JP2006262460A - 低電圧差動信号の送受信システム - Google Patents

低電圧差動信号の送受信システム Download PDF

Info

Publication number
JP2006262460A
JP2006262460A JP2006060322A JP2006060322A JP2006262460A JP 2006262460 A JP2006262460 A JP 2006262460A JP 2006060322 A JP2006060322 A JP 2006060322A JP 2006060322 A JP2006060322 A JP 2006060322A JP 2006262460 A JP2006262460 A JP 2006262460A
Authority
JP
Japan
Prior art keywords
voltage
signal
transmission line
transmission
resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006060322A
Other languages
English (en)
Inventor
Zairetsu Lee
在烈 李
Jae-Suk Yu
載錫 劉
Jong-Seon Kim
鍾善 金
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Samsung Electronics Co Ltd
Original Assignee
Samsung Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020050022410A external-priority patent/KR100697281B1/ko
Priority claimed from KR1020050023752A external-priority patent/KR100672999B1/ko
Application filed by Samsung Electronics Co Ltd filed Critical Samsung Electronics Co Ltd
Publication of JP2006262460A publication Critical patent/JP2006262460A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Dc Digital Transmission (AREA)

Abstract

【課題】低電圧差動信号の送受信システムを提供する。
【解決手段】低電圧差動信号の送信回路及び受信回路をそれぞれ備える送受信システムであって、伝送線と接続されて信号を伝達する第1の端子と、第1の端子と接続され、伝送線に信号を伝達するための第1の端子と、第1の端子に信号を伝達するためのソース抵抗と、ソース抵抗に入力電圧と接地との間をスイッチングしてソース抵抗に信号を伝達するスイッチと、スイッチに入力電圧を供給して信号を伝送するための電圧を提供する電圧レギュレーターと、第1の端子の電圧を感知して電圧レギュレーターが受信回路に調整された入力電圧を供給するように制御する電圧制御器と、を含む。これにより、パッケージ抵抗の変化にも受信端の信号レベルには影響を受けないインターフェーシング手段を提供できる。
【選択図】図7

