JP2006264408A - 自動車の後輪サスペンション装置及びその組立方法 - Google Patents

自動車の後輪サスペンション装置及びその組立方法 Download PDF

Info

Publication number
JP2006264408A
JP2006264408A JP2005082457A JP2005082457A JP2006264408A JP 2006264408 A JP2006264408 A JP 2006264408A JP 2005082457 A JP2005082457 A JP 2005082457A JP 2005082457 A JP2005082457 A JP 2005082457A JP 2006264408 A JP2006264408 A JP 2006264408A
Authority
JP
Japan
Prior art keywords
rear wheel
vehicle body
force
link
shock absorber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005082457A
Other languages
English (en)
Inventor
Toshihide Koyama
敏秀 小山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP2005082457A priority Critical patent/JP2006264408A/ja
Publication of JP2006264408A publication Critical patent/JP2006264408A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Vehicle Body Suspensions (AREA)

Abstract

【課題】 車体側の端部に弾性ブッシュを備えた5本のリンクを備え、市販車として十分な振動・遮断性能を得ると共にアライメント誤差を小さくして高い操縦安定性をより確実に確保することができるマルチリンク式の後輪サスペンション装置及びその組立方法を提供する。
【解決手段】 本発明は、緩衝装置14の下端部を後輪支持部材11の車体内方の連結部30に枢着し、緩衝装置を、その上下反力が仮想キングピン軸周りにトーイン向きのモーメント力を発生させるように配置すると共にその上下反力が後輪に負キャンバの向きのモーメント力を発生させるように配置させ、上下反力による負キャンバの向きのモーメント力を、旋回外方の後輪において横力により発生する正キャンバの向きのモーメント力と比較してその横力の限界領域まで大きくなるように設定し、リンク8にリンク長可変機構を設けた。
【選択図】 図1

