JP2006253203A - プラズマ処理装置 - Google Patents

プラズマ処理装置 Download PDF

Info

Publication number
JP2006253203A
JP2006253203A JP2005064052A JP2005064052A JP2006253203A JP 2006253203 A JP2006253203 A JP 2006253203A JP 2005064052 A JP2005064052 A JP 2005064052A JP 2005064052 A JP2005064052 A JP 2005064052A JP 2006253203 A JP2006253203 A JP 2006253203A
Authority
JP
Japan
Prior art keywords
unit
process unit
plasma processing
gas
processing apparatus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005064052A
Other languages
English (en)
Inventor
Hitoshi Tamura
仁 田村
Ryoji Fukuyama
良次 福山
Motohiro Tanaka
基裕 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi High Tech Corp
Original Assignee
Hitachi High Technologies Corp
Hitachi High Tech Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi High Technologies Corp, Hitachi High Tech Corp filed Critical Hitachi High Technologies Corp
Priority to JP2005064052A priority Critical patent/JP2006253203A/ja
Publication of JP2006253203A publication Critical patent/JP2006253203A/ja
Pending legal-status Critical Current

Links

Images

Abstract

【課題】安全かつ高速に高真空排気を行うことのできるプラズマ処理装置を提供する。
【解決手段】試料にプラズマ処理を施すプロセスユニット105と、処理の終了した前記試料をプロセスユニット外に搬出する搬送ユニット104と、搬送ユニット104と各プロセスユニット105を接続する通路を開閉するゲートバルブ107と、搬送ユニット104内を搬送処理時の圧力に真空排気する高真空用排気ポンプと、少なくとも前記高真空用排気ポンプ内を粗引き排気する低真空用排気ポンプと、前記高真空用排気ポンプを接続した搬送ユニット104内に配置した溜め込み式の真空排気手段106を備え、溜め込み式の真空排気手段106とプロセスユニット105の間を接続するゲートバルブ107を全て閉じた状態でのみ処理ガスをプロセスユニット105に供給する。
【選択図】図1

