。この通常制御はS40と同じであり、冷房負荷の増減に応じて吐出容量を増減する制御を行う。
一方、実際の高圧圧力Pdが図7の高圧(2)のように第3制御圧力値Pd3を超える場合は圧縮機保護制御が必要であるので、S100に進み高圧圧力Pdが第2制御圧力値Pd2以上であるか判定する。高圧圧力Pdが第2制御圧力値Pd2未満であるときは、S110に進み、第1高回転保護制御を実行する。
この第1高回転保護制御は、前述の高圧制御と同様の制御であって、圧力差ΔPb=第3制御圧力値Pd3−実際の高圧圧力Pdを求め、この圧力差ΔPbに基づいて高圧制御のための容量制御を行う。
具体的には、S110の高圧制御は圧力差ΔPbのマイナス領域で行われるから、実際の高圧圧力Pdが第3制御圧力値Pd3を超えている量に応じて制御電流Iの減少量(デューティ比減少量)を決定することになる。
これによると、第3制御圧力値Pd3に対する実際の高圧圧力Pdの超過量が大きいほど制御電流Iの減少量を大きくできるから、吐出容量の減少度合いを大きくして高圧圧力Pdを第3制御圧力値Pd1に向かって素早く引き下げることができる。
また、高圧圧力Pdの超過量が小さいときは、制御電流Iの減少量も小さくなって吐出容量の減少度合いが小さいので、車室内への吹出空気温度の変動、ひいては室温の変動を小さくできる。
ところで、通常は、S110の高圧制御の実行により高圧圧力Pdを図8(a)の実線に示すように第2制御圧力値Pd2未満に抑制できるので、空調装置を停止することなく連続的に運転したまま、圧縮機10の保護制御を行うことができる。
しかし、上記S110の高圧制御の実行中に圧縮機回転数の急上昇等の特殊要因により容量制御の過大な応答遅れ(オーバーシュート)が発生すると、高圧圧力Pdが第2制御圧力値Pd2を超過してしまう場合が生じる(図7の高圧(3)および図8(a)の破線を参照)。
この場合は、S100の判定がYESとなり、S120にて冷凍サイクルの運転を停止する。具体的には、圧縮機10の電磁クラッチ10aへの通電を遮断し、圧縮機10を停止する。これと同時に、凝縮ユニット17の冷却ファン16を停止する。この圧縮機10の運転停止により圧縮機内部機構の過大負荷を確実に解消でき、圧縮機10を保護できる。
このときも、冷却ユニット21の電動送風機20の作動は継続する。なお、図7の高圧(2)のように高圧圧力Pdが第3制御圧力値Pd3を超える状態は、高外気温・高回転時に発生しやすい。
次に、図6に示す第2高回転保護制御ロジックL3について説明する。図5のS110から図6のS130に進み、圧縮機回転数Ncが第2制御回転数Ny以上であるか判定する。ここで、第2制御回転数Nyは、図7に示す第2高回転保護制御域Cを区分する回転数であり、第1制御回転数Nxよりも十分高い回転数、例えば、5000rpmである。この第2高回転保護制御域Cは低圧圧力Psと回転数Ncにより圧縮機10の保護制御を行う領域である。
圧縮機回転数Ncが第2制御回転数Ny以上であると、S130の判定がYESとなり、次のS140にて実際の低圧圧力Ps(低圧側圧力センサ23の検出値)が第4制御圧力値Ps4以下であるか判定する。ここで、第4制御圧力値Ps4は例えば、0.05MPaであり、このような低い低圧圧力値(大気圧よりも低い負圧域の圧力)は、低外気温時で、かつ、使用最高回転域に接近するような高回転時といった特殊条件においてのみ発生する。
実際の低圧圧力Psが図7の低圧(4)のように、第2制御回転数Ny以上の高回転域において第4制御圧力値Ps4以下であるときはS150に進み第2高回転保護制御を実行する。
この第2高回転保護制御は、実際の低圧圧力Psが第4制御圧力値Ps4以上となるように制御電流Iを変更する制御である。具体的には、制御電流Iをその制御範囲の最小値に減少する。これにより、圧縮機吐出容量は強制的に最小容量側に制御される。
このように制御電流Iを減少して吐出容量を減少することにより、実際の低圧圧力Psを図8(b)に示すように第4制御圧力値Ps4以上に高めることができる。
ところで、S150の第2高回転保護制御は、S110の第1高回転保護制御が実行された後に再度実行されるので、このS110およびS150の両制御処理で決定された制御電流Iのうち、小さい方を選択して、容量制御弁10bへの制御電流I(デューティ比)を最終的に決定する。
これによると、S110およびS150の両制御処理に基づいて、吐出容量をより小さくする方へ制御するから、第1、第2高回転保護制御の目的をいずれも達成できる。