Description

本発明は、自動車の後輪サスペンション装置に関し、特に、5本のIリンクによって構成したマルチリンク式サスペンションに関する。
従来、マルチリンク式サスペンションとして、5本のIリンクを備え、その各リンクの少なくとも車体側の端部にそれぞれ弾性ブッシュを備えたものが知られている(例えば特許文献1)。このような5本のIリンクを備えたマルチリンク式サスペンションは、後輪の上下ストロークを除く5つの運動の自由度に対してそれぞれの要求に合わせて最適に拘束するよう各Iリンクを配設することが可能であることから、性能的に高いポテンシャルを有しているサスペンション形式であると言える。
しかし、このようなマルチリンク式サスペンションでは、各リンクの幾何学的な配置によって決まる車輪の位置(アライメント)が厳密には弾性ブッシュの撓みの分だけ変化し、自由度が高いが故にどのような荷重が入力されても最適な方向に弾性ブッシュが撓むように設計管理することが極めて難しいという問題があった。さらに、このような弾性ブッシュの撓みによって、自動車の旋回時に車輪が横力を受けたときに、剛性感が低下すると共にサスペンションの動きに遅れが生じるという問題があった。
一方、弾性ブッシュを採用せず全てボールジョイントによって車体等へ連結した場合は、剛性感や応答性が高まると共にアライメント精度も狙った通りの状態を維持できるが、弾性ブッシュによる振動や騒音の遮断が全く期待できない。
このような問題に対し、車体側の端部に弾性ブッシュを備えた5本のリンクを備えたマルチリンク式の後輪サスペンション装置において、高い操縦安定性を確保しつつ十分な振動・遮断性能をも得ることができるマルチリンク式サスペンションが提供されている(特許文献2)。このサスペンションでは、緩衝装置の上下反力を利用して自動車の後輪に予め負キャンバで且つトーインの向きのモーメント力を作用させるとともに、その負キャンバの向きのモーメント力を、横力の増大に抗して旋回外方の後輪のグリップ限界領域まで維持するようにしている。そして、各リンクの弾性ブッシュに最適な向きの付勢力を付与するように、つまり、緩衝装置の上下反力によって各弾性ブッシュを最適な方向に予圧縮するようにして、その撓みに起因する不具合を解消している。
特開平2−38106号公報 特開2003−335117号公報
ここで、特許文献2に記載のマルチリンクサスペンションの高い操縦安定性をより確実に確保するために、サスペンションの組立誤差或いは弾性ブッシュやアームの製造誤差によるアライメントの設計値に対する誤差をより小さくすることが要望されている。即ち、アライメントの誤差は、弾性ブッシュへの予圧縮の力の誤差となり、走行時にタイヤが地面から非常に大きな横力を受けた場合などに、弾性ブッシュの撓みが大きく変化する場合も考えられる。そのような変化により、キングピン角度やキャスタートレールなどが設計値からずれ、車輪の負キャンバやトーイン向きの角度が変化して、操縦安定性に影響を与える恐れがある。
一方、スポーツ性能が高く要求されるような車両ではその軽量化が要求され、そのために、サスペンションを構成するリンク等の剛性を最適化することが要望されている。ここで、特許文献2に記載のサスペンションの各リンクには、緩衝装置の上下反力によって各弾性ブッシュを予圧縮するための力と、走行時の入力荷重(例えば、タイヤが地面から受ける横力)による力とが加わる。これらの力は、組立誤差や製造誤差によるアライメントの誤差によって変わり、これらの誤差による力の変化にも十分に耐えるように各リンクの剛性を増大させておくことも考えられるが、この場合、各リンクをより太いものにするなど、その重量を増加させることになる。また、弾性ブッシュの予圧縮の力をより高めて、上述した弾性ブッシュの大きな変化を抑制することも考えられるが、この場合も、アーム剛性を高める必要がある。これらの場合、車両の軽量化の要望に応えられないものとなってしまう。
そこで、本発明は、上述した従来技術の問題点を解決するためになされたものであり、少なくとも車体側の端部に弾性ブッシュを備えた5本のリンクを備えたマルチリンク式の後輪サスペンション装置において、市販車として十分な振動・遮断性能を得ると共に、アライメント誤差を小さくして高い操縦安定性をより確実に確保することができるマルチリンク式サスペンション及びその組立方法を提供することを目的としている。
上記の目的を達成するために本発明は、自動車の後輪の支持部材を5本のリンクにより車体に連結して、これらのリンクの少なくとも車体側の端部にそれぞれ弾性ブッシュを配設するとともに、コイルバネ及びダンパを備える緩衝装置の下端部を後輪支持部材の車体内方側に枢着したマルチリンク式の後輪サスペンション装置であって、緩衝装置を、その上下反力が後輪の仮想キングピン軸の周りにトーインの向きのモーメント力を発生させるように当該仮想キングピン軸に対して配置するとともに、その上下反力が後輪に対して負キャンバの向きのモーメント力を発生させるように後輪の車体内方に離間させ、緩衝装置の上下反力による負キャンバの向きのモーメント力を、自動車の旋回時に旋回外方に位置する後輪において横力により発生する正キャンバの向きのモーメント力と比較して、その横力の限界領域まで大きくなるように設定し、5本のリンクのうち少なくとも1本のリンクにリンク長可変機構を設けたことを特徴としている。
このように構成された本発明においては、まず、自動車の後輪サスペンション装置を5本リンクのマルチリンク式とすると共に各リンクの少なくとも車体側の端部にそれぞれ弾性ブッシュを配設しているので、後輪の5つの運動自由度をそれぞれ最適に拘束して高いサスペンション性能を得ることが出来ると共に弾性ブッシュの介在によって優れた乗り心地を得ることができる。
しかも、後輪にはその支持部材を介して緩衝装置反力によりトーインの向きのモーメント力が作用していて、予め各リンクの弾性ブッシュが車輪のトーインの向きに付勢(予圧縮)されているので、自動車の旋回時に弾性ブッシュの撓みによる遅れを排除して旋回外方の後輪に対し直ちにトーインを付与することが可能になる。これにより、位相遅れの少ない即ち極めて剛性感や応答性の高いシャープな運転感覚を得ることができる。すなわち、一般的には運転者により操舵が行われると自動車に横加速度が発生し、これに伴い旋回外方への荷重移動が生じて各車輪にコーナリングフォースが発生するのだが、本発明のようにコーナリングフォースが発生する段階よりも早い荷重移動の段階、即ち上下力が発生した段階で、この力によって後輪にトーインを付与するようにすれば、コーナリングフォースの発生を早めることができ、これにより位相遅れが少なくなるのである。
さらに、緩衝装置の上下反力により、後輪にはその支持部材を介して負キャンバの向きのモーメント力が作用していて、このモーメント力が自動車の旋回外方の後輪においても横力の限界領域まで常にその横力による正キャンバのモーメント力よりも大きくなるから、後輪の各リンクの弾性ブッシュにはキャンバ変化について常に一定の向きの付勢力が作用することになり、このことで、微視的な車輪のふらつきが発生しなくなって運転感覚の悪化や不自然な挙動が解消され、高い操縦安定性を備えた後輪サスペンション装置を実現できるものである。
さらに、本発明においては、5本のリンクのうち少なくとも1本のリンクにリンク長可変機構を設けているので、サスペンション装置を組み立てた後にリンク長の調整が可能であり、このようなリンク長の調整によりサスペンションアライメントが調整される。このような調整により、サスペンションの組立誤差或いは弾性ブッシュやアームの製造誤差により生じるアライメントの設計値に対する誤差を無くし或いは非常に小さくすることが出来る。その結果、上述したトーイン向きのモーメント力や負キャンバの向きのモーメント力による作用効果を、設計値通りに得ることが出来る。これらの結果、市販車として十分な振動・遮断性能を得ると共に、アライメント誤差を小さくして高い操縦安定性をより確実に確保することができる。
本発明において、好ましくは、リンク長可変機構はロワトレーリングリンクに設けられている。
このように構成された本発明においては、リンク長可変機構はロワトレーリングリンクに設けられているので、より確実に、アライメントの設計値に対する誤差を無くし或いは非常に小さくすることが出来る。ここで、ロワトレーリングリンクの配置のずれは、他のリンクに比べてサスペンションアライメントに比較的大きく影響する。また、上述したアライメント誤差によるロワトレーリングリンクへの入力荷重の変化は、他のリンクに比べてサスペンション性能に比較的大きく影響を与える。従って、ロワトレーリングリンクのリンク長を調整することにより、アライメントの設計値に対する誤差をより確実に無くするか或いは小さくして、高い操縦安定性をより確実に確保することができるのである。
上記の目的を達成するために本発明は、自動車の後輪の支持部材を5本のリンクにより車体のフレーム部材に連結して、これらのリンクの少なくとも車体側の端部にそれぞれ弾性ブッシュを配設するとともに、緩衝装置の下端部を後輪支持部材の車体内方側に枢着したマルチリンク式の後輪サスペンション装置の組立方法であって、フレーム部材を所定箇所で台座部材により支持させる工程と、5本のリンクとフレーム部材とを連結する工程と、5本のリンクと後輪支持部材とを連結する工程と、支持工程、フレーム部材連結工程及び後輪支持部材連結工程のすべての工程の後に、5本のリンクのうちロワトレーリングリンクの後輪支持部材への連結位置が、台座部材の位置及び高さに対して相対位置及び相対高さが規定されている基準部材の位置に一致するように、ロワトレーリングリンクのリンク長を調整する工程と、を有することを特徴としている。
このように構成された本発明においては、組み立てられる後輪サスペンション装置を5本リンクのマルチリンク式とすると共に各リンクの少なくとも車体側の端部にそれぞれ弾性ブッシュを配設しているので、後輪の5つの運動自由度をそれぞれ最適に拘束して高いサスペンション性能を得ることが出来ると共に弾性ブッシュの介在によって優れた乗り心地を得ることができる後輪サスペンション装置を得ることが出来る。
また、本発明による組立方法によれば、フレーム部材を所定箇所で台座部材により支持させる工程と、ロワトレーリングリンクの後輪支持部材への連結位置が、台座部材の位置及び高さに対して相対位置及び相対高さが規定されている基準部材の位置に一致するように、ロワトレーリングリンクのリンク長を調整する工程と、を有しているので、リンク長の調整によりサスペンションアライメントが調整される。
ここで、台座部材と基準部材とはそれらの相対位置及び相対高さが規定されている。また、台座部材に支持されるフレーム部材の所定箇所とロワトレーリングリンクの後輪支持部材への連結位置との相対位置及び相対高さは設計上一義的に定まる。そして、台座部材と基準部材との相対位置及び相対高さを、設計上定められたフレーム部材の所定箇所とロワトレーリングリンクの後輪支持部材への連結位置との相対位置及び相対高さと一致するように設定し、上述したようにロワトレーリングリンクのリンク長を調整すれば、ロワトレーリングリンクの配置を設計値通りに得ることが出来る。
また、5本のリンクのうちロワトレーリングリンクのリンク長を調整するようにしているので、より確実に、アライメントの設計値に対する誤差を無くし或いは非常に小さくすることが出来る。即ち、ロワトレーリングリンクの配置のずれは、他のリンクに比べてサスペンションアライメントに比較的大きく影響する。また、上述したアライメント誤差によるロワトレーリングリンクへの入力荷重の変化は、他のリンクに比べてサスペンション性能に比較的大きく影響を与える。従って、ロワトレーリングリンクのリンク長を調整することにより、アライメントの設計値に対する誤差をより確実に無くするか或いは小さくして、高い操縦安定性をより確実に確保することができるのである。
このような調整により、サスペンションの組立誤差或いは弾性ブッシュやアームの製造誤差により生じるアライメントの設計値に対する誤差を無くし或いは非常に小さくして、設計値通りのサスペンション性能を得ることが出来る。
これらの結果、本発明による組立方法によれば、アライメント誤差を小さくして高いサスペンション性能を得ることが出来ると共に弾性ブッシュの介在によって優れた乗り心地を得ることが可能なサスペンション装置を得ることが出来る。
なお、フレーム部材を所定箇所で台座部材により支持させる工程、フレーム部材を所定箇所で台座部材により支持させる工程、及び、5本のリンクとフレーム部材とを連結する工程、及び、5本のリンクと後輪支持部材とを連結する工程の各工程を行う順序は任意であり、或いは、同時に行っても良い。
本発明によれば、少なくとも車体側の端部に弾性ブッシュを備えた5本のリンクを備えたマルチリンク式の後輪サスペンション装置において、市販車として十分な振動・遮断性能を得ると共に、アライメント誤差を小さくして高い操縦安定性をより確実に確保することができる。
以下、本発明の実施形態を図面に基づいて説明する。
先ず、図1及び図2により、本発明の実施形態による自動車の後輪サスペンション装置の全体構成を説明する。図1、2は、本発明の実施形態による自動車の後輪サスペンション装置A(以下、単にリヤサスペンションという)を自動車の左右両側の後輪にそれぞれ適用した実施形態を示す。