Description

本発明は、プラズマ処理装置に係り、特に、高速に高真空排気を行うことのできるプラズマ処理装置に関する。
一般にプラズマ処理装置では、処理室を高真空に排気した後、処理に適したガスを所定流量供給しつつ真空ポンプで排気して、処理室内を処理に適した圧力に保持してプラズマ処理を行う。プラズマ処理を続けると、処理室内部品の消耗、プラズマ処理により生じた反応生成物あるいは壁面のスパッタ物の堆積等の経年劣化が発生し、保守作業が必要となる。このような場合、処理室を大気に開放して部品交換や処理室内の清掃等の保守作業を行った後、再び処理室を真空排気して、プラズマ処理を再開することになる。
一般にプラズマ処理装置を構成する処理室は不純物ガスが混入しない状態でプラズマ処理を行うことが望ましい。このため、処理室内を高真空に排気して不純物となるガスを処理室から排気した後、処理ガスを導入してプラズマ処理を開始する。しかし、真空ポンプは作動に適した圧力があり、大気圧から前記高真空域まで1台のポンプで排気することができない場合が多い。このため、プラズマ処理装置の処理室を排気するための真空排気系として比較的圧力の高い領域(低真空領域)で動作する真空ポンプと圧力の低い領域(高真空領域)で動作する真空ポンプを組み合わせて用いることが多い。すなわち、高真空域で動作する真空ポンプの後段側を低真空域で動作する真空ポンプで排気することが一般的である。この場合、比較的高い圧力で動作する真空ポンプとしてロータリーポンプを用い、低い圧力で動作する真空ポンプとしてターボ分子ポンプやクライオポンプ等が用いられる。
図5は、従来の真空排気系の構成を説明する図である。図に示すように、プラズマ処理室401に高真空用排気のポンプ403が主バルブ402を介して接続されている。高真空用排気のポンプ403の排気側にはポンプ内排気バルブ404を介して低真空排気用のポンプ406が接続されている。また、低真空排気用のポンプ406の吸気側は粗引き用バルブ405を介してプラズマ処理室401に直接接続されており、このラインを用いてプラズマ処理室401を大気圧のような高い圧力から粗引きすることができる。
粗引きにより、高真空用排気のポンプ403が動作可能な圧力に達すると、粗引き用バルブ405を閉じてポンプ内排気バルブ404を開け、高真空用排気ポンプ403内を排気した後、主バルブ402を開けてプラズマ処理室401を高真空に排気することができる。
低真空用排気ポンプ406の排気側には除害装置407が接続され、プラズマ処理室から排気される成分のうち、有害な物質等を除去して排気する。排気中に有害な成分が含まれない場合は除害装置407は省略してもよい。
前述のように、保守作業等のため処理室を大気に開放すると、処理室壁面等に大気中の水分やガスが吸着する。このため処理室を高真空に排気するのに長時間を要することになる。
真空排気を高速に行うには、排気速度の大きい真空ポンプを用いるとよい。通常、真空排気後の残留ガス中には水の成分が多いといわれている。このため、水に対して排気速度の大きいポンプを用いれば、真空排気時間の短縮に有効である。
水に対して排気速度の大きい真空ポンプとしては、クライオポンプがある。クライオポンプは極低温に冷却した板にガスを吸着させることで真空排気するポンプである。高真空域では処理室内のガス分子は互いに衝突する頻度が低いため、それぞれ独立に運動する傾向がある。そのため高真空域での排気速度を高めるには、ガス分子を排気する面積を拡大して、排気面に到達するガス分子の量を増大させる必要がある。具体的には真空ポンプの口径を大きくしないと、高真空域での高速排気は期待できない。クライオポンプでは前述のように極低温の板の表面(クライオ吸着面)が排気面にあたり、比較的排気面の面積拡大が容易であり、排気速度向上に有利な構造である。
しかしクライオポンプは貯め込み式のポンプであるため、クライオ吸着面に過剰なガスが吸着すると排気速度が低下する。このため、吸着したガスを適宜処理室外に取り出す作業(再生作業)が必要となる。具体的にはクライオ吸着面の温度を常温程度かまたはそれ以上の温度に加熱し、吸着したガスを再びガス化して、別の真空ポンプで処理室外に排気する作業が必要となる。
一般にプラズマ処理装置では処理ガスとして腐食性や可燃性、爆発性等の化学的に活性なガスを用いることが多い。このような化学的に活性なガスを貯め込み式の真空ポンプで排気する場合、何らかの要因で真空ポンプが停止すると吸着していた化学的に活性なガスが放出されることになる。
本発明は、これらの問題点に鑑みてなされたもので、安全かつ高速に高真空排気を行うことのできるプラズマ処理装置を提供するものである。
本発明は上記課題を解決するため、次のような手段を採用した。
試料を載置する載置電極、ガス導入手段及びプラズマ生成手段を備え、前記載置電極に載置した試料にプラズマ処理を施すプロセスユニットと、前記試料を載置電極上に載置してプラズマ処理を施し、処理の終了した試料をプロセスユニット外に搬出する搬送ユニットと、搬送ユニットと各プロセスユニットを接続する通路を開閉するゲートバルブと、前記搬送ユニット内を搬送処理時の圧力に真空排気する高真空用排気ポンプと、少なくとも前記高真空用排気ポンプ内を粗引き排気する低真空用排気ポンプと、前記高真空用排気ポンプを接続した搬送ユニット内に配置した溜め込み式の真空排気手段を備え、溜め込み式の真空排気手段とプロセスユニットの間を接続するゲートバルブを全て閉じた状態でのみ処理ガスをプロセスユニットに供給する。
本発明は、以上の構成を備えるため、安全かつ高速に高真空排気を行うことのできるプラズマ処理装置を提供することができる。
以下、最良の実施形態を添付図面を参照しながら説明する。図1は、本実施形態に係るプラズマ処理装置(エッチング装置)を説明する図である。図に示すように、被処理基板である試料102を搬送する搬送ユニット104の周囲には、ロード/アンロードユニット101、及び複数のプロセスユニット105が接続されている。プロセスユニット105は試料を載置する載置電極、処理ガスを導入する処理ガス導入手段及びプラズマ生成手段を備え、前記載置電極に載置した試料にプラズマ処理を施す。搬送ユニット104は、試料を前記載置電極上に載置してプラズマ処理を施し、処理の終了した試料をプロセスユニット外に搬出する。各ユニットにはそれぞれ図示しない真空排気系が接続され、個別に真空排気することができる。