S130およびS140の判定がNOのときは、S150の第2高回転保護制御を実行しないから、S110の第1高回転保護制御による「制御電流Iの減少量」をそのまま採用して、容量制御弁10bへの制御電流I(デューティ比)が決定される。
(他の実施形態)
なお、本発明は上述の一実施形態に限定されることなく、以下のごとく種々変形可能である。
(1)上述の一実施形態では、S150の第2高回転保護制御において、制御電流Iをその制御範囲の最小値に減少する例について説明したが、S60の高圧制御およびS110の第1高回転保護制御と同様に、圧力差ΔPc=第4制御圧力値Ps4−実際の低圧圧力Psを求め、この圧力差ΔPcが大きいほど、換言すると、実際の低圧圧力Psが第4制御圧力値Ps4を下回っている量が大きいほど、制御電流Iの減少量(デューティ比減少量)が大きくなるように決定してもよい。
(2)上述の一実施形態では、可変容量型圧縮機10に電磁クラッチ10aを備え、図5の冷凍サイクル停止処理時(S70、S120)に、電磁クラッチ10aへの通電を遮断して、電磁クラッチ10aを開放(非接続)状態にし、これにより、圧縮機10を停止しているが、斜板式可変容量型圧縮機10は斜板の傾斜角度を連続的に変化させて、吐出容量を100%の最大容量から略0%付近の最小容量まで連続的に変化させることができるので、図5の冷凍サイクル停止時(S70、S120)に吐出容量を強制的に略0%付近の最小容量まで減少させ、それにより、圧縮機10を実質上停止させるようにしてもよい。
このようにすれば、可変容量型圧縮機10の電磁クラッチ10aを廃止できるので、圧縮機10をクラッチレス構造にすることができる。
(3)本発明は可変容量型圧縮機10の容量制御に特徴を有するものであって、可変容量型圧縮機10の構成自体に限定されるものではないから、斜板式以外の可変容量型圧縮機を使用してもよい。
(4)上述の一実施形態では、可変容量型圧縮機10に回転センサ24を設ける例について説明したが、可変容量型圧縮機10の回転数は車両エンジン12の回転数と相関があるから、車両エンジン12の回転数に基づいて可変容量型圧縮機10の回転数を算出してもよい。具体的には、可変容量型圧縮機10は通常、車両エンジン12によりプーリとベルトを介して回転駆動されるので、次式(1)により圧縮機回転数を算出できる。
圧縮機回転数=エンジン回転数×(エンジン側プーリ径/圧縮機側プーリ径) (1)
(5)上述の一実施形態では、圧縮機高回転時における低圧圧力Psの下限目標値である第4制御圧力値Ps4を一定値にしているので、圧力に応じてセンサ出力値が連続的に変化する低圧側圧力センサ23の代わりに、第4制御圧力値Ps4にてスイッチ動作を行う圧力スイッチを使用してもよい。
(6)上述の一実施形態では、第2制御圧力値Pd2を圧縮機回転数Ncに関係なく一定値にしているが、圧縮機回転数Ncが第1制御回転数Nx以上となる高回転領域において、第2制御圧力値Pd2も第3制御圧力値Pd3に沿って右肩下がりに低下する特性に設定してもよい。これにより、第1制御回転数Nx以上の高回転領域では回転数上昇に伴って圧縮機停止のタイミングを早めることができる。
(7)上述の一実施形態では、圧縮機高回転時における低圧圧力Psの下限目標値である第4制御圧力値Ps4を一定値にしているが、圧縮機回転数Ncが第2制御回転数Ny以上となる高回転領域において、第4制御圧力値Ps4を回転数上昇に伴って右肩上がりに上昇する特性に設定してもよい。これにより、低圧圧力制御のための容量制御のタイミングを回転数上昇に伴って早めることができる。
(8)上述の一実施形態では、車両空調用の冷凍サイクル装置について説明したが、可変容量型圧縮機10を備える冷凍サイクル装置であれば、車両空調用以外の用途の冷凍サイクル装置に対しても本発明は同様に適用できる。
本発明の一実施形態を示す全体システム構成図である。 一実施形態における可変容量型圧縮機の容量制御電流値の決定方法の説明図である。 一実施形態における可変容量型圧縮機の容量制御電流と目標低圧圧力との関係を示す説明図である。 一実施形態における可変容量型圧縮機の容量制御弁のデューティ比制御図である。 一実施形態による容量制御を示すフローチャートである。 一実施形態による容量制御を示すフローチャートである。 一実施形態における冷媒圧力と圧縮機回転数との関係を示す作動説明図である。 一実施形態の容量制御に基づく高圧圧力および低圧圧力の挙動説明図である。
符号の説明
10…可変容量型圧縮機、10b…容量制御弁(容量制御手段)、
22…高圧側圧力センサ、(高圧側圧力検出手段)、
23…低圧側圧力センサ、(低圧側圧力検出手段)、
24…回転センサ(回転検出手段)、25…制御装置。