Description

本発明は、送受信機に係り、より詳しくは、伝送線路を通じて信号を送受信する送受信システムに関するものである。
高速データ伝送に関する要求に応じて、システムでは幾つかの問題が存在する。例えば、伝送線の特性インピーダンスの不整合による伝送線の末端で発生する信号の反射、隣接ライン間のクロストーク問題などが発生するようになる。前述した好ましくない信号反射問題を解決するため直列末端法および並列末端法において知られた二つのインピーダンス整合方式が使用されている。直列末端法は、信号ラインに直列に抵抗が挿入され、並列末端法は受信機の信号ラインと接地との間に抵抗が挿入される。しかしながら、このような方法にもかかわらず送受信システムでは、受信機のパッケージ工程による抵抗の変化だけではなく、回路の複雑なことと送受信システムの粗悪な動作周波数特性で信頼性が悪くなる傾向がある。
本発明の技術的課題は、送受信システムにおける変化するパッケージ抵抗でも、伝送される信号のレベルを安定的に提供できる送信回路を提供するところにある。
本発明の他の技術的課題は、送受信システムにおける変化するパッケージ抵抗でも、受信される信号のレベルを安定的に提供できる受信回路を提供するところにある。
前述した技術的課題を達成するために本発明の低電圧差動信号に関する送信回路及び受信回路を含む送受信システムにおいて、本発明の実施形態による送信回路は、伝送線と接続されて信号を伝達する第1の端子と、第1の端子と接続され、伝送線に信号を伝達するための第1の端子と、第1の端子に信号を伝達するためのソース抵抗と、ソース抵抗に入力電圧と接地との間をスイッチングしてソース抵抗に信号を伝達するスイッチと、スイッチに入力電圧を供給して信号を伝送するための電圧を提供する電圧レギュレーターと、第1の端子の電圧を感知して電圧レギュレーターが受信回路に調整された入力電圧を供給するように制御する電圧制御器と、を含む。
本発明の実施形態において、受信回路は、第1の入力端を有する増幅器と、第1の入力端に信号を伝達する第1のパッドと、ロード抵抗と、ロード抵抗と接続されて信号を伝達する第2のパッドと、を含み、第1及び第2のパッドは第1の伝送線の末端に接続される。
本発明によれば、パッケージ抵抗の変化にも受信端の信号レベルには影響を受けないインターフェーシング手段を提供できる。
以下、添付した図面を参照して本発明の好適な実施形態を詳細に説明する。
ここに開示される発明は、低電圧差動信号を伝送する送受信システムに関するものである。本発明の実施形態によれば、受信回路の工程(例えば、COG工程)変化に応じるパッケージ抵抗の変化を補償でき、送受信システムの設計の複雑度を減少させうる。本発明の実施形態による送受信システムは、受信回路の入力端に電圧降下が起こらない追加的な信号経路を備えてインピーダンス整合のため調整可能なロード抵抗(R)を調整し、送信回路の信号電圧(VIN)を電圧検出器を使用して制御する構成によってパッケージ抵抗の変化を補償できる。
図1は、一般的なモバイルシステム10を簡略に示すブロック図である。前述したモバイルシステム10は、ベースバンド処理部100と信号を交換するディスプレイ装置部110とを含む。ベースバンド処理部100は、ディスプレイデータを生成するイメージプロセッサに相当する応用プロセッサ101を含む。ディスプレイ装置部110は、ディスプレイ駆動IC(LDI)111とLDI111から信号を受信するLCDパネル112を含む。そして応用プロセッサ101で生成された画像データをディスプレイ駆動IC111に供給する伝送線路120を含む。このような構成を通じてモバイルシステム10では、画像データの伝達が行われる。
前述した構成のうちデータライン120に発生するタイミングマージン、EMC(Electro−Magnetic Compatibility)などの技術的問題点を克服するために多様なディジタルインターフェーシング技術が適用されている。例えば、低電圧差動信号法(Low Voltage Differential Signaling;以下、LVDSと称する。)、RSDS(Reduced Swing Differential Signaling)、SLVS(Scalable Low Voltage Signaling)方式などがある。
図2を参照すれば、一般的なシングルエンド型SLVS送受信システム20が簡略に回路図で表現される。シングルエンド型SLVS送受信システム20は、基準電圧を生成する基準電圧発生器110と、基準電圧発生器110から基準電圧が提供される送信回路120と、送信された信号が伝達される伝送線でモデリングされるチャネル130と、パッケージ抵抗(RPKG)とパッケージ抵抗に接続されて受信された電圧(VOUT)が伝達される受信回路140を含む。
送信回路120は、基準電圧発生器110から基準電圧が提供されてチャネルに入力電圧(VIN)を出力する電圧レギュレーター122とスイッチ(SW1)と直列ソース抵抗(R)とを含む。
受信回路140は、接地端と入力端とに印加される電圧(VOUT)を入力とする演算増幅器や比較器から構成できる。受信回路140は、パッケージ抵抗RPKGとチップの内部に設けられたロード抵抗Rとそしてロード抵抗Rにかかるアナログ形態の受信電圧(VOUT)を入力とする。ここで、アナログ形態の受信電圧(VOUT)はディジタルデータに変換される。
シングルエンド型構造は、差動型から構成できることは勿論である。インピーダンスの整合が行われれば、伝送線に伝達された出力電圧(VOUT)は数1に定義される。
Figure 2006262460
しかしながら、このような概念に基づくとき、必然的にインピーダンスの不整合という問題が発生する。例えば、入力インピーダンス(RPKG+R)が伝送線130から見る受信端側入力インピーダンスRPKG+Rが伝送線の特性インピーダンスZと同じではない場合、伝送線路と受信端との間にインピーダンス不整合問題が発生する。インピーダンス不整合時には送信端側で送出した入力電圧(VIN)が反射されて送信端側に戻る現象が発生する。このような現象は、伝送速度を制限し、反射効果を補償するための送信回路の複雑度を増加させる要因になっている。特にRPKGは、工程によって変化し、ディスプレイ工程では大きさが約50Ω以上に大きくてインピーダンス整合を難しくする要因になっている。さらに他の問題としては受信回路140のパッド(Pad)に入力された入力信号は、RPKG+Rに加えられるようになるが、実際に演算増幅器142に入力される電圧は、ロード抵抗Rに分配される電圧である。これは、送信回路120から伝送された入力電圧(VIN)が損失されることを意味する。
