JP2006246486A - スキャン機能及びデータリテンション機能を有する高速パルス基盤のフリップフロップ - Google Patents

スキャン機能及びデータリテンション機能を有する高速パルス基盤のフリップフロップ Download PDF

Info

Publication number
JP2006246486A
JP2006246486A JP2006057462A JP2006057462A JP2006246486A JP 2006246486 A JP2006246486 A JP 2006246486A JP 2006057462 A JP2006057462 A JP 2006057462A JP 2006057462 A JP2006057462 A JP 2006057462A JP 2006246486 A JP2006246486 A JP 2006246486A
Authority
JP
Japan
Prior art keywords
signal
output
flip
flop
inverter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006057462A
Other languages
English (en)
Inventor
Min-Su Kim
ミン 修 金
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Samsung Electronics Co Ltd
Original Assignee
Samsung Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Samsung Electronics Co Ltd filed Critical Samsung Electronics Co Ltd
Publication of JP2006246486A publication Critical patent/JP2006246486A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/317Testing of digital circuits
    • G01R31/3181Functional testing
    • G01R31/3185Reconfiguring for testing, e.g. LSSD, partitioning
    • G01R31/318533Reconfiguring for testing, e.g. LSSD, partitioning using scanning techniques, e.g. LSSD, Boundary Scan, JTAG
    • G01R31/318541Scan latches or cell details
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • B01D39/14Other self-supporting filtering material ; Other filtering material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • B01D39/02Loose filtering material, e.g. loose fibres
    • B01D39/04Organic material, e.g. cellulose, cotton
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/0002Casings; Housings; Frame constructions
    • B01D46/0005Mounting of filtering elements within casings, housings or frames
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K3/00Circuits for generating electric pulses; Monostable, bistable or multistable circuits
    • H03K3/02Generators characterised by the type of circuit or by the means used for producing pulses
    • H03K3/027Generators characterised by the type of circuit or by the means used for producing pulses by the use of logic circuits, with internal or external positive feedback
    • H03K3/037Bistable circuits
    • H03K3/0375Bistable circuits provided with means for increasing reliability; for protection; for ensuring a predetermined initial state when the supply voltage has been applied; for storing the actual state when the supply voltage fails
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/52Particle separators, e.g. dust precipitators, using filters embodying folded corrugated or wound sheet material

Abstract

【課題】スキャン機能及びデータリテンション機能を有する高速パルス基盤のフリップフロップを提供する。
【解決手段】MTCMOSのノーマル動作時には、入力データを受信し、パルス信号及び内部クロック信号に基づいて入力データをラッチし、フリップフロップの出力データとして出力し、MTCMOSのスキャン動作時には、スキャン信号をラッチするラッチ部、クロック信号及びスキャンイネーブル信号に基づいて、パルス信号及び反転パルス信号を発生させるパルス生成部、及びクロック信号及びスキャンイネーブル信号に基づいて、内部クロック信号及び反転内部クロック信号を発生させ、MTCMOSのスキャン動作時には、スキャン信号をラッチし、ラッチ部に伝達するスキャン及びリテンション用のラッチ部を備え、ラッチ部とスキャン及びリテンション用のラッチ部とは、互いにデータをやり取りできる信号伝送ラインに連結されるフリップフロップである。
【選択図】図6