Claims (12)

  1. 電気的に制御可能な容量制御手段(10b)により吐出容量を連続的に変化させるように構成された可変容量型圧縮機(10)を制御する冷凍サイクル装置の圧縮機容量制御装置であって、
    冷凍サイクルの高圧圧力を検出する高圧側圧力検出手段(22)と、
    前記高圧側圧力検出手段(22)の検出信号が入力され、前記高圧圧力に応じて前記容量制御手段(10b)を制御する制御装置(25)とを備え、
    前記制御装置(25)は、前記高圧圧力に対する制御圧力値として、第1制御圧力値(Pd1)と、前記第1制御圧力値(Pd1)よりも所定値高い第2制御圧力値(Pd2)とを設定し、
    前記制御装置(25)は、前記高圧圧力が前記第1制御圧力値(Pd1)を超えると、前記吐出容量が減少して前記高圧圧力が前記第1制御圧力値(Pd1)に近づくように前記容量制御手段(10b)を制御し、
    一方、前記高圧圧力が前記第2制御圧力値(Pd2)を超えると、前記圧縮機(10)を停止状態にすることを特徴とする冷凍サイクル装置の圧縮機容量制御装置。
  2. 前記圧縮機(10)の回転数に関連した情報値を検出し、その検出信号を前記制御装置(25)に入力する回転検出手段(24)を備え、
    前記制御装置(25)は、前記高圧圧力に対する制御圧力値として、前記第1制御圧力値(Pd1)を前記圧縮機(10)の第1制御回転数(Nx)よりも低い低回転領域で設定し、一方、前記圧縮機(10)の第1制御回転数(Nx)よりも高い高回転領域では第3制御圧力値(Pd3)を設定し、
    前記第3制御圧力値(Pd3)は、前記第1制御圧力値(Pd1)よりも低い圧力であって、前記圧縮機(10)の回転数上昇に応じて低下するようになっており、
    前記圧縮機(10)の回転数が前記第1制御回転数(Nx)よりも高い高回転領域にあるときに、前記高圧圧力が前記第3制御圧力値(Pd3)を超えると、前記吐出容量が減少して前記高圧圧力が前記第3制御圧力値(Pd3)に近づくように前記容量制御手段(10b)を制御することを特徴とする請求項1に記載の冷凍サイクル装置の圧縮機容量制御装置。
  3. 冷凍サイクルの低圧圧力を検出し、その検出信号を前記制御装置(25)に入力する低圧側圧力検出手段(23)と、
    前記圧縮機(10)の回転数に関連した情報値を検出し、その検出信号を前記制御装置(25)に入力する回転検出手段(24)とを備え、
    前記制御装置(25)は、前記低圧圧力に対する所定の制御圧力値(Ps4)を設定し、
    前記圧縮機(10)の回転数が所定の制御回転数(Ny)よりも高い高回転領域にあるときに、前記低圧圧力が前記所定制御圧力値(Ps4)より低下すると、前記吐出容量が減少して前記低圧圧力が前記所定制御圧力値(Ps4)に近づくように前記容量制御手段(10b)を制御することを特徴とする請求項1に記載の冷凍サイクル装置の圧縮機容量制御装置。
  4. 冷凍サイクルの低圧圧力を検出し、その検出信号を前記制御装置(25)に入力する低圧側圧力検出手段(23)を備え、
    前記制御装置(25)は、前記低圧圧力に対する所定の制御圧力値(Ps4)を設定するとともに、前記第1制御回転数(Nx)より所定値だけ高い第2制御回転数(Ny)を設定し、
    前記圧縮機(10)の回転数が前記第2制御回転数(Ny)よりも高い高回転領域にあるときに、前記低圧圧力が前記所定制御圧力値(Ps4)より低下すると、前記吐出容量が減少して前記低圧圧力が前記所定制御圧力値(Ps4)に近づくように前記容量制御手段(10b)を制御することを特徴とする請求項2に記載の冷凍サイクル装置の圧縮機容量制御装置。
  5. 電気的に制御可能な容量制御手段(10b)により吐出容量を連続的に変化させるように構成された可変容量型圧縮機(10)を制御する冷凍サイクル装置の圧縮機容量制御装置であって、
    冷凍サイクルの高圧圧力を検出する高圧側圧力検出手段(22)と、
    前記圧縮機(10)の回転数に関連した情報値を検出する回転検出手段(24)と、
    前記高圧側圧力検出手段(22)および前記回転検出手段(24)の検出信号が入力され、前記高圧圧力および前記圧縮機(10)の回転数に応じて前記容量制御手段(10b)を制御する制御装置(25)とを備え、