このような問題に対応するため、受信回路の入力感度を向上させるか、或いは伝送線の出力電圧(VOUT)を高めるため送信回路120の入力電圧(VIN)を増加させなければならない。従って、固定されたパッケージ抵抗(RPKG)および入力電圧(VIN)の状況では出力電圧(VOUT)が一定したレベルに固定されるべきである。しかしながら、一般的なモバイルシステムで採択されるCOG工程の場合、R=R=50Ω、VIN=0.4Vである時にRPKGが0Ω〜200Ωの範囲を有せば、VOUT値は、200mVから66mVまで変えることができる。この場合にパッケージ抵抗が200Ωであるときには受信端の入力電圧が66mVまで低減されうる。この場合、インピーダンス整合の困難性と、受信端の敏感性改善のための設計複雑度の増加、動作速度の低下及び信号レベルの減少によるビットエラー率(Bit Error Rate;以下、BERと称する。)の特性低下を招来しうる。
図3は、本発明の好適な一実施形態によるCOG工程で形成される受信回路30の構成を簡略に示した図面である。受信回路30は、前述したパッケージ抵抗(RPKG)の変動にも影響を受けなく、動作周波数特性を向上させることができる送受信システムの一部分にできる。
受信回路30は、受信回路チップ、又はバアダイ310およびガラスパネル320を含む。チップ310は、演算増幅器311と接続される第1のパッド(Pad1)と、接地端に接続されたロード抵抗(R)と接続される第2のパッド(Pad2)とを含む。演算増幅器311は、高入力インピーダンスを備えて入力端子に電流の流れが遮断される特性がある。ガラスパネル320は、ガラス板上に導体膜で蒸着されるリード線(LOG)301と導電性バンパー(Bumper_1、Bumper_2)とを含む。バンパー1(Bumper_1)は、第1のパッドと接続され、バンパー2(Bumper_2)は、第2のパッドと接触して、チップ310とガラスパネル320とを接続する。
図4は、図3の工程によって形成される受信回路40を説明する回路図である。図4を参照すれば、シングルエンド型の信号を伝達する特性インピーダンスZの伝送線300と伝送線300の末端とにそれぞれ並列に接続されて、第1のパッドと第2のパッドとにそれぞれ接続される第1のパッケージ抵抗(RPKG1)及び第2のパッケージ抵抗(RPKG2)を含む。演算増幅器311は、前述した第1のパッケージ抵抗(RPKG1)と第1のパッドとを経由して伝達される出力電圧(VOUT)を受信し、可変抵抗から構成されるロード抵抗(R)は第2のパッケージ抵抗(RPKG2)と接続される第2のパッドと接地との間に接続される。
このような構成によって、伝送線300から見た受信回路40の入力インピーダンスは、RPKG2+Rになる。ロード抵抗(R)の調整によって前述した入力インピーダンス(RPKG2+R)の大きさは、伝送線の特性インピーダンス(Z)と整合させることができる。例えば、インピーダンス整合のためのロード抵抗(R)値の決定は、Z=50Ω、RPKG2がロード抵抗(Z)より小さい抵抗値を有するとき、入力インピーダンスであるRPKG2+Rは、Zと同一な大きさになるようにロード抵抗を調整する。即ちR=Z−RPKG2=50−RPKG2で表現できる。一般に、直列ソース抵抗(Rs)は、特性インピーダンス(Z)と同一な大きさに設定される。しかしながら、特定した場合に直列ソース抵抗(Rs)は、特性インピーダンスと異なる値を有することができる。このような場合、Z=RPKG2+Rはインピーダンス整合値として使用される。受信回路40において、Z=ロード抵抗値(RPKG2+R)は直列ソース抵抗(Rs)の大きさに関係なく使用される。一般にRs=Z=(RPKG2+R)関係が理想的なインピーダンス整合条件である。前述したロード抵抗(R)の大きさは、調整回路を通じて予め初期化できる。この点、固定されたロード抵抗値を有する場合の従来技術の構成とは差異がある。併せて、受信回路40は、演算増幅器311で入力信号のレベル減少が最小化された信号を提供できる。これは、演算増幅器311の入力端で形成されるRPKG1を含む信号経路は、電流の流れが約0Aになるためである。従って、出力電圧(VOUT)は下記の数2で表現できる
Figure 2006262460
従って、パッケージ抵抗(RPKG2)が特性インピーダンス(Z)より小さい場合、前述した構成によって変化するパッケージ抵抗にもかかわらず、ロード抵抗(R)の大きさ調整によってインピーダンス整合が行われる受信回路30が実現された。併せて、追加された信号経路を通じては伝送線末端から実質的に電圧降下が起こらない受信回路40を構成できる。
図5は、本発明に従う差動信号型受信回路を構成するための製造工程を簡略に説明する図面(図面符号50)である。図5に示された部分は、前述したパッケージ抵抗(RPKG)の変動にも影響を受けなく、動作周波数特性を向上させることができる送受信システムの一部分にできる。
受信回路50は、差動信号計COG工程を簡略に示す。図5のCOG工程によれば、受信回路チップ、又はベアダイ420とガラスパネル430とを含む。受信回路チップ420は、演算増幅器421の非反転入力端子に接続される第1のパッド、可変ロード抵抗(R)の第1の端子と接続される第2のパッド、可変ロード抵抗(R)の第2の端子と接続される第3のパッド、そして演算増幅器421の反転入力端子に接続される第4のパッドを含む。前述した演算増幅器421は、高入力インピーダンスを備えて入力端子としては電流経路が形成されない。ガラスパネル430は、導電膜で蒸着される第1のリード線401及び第2のリード線411を含む。また、第1のリード線401とそれぞれ第1のパッド及び第2のパッドを電気的に接続するための第1のバンパー(Bumper_1)及び第2のバンパー(Bumper_2)を含む。また、第2のリード線411と、それぞれ第3のパッド及び第4のパッドとを電気的に接続する第3のバンパー(Bumper_3)及び第4のバンパー(Bumper_4)を含む。
図6は、図5のCOG工程によって形成される受信回路の構成を説明する回路図である。図6に示された受信システム60は、それぞれZの特性インピーダンスを有する伝送線から構成される第1のチャネル400及び第2のチャネル410を含む。第1のチャネル400の末端には、第1のパッケージ抵抗(RPKG1)及び第2のパッケージ抵抗(RPKG2)が並列に接続される。第1のパッド(Pad1)は、前述した第1のパッケージ抵抗(RPKG1)と接続され、第2のパッド(Pad2)は、第2のパッケージ抵抗(RPKG2)と接続される。また、第3のパッケージ抵抗(RPKG3)及び第4のパッケージ抵抗(RPKG4)は、それぞれ第2のチャネル410の末端に並列に接続され、それぞれ第3のパッド及び第4のパッドに接続される。