本実施形態の自動車は、図示しないが、車体前部のエンジンルームにエンジンを搭載する一方、車体後部にディファレンシャル1(図2にのみ示す)を配設して後輪2(図1に車体右側のもののみ示す)を駆動するようにした後輪駆動車である。尚、図1は、左右一対のリヤサスペンションAとサブフレーム3を備えたリヤサスペンションアッセンブリを車体前方の斜め右側から見た斜視図である。また、図2は、リヤサスペンションアッセンブリにディファレンシャル1等の動力伝達系を組み付けた状態で見た上面図であって、符号4は、トランスミッションからの回転出力をディファレンシャル1に伝達するプロペラシャフトであり、また、符号5は、ディファレンシャル1からの回転出力を後輪2に伝達するためのドライブシャフトである。
この実施形態のサスペンション装置Aは、独立した5本のIリンク6〜10によって後輪2のホイールサポート11(支持部材)を車体に対しストローク可能に連結したマルチリンク式のものであり、仮想的にアッパアームを構成する車体前側及び後側の2本のアッパリンク6,7と、仮想的にロワアームを構成する車体前側及び後側の2本のロワリンク8,9と、該仮想のアッパアーム及びロワアームの配置によって決まる仮想キングピン軸K周りの後輪2の回動変位を規制するトーコントロールリンク10とを備えている。そして、アッパリンク6,7及びロワリンク8,9がそれぞれ車体側の端部を中心に上下に揺動することによって、ホイールサポート11及び後輪2が所定の軌跡に沿って上下にストロークするようになっている。
また、そのような後輪2のストロークを許容しながら、同時に適度の付勢力及び減衰力を付与するように、コイルバネ12及びダンパ13を備えた緩衝装置14が配設されている。この緩衝装置14は、コイルバネ12とダンパ13とが略同軸に配置されて大略、上下方向に長い円筒状をなし、その上端側に配設された円筒状ブラケット15が図示しない車体に取り付けられる一方、ダンパ13の下端部(緩衝装置14の下端部)がホイールサポート11の車体内方側に枢着されている。従って、自動車の車体後部の分担荷重及び後輪2のストロークに対応するコイルバネ12の反力(緩衝装置の上下反力)は直接、ホイールサポート11に作用することになる。
次に、サブフレームの構成について説明する。
サブフレーム3は、大別して4つの鋼板製部材を平面視で概ね矩形枠状に組み合わせてなるもので、各々車幅方向に延びるフロント及びリヤクロスメンバ17,18と、それらの左右両側の端部同士を連結するように車体の左右両側において前後方向に延びる一対のサイドクロスメンバ19,20を備える。フロントクロスメンバ17は、車体上方から見ると略真っ直ぐに車幅方向に延びていて、車幅方向の両端部がそれぞれ左右のサイドクロスメンバ19,20の各前端側に接合されているとともに、車体前後方向に見ると、長手方向の中央部分が左右両端部よりも上方に位置するように全体に亘って大きく湾曲するアーチ形状とされている。また、フロントクロスメンバ17の左右両端側には、各々サイドクロスメンバ19,20との接合部に近接して下方に突出する取付座(図示せず)が配設されていて、この各取付座にそれぞれトーコントロールリンク10の車体側の端部が取り付けられるようになっている。
一方、リヤクロスメンバ18は、車体上方から見ると略真っ直ぐに車幅方向に延びていて、車幅方向の両端部がそれぞれ左右のサイドクロスメンバ19,20の各後端側に接合されているとともに、車体前後方向に見ると、上縁部の長さが下縁部よりも大きい逆台形状であり、その下縁部の左右両端側から下方に延出するようにして、後側ロワリンク9,9の車体側の端部を取り付ける取付部18aが形成されている。また、リヤクロスメンバ18の上縁部には、後側ロワリンク9の取付部18aに対応する位置にそれぞれ取付座18bが配設されていて、この各取付座18bに弾性マウント21を介して取り付けられたブラケット2(図2にのみ示す)によりディファレンシャル1が吊設されている。
また、左右のサイドクロスメンバ19,20は、それぞれ、長手方向の中央部分が両端側に比べて車体内方に位置するよう緩やかに湾曲するとともに、車体側方視では後端部から略中央部までが略水平に延びる一方、それよりも前側の部分が車体前方に向かって斜め下方に延びていて、中央よりも前側の部分が後側の部分よりも低くなるように配置されている。そして、これらのサイドクロスメンバ19,20の前側の部分には、フロントクロスメンバ17との接合部の前側に近接して下方に突出するように第1取付座19a,20aが配設されていて、この第1取付座19a,20aにそれぞれ前側ロワリンク8の車体側の端部が取り付けられるようになっており、また、その接合部の後側に近接して上方に突出するように第2取付座19b,20bが配設されていて、この第2取付座19b,20bにはそれぞれ前側アッパリンク6の車体側の端部が取り付けられるようになっている。一方、各サイドクロスメンバ19,20の後側部分には、後側アッパリンク7の車体側の端部を取り付けるための第3取付座19c,20cが配設されている。
さらに、サイドクロスメンバ19,20には、サブフレーム3全体を車体に対して弾性支持するための弾性マウント23が各サイドクロスメンバ19,20毎にその前端部、略中央部及び後端部の3点に配設されている。その略中央部の弾性マウント23は、サイドクロスメンバ19,20の略中央部分から車体内方に延出するマウント取付部の上面に配置されていて、車体上方から見て該中央部の弾性マウント23と後端部の弾性マウント23とを結ぶ直線が車体の前後方向の中心線L(図2にのみ示す)と略平行になるように位置づけられている。一方、前端部の弾性マウント23は中央部及び後端部の弾性マウント23と比較して車体外方に位置している。
つまり、サブフレーム3は、車体の左右両側で各々3点ずつ、合計6個の弾性マウント23により車体に連結されていて、それぞれ、サイドクロスメンバ19,20の前端、略中央及び後端に配置された3つの弾性マウント23が平面視で一直線上に並ばないように配置されている。このようにサブフレーム3を合計6個の弾性マウント23によって車体に取り付けると、一般的な4個のマウントの場合と比較して個々の弾性マウント23の分担荷重が小さくなり、相対的に柔らかな特性とすることができるので、乗り心地の改善が図られる。しかも、左右両側でそれぞれ3個の弾性マウント23により仮想の平面を規定するようにしているので、後輪2へ横力が入力したときにサブフレーム3全体の揺動が効果的に抑制され、その揺動に起因する後輪2のアライメント変化が実質的に解消される。
尚、図1、3等に示す符号24は、フロントクロスメンバ17の左右両端側からサイドクロスメンバ19,20の各前側部分に跨って架設した補強部材であり、また、符号25は、補強部材24の下端部からリヤクロスメンバ18の下縁部に亘って筋交い状に架設した補強部材である。
次に、図3乃至図6により、車体右側のサスペンション装置Aについてそのリンク6〜10の配置構成等を詳細に説明する。図3は、車体右側のリヤサスペンションの上面図であり、図4は、図3のリヤサスペンションの左側面図であり、図5は、図3のリヤサスペンションの後面図であり、図6は、ロワリンクの配置による前後力コンプライアンスステアの説明図である。
まず、図3に示すように車体上方から見て、前側アッパリンク(アッパトレーリングリンク)6は、その車体側の端部がゴムブッシュ26(弾性ブッシュ)を介してサイドクロスメンバ19の第2取付座19bに連結され、そこから車体外方に向かうほど徐々に後方に位置するように後傾して延びていて、車輪側の端部がボールジョイント27によりホイールサポート11に連結されている。
次に、後側アッパリンク7は、前側アッパリンク6と略同じ長さであり、その車体側の端部がゴムブッシュ26を介してサイドクロスメンバ19の第3取付座19cに連結され、そこから車体外方に向かうほど徐々に前方に位置するように前傾して延び、車輪側の端部がボールジョイント27によりホイールサポート11に連結されている。
次に、前側ロワリンク(ロワトレーリングリンク)8は、アッパリンク6,7よりも長く、その車体側の端部がゴムブッシュ26を介してサイドクロスメンバ19の第1取付座19aに連結される一方、車輪側の端部がボールジョイント27によりホイールサポート11に連結されており、車体上方から見て前側アッパリンク6よりも大きく後傾している。
次に、後側ロワリンク9は、前側ロワリンク8よりもさらに長く、その車体側の端部がゴムブッシュ26を介してリヤクロスメンバ18の取付部18aに連結されるとともに、そこから車体外方に向かって僅かに前傾して延びていて、車輪側の端部がボールジョイント27によりホイールサポート11に連結されている。
このように、2本のロワリンク8,9は、車体上方から見て、車体外方側に向かって互いに接近するように配置されており、この配置によって後輪2にはその車体後方への変位に伴い幾何学的にトーインが付与されるようになる(前後力コンプライアンスステア)。すなわち、例えば自動車の制動時等に路面からの制動力が後輪2に対し車体後方に作用すると、図6に模式的に示すように、2本のロワリンク8,9がそれぞれゴムブッシュ26の撓みによって車体側の端部の周りに僅かに回動変位し、これにより車輪側の端部が車体後方に変位するようになる。このとき、前側ロワリンク8が車体外方に向かって後傾し、且つ後側ロワリンク9が車体外方に向かって前傾していると、それらの各リンクの回動変位に伴い、図に破線で示すように、前側ロワリンク8の車輪側端部が車体内方に変位するとともに、後側ロワリンク9の車輪側端部は車体外方に変位することになるから、後輪2のアライメントはトーインの向きに変化するのである。
尚、上述したようなコンプライアンスステアを得るためには、この実施形態のように前側のリンクを後傾させ且つ後側のリンクを前傾させる必要はなく、車体上方から見て2本のリンクを車体外方側に向かうほど互いに接近するように配置すればよい。或いは、2本のリンクが平行な場合でもそれらの長さを異ならせて、例えば前側のリンクを後側のリンクよりも短くすれば、トーインの向きの前後力コンプライアンスステアを得ることが可能である。また、本実施形態の構成では、2本のアッパリンク6,7についてもロワリンク8,9と同様に配置しているが、後述するようにアッパリンク6,7のゴムブッシュ26は非常に硬く、その撓みは非常に小さいので、アッパリンク側でのコンプライアンスステアは実質的に無視することができる。
トーコントロールリンク10は、図3に示すように車体上方から見て、車体側の端部がゴムブッシュ26を介してフロントクロスメンバ17の取付座17a(図5参照)に連結され、そこから車体外方に向かって略真横(車幅方向)に延びていて、車輪側の端部がボールジョイント27によりホイールサポート11に連結されている。また、図5に示すように車体後方から見ると、アッパリンク6,7は、サイドクロスメンバ19から車体外方のホイールサポート11に向かって僅かに上向きに傾斜しており、これとは反対に前側ロワリンク8は車体外方に向かって僅かに下向きに傾斜しており、さらに、後側ロワリンク9及びトーコントロールリンク10はいずれも略水平に延びている。
仮想キングピン軸Kは、後輪2の操向方向(トー方向)への回動の瞬間回転中心であり、図3のように車体上方から見ると、同図に仮想線で示すように、2つのアッパリンク6,7の軸心の交点と2つのロワリンク8,9の軸心の交点とを通る仮想の軸となる。この実施形態では、後輪2の仮想キングピン軸Kは、図4に示すように車体側方から見て上端側ほど車体後方に位置するように僅かに後傾するとともに、車体前後方向に見て上端側ほど車体外方に位置するように僅かに傾斜している(図5参照)。
また、車体側方から見た仮想キングピン軸Kの路面との交点k1(図4参照)は後輪2の接地点Gよりも車体後方に離間していて、後輪2のキャスタトレールが負値となっている。このことで、自動車の旋回時に後輪2の路面との接地点Gに作用する横力は仮想キングピン軸Kの車体前方を横切ることになり、この横力によって後輪2には直接にトーインの向きのモーメント力が作用する。
これにより、主に2本のロワリンク6,7のゴムブッシュ26が撓んで、車輪2のトーイン量が増大する(横力コンプライアンスステア)。
つまり、この実施形態のリヤサスペンションAの場合、自動車の制動時には前後力コンプライアンスステアによって左右の後輪2のトーイン量が増大し、また、自動車の旋回時には旋回外方の後輪2のトーイン量が横力コンプライアンスステアによって増大するようになっている。尚、詳しい説明は省略するが、このリヤサスペンションAでは各リンク6〜10の配置構成により、バンプ時のロールステアによっても後輪2のトーイン量が増大するようになっている。
次に、図7により、前側ロワリンク8に設けられたリンク長可変機構について説明する。図7は、図1と同様の角度から見た前側ロワリンクを拡大して示す部分拡大斜視図である。
この前側ロワリンク8は、リンク長可変機構を備えている。具体的には、前側ロワリンク8は、主に車体側に配置され直線状に延びる第1リンク部材8aと、車輪側に配置され直線状に延びる第2リンク部材8bとで構成されている。また、第1リンク部材8aの車輪側に位置する端部にナット部8cが形成され、第2リンク部材8bの車体側に位置する端部にボルト部8dが形成されている。また、第2リンク部材8bには、断面六角形の部分8eが形成されている。