Description

本発明は、MTCMOS回路に係り、具体的には、MTCMOS回路がスリープモードである場合にデータを維持でき、スキャン機能を含む高速パルス基盤のリテンションフリップフロップ回路に関する。
半導体回路の工程が100um以下に低くなるに伴って漏れ電流の比率が動的電力の比率を超える問題が発生している。また、高性能の移動機器が市場の大勢になりつつある。このような製品設計及び市場条件を満足させるために、多くの企業が半導体回路の低電力設計に努力しており、このような低電力設計として広く使われるのがMTCMOS(MulTI−Threshold CMOS)技術である。MTCMOSのコアは、低しきい電圧CMOSで設計して性能向上を図り、コアと電源電圧との間には高しきい電圧CMOSで連結されたスイッチを連結し、半導体チップのスリープモードでは、高しきい電圧のスイッチをオフさせて漏れ電流を減らす技術である。
この場合、MTCMOSがスリープモードで電源がオフされ、フリップフロップに保存された内容が消失して、再度ノーマルモードに転換時に、以前状態に復元できないという問題が発生する。このような問題を解決するためにリテンションフリップフロップを開発して使用しているが、データを維持しつつ漏れ電流を減らすためには、高しきい電圧トランジスタを使用しなければならず、フリップフロップの性能を低下させるという問題があった。
このために従来技術では、DtoQ(Data−to−Output)を最小化するためにパルス基盤のフリップフロップを適用し、スキャン機能及びリテンション機能の追加による遅延増大を防止するために、別途のラッチを置いた。そして、場合によって、スキャン機能またはリテンション機能を選択的に行うようにして速度低下を防止した。
図1は、従来のデータリテンション機能を有するマスタスレーブフリップフロップを示す。
図1を参照すれば、従来のマスタスレーブフリップフロップ10は、フリップフロップのパワーオフ時、データを維持するための別途のリテンション用のラッチ部11をさらに有する。そして、パワーオフになる場合にも、リテンション用のラッチ部11には継続的に電力が供給される。
図1のリテンション機能を有するマスタスレーブフリップフロップ10は、前述したように、パワーオフになる前にスレーブ端15の値をリテンション用のラッチ部11に保存した後、パワーオフを行う。マスタスレーブラッチ13、15にはデータが消失されても、リテンション用のラッチ部11に保存されたデータは、リテンション用のラッチ部11の電力が供給され続けるので、データを維持できる。そして、さらにパワーオンになった時にリテンションラッチ11のデータをスレーブ端15に伝達して、原状に復元するようになる。
図2は、従来のスキャン機能を有するマスタスレーブフリップフロップを示す。
図2を参照すれば、テストイネーブル信号TEによって、フリップフロップ20がノーマルモードでデータ値Dを取得するか、またはテストモードでテスト値TIを取得するかを決定する。テストイネーブル信号TEが‘1'である場合、テストモードが活性化されてテスト動作を行い、テストイネーブル信号TEが‘0'である場合、ノーマル動作を行う。
一方、図1に示したフリップフロップ10は、マスタスレーブとして実現されており、図2に示したフリップフロップ20は、スキャン機能を実現する場合に、速度が激しく低下するという問題がある。また、制御信号B1、B2を相異なって制御せねばならないロジック負担がある。仮りに、B1とB2とを常に反対値に維持する場合、マスタスレーブ構造では使用可能であるが、スピード向上のためにパルス基盤に適用した場合、記録可能性の問題が発生して、フリップフロップが機能しない可能性が高い。
また、図1のフリップフロップ10に図2のスキャン機能を共に適用する場合、データ入力から出力までの遅延が大きく増加して、半導体チップの動作速度低下の原因となる。
本発明が達成しようとする技術的課題は、MTCMOSでスキャン機能とデータリテンション機能とを有し、データ入出力遅延を増大させずに動作速度を速くできるフリップフロップを提供することである。
本発明の目的を達成するために、本発明の特徴によれば、クロック信号に応答してデータ入力信号をラッチして、データ出力信号に変換させるMTCMOSフリップフロップは、前記MTCMOSのノーマル動作時には、入力されたデータを受信し、パルス信号及び内部クロック信号に基づいて入力された前記入力データをラッチし、自身の出力端に伝送して前記フリップフロップの出力データとして出力し、前記MTCMOSのスキャン動作時には、スキャン信号をラッチするためのラッチ部、クロック信号、及びスキャンイネーブル信号に基づいてパルス信号及び反転パルス信号を発生させるパルス生成部、及び前記クロック信号及び前記スキャンイネーブル信号に基づいて内部クロック信号及び反転内部クロック信号を発生させ、前記MTCMOSのスリープモード及びノーマルモードを制御するMTCMOS制御信号に応答して、前記MTCMOSのスリープモード時には、前記ノーマル動作時に前記ラッチ部から最終入力されたデータを保存して、前記MTCMOSがノーマル動作に転換する場合に、保存されたデータを前記ラッチ部に伝達するデータリテンション機能を行い、前記MTCMOSのスキャン動作時には、前記スキャン信号を入力してラッチして前記スキャン信号を前記ラッチ部に伝達するスキャン及びリテンション用のラッチ部を備え、前記ラッチ部と前記スキャン及びリテンション用のラッチ部とは、互いにデータをやり取りできる信号伝送ラインに連結される。