搬送ユニット104は、真空ロボット103を備え、試料102をロード/アンロードユニットから取り込み、取り込んだ試料をプロセスユニット内に搬入する。また処理の終了した試料をプロセスユニットから搬出し、搬出した試料をロード/アンロードユニット101に排出する。
各プロセスユニットと搬送ユニットの間にはゲートバルブ107が設けられ、各プロセスユニットと搬送ユニット104の間を開閉して、プラズマ処理時あるいは試料の搬送時にプラズマ処理時の処理ガスが搬送ユニット104内に漏洩させない構造となっている。また各ユニットはそれぞれ気密を保ち、それぞれ独立に真空排気や大気開放等を行える構造となっている。なお、保守作業時等を除いて搬送ユニット104内は真空に保たれている。
搬送ユニット104内には冷却板106が設置されている。冷却板106は、その表面を150ケルビン(°K)以下の低温に保つことができる図示しない冷却器が接続されている。冷却板106は必要なときに150ケルビン以下の低温に保持することができる。冷却板106を低温にした場合、その周囲のガスは凍結、固化するため、真空排気ポンプとして機能する。冷却板の温度は低いほうが真空ポンプとしての排気能力は高くなり、15ケルビン以下に保つことが望ましい。
一般に冷却によりガスを凍結固化して真空排気する方式の真空ポンプでは、ガスの種類によって排気しやすさが異なる。この方式の真空ポンプでは水に対する排気速度が大きいことが知られている。また、この方式のポンプはガスを外部に排出するのではなく、冷却部の周囲に凍結固化して保持する。このため、排気を続けると冷却能力が低下して排気速度が低下し、再生処理が必要となる。
再生の方法としては、冷却部を加熱して凍結固化物をガスを気化し、気化したガスを他の排気手段を用いて外部に排出する方法が知られている。冷却板の加熱の方法としては、冷却をやめて常温に戻してもよいし、また積極的に加熱機構を設けて加熱してもよい。
次に、図1に示すプラズマ処理装置の真空排気処理の過程を、プロセスユニット105を保守作業等のために大気に開放した後、再組み立てを行い、高真空に排気する過程を例に説明する。
一般に、プラズマエッチング装置を構成するプロセスユニットは多数の試料を処理すると、内部の部品がプラズマのスパッタ作用や処理ガスのエッチング効果等で削れたり、またはエッチング処理の結果生じる反応生成物等が堆積したりする。その結果、プラズマ処理特性が劣化し、やがて最適な処理を維持できなくなる。
最適な処理特性を維持するためには、部品の交換や清掃等の保守作業が必要とされる。このとき保守作業の頻度や時間、労力が多大にかかると、装置の稼働率の低下や運用費用の増大をもたらすため、保守作業の軽減が求められる。
装置の稼働率低下を防ぐには、プロセスユニットを極力大気開放せずに運用することが望ましい。しかし、大気開放を行うと、前述のようにプロセスユニット内面に大気中の水分やガスが吸着して、真空引き直後はこれらのガス等が徐々にプロセスユニット内に放出されるため、プロセスユニット内に処理ガス以外の不純物が比較的多量に存在することになる。このため一般に大気開放直後は最適なプラズマ処理が得られないことが多い。
従って、大気開放後は前記不純物ガス等の吸着ガスの放出量を測定して、これらのガス放出量がある基準を下回るまで真空引きを続行しなければならない。通常、大気開放後にガス放出量が基準値を下回るまでには最低でも数時間は必要で、装置の稼働率を下げる大きな要因の一つとなっている。
なお、プロセスユニットを大気開放しないで行う保守作業の例としてドライクリーニングが知られている。ドライクリーニングは、プロセスユニット内に不要な堆積物を除去するための処理ガスを流し、処理ガスをプラズマ化して不要な堆積物を除去する技術である。しかし、ドライクリーニングは、プラズマの分布や堆積物の物性等に依存して、不要な堆積物を完全に除去できない場合が発生する。すなわち、不要な堆積物除去をドライクリーニングのみで実施することは困難である。このため、不要な堆積物除去のためにプロセスユニットの大気開放を行わざるを得ない場合が多い。プロセスユニットを、処理室内部品の交換や処理室内の清掃等のために開放する場合は、ゲートバルブ107を閉じた状態で乾燥窒素等をプロセスユニット105内に注入し、雰囲気を大気圧に戻してから開放する。その後、プロセスユニット105の必要個所を分解し、部品交換や室内の清掃等の保守作業を施した後、再組み立てを行う。処理室内の清掃は、例えば純水やイソプロピルアルコール等のプラズマ処理に悪影響を起こしにくい溶剤を用いて、異物の発生しにくいワイパーで堆積物を除去する。一般に洗浄に用いる溶媒は堆積物等を溶解したり、界面活性剤として堆積物等と下地の間に浸透して堆積物等を容易にはがれるようにする効果、あるいは堆積物等と反応して除去する等の効果を有する。また、ワイパーと被洗浄物の摩擦を低減してワイパーや被洗浄物の削れを低減する効果を呈するものもある。
次に、洗浄が終了したのち、再組み立てが完了すると、後述するように、プロセスユニット105を真空排気系で排気(粗引き)した後、ゲートバルブ107を開けて搬送ユニット104を介してプロセスユニット105内を真空排気する。この際、冷却板106を低温にすることにより、この冷却板を真空排気ポンプとして動作させ、残留ガスを高速に排気することができる。なお、プロセスユニット105のみを排気する真空ポンプを設け、この真空ポンプと冷却板106を併用して真空排気することができる。
冷却板106は排気速度の大きい真空ポンプとして動作するため、プロセスユニット105を高速に真空排気することができる。また、この排気時にはプラズマ処理用の有害な処理ガスは流していないため、搬送ユニット104、プロセスユニット105内にはプラズマ処理用の処理ガスはほとんど存在しない。このため冷却板106には有害な処理ガスはほとんど吸着しない。