そして、第1リンク部材8a及び第2リンク部材8bは、ナット部8cとボルト部8dとの締結により、一体的にサスペンションリンクとして機能し、そのリンク長は、ナット部8cとボルト部8dとの締結部分の長さを調整することにより調整可能になっている。このような長さ調整は、断面六角形の部分8eをスパナ等で回転させることにより、第2リンク部材8bをその軸線に対し回転させることにより行われる。即ち、第2リンク部材8bの回転により、ボルト部8dをナット部8cに対して相対回転させて締結長さを調整することが出来る。
次に、図3乃至図5により、緩衝装置14の配置構成等を詳細に説明する。
緩衝装置14は、図3に示すように車体上方から見て、前側のリンク6,8と後側のリンク7,9の中間を上下方向に貫通するように配置され、その軸心Xは、車体側方から見て略鉛直に延びるとともに(図4参照)、車体後方から見ると上端側ほど車体内方に位置するように傾斜している(図5参照)。この緩衝装置14の上端部では、図4にのみ破線で示すが、ダンパ13のロッド13aの上端部が円筒状ブラケット15内でその上端部にゴムブッシュ等を介して固定されており、さらに、そこから下方に向かって延びるように円筒状の樹脂製バンプストッパ28がロッド13aと同心状に配設されている。このバンプストッパ28は、サスペンション装置Aのバンプ時にコイルバネ12が所定量以上、縮んだときにダンパ13の外筒の上端部に当接するものであり、その当接後は緩衝装置14全体としてバネ定数が一段、高くなるので、後輪2の車体側への近接変位が規制されることになる。
また、緩衝装置14のブラケット15の下端部には特に車体前後方向に長い異形の鍔部29が設けられていて、その上面が車体の下部フレームに接合されて締結されるようになっている。一方、鍔部29の下面にはコイルバネ12の上端部を保持するアッパシートが形成されており、ダンパ13の外筒を囲むように配置されたコイルバネ12の下端部は該ダンパ13外筒の下端側に設けられたロワシート部13bによって保持されている。さらに、ダンパ13の下端部には円環状の取付部13cが突設されていて、これが後輪2のホイールサポート11から車体内方に延びる連結部30の端部に枢着されている。
詳しくは、ホイールサポート11の連結部30は、後輪2の車軸が貫通するホイールサポート11本体の内側に一体に形成されたものであり、図5に示すように車体前後方向に見て、ホイールサポート11本体の上下両端側から車体内方に向かって延びて先端部で一体となった上腕部31及び下腕部32と、該上腕部31及び下腕部32をそれぞれの車幅方向中間部にて連結するように上下方向に延びる中間腕部33とを有し、全体として横向きの略A字形状をなす。そして、そのA字の横棒である中間腕部33から、A字の上端である上腕部31及び下腕部32の先端部(連結部30の車体内方の先端部)に亘って鋼製の支軸34が配設され、その支軸34の端部が連結部30の端部よりも車体内方に突出していて、これがダンパ13の下端取付部13cに挿通された状態でゴムブッシュ等を介して固定されている。このように連結部30を略A字形状としたことで、上下方向の荷重に対して十分な剛性を確保しながら、連結部30、ひいてはホイールサポート11全体の軽量化が図られ、連結部30を設けたことによるバネ下重量の増大を抑えて、運動性能の悪化を防止することができる。
上述したように緩衝装置14の上端部をブラケット15を介して車体の下部フレームに取り付けたことで、後輪2から緩衝装置14に入力する力の大部分が車体の下部フレームに伝達されるのみとなり、車体の上部には殆ど伝達されない。
従って、車体の剛性を確保するためには主に下部フレームを強化すればよく、このことで自動車のデザインの自由度が向上する。また、車体後部の分担荷重や緩衝装置14の上下反力はホイールサポート11の連結部30を介して直接、後輪2に作用することになるが、上述したように、A字の横棒(中間腕部33)から先端部に亘って十分に大きな間隔を空けて2点で取り付けた支軸34に対してダンパ13の下端部を取り付けているから、緩衝装置14の上下反力は確実に伝達されるようになる。
そして、本願発明の主たる特徴は、上述した如く緩衝装置14から作用する反力を積極的に利用してホイールサポート11を予め所定の向きに付勢することにより、後輪2のアライメントを最適化し且つ各リンク6〜10のゴムブッシュ26にそれぞれ最適な向きの付勢力を付与して、即ち、各ゴムブッシュ26を緩衝装置14の上下反力によって最適な向きに予圧縮して、マルチリンク式サスペンションにおいてもスポーツカーに適用可能なシャープな運転感覚を得られるようにしたことにある。具体的には緩衝装置14の上下反力により、(1)後輪2に対して旋回時の横力にも打ち勝つように負キャンバの向きのモーメント力を作用させ、且つ、(2)旋回時の横力等が作用する以前からトーインの向きのモーメント力を付与するとともに、(3)特に乗り心地への影響が大きいロワリンク8,9のゴムブッシュ26に対して車体前方への付勢力を付与するようにしている。
次に、図8乃至図10により、上述した3つの特徴点についてそれぞれ説明する。図8は、緩衝装置の上下反力による負キャンバの向きのモーメント力の説明図であり、図9は、緩衝装置の上下反力によるトーインの向きのモーメント力の説明図であり、図10は、緩衝装置の上下反力による車軸周りのモーメント力の説明図である。
まず第1に、図8に模式的に示すように、車体右側のリヤサスペンションAを後方から見て、緩衝装置14は、その軸心X方向の反力Fcがホイールサポート11を介して後輪2に十分に大きな負キャンバの向きのモーメント力Mnを発生させるように、言い換えると、緩衝装置14の上下反力によるモーメント力Mnの腕の長さが十分に大きくなるように、車体内方に比較的大きく離間して配置されている。具体的には、例えば、後輪2の中心Cから当該緩衝装置14の軸心Xに下ろした垂線の長さd(緩衝装置14反力による負キャンバのモーメント力Mnの腕の長さ)を、後輪2の半径D(横力による正キャンバのモーメント力Mpの腕の長さ)に対して予め設定した所定比率以上とするのが好ましい。
ここで、その所定比率の設定について説明すると、まず、緩衝装置14の上下反力Fcによって後輪2に作用する負キャンバの向きのモーメント力Mnの大きさは、当該緩衝装置14の軸心Xから後輪中心Cまでの距離(モーメントの腕の長さ)と緩衝装置反力Fcとの積として表される。しかし、一般的に、自動車のリヤサスペンションAにおいては、自動車の目標とする旋回性能、例えば旋回時に目標とする最大横加速度が得られるように、旋回外方の後輪2への分担荷重、緩衝装置14のコイルバネ12の硬さ、後輪2の最大グリップ力等を設定しており、これにより緩衝装置反力Fcそのものは概ね決定されてしまう。
それ故、負キャンバの向きのモーメント力Mnを十分に大きくしようとすると、実質的にはモーメントの腕の長さを長くする必要がある。例えば、自動車の旋回時に後輪に最大の横加速度が発生している限界領域を想定し、そのときに限界の横力Fsによって後輪2に作用する正キャンバのモーメント力Mpよりも緩衝装置反力Fcによる負キャンバのモーメント力Mnが大きくなるように、上述したモーメントの腕の長さを設定すればよい。換言すれば、横力Fsの限界領域において後輪2に作用する負キャンバのモーメント力Mnが正キャンバのモーメント力Mpよりも大きくなるように、該モーメント力Mnの腕の長さdとモーメントMpの腕の長さDとの比率を実験等により設定してもよい。
より詳しくは、一般に、自動車の旋回時には横力Fsにより旋回外方の後輪2に対し直接に正キャンバの向きのモーメント力Mpが作用し、このモーメント力Mpは横力Fsとともに増大する。一方、上述した如く緩衝装置14の上下反力Fcによって後輪2に負キャンバ方向のモーメント力Mnを作用させるようにした場合、自動車の旋回時に横加速度が増大して車体のロールが大きくなると、緩衝装置14のコイルバネ12が圧縮されてその反力Fcが増大し、この反力Fcによる負キャンバのモーメント力Mnも増大することになる。
従って、この実施形態のように緩衝装置14を配置して、該緩衝装置14の上下反力Fcによる負キャンバのモーメント力Mnの初期値(停車時、或いは一定の速度で直進走行しているときの値)をある程度、大きくすれば、旋回時に横力Fsによる正キャンバのモーメント力Mpが増大しても、これに打ち勝つだけの負キャンバのモーメント力Mnを後輪2の横力の限界領域まで発生させることができるのである。このことで、旋回外方の後輪2においてはそのキャンバ変化の方向について、即ち各リンク6〜10のゴムブッシュ26においてそれぞれ車体の横方向について、後輪2を負キャンバの向きに付勢するような一定の向きの付勢力が付与されることになり(予圧縮)、これにより、微視的な後輪2のふらつきをなくしてシャープな運転感覚を得ることができる。
第2に、この実施形態のリヤサスペンションAでは、図4に示すように車体側方から見て僅かに後傾する後輪2の仮想キングピン軸Kに対して、緩衝装置14の軸心Xを略鉛直方向に延びるように位置付けるともに、この緩衝装置軸心Xを仮想キングピン軸Kよりも車体内方において(図5参照)当該仮想キングピン軸Kと非平行であり且つ交わらないように位置付けている。このことで、図9に模式的に示すように車体右側の後輪2を車体上方から見ると、緩衝装置14の上下反力Fcは仮想キングピン軸Kの周りに反時計回りのモーメント力、即ちトーインの向きのモーメント力Mtを発生させることになる。つまり、緩衝装置14の上下反力を利用して、自動車に横方向の加速度や姿勢変化が生じる以前(初期状態)からその後輪2をトーインの向きに付勢するようにしているので、旋回初期に後輪2に横力が作用してトーインが付与されるときに、各リンク6〜10のゴムブッシュ26の撓みに因る遅れが発生しなくなり、このことによっても、剛性感や応答性の高いシャープな運転感覚が得られるものである。
第3に、この実施形態のリヤサスペンションAでは、図10に模式的に示すように、緩衝装置14をその軸心Xが後輪2の車体内方において後輪2の中心Cよりも車体後方に位置付け、且つ略鉛直方向に延びるように配置している。このことで、図示の如く車体左側から見て、緩衝装置14の上下反力Fcが後輪2の中心Cよりも車体後方(図の右側)でホイールサポート11に対し略鉛直上方から作用して、時計回りのモーメント力Mwを発生させることになる。これにより、アッパリンク6,7がそれぞれ車体後方に付勢されて、その各リンク6,7のゴムブッシュ26に車体後方への付勢力が作用するとともに、ロワリンク8,9はそれぞれ車体前方に付勢されて、その各リンク8,9のゴムブッシュ26に車体前方への付勢力が作用するようになる。
そうして、アッパリンク6,7のゴムブッシュ26がいずれも極めて硬いものとされ、一方、ロワリンク8,9のゴムブッシュ26は、それが比較的柔らかなものとされている。すなわち、相対的に乗り心地への影響が大きいロワリンク8,9についてそれぞれゴムブッシュ26を比較的柔らかなものにするとともに、このゴムブッシュ26を緩衝装置14の上下反力によって予め車体前方へ予圧縮しているのである。この状態では、ゴムブッシュ26には車体前方への撓み代が殆ど残されていないので、後輪2へ車体前方への力(例えば駆動力)が作用したときにはゴムブッシュ26が殆ど撓むことなく、車体への力の伝達が行われる。
一方、上述したようにゴムブッシュ26を予め車体前方へ予圧縮した状態で、後輪2へ車体後方への力(例えば不整路面からのショック)が入力した場合、この入力によってゴムブッシュ26に作用する力が上述した付勢力よりも大きくなって合力の向きが反転すると、当該ゴムブッシュ26が初期の状態とは反対に後ろ向きに撓んで、後輪2が車体後方へ変位することになる。つまり、後ろ向きの入力は後輪2から車体への伝達が遅れるか、或いは吸収されることになる。
尚、本願発明の構成は本実施形態のものに限定されず、その他の種々の構成を包含するものである。すなわち、本実施形態では左右のリヤサスペンションAをサブフレーム3により車体に取り付けるようにしているが、これに限らず、リヤサスペンションAを直接、車体に取り付けるようにしてもよい。
また、本実施形態のリヤサスペンションAでは、5本のリンク6〜10のそれぞれの車体側の連結部にゴムブッシュ26を配設し、一方、車輪側の端部はボールジョイント27を介してホイールサポート11に取り付けるようにしているが、これに限らず、いずれかのリンクについてその両端部にそれぞれゴムブッシュを配設するようにしてもよい。また、弾性ブッシュとしてはゴムブッシュ26に限らず、所要の弾性を備える樹脂製のものであってもよい。
次に、本実施形態の作用効果を説明する。
まず、自動車が停車しているか或いは一定の速度で直進しているときには、左右のリヤサスペンションAにおいてそれぞれ車体後部の分担荷重に対応する力が緩衝装置14から後輪2のホイールサポート11に作用していて、後輪2には負キャンバの向きで且つトーインの向きのモーメント力が作用している(初期状態)。そして、直進中の自動車において運転者の操舵がなされると、自動車の前車輪及び後輪に横力が発生して旋回状態に移行し、このとき、旋回外方の後輪2には横力によってトーインが付与されるとともに、やや遅れて車体のロールによってもトーインが付与される。これにより、自動車の挙動が安定化される。