受信システム60は、また受信回路420を含む。受信回路420は、非反転入力端子および反転入力端子を有する演算増幅器421と、第2のパッケージ抵抗及び第3のパッケージ抵抗に接続されるロード抵抗(R)とを含む。ここで、非反転入力端子は、信号(VOUTP)が入力されるため第1のパッケージ抵抗と接続され、反転入力端子は信号(VOUTN)が入力されるため第4のパッケージ抵抗と接続される。
ここで、伝送線から見た受信回路420の入力インピーダンスは、(RPKG2)+(RPKG3)+Rで表現できる。ロード抵抗(R)の調整によって全体インピーダンスはZに整合できる。
従って、前述した構成によって変化するパッケージ抵抗にもかかわらずロード抵抗(R)の大きさ調整によってインピーダンス整合が行われる受信システム60が実現された。併せて、追加された信号経路を通じては伝送線末端から実質的に電圧降下が起こらない受信システム60を構成できる。
図7は、本発明に従うさらに他のシングルエンド型受信回路の実施形態を簡略に示す回路図である。図7に開示された受信回路70は、伝送線71と、伝送線71の末端に接続される第1のパッケージ抵抗72と、第1のパッケージ抵抗と接続されるパッド73と、パッド73と接続される演算増幅器74と、を含む。
伝送線71の末端には、前述した第1のパッケージ抵抗72と併せてそれぞれ相異なるパッドで接続される第2のパッケージ抵抗75及び第3のパッケージ抵抗78が並列に接続される。ここで、第2のパッケージ抵抗75はパッド76と、第3のパッケージ抵抗はパッド79とそれぞれ接続される。このような方式で形成される少なくとも第2のパッケージ抵抗及び第3のパッケージ抵抗を含む複数のパッケージ抵抗は、それぞれ伝送線71の末端と可変ロード抵抗77(R)との間で並列に接続される。ここで、可変ロード抵抗77は接地レベルに接続される。
もしパッケージ抵抗が50Ωより大きい場合にも伝送線の特性インピーダンスが50Ωであれば、可変ロード抵抗(R)を調整してインピーダンス整合を行うことができる。従って、図7の受信回路70は、図4の受信回路40で近似化できる。このような構成は、パッケージ抵抗(RPKG)が特性インピーダンスより大きい場合に効果的である。
図8は、本発明の差動信号に関する受信回路80を説明する回路図である。図8の受信回路80は、第1の伝送線81の末端と第1のパッド83との間に形成される第1のパッケージ抵抗82を含む。ここで、第1のパッケージ抵抗82は演算増幅器の非反転入力端子と接続される。
第1の伝送線81の末端には、第1のパッケージ抵抗82と並列に接続される少なくとも第2のパッケージ抵抗85及び第3のパッケージ抵抗88を含む複数のパッケージ抵抗を含む。ここで、各パッケージ抵抗は、それぞれ相異なるパッドと接続される。すなわち、パッケージ抵抗85はパッド86と、パッケージ抵抗88はパッド89と接続される。少なくともパッケージ抵抗85,88を含む複数のパッケージ抵抗は、伝送線81と可変ロード抵抗87の第1の端子との間で並列に接続される。
受信回路80は、第2の伝送線91をさらに含む。第2の伝送線91の末端には、第6のパッケージ抵抗92とそれに接続されるパッド93とを含む。第6のパッケージ抵抗92は演算増幅器84の反転入力端に接続される。
第2の伝送線91の末端には、第6のパッケージ抵抗82と並列に接続される第4のパッケージ抵抗98及び第5のパッケージ抵抗95を含む複数のパッケージ抵抗を含む。ここで、各パッケージ抵抗は、それぞれ相異なるパッドと接続される。すなわち、パッケージ抵抗95はパッド96と、パッケージ抵抗98はパッド99と接続される。少なくともパッケージ抵抗95、98を含む複数のパッケージ抵抗は、伝送線91と可変ロード抵抗87の第2の端子との間で並列に接続される。
従って、図8の受信回路80は、図6の受信回路60で近似化できる。このような構成は、パッケージ抵抗(RPKG)が特性インピーダンス(Z)より大きい場合に効果的である。
図9は、本発明に従うシングルエンド型送受信システム200を簡略に示す回路図である。図9を参照すれば、本発明の送受信システム200は、送信回路220と受信回路240とを含む。受信回路240は、図2の受信回路140と同一な動作及び特性の機材である。
送受信回路200は、出力端(V)を備えて伝送線230及びパッケージ抵抗(RPKG)を経由して受信回路240に信号を伝達する。出力端(V)は、電圧検出器250に接続される。電圧検出器250は、基準電圧発生器210に検出結果を伝達する。ここで、電圧検出器250及び基準電圧発生器210は、電圧制御器という名称に一つの構成に示すことができることは、当業者によく知られている。基準電圧発生器210は、また電圧レギュレーター222に接続されて基準電圧(VREF)を提供する。電圧レギュレーター222は、スイッチングになる入力電圧(VIN)をスイッチ(SW1)の第1のスイッチング端子に提供する。スイッチ(SW1)の第2のスイッチング端子は接地端に接続される。しかしながら、スイッチ(SW1)の信号が出力される固定端は、直列ソース抵抗(Rs)に接続される。そして直列ソース抵抗(Rs)の残り接触端は、送信回路220の出力端(V)に接続される。前述した送受信回路200の動作時、シングルエンド型送信回路220は、無視する程度のスイッチのターンオン抵抗を有するようになる。このような抵抗の大きさは、一般に送信回路220の出力電圧に影響を及ぼさないため考慮しない。従って、電圧レギュレーター222の出力信号(VIN)は、測定されたパッケージ抵抗(RPKG)に基づいて制御される。パッケージ抵抗(RPKG)は、システムの電源が投入されるパワーアップ時点、或いは指定された特定区間で測定できる。電圧検出器250は、パッケージ抵抗(RPKG)を測定する時点で送信回路220及び伝送線路230の間の電圧(V)を測定する。ここで、検出された電圧によって、電圧検出器250は、基準電圧発生器210と電圧レギュレーター222が最適のターゲット電圧(VIN)を生成するようにディジタルデータを生成する。
パッケージ抵抗(RPKG)を計算するため、特性インピーダンス0(Z=0、DC条件)時、測定された電圧(V)は下記の数3で表現される。