    前記制御装置(25)は、前記高圧圧力に対する制御圧力値として、前記圧縮機(10)の所定制御回転数(Nx)よりも低い低回転領域で用いる第1制御圧力値(Pd1)と、前記圧縮機(10)の所定制御回転数(Nx)よりも高い高回転領域で用いる第3制御圧力値(Pd3)とを設定し、
    前記第3制御圧力値(Pd3)は、前記第1制御圧力値(Pd1)よりも低い圧力であって、前記圧縮機(10)の回転数上昇に応じて低下するようになっており、
    前記圧縮機(10)の回転数が前記所定制御回転数(Nx)よりも低い低回転領域にあるときに、前記高圧圧力が前記第1制御圧力値(Pd1)を超えると、前記吐出容量が減少して前記高圧圧力が前記第1制御圧力値(Pd1)に近づくように前記容量制御手段(10b)を制御し、
    一方、前記圧縮機(10)の回転数が前記所定制御回転数(Nx)よりも高い高回転領域にあるときに、前記高圧圧力が前記第3制御圧力値(Pd3)を超えると、前記吐出容量が減少して前記高圧圧力が前記第3制御圧力値(Pd3)に近づくように前記容量制御手段(10b)を制御することを特徴とする冷凍サイクル装置の圧縮機容量制御装置。
  6. 電気的に制御可能な容量制御手段(10b)により吐出容量を連続的に変化させるように構成された可変容量型圧縮機(10)を制御する冷凍サイクル装置の圧縮機容量制御装置であって、
    冷凍サイクルの低圧圧力を検出する低圧側圧力検出手段(23)と、
    前記圧縮機(10)の回転数に関連した情報値をを検出する回転検出手段(24)と、
    前記高圧側圧力検出手段(22)および前記回転検出手段(24)の検出信号が入力され、前記低圧圧力および前記圧縮機(10)の回転数に応じて前記容量制御手段(10b)を制御する制御装置(25)とを備え、
    前記制御装置(25)は、前記低圧圧力に対する所定の制御圧力値(Ps4)を設定し、
    前記圧縮機(10)の回転数が所定制御回転数(Ny)よりも高い高回転領域にあるときに、前記低圧圧力が前記所定制御圧力値(Ps4)より低下すると、前記吐出容量が減少して前記低圧圧力が前記所定制御圧力値(Ps4)に近づくように前記容量制御手段(10b)を制御することを特徴とする冷凍サイクル装置の圧縮機容量制御装置。
  7. 前記高圧圧力と前記第1制御圧力値(Pd1)との差に応じて前記吐出容量の変更幅が増減することを特徴とする請求項1ないし5のいずれか1つに記載の冷凍サイクル装置の圧縮機容量制御装置。
  8. 前記高圧圧力と前記第3制御圧力値(Pd3)との差に応じて前記吐出容量の変更幅が増減することを特徴とする請求項2または5に記載の冷凍サイクル装置の圧縮機容量制御装置。
  9. 前記第2制御圧力値(Pd2)を前記第1制御圧力値(Pd1)よりも0.01MPa以上高い値とすることを特徴とする請求項1ないし5のいずれか1つに記載の冷凍サイクル装置の圧縮機容量制御装置。
  10. 冷却対象空気から吸熱して冷媒が蒸発する蒸発器(19)と、
    前記蒸発器(19)を通過した冷媒を吸入して圧縮する圧縮機(10)と、
    前記圧縮機(10)に電気的に制御可能に設けられ、前記圧縮機(10)の吐出容量を連続的に変化させることができる容量制御手段(10b)と、
    冷凍サイクルの高圧圧力を検出する高圧側圧力検出手段(22)と、
    前記高圧側圧力検出手段(22)の検出信号が入力され、前記高圧圧力に応じて前記容量制御手段(10b)を制御する制御装置(25)とを備え、
    前記制御装置(25)は、前記高圧圧力に対する制御圧力値として、第1制御圧力値(Pd1)と、前記第1制御圧力値(Pd1)よりも所定値高い第2制御圧力値(Pd2)とを設定し、
    前記制御装置(25)は、前記高圧圧力が前記第1制御圧力値(Pd1)を超えると、前記吐出容量が減少して前記高圧圧力が前記第1制御圧力値(Pd1)に近づくように前記容量制御手段(10b)を制御し、
    一方、前記高圧圧力が前記第2制御圧力値(Pd2)を超えると、前記圧縮機(10)を停止状態にすることを特徴とする冷凍サイクル装置。
  11. 冷却対象空気から吸熱して冷媒が蒸発する蒸発器(19)と、
    前記蒸発器(19)を通過した冷媒を吸入して圧縮する圧縮機(10)と、
    前記圧縮機(10)に電気的に制御可能に設けられ、前記圧縮機(10)の吐出容量を連続的に変化させることができる容量制御手段(10b)と、