その際、直進状態でも予め後輪2が負キャンバ且つトーインの向きに付勢されているから、横力やロールによって後輪2にトーインが付与されるときにはリンク6〜10のゴムブッシュ26の撓みによる遅れが生じず、マルチリンク式サスペンションとしては過去に類を見ないほど剛性感が高く且つ位相遅れの少ないシャープな運転感覚が得られる。しかも、自動車の旋回外方の後輪2は直進状態から旋回初期に亘って一貫して負キャンバ且つトーインの向きに付勢されることになるから、自然な運転感覚と高い安定感が得られる。
続いて、旋回中の自動車の横加速度が増大して後輪2に作用する横力が増大すると、この横力やロールステアによるトーイン量が増大するとともに、リヤサスペンションAのバンプ量の増大に伴い緩衝装置14の、即ちコイルバネ12の反力が略比例的に増大して、これによるトーインの向きのモーメント力も増大する。そして、さらにバンプ量が大きくなってダンパ13の外筒の上端部がバンプストッパ28に当接すると、このことによって緩衝装置14全体としてバネ定数が一段、高くなり、該緩衝装置14の反力が急増してこれによるトーインの向きのモーメント力が相乗的に増大する。このことで、バンプストッパ28の作用に伴い、ロールステアによるトーイン量が急減しても、このことは緩衝装置14の反力によるトーインのモーメント力が急増することで相殺されることになり、後輪2のトーイン量が急変することがないので、自動車の限界領域での挙動変化を抑制して、走行安定性を向上できる。
また、旋回中の横加速度の増大に伴い、横力によって後輪2に作用する正キャンバの向きのモーメント力が大きくなるが、その横加速度の増大に応じて緩衝装置14の上下反力も増大して、旋回外方の後輪2には負キャンバの向きのモーメント力が横力の限界領域まで作用するようになる。すなわち、旋回外方の後輪2の各リンク6〜10のゴムブッシュ26にはキャンバ変化の方向、即ち車体の横方向について常に一定の向きの付勢力が作用することになり、微視的な後輪2のふらつきが発生しなくなるから、マルチリンク式サスペンションとして従来にないシャープな運転感覚が得られる。
次に、本実施形態の作用効果をより詳細に説明する。
本実施形態のマルチリンク式サスペンションは、自動車の後輪の支持部材を5本のリンクにより車体に連結して、これらのリンクの少なくとも車体側の端部にそれぞれ弾性ブッシュを配設するとともに、コイルバネ及びダンパを備える緩衝装置の下端部を後輪支持部材の車体内方側に枢着してなるマルチリンク式の後輪サスペンション装置を前提とする。そして、緩衝装置を、その上下反力が後輪の仮想キングピン軸の周りにトーインの向きのモーメント力を発生させるように当該仮想キングピン軸に対して配置するとともに、その上下反力が後輪に対して負キャンバの向きのモーメント力を発生させるように後輪の車体内方に離間させ、さらに、その上下反力による負キャンバの向きのモーメント力を、自動車の旋回時に旋回外方に位置する後輪において横力により発生する正キャンバの向きのモーメント力と比較して、その横力の限界領域まで大きくなるように設定したものである。
このような構成により、まず、自動車の後輪サスペンション装置を5本リンクのマルチリンク式とすることで、後輪の5つの運動自由度をそれぞれ最適に拘束することが可能になるので、AアームやHアームを用いたものに比べて高いポテンシャルを有するとともに、弾性ブッシュの介在によって優れた乗り心地を得ることができる。
しかも、後輪にはその支持部材を介して緩衝装置反力によりトーインの向きのモーメント力が作用していて、予め各リンクの弾性ブッシュが車輪のトーインの向きに付勢(予圧縮)されているので、自動車の旋回時に弾性ブッシュの撓みによる遅れを排除して旋回外方の後輪に対し直ちにトーインを付与することが可能になる。これにより、マルチリンク式サスペンションとしては過去に類を見ないほど位相遅れの少ない、即ち極めて剛性感や応答性の高いシャープな運転感覚とすることができる。すなわち、一般的には運転者により操舵が行われると自動車に横加速度が発生し、これに伴い旋回外方への荷重移動が生じて各車輪にコーナリングフォースが発生するのだが、本実施形態のようにコーナリングフォースが発生する段階よりも早い荷重移動の段階、即ち上下力が発生した段階で、この力によって後輪にトーインを付与するようにすれば、コーナリングフォースの発生を早めることができ、これにより位相遅れが少なくなるのである。
さらに、緩衝装置の上下反力により、後輪にはその支持部材を介して負キャンバの向きのモーメント力が作用していて、このモーメント力が自動車の旋回外方の後輪においても横力の限界領域まで常にその横力による正キャンバのモーメント力よりも大きくなるから、後輪の各リンクの弾性ブッシュにはキャンバ変化について常に一定の向きの付勢力が作用することになり、このことで、微視的な車輪のふらつきが発生しなくなって運転感覚の悪化や不自然な挙動が解消され、過去にない操縦安定性を備えた後輪サスペンション装置を実現できるものである。
このように、緩衝装置の上下反力を積極的に利用して後輪に予め負キャンバで且つトーインの向きのモーメント力を作用させるとともに、その負キャンバの向きのモーメント力が横力による正キャンバの向きのモーメント力と比較して、横力の限界領域まで常に大きくなるようにしたことで、弾性ブッシュの介在による良好な乗り心地を確保しながら、その撓みに起因する剛性感の低下等を解消し、且つ車輪の微視的なふらつきをなくして、スポーツカーにも適用し得る極めてシャープな運転感覚と高い操縦安定性とを実現できる。
ここで、上述したように緩衝装置の上下反力によって後輪をトーインの向きに付勢するためには、その反力の向きや後輪の支持部材に対する作用点を仮想キングピン軸に対して適切に設定する必要がある。例えば、後輪の仮想キングピン軸を上端側ほど車体後方に位置するように傾斜させ、緩衝装置を、その軸心が仮想キングピン軸よりも車体内方に位置して当該仮想キングピン軸と非平行であり且つ交わらないとともに、車体側方から見て軸心の方向が仮想キングピン軸と比べて鉛直に近くなるように配置するのが好ましい。
また、緩衝装置の上下反力によって後輪に負キャンバの向きのモーメント力を作用させるためには、当該緩衝装置の下端部を後輪の支持部材の車体内方に枢着して、その上下反力が後輪中心よりも下方位置に作用するようにすればよいが、その一方で、自動車の旋回時に旋回外方に位置する後輪には横力によって直接に正キャンバの向きのモーメント力が発生する。このとき、後輪に作用する横力の増大に略比例して車体のロールが大きくなり、緩衝装置のコイルバネが圧縮されてその反力が増大することで、負キャンバのモーメント力も増大するから、結局、旋回外方の後輪では、自動車の横加速度の増大に伴い横力による正キャンバのモーメント力が増大するとともに、緩衝装置の上下反力による負キャンバのモーメント力も増大することになる。
そこで、自動車の旋回外方の後輪への分担荷重や該後輪の最大グリップ力、緩衝装置のコイルバネの硬さ(バネ定数)、或いは、緩衝装置反力によって後輪に生じるモーメント力の腕の長さ等を相互の関係において適切に設定すれば、該緩衝装置の上下反力により後輪に対して十分に大きな負キャンバのモーメント力を作用させることができ、このモーメント力を横力の限界領域まで横力による正キャンバのモーメント力よりも大きくすることができる。
より具体的には、緩衝装置の上下反力によって後輪に作用する負キャンバの向きのモーメント力は、当該緩衝装置の軸心から後輪中心までの距離(モーメントの腕の長さ)と緩衝装置反力との積として表される。ここで、緩衝装置の上下反力そのものは後輪への分担荷重やコイルバネの硬さ、即ち自動車のロール特性に基づいて決定されるものなので、負キャンバの向きのモーメント力を十分に大きくしようとすると、実質的にその腕の長さを長くする必要がある。従って、例えば、自動車の旋回時に後輪に最大の横加速度が発生している限界領域を想定し、そのときに限界の横力によって後輪に作用する正キャンバのモーメント力よりも緩衝装置反力による負キャンバのモーメント力が大きくなるように、モーメントの腕の長さを設定すればよいのである。
次に、緩衝装置の下端部は、後輪の支持部材から車体内方に延びるように一体に形成した連結部の先端に枢着されている。すなわち、緩衝装置の上下反力によって後輪に対し大きなモーメント力を作用させるためには、連結部を後輪の支持部材から車体内方に大きく延ばすのが好ましいが、この連結部を支持部材と一体成形することで、その強度を確保しながら軽量化することが可能になり、いわゆるバネ下重量の増大を抑えることができる。
次に、連結部は、車体前後方向に見て、後輪の支持部材本体の上下両端側から車体内方に向かって延びて先端部で一体となった上腕部及び下腕部と、該上腕部及び下腕部をそれぞれの車幅方向中間部にて連結するように上下方向に延びる中間腕部とを有し、この中間腕部から連結部の先端に亘って架設した支軸の端部を車体内方に突出させて、ここに緩衝装置の下端部を取り付ける構成とされている。
この構成では、まず、連結部を上腕部、下腕部及び中間腕部を備える横向きの略A字形状としたことで、上下方向の荷重に対して十分な剛性を確保しながら軽量化することができる。そして、そのA字の横棒(中間腕部)から先端部に亘って十分に大きな間隔を空けて2点で取り付けた支軸に対して緩衝装置を取り付けることで、該緩衝装置の上下反力を後輪に対して確実に伝えることができる。
次に、後輪の仮想キングピン軸がキャスタトレールが負値となるように設定されている。すなわち、車体側方から見て、仮想キングピン軸と路面との交点が後輪の接地点よりも車体後方に位置するようにされている。
こうすれば、後輪への横力の作用点が仮想キングピン軸よりも車体前方に位置することになり、その横力によって直接的にトーインの向きのモーメント力が発生する。すなわち、自動車の旋回外方の後輪に対して横力によるトーインを付与して、その挙動を安定化させることができる。しかも、後輪には予め緩衝装置反力によってトーインの向きの付勢力が付与されているので、結局、旋回外方の後輪は一貫してトーインの向きに付勢されることになり、このことによって自然な運転感覚と高い安定感が得られる。
次に、緩衝装置は、その上下反力によって後輪に作用する車体前後方向の付勢力が微小ないし零となるように配置されている。
このことで、緩衝装置から後輪の支持部材に作用する上下反力が非常に大きくても、この力によって後輪に作用する車体前後方向の力は微小なものとすることができ、この力によって自動車の走行中に後輪の前後方向の変位が過度に規制されることがなくなって、路面不整等に対しても良好な乗り心地が得られるようになる。換言すれば、緩衝装置軸心の傾斜角度や後輪中心との間の車体前後方向の距離を、該緩衝装置の上下反力によって生じる後輪への前後力が十分に小さくなるように、乗り心地等の要求に応じて実験的に設定すればよい。
次に、緩衝装置は、その軸心が車体側方から見て略鉛直方向に延びるように配置されている。こうすれば、緩衝装置の上下反力が極めて大きくても、それが後輪に対し直接、前後力を加えることがないので、上述した作用効果が十分に得られる。
次に、緩衝装置は、その軸心を車体前後方向に見て上端側ほど車体内方に位置するように傾斜させ、且つ後輪支持部材の車体内方側へ所定距離隔てて配置するのが好ましい。
次に、緩衝装置は、その上下反力によって後輪を車体前方に付勢するように配置されている。すなわち、本実施形態において最も重要な点は、マルチリンク式の後輪サスペンション装置において緩衝装置の上下反力を後輪に対して負キャンバの向きで且つトーインの向きに作用させることであるが、こうしたときには、緩衝装置反力によって後輪に作用する車体前後方向の力を小さくすることはできても、それを零にすることはできない場合がある。
そこで、本実施形態では、そのように後輪に作用する車体前後方向の力の向きを車体前方へ向かうものとしている。こうすることで、後輪の各リンクの弾性ブッシュにはそれぞれ車体前方への付勢力が作用することになり、この状態で後輪に路面不整等によるショックが入力すると、弾性ブッシュに作用する力の向きが反転して該弾性ブッシュが逆向きに撓むことにより、後輪が車体後方に変位してショックを逃がすことができるようになる。従って、緩衝装置の上下反力によって後輪に車体前後方向の力が作用しても、良好な乗り心地を得ることが可能になる。
次に、緩衝装置は、その軸心が車体側方から見て後輪中心よりも車体後方に位置するように配置されるとともに、5本のリンクのうちのロワリンクの弾性ブッシュをアッパリンクの弾性ブッシュと比べて柔らかなものとされている。
こうすると、緩衝装置の上下反力によって支持部材には後輪の軸心周りのモーメント力が発生し、このモーメント力が後輪を支持するアッパリンク及びロワリンクに対してそれぞれ車体前後方向の付勢力を付与することになる。すなわち、例えば後輪を車体の左側から見たとき、緩衝装置の上下反力は後輪中心よりも向かって右側(車体後方)で支持部材に対し略鉛直上方から作用するようになり、この結果として時計回りのモーメント力が発生する。このモーメント力により、アッパリンクが向かって右側(車体後方)に付勢されてその弾性ブッシュに車体後方への付勢力が作用する一方、ロワリンクは向かって左側(車体前方)に付勢されてその弾性ブッシュには車体前方への付勢力が作用することになる。