Figure 2006262460
前述した数3によって導出されたパッケージ抵抗(RPKG)の値から送信回路220は、ターゲット電圧(VOUT)を設定するための調整された電圧(VIN)を下記の数4から計算する。
Figure 2006262460
以上の方式に基準電圧発生器210は、電圧検出器250からのディジタルデータに応答して基準電圧(VREF)を生成して電圧レギュレーター222に供給し、電圧レギュレーター222は適切な電圧(VIN)を生成してスイッチ(SW1)に伝達する。
図10は、本発明のさらに他の実施形態によるシングルエンド型送受信システム300を説明する回路図である。送受信回路300は、送信回路320内のスイッチ(SW1)のオン(On)抵抗値(RSW1)が大きくて送信回路320の出力抵抗に影響を及ぼす場合について示す回路図である。図10の送受信回路300は、図9の送受信回路200と同一な構成要素に追加して基準電圧生成器310とソース抵抗(Rs)との間に第2の電圧レギュレーター360が追加された形態を有する。
図10の送受信回路300で変動されるパッケージ抵抗(RPKG)値およびスイッチ(SW1)のオン抵抗(RSW1)値は正確に分からないため、電圧検出器350が送信端320と伝送路330との間の電圧(V)を二回測定して二つ抵抗値を求める。パッケージ抵抗(RPKG)値を求めるため先ず初期パワーアップ時や特定区間で第2の電圧レギュレーター360は、基準電圧生成器310から基準電圧(VREF)が入力されて、高電圧(V)を送信回路320のスイッチ(SW1)と直列ソース抵抗(R)との間に印加する。電圧検出器350は、スイッチ(SW1)のターンオン抵抗値を考慮しない電圧(V)を測定してパッケージ抵抗(RPKG)値を下記の数5によって計算する。
Figure 2006262460
ここで、出力端の電圧(V)は、電圧(V)の関数であることが分かる。電圧検出器350は、前述した電圧(V)に相当するディジタルデータを生成して基準電圧発生器310に伝達する。
次に、スイッチ(SW1)のターンオン抵抗(RSW1)値を求めるために第1の電圧レギュレーター322は、第1のディジタルデータに応答する基準電圧発生器310から基準電圧(VREF)が入力されて電圧(VIN)を出力する。電圧検出器350は、スイッチ(SW1)のターンオン抵抗値を考慮した電圧(V)を測定してスイッチ(SW1)のターンオン抵抗(RSW1)値を下記の数6によって計算する。
Figure 2006262460
以上で測定されたパッケージ抵抗(RPKG)とスイッチ抵抗(RSW1)に基づいて電圧検出器350が第2のディジタルデータを生成して基準電圧発生器310に提供すれば、受信回路340がターゲット電圧(VOUT)を提供するように電圧レギュレーター322の出力電圧(VIN)が調整される。このような動作は、下記の数7によって説明される。
Figure 2006262460
従って、電圧検出器350がパッケージ抵抗(RPKG)とスイッチ(SW1)のターンオン抵抗(RSW1)値とから適切なディジタルデータを生成して基準電圧発生器310に供給すれば、基準電圧発生器は、これに応答して基準電圧(VREF)を生成して第1の電圧レギュレーター322に供給し、第1の電圧レギュレーター322は、基準電圧(VREF)に相当する電圧(VIN)を出力するようになる。
図11は、図10の第2の電圧レギュレーター360の詳細な構成を示す回路図である。第2の電圧レギュレーター360は、演算増幅器(A1)、第1及び第2のPMOSトランジスタ(T1、T2)を含む。イネーブル信号(VEN)が入力されるための第1の端子は、演算増幅器(A1)のイネーブル端子と第1のPMOSトランジスタ(T1)のゲートとに接続される。第1のPMOSトランジスタ(T1)のソース端は、電源電圧と接続され、ドレーンは演算増幅器(A1)の出力端(電圧VBG)と接続される。基準電圧(VREF)が入力されるための第2の端子は、演算増幅器(A1)の反転入力端と接続される。そして演算増幅器(A1)の出力端は、第2のトランジスタ(T2)のゲートに接続され、第2のトランジスタ(T2)のソースは電源電圧に、ドレーンは演算増幅器(A1)の非反転入力端と第2の電圧レギュレーター360の出力端である電圧(V)とに接続される。
パワーアップ動作時、第2の電圧レギュレーター360は、パッケージ抵抗(RPKG)を測定する。もし制御信号(VEN)がハイレベルである場合、電圧(V)は提供される基準電圧(VREF)と同一である。パッケージ抵抗(RPKG)の測定が完了すれば、制御信号(VEN)をローレベルに出力して演算増幅器(A1)をデセイブルする。制御信号(VEN)ノードにロー信号を加えて電圧(VBG)がハイレベルに設定されてVノードがフローティングされる。
図12は、本発明に従う差動信号型送受信システム500の実施形態を簡略に示す回路図である。差動信号型送受信システム500は、差動型送信回路520、及び電圧検出器550と基準電圧発生器510から構成される電圧制御器、第1の伝送線530と第2の伝送線532、および差動信号受信回路540を含む。送受信システム500は、出力端V及びVを備える差動型送信回路520を含む。出力端Vは、伝送線530、パッケージ抵抗(RPKG)、そして差動受信回路540の非反転入力端と接続される。出力端Vは、伝送線532、パッケージ抵抗(RPKG)および差動受信回路540の反転入力端に接続される。出力端Vは、電圧検出器550と接続される。電圧検出器550は、基準電圧発生器510に接続される。基準電圧発生器510は、電圧レギュレーター522と接続されて基準電圧(VREF)を提供する。電圧レギュレーター522は、第1のスイッチ(SW1)の第1のスイッチング端子に入力電圧VINを供給する。第1のスイッチ(SW1)の第2のスイッチング端子は、接地端と接続され、第1のスイッチ(SW1)の固定端は、ソース抵抗(Rs)と接続される。前述したソース抵抗(Rs)の他の接続端は出力端Vと接続される。電圧レギュレーター522は、第2のスイッチ(SW2)の第1のスイッチング端子で入力電圧VINを供給する。第2のスイッチ(SW2)の第2のスイッチング端子は、接地端と接続され、第2のスイッチ(SW2)の固定端は、ソース抵抗(Rs)と接続される。前述したソース抵抗(Rs)の他の接続端は出力端Vと接続される。