    冷凍サイクルの高圧圧力を検出する高圧側圧力検出手段(22)と、
    前記圧縮機(10)の回転数に関連した情報値を検出する回転検出手段(24)と、
    前記高圧側圧力検出手段(22)および前記回転検出手段(24)の検出信号が入力され、前記高圧圧力および前記圧縮機(10)の回転数に応じて前記容量制御手段(10b)を制御する制御装置(25)とを備え、
    前記制御装置(25)は、前記高圧圧力に対する制御圧力値として、前記圧縮機(10)の所定制御回転数(Nx)よりも低い低回転領域で用いる第1制御圧力値(Pd1)と、前記圧縮機(10)の所定制御回転数(Nx)よりも高い高回転領域で用いる第3制御圧力値(Pd3)とを設定し、
    前記第3制御圧力値(Pd3)は、前記第1制御圧力値(Pd1)よりも低い圧力であって、前記圧縮機(10)の回転数上昇に応じて低下するようになっており、
    前記圧縮機(10)の回転数が前記所定制御回転数(Nx)よりも低い低回転領域にあるときに、前記高圧圧力が前記第1制御圧力値(Pd1)を超えると、前記吐出容量が減少して前記高圧圧力が前記第1制御圧力値(Pd1)に近づくように前記容量制御手段(10b)を制御し、
    一方、前記圧縮機(10)の回転数が前記所定制御回転数(Nx)よりも高い高回転領域にあるときに、前記高圧圧力が前記第3制御圧力値(Pd3)を超えると、前記吐出容量が減少して前記高圧圧力が前記第3制御圧力値(Pd3)に近づくように前記容量制御手段(10b)を制御することを特徴とする冷凍サイクル装置。
  12. 冷却対象空気から吸熱して冷媒が蒸発する蒸発器(19)と、
    前記蒸発器(19)を通過した冷媒を吸入して圧縮する圧縮機(10)と、
    前記圧縮機(10)に電気的に制御可能に設けられ、前記圧縮機(10)の吐出容量を連続的に変化させることができる容量制御手段(10b)と、
    冷凍サイクルの低圧圧力を検出する低圧側圧力検出手段(23)と、
    前記圧縮機(10)の回転数に関連した情報値をを検出する回転検出手段(24)と、
    前記高圧側圧力検出手段(22)および前記回転検出手段(24)の検出信号が入力され、前記低圧圧力および前記圧縮機(10)の回転数に応じて前記容量制御手段(10b)を制御する制御装置(25)とを備え、
    前記制御装置(25)は、前記低圧圧力に対する所定の制御圧力値(Ps4)を設定し、
    前記圧縮機(10)の回転数が所定制御回転数(Ny)よりも高い高回転領域にあるときに、前記低圧圧力が前記所定制御圧力値(Ps4)より低下すると、前記吐出容量が減少して前記低圧圧力が前記所定制御圧力値(Ps4)に近づくように前記容量制御手段(10b)を制御することを特徴とする冷凍サイクル装置。
JP2005085576A 2005-03-24 2005-03-24 圧縮機容量制御装置および冷凍サイクル装置 Pending JP2006266172A (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2005085576A JP2006266172A (ja) 2005-03-24 2005-03-24 圧縮機容量制御装置および冷凍サイクル装置
DE200610013189 DE102006013189A1 (de) 2005-03-24 2006-03-22 Kompressor-Kapazitätssteuersystem und Kälteerzeugungskreissystem
ITMI20060553 ITMI20060553A1 (it) 2005-03-24 2006-03-24 Sistema di regolazione della capacita' di efflusso di un compressore ed impianto di ciclo di refrigerazione
CN200610068089A CN100580250C (zh) 2005-03-24 2006-03-24 压缩机容量控制系统和制冷循环系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005085576A JP2006266172A (ja) 2005-03-24 2005-03-24 圧縮機容量制御装置および冷凍サイクル装置