また、通常のプラズマ処理時には、ゲートバルブ107を閉じた状態で処理ガスをプロセスユニット105内に流すため、処理ガスは搬送ユニット104内には流入することはなく冷却板106に有害な処理ガスが吸着することはない。このため、冷却板の再生時に障害が発生しても冷却板から有害なガスが排出されることはない。
なお、前記プロセスユニットに供給する処理ガスとしては、プラズマエッチング処理の場合は、塩素、フッ素、臭素の原子を含むガスが用いられる。例えば塩素、三塩化ホウ素、六フッ化硫黄、臭化水素、四フッ化炭素、三フッ化メタン等である。これらの処理ガスは前述のように人体に有害である。また、処理ガスとして窒素やアルゴン、酸素等のガスを用いることもある。これらのガスは混合して用いられたり、単独で用いられたりする。また、エッチング反応の結果として生じる反応生成物も人体に有害なことが多い。すなわち、プロセスユニット105に接続された真空ポンプの排気中には処理ガスや反応生成物等の有害物質が含まれることになる。このため、環境に排出する前に無害化処理を行うことが必要である。このため本実施形態の装置においても、真空排気系に無害化処理用の除害装置407を接続する。
プロセスユニット105には図示しない温度調整機構が設けられ、所定の温度に保持することができる。本実施形態の例では80℃に加熱して保持し、エッチング処理を行った。一般に装置を加熱すると、表面に吸着された水分やガスは脱離しやすくなり、脱離したガスは真空ポンプで排気され、あるいは冷却板106に吸着される。これにより不純物としての吸着ガスを効率よく除去することができる。なお、真空中で温度差のある場合、高温の場所から低温の場所にガスは移動しやすくなる傾向がある。このため、排気の方向に温度差を設けることは真空排気を高速化する上で効果的である。
図2,3は、本発明の他の実施形態を説明する図であり、図2は冷却板をプロセスユニット105に接続した排気ユニット201内に配置した例、図3は冷却板を搬送ユニット104に接続した排気ユニット302内に配置した例を示す図である。
図2に示す例では、排気ユニット201はゲートバルブ202を介してプロセスユニット105に接続する。この場合、プロセスユニット105は排気ユニット201と接続する通路を開閉する前記ゲートバルブ202を閉じた状態でのみ処理ガスを供給する。これにより、排気ユニット内に設けた冷却板106に処理ガスが吸着されるのを抑制することができる。
図3に示す例では、排気ユニット302はゲートバルブ301を介して搬送ユニット104に接続する。この場合、プロセスユニット105は排気ユニット302は接続する通路を開閉する前記ゲートバルブ107を閉じた状態でのみ作動させる。これにより、排気ユニット内に設けた冷却板106に処理ガスが吸着されるのを抑制することができる。
なお、図2,3に示す例では、冷却板106はその表面積を拡大するため、円筒状の冷却板を同心円状に組み合わせて形成する。また、図2,3に示す排気ユニット201、302は、後述するように真空排気手段を備えており、冷却板106を再生処理する際には、例えば冷却板106を加熱して吸着したガスを放出させると共に、放出したガスを前記真空排気手段で排気する。
プロセスユニット105を保守作業等で大気開放した後に真空排気する場合、図2の例ではゲートバルブ202を開け、図3の例ではゲートバルブ107とゲートバルブ301を開けて排気ユニット201あるいは302を介して高速に真空排気を行う。プロセスユニット105でエッチング処理を行う場合、前記ゲートバルブ107、301は閉じた状態で行う。これにより冷却板106に処理ガスが吸着することを防止できる。したがって冷却板106の再生作業中に有害な処理ガスが放出されることもない。
図4は、真空排気系の構成を説明する図である。なお、図において図4に示される部分と同一部分については同一符号を付してその説明を省略する。図において、302は冷却板106を内蔵する排気ユニットであり、該排気ユニット302は、図3に示すようにゲートバルブ301を介して例えば搬送ユニット104と接続する。
排気ユニット内を真空引きするに際しては、例えば、次の手順を採用することができる。(1)低真空用排気ポンプ406起動する。(2)ポンプ内排気バルブ404を開いて、高真空用排気ポンプ内を排気する。(3)高真空用排気ポンプ403を起動する。(4)粗引きバルブ404を閉じる。(5)粗引きバルブ405を開いて、排気ユニット302内を粗引きする。(6)排気ユニット302内の粗引き終了後、粗引きバルブ405を閉じる。(7)ポンプ内排気バルブ404を開く。(8)主バルブ402を開き、排気ユニット302内を高真空用排気ポンプ403で排気する。(9)冷却板106を冷却してガスを吸着する。なお、冷却板106を再生処理する際には、冷却板106を加熱して吸着したガスを放出させると共に、放出したガスを前記高真空排気ポンプ等で排気する。
図4の例では、排気ユニットに高真空用排気ポンプ403及び低真空用排気ポンプ406からなる真空排気系を取り付ける例を示したが、この真空排気系は搬送ユニットに取り付けることができる。
以上説明したように、本実施形態によれば、高速排気可能なクライオポンプ等からなる溜め込み式の真空排気手段を専用のゲートバルブを介して処理室に接続し、高真空排気時の排気手段としてのみ使用するようにする。これによりプラズマ処理室に処理ガスを流す場合は前記専用のゲートバルブを閉じて、処理ガスがクライオポンプに触れないようにすることできる。このため、安全、高速に、かつ高真空度に排気を行うことができる。
本発明の実施形態に係るプラズマ処理装置を説明する図である。 他の実施形態を説明する図である。 他の実施形態を説明する図である。 さらに真空排気系の構成を説明する図である。 従来の真空排気系の構成を説明する図である。
符号の説明
101 ロード/アンロードユニット
102 試料
103 真空ロボット
104 搬送ユニット
105 プロセスユニット
106 冷却板
107 ゲートバルブ
201 排気ユニット
302 排気ユニット
202 ゲートバルブ
301 ゲートバルブ
401 プラズマ処理室
402 主バルブ
403 高真空用排気ポンプ
404 ポンプ内排気バルブ
405 粗引き用バルブ
406 低真空用排気ポンプ
407 除害装置