前述した送受信システム500の動作時、差動信号型送信回路520は、第1のスイッチ(SW1)及び第2のスイッチ(SW2)それぞれのターンオン抵抗は、無視する程度の大きさを有するようになる。このような抵抗の大きさは一般に送信回路520の出力電圧に影響を及ぼすことができないため考慮しない。従って、送信回路520の出力信号(VIN)は、測定されたパッケージ抵抗(RPKG)に基づいて制御される。パッケージ抵抗(RPKG)は、システムの電源が投入されるパワーアップ時、或いは指定された特定区間で測定できる。電圧検出器550は、パッケージ抵抗(RPKG)を測定する時点で送信回路520及び伝送線路530の間の電圧(V)を測定する。ここで、検出された電圧によって電圧検出器550は、基準電圧発生器510と電圧レギュレーター522とが最適のターゲット電圧(VIN)を生成するようにディジタルデータを生成する。
パッケージ抵抗(RPKG)を決定するため特性インピーダンス0(DC条件)で測定された電圧(V)は数8で表現できる。
Figure 2006262460
前述した数8は、第1のスイッチ(SW1)は電圧(VIN)に、第2のスイッチ(SW2)は接地端に接続されたことと仮定して計算する。従って、電流経路は、VIN→SW1→Rs→TL(530)→RPKG→TL(532)→Rs→SW2→Groundで形成される。前述した電流経路によって各ノードの電圧を測定できる。導出されたパッケージ抵抗(RPKG)の値から送信回路520は、ターゲット電圧(VOUT)を設定するための調整された電圧(VIN)を下記の数9から計算する。
Figure 2006262460
ゆえに基準電圧発生器510は、電圧検出器550からのディジタルデータに応答して基準電圧(VREF)を生成して電圧レギュレーター522に供給し、電圧レギュレーター522は適切な電圧(VIN)を生成する。
図13は、本発明のさらに他の実施形態による差動信号型送受信システム600を説明する回路図である。送受信システム600は、図12で説明された送受信システム500と比較できる。送受信システム600は、送信回路620内の第1のスイッチ(SW1)及び第2のスイッチ(SW2)それぞれのターンオン抵抗値(RSW1、RSW2)が大きく送信回路620の全体ソース抵抗に影響を及ぼす場合に有用な回路である。送受信システム600は、基準電圧生成器610と第1のスイッチ(SW1)に含まれる第1のソース抵抗(Rs)の間に第2の電圧レギュレーター660が追加された形態を有する。
送受信回路600は、システムの動作時にターンオン抵抗(RSW1)及びターンオン抵抗(RSW2)と、パッケージ抵抗(RPKG)とを測定する。ターンオン抵抗(RSW1)及びターンオン抵抗(RSW2)と、パッケージ抵抗(RPKG)とを測定するために先ず初期パワーアップ時や特定区間で第2の電圧レギュレーター660は、基準電圧生成器610から基準電圧(VREF)が入力されて、電圧(V)を送信回路620のスイッチ(SW1)と直列ソース抵抗(Rs)との間に印加する。この際、出力端(V)に印加される電圧(V)は数10で分かるように電圧(V)の関数である。
Figure 2006262460
そして、第1のスイッチ(SW1)は、フローティングされ、電圧検出器650は、第1のディジタルデータを生成して基準電圧発生器610に供給する。ここで、ターンオン抵抗(RSW1)及びターンオン抵抗(RSW2)は同一な抵抗値(RSW)を有することと仮定する。
その後に、第1の電圧レギュレーター622は、第1のディジタルデータに応答する基準電圧発生器610から基準電圧(VREF)が入力されて電圧(VIN)を出力するようになる。ここで、電圧(V)は電圧(VIN)の関数である。数11は、前述した環形を説明する。
Figure 2006262460
以上で測定されたパッケージ抵抗(RPKG)とスイッチのターンオン抵抗(RSW1、RSW2)とに基づいて電圧検出器650が第2のディジタルデータを生成して基準電圧発生器610に提供すれば、受信回路640にターゲット電圧(VOUTP、VOUTN)を提供できるように第1の電圧レギュレーター622の出力電圧(VIN)が調整される。このような動作は、下記の数12によって説明される。
Figure 2006262460
従って、電圧検出器650がパッケージ抵抗(RPKG)とスイッチ(SW1、SW2)のターンオン抵抗(RSW1、RSW2)値から適切なディジタルデータを生成して基準電圧発生器610に供給すれば、基準電圧発生器610は、これに応答して基準電圧(VREF)を生成して第1の電圧レギュレーター622に供給し、第1の電圧レギュレーター622は基準電圧(VREF)に対応する電圧(VIN)を出力する。
以上で、本発明は好適な実施形態によって前述したように説明したが、本発明はこれに局限されない。むしろ、当業者によって本発明の技術的思想及び範囲から外れない限度内で多様な変化及び変更が可能なことは勿論である。従って、本発明は、前述した好適な実施形態に限定されない。むしろ、本発明の技術的思想と範囲は、特許請求の範囲で限定されるべきである。
一般的なモバイルシステムでの映像信号送受信概念を簡略に示すブロック図である。 従来技術のSLVS方式の送受信システムを簡略に示す回路図である。 本発明の実施形態による低パッケージ抵抗でのSLVS方式の受信回路の組立図である。 図3の組立結果によって形成される受信回路の回路図である。 本発明の一実施形態による低パッケージ抵抗での差動シグナリング方式の受信回路の組立図である。 図5の組立結果によって形成される受信回路の回路図である。 本発明に従う高パッケージ抵抗でのSLVS方式の受信回路を簡略に示す回路図である。 本発明に従う高パッケージ抵抗での差動信号方式の受信回路を簡略に示す回路図である。 本発明に従う低いスイッチング抵抗でのシングルエンド型送受信システムを簡略に示す回路図である。 本発明に従う相対的に高いスイッチング抵抗でのシングルエンド型送受信システムを簡略に示す回路図である。 図10の第2の電圧レギュレーターを示す回路図である。 本発明に従う低いスイッチング抵抗での差動信号方式の送受信システムを簡略に示す回路図である。 本発明に従う相対的に高いスイッチング抵抗での差動信号方式の送受信システムを簡略に示す回路図である。
符号の説明
40、70 受信回路
71 伝送線
72、75、77、78 抵抗
73、76、79 パッド
74 演算増幅器
500 差動信号型送受信システム
510 基準電圧発生器
520 差動型送信回路
522 電圧レギュレーター
530、532 第1及び第2の伝送線
540 差動受信回路
550 電圧検出器