そして、ロワリンクの弾性ブッシュを比較的柔らかなものとしたことで、後輪に路面不整等によるショックが入力したときには、ロワリンクの弾性ブッシュが力の反転によって逆向きに撓み、これにより後輪の車体後方への変位が許容されることになり、このことで、良好な乗り心地を得ることが可能になる。
次に、後輪を自動車の駆動輪とされている。すなわち、後輪サスペンション装置では、上述したように、緩衝装置の上下反力によって後輪の所定のリンクの弾性ブッシュを予め車体前方へ付勢するようにしており、このため、後輪が駆動輪であると、自動車の加速時等に駆動輪である後輪に駆動力(前向きの力)が作用したときに弾性ブッシュの撓みによる遅れが軽減されることになる。これにより、アクセル操作に対する自動車の加速応答性を向上することができる。
しかも、自動車の加速時には車体のスクォットによって後輪サスペンションのバンプ量が増大し、これにより緩衝装置のコイルバネが圧縮されるから、バンプ量の増大に応じて、即ち駆動力の増大に応じて緩衝装置の上下反力が増大することになる。従って、急加速時ほど弾性ブッシュへの付勢力が増大することになり、大きな駆動力に対しても遅れなく高い加速応答性が得られる。
一方、そのように弾性ブッシュを予め車体前方へ付勢していると、自動車の制動時に後輪に対し路面から制動力(後ろ向きの力)が作用したときには、この制動力が上述した付勢力に打ち勝って弾性ブッシュの撓みの向きが逆向きになった後に初めて、車体に制動力が伝達されることになるから、車体の制動が遅れてブレーキフィーリングが悪化する虞れがある。
しかし、自動車の制動時には車体のノーズダイブによって後輪サスペンション装置のリバウンド量が増大し、これに応じて、即ち制動力の増大に応じて緩衝装置の上下反力が低下することになるから、この反力による弾性ブッシュへの付勢力も減少して、その分、早く弾性ブッシュの撓みの向きが逆転することになり、結局、ブレーキフィーリングの悪化はあまり問題にはならないと考えられる。
尚、各リンク及び緩衝装置の配置により、サスペンションのバンプ時に緩衝装置の軸心が車体側方視で後輪の中心から離れるように構成してもよく、こうすれば、自動車の加速時に後輪サスペンションのバンプ量が増大するときに、このバンプ量の増大に対して比例関係よりも急な割合で弾性ブッシュへの付勢力を増大させることができる。同様に、リバウンド時に緩衝装置軸心が後輪中心に近づくように構成すれば、そのリバウンド量の増大に対して反比例関係よりも急な割合で弾性ブッシュへの付勢力を減少させることができる。
次に、5本のリンクのうちの少なくとも2本をロワリンクとし、この2本のロワリンクを車体上方から見て車体外方側に向かって互いに接近するように配置するものとする。
すなわち、上述したように緩衝装置の上下反力によって後輪の弾性ブッシュを予め車体前方へ付勢するようにしており、このことによって制動時に車体への制動力の伝達が遅れてブレーキフィーリングが悪化する可能性がある。
これに対し、本実施形態では、2本のロワリンクの配置により、制動時に後輪の車体後方への変位によって幾何学的にトーインが付与されるようにしており、このことで、後輪と路面との間での制動力の発生が早まるので、上述した弾性ブッシュの撓みによる制動力の伝達遅れを補完して、ブレーキフィーリングの悪化を防止することができる。
次に、本実施形態では、旋回外方に位置する後輪のトーイン量がバンプ時のロールステアによって増大するとともに、横力によるコンプライアンスステアによっても増大するように構成されている。この構成では、自動車の旋回外方の後輪においてロールステア及び横力コンプライアンスステアにより横力の増大に応じてトーイン量が大きくなるので、旋回時の自動車の挙動を安定化することができる。
次に、車体に対する後輪の近接変位を規制するバンプストッパが緩衝装置と同軸上に配設されており、緩衝装置の上下反力によって後輪に作用するトーインの向きのモーメント力を、バンプストッパの作用によって緩衝装置反力が増大することにより増大するように構成されている。
すなわち、一般的に、自動車の旋回時の挙動を安定化させるためには、横加速度の増加に略比例するように後輪のトーイン量を増大させることが好ましく、このトーインの変化の度合いが途中で変化すると、そのときに自動車の挙動に大きな変化が生じる虞れがある。しかし、バンプストッパを設けた場合には、これによりサスペンションのストロークが規制されることによって、例えばロールステアによるトーイン量の増大の度合いが急低下することが避けられない。このことは従来、多くの自動車において旋回時に横力の限界付近で後輪がグリップを失い、大きな挙動変化を招くという好ましくない性質を持つことの原因となっていた。
これに対し、本実施形態では、サスペンションのバンプ時に緩衝装置のコイルバネが圧縮されて、その反力が横力に対し略比例して増大するとともに、これと同軸に設けられたバンプストッパが作用することによって緩衝装置全体としてのバネ定数が一段、高くなり、該緩衝装置の上下反力が急増して、この反力によるトーインのモーメント力が相乗的に増大することになる。このことで、上述したロールステア等によるトーイン量の急変化を相殺して、自動車の限界領域での挙動変化を抑制し、その走行安定性を向上することができる。
次に、5本のリンクの車体側の端部がそれぞれサブフレームに取り付けられており、そのサブフレームが車体の左右両側で各々3点ずつ、合計6個の弾性マウントによって車体に取り付けられている構成とされている。
すなわち、本実施形態に係る自動車の後輪サスペンション装置は、5本のリンクを備えるマルチリンク式のものにおいて、緩衝装置の上下反力を利用して各リンクの弾性ブッシュに適切な付勢力を付与することにより、該弾性ブッシュの撓みに因る悪影響を排除してシャープな運転感覚を得られるようにしたものであるが、そのように弾性ブッシュに付勢力を付与するようにした場合、そのことによって多少なりとも乗り心地が悪化するきらいがある。
そこで、本実施形態では、5本のリンクの全てをサブフレームを介して車体に取り付けるとともに、このサブフレームは合計6個の弾性マウントによって車体に取り付けることで、操縦安定性を低下させることなく、乗り心地の向上を図ったものである。すなわち、サブフレームの弾性マウントの数をより一般的な4個の場合と比較すると、6個の弾性マウントを用いることによってその分、個々のマウントの分担荷重が小さくなり、相対的に柔らかなマウントを用いることが可能になるので、サブフレームと車体との間で振動等が吸収されて乗り心地が改善されるものである。また、その場合に、サブフレーム全体が車体に対して変位しても、このサブフレームに5本のリンク全てが取り付けられていることから、それらのリンクの相互の位置関係や路面に対する位置関係が変化せず、従って、操縦安定性への悪影響は殆ど生じないのである。
次に、図7及び図11により本実施形態による自動車の後輪サスペンション装置の組立方法を説明する。図11は、本実施形態による自動車の後輪サスペンション装置の組立方法を説明するための図4と同様に示す図である。
本実施形態の後輪サスペンション装置の組立方法では、先ず、フロントクロスメンバ17、リヤクロスメンバ18、各サイドクロスメンバ19、20とを互いに接合して、サブフレーム3を組み立てる。
次に、図11に示すように、この組み立てられたサブフレーム3を床に固定された4つの台座40に載せる。具体的には、サブフレーム3の車幅方向両側で、それぞれ、リヤクロスメンバ18に形成された取付部18aと、サイドクロスメンバ19に形成された第1取付座19aとを、台座40に載せる。これらの台座40の上面は、取付部18a及び第1取付座19aの外形形状に合うように形成され、サブフレーム3と台座40との相対位置が、車体前後方向及び車幅方向にずれないように固定されるようになっている。
次に、各リンク6、7、8、9、10を、サブフレーム3に形成された各取付部(取付座)19b、19c、19a、18a、17aに、それぞれゴムブッシュ26を介して連結する。次に、ホイールサポート11を、サブフレーム3に連結された各リンク6、7、8、9、10の車輪側の端部に、それぞれ、ボールジョイント27を介して連結する。次に、緩衝装置14をこのホイールサポート11の連結部30に連結する。このようにして、図1に示すように後輪サスペンション装置Aがほぼ組み立てられる。
次に、図7に示す上述した前側ロワリンク8に設けられたリンク長可変機構により、前側ロワリンク8のリンク長を調整して、サスペンションアライメントを調整する。この調整方法を具体的に説明する。
上述したように床には台座40が形成され、これらの台座40の位置及び高さに対し、予め定められた相対位置、即ち、車幅方向及び車体前後方向に所定距離離れた位置に基準ピン42が固定されている。また、基準ピン42の高さは、サブフレーム3を上述したように台座40に載せたとき、前側ロワリンク8のホイールサポート11への取付位置が予め定められた高さになるように形成されている。つまり、この基準ピン42は、前側ロワリンク8のホイールサポート11への取付位置(高さ位置、車幅方向位置及び車体前後方向位置)を、予め定められた位置(設計上の位置)に規定するためのものである。
そして、図7で上述したように、前側ロワリンク8の断面六角形の部分8eをスパナ等で回転させ、前側ロワリンク8のそのホイールサポート11への取付位置が基準ピン42の位置になるように前側ロワリンク8のリンク長を調整する。
ここで、サブフレーム9の所定箇所である取付部18a及び第1取付座19aと前側ロワリンク8の後輪支持部材11への連結位置との相対位置及び相対高さは設計上一義的に定まる。従って、その相対位置及び相対高さと同じ値に、台座40と基準ピン42との相対位置及び相対高さ(基準ピン42の予め定められた位置)を設定すれば、上述の調整により設計値通りのサスペンションアライメントを得ることが出来るのである。
従って、そのような調整後、サブフレーム3を車体に組み付け、さらに、後輪サスペンション装置Aに車体の分担荷重をかけると、キングピン軸xの傾斜角、キャスタートレールなどのサスペンションアライメントが、予め定められた設計上の値となる。その結果、上述した後輪2に対する負キャンバの向きのモーメント力、トーインの向きのモーメント力、及び、ゴムブッシュ26に対する予荷重が、それぞれ、予め設定した値に得られる。
このようにして、サスペンションの最初の組立直後にサスペンションの組立誤差或いは弾性ブッシュやアームの製造誤差によるアライメントの誤差が生じていても、前側ロワリンク8のリンク長を調整することにより、アライメントの設計値に対する誤差をより確実に無くするか或いは小さくすることが出来る。
特に、リンク長調整機構を前側ロワリンク8に設けているので、アライメントの設計値とのずれをより確実に小さくすることが出来る。即ち、前側ロワリンク8、9の配置、例えば、ロワリンク8、9のホイールサポート11への取付位置はアライメントに大きく影響し、特に前側のロワリンク8の配置が与える影響が大きいので、前側ロワリンク8のホイールサポート11への取付位置を調整すれば、アライメントの設計値とのずれを確実に小さくすることが出来る。
また、サスペンションの性能はロワリンク8、9への入力荷重の影響を大きく受ける。例えば、上述したアライメント誤差による前側ロワリンク8への入力荷重の変化は、他のリンクに比べてサスペンション性能に比較的大きく影響を与える。このような観点でも、ロワリンク8、9、特に、前側ロワリンク8のホイールサポート11への取付位置を規定することで、アライメントの設計値とのずれをより確実に小さくすると共に、上述したような本実施形態によるサスペンション性能を設計値通りにより確実に得ることが出来る。
なお、アッパリンク6、7或いはトーコントロールリンク10に同様のリンク長可変機構を設けても良い。
本発明の実施形態による自動車の後輪サスペンション装置を適用した自動車のリヤサスペンションアッセンブリの斜視図である。 動力伝達系路を取り付けたリヤサスペンションアッセンブリの上面図である。 車体右側のリヤサスペンションの上面図である。 図3のリヤサスペンションの左側面図である。 図3のリヤサスペンションの後面図である。 ロワリンクの配置による前後力コンプライアンスステアの説明図である。 図1と同様の角度から見た前側ロワリンクを拡大して示す部分拡大斜視図である。 緩衝装置の上下反力による負キャンバの向きのモーメント力の説明図である。 緩衝装置の上下反力によるトーインの向きのモーメント力の説明図である。 緩衝装置の上下反力による車軸周りのモーメント力の説明図である。 本実施形態による自動車の後輪サスペンション装置の組立方法を説明するための図4と同様に示す図である。
符号の説明
A リヤサスペンション(後輪サスペンション装置)
K 仮想キングピン軸
X 緩衝装置の軸心
2 後輪
3 サブフレーム
6,7 アッパリンク
8,9 ロワリンク
10 トーコントロールリンク
11 ホイールサポート(支持部材)
12 コイルバネ
13 ダンパ
14 緩衝装置
23 弾性マウント
26 ゴムブッシュ(弾性ブッシュ)
27 ボールジョイント
28 バンプストッパ
30 ホイールサポートの連結部
34 支軸
40 台座
42 基準ピン