Publications (1)

Publication Number Publication Date
JP2006266172A true JP2006266172A (ja) 2006-10-05

Family

ID=37015100

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005085576A Pending JP2006266172A (ja) 2005-03-24 2005-03-24 圧縮機容量制御装置および冷凍サイクル装置

Country Status (4)

Country Link
JP (1) JP2006266172A (ja)
CN (1) CN100580250C (ja)
DE (1) DE102006013189A1 (ja)
IT (1) ITMI20060553A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008096824A1 (ja) * 2007-02-09 2008-08-14 Sanden Corporation 可変容量圧縮機の容量制御システム
CN102287890A (zh) * 2011-05-24 2011-12-21 上海奉天电子有限公司 外控式变排量压缩机空调控制器
JP2012047429A (ja) * 2010-08-30 2012-03-08 Meiwa:Kk チラー
JP2018519459A (ja) * 2015-05-29 2018-07-19 ティーイー コネクティビティ ジャーマニー ゲゼルシャフト ミット ベシュレンクテル ハフツンクTE Connectivity Germany GmbH 冷媒圧縮機用の電気制御弁
WO2024174640A1 (zh) * 2023-02-22 2024-08-29 哲弗智能系统(上海)有限公司 水冷机系统的控制方法和装置、水冷机系统