Claims (41)

  1. 第1の入力端を有する増幅器と;
    前記第1の入力端に信号を伝達する第1のパッドと;
    ロード抵抗と;
    前記ロード抵抗と接続されて信号を伝達する第2のパッドと;
    を含み、
    前記第1及び第2のパッドは、第1の伝送線の末端に接続されることを特徴とする受信回路。
  2. 前記ロード抵抗は、調整可能なことを特徴とする請求項1に記載の受信回路。
  3. 前記ロード抵抗は、可変抵抗回路であることを特徴とする請求項1に記載の受信回路。
  4. 前記増幅回路は、差動増幅器であることを特徴とする請求項1に記載の受信回路。
  5. 前記第1の入力端は、高インピーダンス入力端であることを特徴とする請求項1に記載の受信回路。
  6. 集積回路チップ上に形成される受信回路と;
    ガラス基板上に形成される第1の伝送線と;
    を含み、
    それぞれ第1及び第2のバンパーそれぞれによって前記集積回路チップ上に形成される受信回路の第1及び第2のパッドと、ガラス基板に形成された前記第1の伝送線とが接続されることを特徴とする請求項1に記載の受信回路。
  7. 前記第1の伝送線は、前記ガラス基板上に形成されるリード線であることを特徴とする請求項1に記載の受信回路。
  8. 前記ロード抵抗は、接地されることを特徴とする請求項1に記載の受信回路。
  9. 前記ロード抵抗のさらに他の側と接続されて信号を伝達する第3のパッドと;
    前記増幅回路の第2の入力端と接続されて信号を伝達する第4のパッドと;
    を含み、
    前記第3及び第4のパッドは、第2の伝送線の末端に接続されて信号を伝達すること
    を特徴とする請求項1に記載の受信回路。
  10. 前記第1の入力端は、前記受信回路の非反転入力端であり、前記第2の入力端は、前記受信回路の反転入力端であることを特徴とする請求項9に記載の受信回路。
  11. 前記第2のパッドは、前記第1の伝送線のインピーダンスより小さいパッケージ抵抗を有することを特徴とする請求項1に記載の受信回路。
  12. 前記第2のパッドは、前記第1の伝送線のインピーダンスより大きいパッケージ抵抗を有することを特徴とする請求項1に記載の受信回路。
  13. 前記第2のパッドは、前記第1の伝送線のインピーダンスより大きい抵抗を有することを特徴とする請求項1に記載の受信回路。
  14. 前記受信装置は、
    前記第1の伝送線の末端と前記ロード抵抗の一端とに接続される第2のパッドのように、第1の伝送線の末端と前記ロード抵抗の一端とに接続される第3のパッドと;
    前記ロード抵抗のさらに他の一端に接続されて信号を伝達する第4のパッドと;
    前記第4のパッドと並列に構成されて信号を伝達する第5のパッドと;
    前記増幅回路の第2の入力端に信号を伝達する第6のパッドと;
    を含み、
    第4のパッド、第5のパッド及び第6のパッドは、前記第2の伝送線の末端に接続され、前記第2及び第3のパッドの並列パッケージ抵抗値と第4及び第5のパッドの並列パッケージ抵抗値との和は、第1及び第2の伝送線のインピーダンスより小さいことを特徴とする請求項1に記載の受信回路。
  15. 受信回路の信号受信方法において、
    伝送線と前記受信回路との間に第1及び第2の経路を備え、前記入力信号のレベル降下が防止されるように前記第1の経路を通じて電流が流れない受信回路の入力端に接続され、前記第2の経路はロード抵抗と接続されて信号交換が行われることを特徴とする信号受信方法。
  16. 前記ロード抵抗の他の一端は、接地端と接続されることを特徴とする請求項15に記載の信号受信方法。
  17. 前記ロード抵抗は、可変であることを特徴とする請求項15に記載の信号受信方法。
  18. 前記信号受信方法は、
    前記伝送線とロード抵抗との間に前記第2の経路と並列に接続されてそれぞれ形成されるパッケージ抵抗の大きさを減少させる第3の経路をさらに含むことを特徴とする請求項15に記載の信号受信方法。
  19. 第2の伝送線を含んで前記第2の伝送線と受信回路との間に電流導通による電圧降下を防止するための第4の経路と、前記ロード抵抗と信号を交換する第3の経路とをさらに含むことを特徴とする請求項15に記載の信号受信方法。
  20. 前記第2及び第3の経路は、それぞれ前記ロード抵抗の相異なる両端に接続され、前記第1及び第4の経路は、それぞれ比較器の非反転入力端と反転入力端とに接続されることを特徴とする請求項19に記載の信号受信方法。
  21. 入力信号を受信回路に提供するため伝送線と受信回路との間に第1及び第2の経路手段を含む受信システムにおいて、前記第1の受信経路手段は、電流導通による電圧降下を最小化し、前記第2の経路手段はロード抵抗に接続されて信号を交換することを特徴とする受信システム。
  22. 伝送線に信号を伝達するための第1の端子と;
    前記第1の端子に信号を伝達するためのソース抵抗と;
    入力電圧と接地との間をスイッチングして前記ソース抵抗に信号を伝達するスイッチと;
    前記スイッチに前記入力電圧を供給して信号を伝送するための電圧を提供する電圧レギュレーターと;
    前記第1の端子の電圧を感知して前記電圧レギュレーターが受信回路に調整された入力電圧を供給するように制御する電圧制御器と;
    を含むことを特徴とする送信回路。
  23. 前記電圧制御器は、
    電圧検出器と;
    前記電圧検出器からの信号に応答して調整された基準電圧を生成する基準電圧発生器と;
    を含むことを特徴とする請求項22に記載の送信回路。
  24. 前記電圧検出器は、前記第1の端子の電圧を感知してディジタル信号に変換して前記基準電圧発生器に提供するディジタル回路を含むことを特徴とする請求項23に記載の送信回路。
  25. 前記電圧検出器は、前記第1の端子の電圧を感知して所定の信号に変換して前記基準電圧発生器に伝達するマッピング手段を含むことを特徴とする請求項23に記載の送信回路。
  26. 前記スイッチの抵抗が0より大きい場合、前記送信回路は前記ソース抵抗と前記電圧制御器との間に第2の電圧レギュレーターを含むことを特徴とする請求項22に記載の送信回路。
  27. 前記第2の電圧レギュレーターは、
    前記電圧制御器から調整された基準電圧が提供される反転入力端を有する差動増幅器と;
    前記差動増幅器の出力がゲートに、ソースは電源電圧に、そしてドレーンは前記送信回路の第1の端子に接続される第1のPMOSトランジスタと;
    前記差動増幅器をアクティブにするイネーブル入力がゲートに、電源電圧がソースに、そして前記差動増幅器の出力端にドレーンが接続される第2のPMOSトランジスタと;
    を含むことを特徴とする請求項26に記載の送信回路。
  28. 前記送信回路は、前記伝送線の受信回路側に形成されるパッケージ抵抗を測定する第1の測定手段をさらに含むことを特徴とする請求項22に記載の送信回路。
  29. 前記送信回路は、前記スイッチの抵抗を測定する第2の測定手段をさらに含むことを特徴とする請求項22に記載の送信回路。
  30. 前記電圧制御器は、電圧検出器と前記電圧検出器とからの信号に応じて調整された基準電圧を生成する可変基準電圧発生器を含むことを特徴とする請求項28に記載の送信回路。
  31. 前記電圧検出器は、プログラム可能な前記伝送線の受信回路側のパッケージ抵抗を示す伝達関数を有することを特徴とする請求項23に記載の送信回路。
  32. 受信回路で伝送された信号の信号強度の減少を補償するための制御方法であって、
    伝送線の送信回路側の伝送端電圧を測定する段階と;
    前記測定された伝送端電圧を使用して伝送線の受信回路側のパッケージ抵抗を計算する段階と;
    前記パッケージ抵抗に応答して前記伝送線の受信回路側に伝達される信号の強度を調整するための調整された電圧を生成する段階と;
    を含むことを特徴とする方法。
  33. 前記調整された電圧を生成する段階は、
    計算された前記パッケージ抵抗に応答してディジタルデータ値を生成する段階と;
    前記ディジタルデータ値に応答して調整された基準電圧を生成する段階と;
    前記調整された基準電圧に応答して前記伝送線に出力される電圧を生成する段階と;
    を含むことを特徴とする請求項32に記載の方法。
  34. 前記調整された電圧を生成する段階は、
    前記計算されたパッケージ抵抗に応答して前記調整された電圧が出力されるマッピングユニットをプログラムする段階をさらに含むことを特徴とする請求項32に記載の方法。
  35. 前記マッピングユニットは、前記伝送線の受信回路側の受信電圧を制御するため、前記測定された電圧を調整された基準電圧に生成するようにマッピングすることを特徴とする請求項34に記載の方法。
  36. 前記マッピングユニットは、前記送信回路側の伝送線伝送端電圧を測定することを特徴とする請求項34に記載の方法。
  37. 受信回路の伝送信号減少を補償するプログラムを記憶する記憶媒体と、前記プログラムを前記記憶媒体から読み出して実行する機械を含むシステムであって、
    前記プログラム手段は、
    伝送線の受信回路側ロード抵抗を測定する手段と;
    前記伝送線の送信回路側電圧を測定する手段と;
    前記測定された抵抗と電圧とを参照して前記伝送線の受信回路側末端に提供される電圧を制御するための調整された電圧を生成する手段と;
    を含むことを特徴とするシステム。
  38. 前記調整された電圧を生成する副プログラム段階は、
    前記測定された抵抗及び電圧に応答してディジタルデータ値を生成する段階と;
    前記ディジタルデータ値に応答して調整された基準電圧を生成する段階と;
    前記調整された基準電圧に応答して前記伝送線に伝達される入力電圧を生成する段階と;
    を含むことを特徴とする請求項37に記載のシステム。
  39. 前記副プログラム段階は、前記測定された抵抗によって前記調整された基準電圧を発生するマッピングユニットをプログラムする段階をさらに含むことを特徴とする請求項38に記載のシステム。
  40. 前記マッピングユニットは、前記測定された電圧と対応される調整された基準電圧とをマッピングして前記伝送線の受信回路側電圧を制御することを特徴とする請求項39に記載のシステム。
  41. 前記副プログラム段階は、前記測定された抵抗によって伝達関数を計算する段階をさらに含むことを特徴とする請求項38に記載のシステム。