Claims (3)

  1. 自動車の後輪の支持部材を5本のリンクにより車体に連結して、これらのリンクの少なくとも車体側の端部にそれぞれ弾性ブッシュを配設するとともに、コイルバネ及びダンパを備える緩衝装置の下端部を上記後輪支持部材の車体内方側に枢着したマルチリンク式の後輪サスペンション装置であって、
    上記緩衝装置を、その上下反力が後輪の仮想キングピン軸の周りにトーインの向きのモーメント力を発生させるように当該仮想キングピン軸に対して配置するとともに、その上下反力が後輪に対して負キャンバの向きのモーメント力を発生させるように後輪の車体内方に離間させ、
    上記緩衝装置の上下反力による負キャンバの向きのモーメント力を、自動車の旋回時に旋回外方に位置する後輪において横力により発生する正キャンバの向きのモーメント力と比較して、その横力の限界領域まで大きくなるように設定し、
    上記5本のリンクのうち少なくとも1本のリンクにリンク長可変機構を設けたことを特徴とするマルチリンク式の後輪サスペンション装置。
  2. 上記リンク長可変機構はロワトレーリングリンクに設けられている請求項1記載の自動車の後輪サスペンション装置。
  3. 自動車の後輪の支持部材を5本のリンクにより車体のフレーム部材に連結して、これらのリンクの少なくとも車体側の端部にそれぞれ弾性ブッシュを配設するとともに、緩衝装置の下端部を上記後輪支持部材の車体内方側に枢着したマルチリンク式の後輪サスペンション装置の組立方法であって、
    上記フレーム部材を所定箇所で台座部材により支持させる工程と、
    上記5本のリンクと上記フレーム部材とを連結する工程と、
    上記5本のリンクと上記後輪支持部材とを連結する工程と、
    上記支持工程、上記フレーム部材連結工程及び上記後輪支持部材連結工程のすべての工程の後に、上記5本のリンクのうちロワトレーリングリンクの上記後輪支持部材への連結位置が、上記台座部材の位置及び高さに対して相対位置及び相対高さが規定されている基準部材の位置に一致するように、上記ロワトレーリングリンクのリンク長を調整する工程と、
    を有することを特徴とするマルチリンク式の後輪サスペンション装置の組立方法。
JP2005082457A 2005-03-22 2005-03-22 自動車の後輪サスペンション装置及びその組立方法 Pending JP2006264408A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005082457A JP2006264408A (ja) 2005-03-22 2005-03-22 自動車の後輪サスペンション装置及びその組立方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005082457A JP2006264408A (ja) 2005-03-22 2005-03-22 自動車の後輪サスペンション装置及びその組立方法