Claims (5)

  1. 試料を載置する載置電極、ガス導入手段及びプラズマ生成手段を備え、前記載置電極に載置した試料にプラズマ処理を施すプロセスユニットと、
    前記試料を載置電極上に載置してプラズマ処理を施し、処理の終了した試料をプロセスユニット外に搬出する搬送ユニットと、
    搬送ユニットと各プロセスユニットを接続する通路を開閉するゲートバルブと、
    前記搬送ユニット内を搬送処理時の圧力に真空排気する高真空用排気ポンプと、
    少なくとも前記高真空用排気ポンプ内を粗引き排気する低真空用排気ポンプと、
    前記高真空用排気ポンプを接続した搬送ユニット内に配置した溜め込み式の真空排気手段を備え、
    溜め込み式の真空排気手段とプロセスユニットの間を接続するゲートバルブを全て閉じた状態でのみ処理ガスをプロセスユニットに供給することを特徴とするプラズマ処理装置。
  2. 試料を載置する載置電極、ガス導入手段及びプラズマ生成手段を備え、前記載置電極に載置した試料にプラズマ処理を施すプロセスユニットと、
    前記試料を載置電極上に載置してプラズマ処理を施し、処理の終了した試料をプロセスユニット外に搬出する搬送ユニットと、
    前記プロセスユニットまたは搬送ユニットに独立したゲートバルブを介して接続した真空排気ユニットと、
    前記真空排気ユニット内をプラズマ処理時の圧力に真空排気する高真空用排気ポンプと、
    少なくとも前記高真空用排気ポンプ内を粗引き排気する低真空用排気ポンプを備え、
    前記プロセスユニットまたは搬送ユニットに接続した真空排気ユニット内には、溜め込み式の真空排気手段を備えたことを特徴とするプラズマ処理装置。
  3. 請求項1または2記載のプラズマ処理装置において、
    溜め込み式の真空排気手段を冷却板で構成し、該冷却板は150ケルビン以下に冷却することを特徴とするプラズマ処理装置。
  4. 請求項1または2記載のプラズマ処理装置において、
    プロセスユニットの温度は溜め込み式の真空排気手段を構成する冷却板の温度より高く設定したことを特徴とするプラズマ処理装置。
  5. 請求項2記載のプラズマ処理装置において、
    前記溜め込み式の真空排気手段とプロセスユニットと接続する通路を開閉するゲートバルブを閉じた状態でのみプロセスユニットに処理ガスを供給することを特徴とするプラズマ処理装置。
JP2005064052A 2005-03-08 2005-03-08 プラズマ処理装置 Pending JP2006253203A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005064052A JP2006253203A (ja) 2005-03-08 2005-03-08 プラズマ処理装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005064052A JP2006253203A (ja) 2005-03-08 2005-03-08 プラズマ処理装置