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5738174B2 (ja) * 2011-12-27 2015-06-17 住友重機械工業株式会社 クライオポンプシステム、極低温システム、圧縮機ユニットの制御装置及びその制御方法
CN102817822B (zh) * 2012-09-06 2015-10-14 浙江鸿森机械有限公司 制冷设备用数字式压力控制器
US10041552B2 (en) * 2015-07-16 2018-08-07 Ford Global Technologies, Llc Methods and systems for controlling a vehicle air conditioner using a pressure sensor located within a compressor
DE102015221881A1 (de) * 2015-11-06 2017-05-11 BSH Hausgeräte GmbH Haushaltskältegerät mit einem Kältemittelkreislauf und Verfahren zum Betreiben eines Haushaltskältegeräts mit einem Kältemittelkreislauf
KR20170065379A (ko) * 2015-12-03 2017-06-13 현대자동차주식회사 차량용 컴프레서 제어 장치 및 방법
US10436226B2 (en) * 2016-02-24 2019-10-08 Emerson Climate Technologies, Inc. Compressor having sound control system
DE102018119374A1 (de) 2018-08-09 2020-02-13 Wabco Gmbh Verfahren zur Funktionsüberwachung eines Kompressors
CN113635736B (zh) * 2021-09-14 2023-04-14 东风汽车集团股份有限公司 一种汽车热管理系统压缩机压力保护控制方法

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56120384U (ja) * 1980-02-18 1981-09-12
JPS58158382A (ja) * 1982-02-25 1983-09-20 ゼネラル・モ−タ−ズ・コ−ポレ−シヨン 排気量可変コンプレツサ
JPH01144483U (ja) * 1988-03-29 1989-10-04
JPH03986A (ja) * 1989-01-26 1991-01-07 Zexel Corp 可変容量圧縮機
JPH09280171A (ja) * 1996-04-17 1997-10-28 Toyota Autom Loom Works Ltd 可変容量圧縮機及びその制御方法
JPH1030835A (ja) * 1996-07-17 1998-02-03 N T T Facilities:Kk 空気調和機の制御装置
JPH10159749A (ja) * 1996-11-27 1998-06-16 Calsonic Corp 自動車用空気調和装置のコンプレッサ制御装置
JPH10278567A (ja) * 1997-04-11 1998-10-20 Calsonic Corp 可変容量コンプレッサ制御装置
JPH1178510A (ja) * 1997-07-17 1999-03-23 Denso Corp 車両用冷凍サイクル装置
JP2000111176A (ja) * 1998-10-05 2000-04-18 Toyota Autom Loom Works Ltd 空調装置
JP2002096628A (ja) * 2000-09-22 2002-04-02 Sanden Corp 車両用空調装置
JP2003129956A (ja) * 2001-10-22 2003-05-08 Toyota Industries Corp 可変容量圧縮機および該可変容量圧縮機を備えた空調装置、可変容量圧縮機における容量制御方法
JP3477759B2 (ja) * 1993-10-22 2003-12-10 松下電器産業株式会社 自動車用電動圧縮機の制御駆動装置
JP2004036411A (ja) * 2002-06-28 2004-02-05 Tokico Ltd インバータ駆動圧縮機