Publications (1)

Publication Number Publication Date
JP2006264408A true JP2006264408A (ja) 2006-10-05

Family

ID=37200830

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005082457A Pending JP2006264408A (ja) 2005-03-22 2005-03-22 自動車の後輪サスペンション装置及びその組立方法

Country Status (1)

Country Link
JP (1) JP2006264408A (ja)

Similar Documents

Publication Publication Date Title
JP3912180B2 (ja) 自動車の後輪サスペンション装置
EP2355987B1 (en) Vehicle independent suspension
WO2011149605A1 (en) Independent rear suspension
JPH10109510A (ja) フロントサスペンション装置
JPH0775929B2 (ja) 車両のサスペンション装置
JP2006347338A (ja) 自動車のリヤサスペンション装置
JPWO2003000511A1 (ja) 防振ゴム付き車軸
JP2022154817A (ja) 自動車のサスペンション装置
JP2006347337A (ja) 自動車のリヤサスペンション装置
JPH05169941A (ja) 車両のサスペンション装置
JP3468014B2 (ja) 車両用サスペンションのトレーリングアーム支持構造
JP4534153B2 (ja) 自動車のリヤサスペンション装置
JP3969366B2 (ja) 自動車の後輪サスペンション装置
JP4893428B2 (ja) 後輪用サスペンション装置
JP4529975B2 (ja) 自動車の後輪サスペンション装置
JP3969367B2 (ja) 自動車のマルチリンク式後輪サスペンション装置
JP2001270313A (ja) トレーリングアーム式リアサスペンション
JP2006264408A (ja) 自動車の後輪サスペンション装置及びその組立方法
JP2009126206A (ja) サスペンション装置
JP3969374B2 (ja) 自動車の後輪サスペンション装置
JP2007084070A (ja) 自動車の後輪サスペンション装置
JP2920087B2 (ja) 車両の操向駆動輪懸架装置
JP2022154818A (ja) 自動車のサスペンション装置
JP2761044B2 (ja) 車両のサスペンション装置
JP2022154816A (ja) 自動車のサスペンション装置