JP2006060322A 2005-03-17 2006-03-06 低電圧差動信号の送受信システム Pending JP2006262460A (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR1020050022410A KR100697281B1 (ko) 2005-03-17 2005-03-17 패키지 저항 변화에 따른 임피던스 부정합과 전압강하를방지할 수 있는 수신 방법 및 장치
KR1020050023752A KR100672999B1 (ko) 2005-03-22 2005-03-22 데이터 송신회로 및 그것의 출력 전압 조정 방법
US11/245,234 US7499677B2 (en) 2005-03-22 2005-10-06 Low voltage differential signaling transceiver
US11/244,831 US7499676B2 (en) 2005-03-17 2005-10-06 Low voltage differential signaling transceiver

Publications (1)

Publication Number Publication Date
JP2006262460A true JP2006262460A (ja) 2006-09-28

Family

ID=37101119

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006060322A Pending JP2006262460A (ja) 2005-03-17 2006-03-06 低電圧差動信号の送受信システム

Country Status (1)

Country Link
JP (1) JP2006262460A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011142079A1 (ja) * 2010-05-12 2011-11-17 パナソニック株式会社 差動信号伝送線路、icパッケージおよびそれらの試験方法
JP2012514412A (ja) * 2008-12-29 2012-06-21 シリコン・ワークス・カンパニー・リミテッド 差動電圧駆動方式の送信部、並びに差動電流駆動方式と差動電圧駆動方式を選択的に適用することができる送信部、受信部及びインターフェースシステム
JP2014532215A (ja) * 2011-09-21 2014-12-04 ポステック アカデミー‐インダストリー ファウンデーション ユーエスビー周辺装置およびその送信電力低減方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012514412A (ja) * 2008-12-29 2012-06-21 シリコン・ワークス・カンパニー・リミテッド 差動電圧駆動方式の送信部、並びに差動電流駆動方式と差動電圧駆動方式を選択的に適用することができる送信部、受信部及びインターフェースシステム
US8842745B2 (en) 2008-12-29 2014-09-23 Silicon Works Co., Ltd. Transmission unit adopting a differential voltage driving system, transmission unit and receiving unit selectively adopting a differential current driving system, differential voltage driving system, and interface system
WO2011142079A1 (ja) * 2010-05-12 2011-11-17 パナソニック株式会社 差動信号伝送線路、icパッケージおよびそれらの試験方法
JP2014532215A (ja) * 2011-09-21 2014-12-04 ポステック アカデミー‐インダストリー ファウンデーション ユーエスビー周辺装置およびその送信電力低減方法
US9423861B2 (en) 2011-09-21 2016-08-23 Postech Academy-Industry Foundation USB peripheral apparatus and transmission power reduction method thereof

Similar Documents

Publication Publication Date Title
US7499676B2 (en) Low voltage differential signaling transceiver
KR100681879B1 (ko) 온-다이 터미네이션 제어 장치
CN100580650C (zh) 接口电路和半导体集成电路
EP2229733B1 (en) Replica bias circuit for high speed low voltage common mode driver
US7499677B2 (en) Low voltage differential signaling transceiver
US8487650B2 (en) Methods and circuits for calibrating multi-modal termination schemes
JP4384207B2 (ja) 半導体集積回路
JP2007028600A (ja) 低電圧差動信号受信器及びそれの終端抵抗値の設定方法
KR101019604B1 (ko) 유리 상에 형성된 수신 장치
JP2006262460A (ja) 低電圧差動信号の送受信システム
EP3381138B1 (en) On-chip test interface for voltage-mode mach-zehnder modulator driver
CN102045054B (zh) 校准输出入电路的方法与相关装置
US8324936B2 (en) Transmitter and receiver of differential current driving mode, and interface system of differential current driving mode including the same
WO2009003129A3 (en) Methods and circuits for adaptive equalization and channel characterization using live data
US8400194B2 (en) Interface system for a cog application
US10326437B2 (en) Circuit device and electronic apparatus
US6756858B2 (en) Conductive path compensation for matching output driver impedance
JPWO2009031404A1 (ja) 伝送回路、送信器、受信器、および、試験装置
US9083348B1 (en) Method and apparatus for tuning delay
JP2003008419A (ja) 半導体icの出力インピーダンス整合方式
JP5115211B2 (ja) インピーダンス調整回路およびインピーダンス調整方法
CN117526986A (zh) 信号传输通道的阻抗匹配方法及装置
JP2004117100A (ja) 半導体試験装置
KR20090089168A (ko) 출력 임피던스 조절회로 및 그의 조절방법
KR20170013465A (ko) 반도체 장치 및 이를 이용한 패키지