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56120384U (ja) * 1980-02-18 1981-09-12
JPS58158382A (ja) * 1982-02-25 1983-09-20 ゼネラル・モ−タ−ズ・コ−ポレ−シヨン 排気量可変コンプレツサ
JPH01144483U (ja) * 1988-03-29 1989-10-04
JPH03986A (ja) * 1989-01-26 1991-01-07 Zexel Corp 可変容量圧縮機
JP3477759B2 (ja) * 1993-10-22 2003-12-10 松下電器産業株式会社 自動車用電動圧縮機の制御駆動装置
JPH09280171A (ja) * 1996-04-17 1997-10-28 Toyota Autom Loom Works Ltd 可変容量圧縮機及びその制御方法
JPH1030835A (ja) * 1996-07-17 1998-02-03 N T T Facilities:Kk 空気調和機の制御装置
JPH10159749A (ja) * 1996-11-27 1998-06-16 Calsonic Corp 自動車用空気調和装置のコンプレッサ制御装置
JPH10278567A (ja) * 1997-04-11 1998-10-20 Calsonic Corp 可変容量コンプレッサ制御装置
JPH1178510A (ja) * 1997-07-17 1999-03-23 Denso Corp 車両用冷凍サイクル装置
JP2000111176A (ja) * 1998-10-05 2000-04-18 Toyota Autom Loom Works Ltd 空調装置
JP2002096628A (ja) * 2000-09-22 2002-04-02 Sanden Corp 車両用空調装置
JP2003129956A (ja) * 2001-10-22 2003-05-08 Toyota Industries Corp 可変容量圧縮機および該可変容量圧縮機を備えた空調装置、可変容量圧縮機における容量制御方法
JP2004036411A (ja) * 2002-06-28 2004-02-05 Tokico Ltd インバータ駆動圧縮機

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008096824A1 (ja) * 2007-02-09 2008-08-14 Sanden Corporation 可変容量圧縮機の容量制御システム
JP2008274918A (ja) * 2007-02-09 2008-11-13 Sanden Corp 可変容量圧縮機の容量制御システム
US9033679B2 (en) 2007-02-09 2015-05-19 Sanden Corporation Displacement control system for variable displacement compressor
JP2012047429A (ja) * 2010-08-30 2012-03-08 Meiwa:Kk チラー
CN102287890A (zh) * 2011-05-24 2011-12-21 上海奉天电子有限公司 外控式变排量压缩机空调控制器
JP2018519459A (ja) * 2015-05-29 2018-07-19 ティーイー コネクティビティ ジャーマニー ゲゼルシャフト ミット ベシュレンクテル ハフツンクTE Connectivity Germany GmbH 冷媒圧縮機用の電気制御弁
WO2024174640A1 (zh) * 2023-02-22 2024-08-29 哲弗智能系统(上海)有限公司 水冷机系统的控制方法和装置、水冷机系统

Also Published As

Publication number Publication date
ITMI20060553A1 (it) 2006-09-25
CN100580250C (zh) 2010-01-13
DE102006013189A1 (de) 2006-11-16
CN1837612A (zh) 2006-09-27

Similar Documents

Publication Publication Date Title
JP2006266172A (ja) 圧縮機容量制御装置および冷凍サイクル装置
JP4511393B2 (ja) 車両用空調装置
JP3386014B2 (ja) 冷凍サイクル装置
JP4453724B2 (ja) 車両用冷凍サイクル装置
JP2007163016A (ja) エジェクタ式冷凍サイクルおよびエジェクタ式冷凍サイクルの制御方法
US7836716B2 (en) Refrigerant cycle device and control system for vehicle
JP2009192090A (ja) 冷凍サイクル装置
JP3356142B2 (ja) 冷凍サイクル装置
JP2010048459A (ja) 冷凍サイクル装置
JP4155084B2 (ja) 電動圧縮機
JP4063023B2 (ja) 蒸気圧縮式冷凍機
JP2006145087A (ja) 超臨界冷凍サイクル
JP4338539B2 (ja) 車両用空調装置
JP2009243784A (ja) 冷媒不足検出装置
JP2009097772A (ja) 冷凍サイクル装置
JP2008096028A (ja) 冷蔵庫用冷凍機
JP3961107B2 (ja) 外部制御式可変容量コンプレッサのトルク予測装置およびこれを用いた自動車エンジン制御装置
JP2002061968A (ja) 冷凍サイクルの制御装置
JP4089630B2 (ja) 車両用冷凍サイクル
JP2006327386A (ja) 車両用空調装置
JP4941363B2 (ja) 冷凍サイクル装置
JP4352867B2 (ja) 冷凍サイクル装置
JP2010116033A (ja) 冷凍サイクル装置及びそれを備えた空調装置
JP2007083891A (ja) 車両用空調装置
JP4289257B2 (ja) エンジン駆動式空調装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070419

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100216

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100706