Publications (1)

Publication Number Publication Date
JP2006253203A true JP2006253203A (ja) 2006-09-21

Family

ID=37093395

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005064052A Pending JP2006253203A (ja) 2005-03-08 2005-03-08 プラズマ処理装置

Country Status (1)

Country Link
JP (1) JP2006253203A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150130498A (ko) * 2013-03-15 2015-11-23 에디컨인코포레이티드 위치결정 구조물을 갖는 단일 평면 조직 수복 패치

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000182966A (ja) * 1998-12-15 2000-06-30 Sony Corp 気相成長方法および気相成長装置
JP2001338891A (ja) * 2000-05-26 2001-12-07 Nec Kyushu Ltd 半導体装置の製造装置
JP2002194552A (ja) * 2000-12-21 2002-07-10 Sharp Corp プラズマ処理装置及びプラズマ処理方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000182966A (ja) * 1998-12-15 2000-06-30 Sony Corp 気相成長方法および気相成長装置
JP2001338891A (ja) * 2000-05-26 2001-12-07 Nec Kyushu Ltd 半導体装置の製造装置
JP2002194552A (ja) * 2000-12-21 2002-07-10 Sharp Corp プラズマ処理装置及びプラズマ処理方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150130498A (ko) * 2013-03-15 2015-11-23 에디컨인코포레이티드 위치결정 구조물을 갖는 단일 평면 조직 수복 패치
KR102169777B1 (ko) 2013-03-15 2020-10-28 에디컨인코포레이티드 위치결정 구조물을 갖는 단일 평면 조직 수복 패치

Similar Documents

Publication Publication Date Title
US6217633B1 (en) Method and apparatus for recovering rare gas
JP4769350B2 (ja) 希ガスの回収方法及び装置
JP2001501693A (ja) クライオポンプ/ゲッターポンプの組み合わせポンプとその再生方法
JP4430042B2 (ja) クライオポンプおよび半導体製造装置
WO2007072708A1 (ja) 基板処理装置
JPS60198394A (ja) 真空処理装置の排気装置
WO2005052369A1 (ja) 水の再生方法及び装置
JP3553310B2 (ja) 真空排気システム
JP3862263B2 (ja) 真空処理装置およびその運用方法
JP2006253203A (ja) プラズマ処理装置
JP2007142284A (ja) 基板処理装置
WO2005001925A1 (ja) 真空処理装置の操作方法
WO1990000633A1 (en) Gas supply pipeline system for process equipment
JP2009123723A (ja) 真空処理装置または真空処理方法
JPH04306824A (ja) 熱処理装置
US6082414A (en) Apparatus and method for replacing an attachment on a vacuum chamber
WO2012008439A1 (ja) 基板処理方法及び基板処理システム
EP1076729A1 (en) Low pressure purging method
JP4301532B2 (ja) クライオポンプの再生方法
JPH0786172A (ja) 処理用ガスの供給方法
JPS6314866A (ja) 超高純度ガス供給装置
KR100346602B1 (ko) 로드 락 챔버의 반응성 가스 배출장치 및 배출방법
JP2007227804A (ja) 半導体装置の製造方法
JPH05311403A (ja) 成膜装置のガス再生装置
JPH04187873A (ja) 真空排気装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071001

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080331

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100706

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100824

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101005