望ましくは、前記MTCMOSのスキャン動作時に、前記スキャン及びリテンション用のラッチ部はマスタになり、前記ラッチ部はスレーブになるマスタ−スレーブフリップフロップ構造として機能する。
前記スキャンイネーブル信号が第1状態である場合、前記ラッチ部は、前記パルス信号の状態に基づいて前記ラッチ部の入力端に入力される前記入力データをラッチし、前記スキャンイネーブル信号が第2状態である場合、前記ラッチ部は、前記内部クロック信号に基づいて前記スキャン及びリテンション用のラッチ部に入力される前記スキャン入力信号をラッチする。前記MTCMOS制御信号及び前記スキャンイネーブル信号が第1状態である場合、前記フリップフロップは、ノーマル機能を行い、前記MTCMOS制御信号が第1状態であり、前記スキャンイネーブル信号が第2状態である場合、前記フリップフロップは、スキャン機能を行い、前記MTCMOS制御信号が第2状態である場合、前記フリップフロップは、データリテンション機能を行う。
さらに望ましくは、前記フリップフロップがノーマル機能を行う場合には、前記ラッチ部は、前記信号伝送ラインを介して前記スキャン及びリテンション用のラッチ部に常にデータを伝達し、前記フリップフロップがデータリテンション機能を行う場合には、前記スキャン及びリテンション用のラッチ部は、前記ラッチ部から出力される信号をそれ以上伝達せず、前記ノーマル動作時に前記ラッチ部から最終入力されたデータを維持し、前記フリップフロップが前記ノーマル機能へ戻る場合には、前記ラッチ部は、前記信号伝送ラインを介して前記スキャン及びリテンション用のラッチ部に保存されたデータを入力され、前記フリップフロップがスキャン機能を行う場合には、前記スキャン及びリテンション用のラッチ部は、前記スキャン入力信号を入力され、前記ラッチ部は、前記スキャン及びリテンション用のラッチ部から出力された前記スキャン入力信号を外部に出力し、前記スキャン及びリテンション用のラッチ部はマスタになり、前記ラッチ部はスレーブになるマスタ−スレーブフリップフロップ構造として機能する。
一実施形態において、前記ラッチ部は、前記入力データを受信し、前記パルス信号に応答して、前記入力データを伝達する第1三状態バッファ、前記パルス信号に応答して、前記信号伝送ラインの信号を伝達する第2三状態バッファ、前記内部クロック信号に応答して、前記第1三状態バッファ及び前記第2三状態バッファの出力を前記信号伝送ラインに伝達する第3三状態バッファ、及び前記第1三状態バッファ及び前記第2三状態バッファの出力を反転させて出力するインバータを備え、前記インバータの出力は、前記フリップフロップの出力になる。
他の実施形態において、前記ラッチ部は、前記入力データを受信し、前記パルス信号に応答して、前記入力データを伝達する第1三状態バッファ、前記パルス信号に応答して、前記信号伝送ラインの信号を伝達する第2三状態バッファ、電源電圧と仮想グラウンドとの間に直列に連結されたPMOSトランジスタ、第1NMOSトランジスタ及び第2NMOSトランジスタ、及び前記第1三状態バッファ及び前記第2三状態バッファの出力を反転させて出力するインバータを備え、前記PMOSトランジスタ及び前記第1NMOSトランジスタのゲートには、前記第1三状態バッファ及び前記第2三状態バッファの出力が印加され、前記第2NMOSトランジスタのゲートには、前記反転内部クロック信号が印加され、前記PMOSトランジスタと前記第1NMOSトランジスタとの連結地点は、前記信号伝送ラインに連結される。
一実施形態において、前記パルス生成部は、電源電圧と第1ノードとの間に並列に連結された第1及び第2PMOSトランジスタ、前記第1ノードと仮想グラウンドとの間に直列に連結された第1及び第2NMOSトランジスタ、電源電圧と第2ノードとの間に直列に連結された第3及び第4PMOSトランジスタ、前記第2ノードと仮想グラウンドとの間に直列に連結された第3及び第4NMOSトランジスタ、前記第2ノードと仮想グラウンドとの間に並列に連結された第5及び第6NMOSトランジスタ、前記第1ノードの出力を反転させて出力するための第1インバータ、及び前記第2ノードの出力を反転させて出力するための第2インバータを備え、前記第1PMOSトランジスタ、前記第1NMOSトランジスタ、前記第4PMOSトランジスタ、及び前記第3NMOSトランジスタのゲートには、前記クロック信号が印加され、前記第3PMOSトランジスタ及び前記第6NMOSトランジスタのゲートには、前記スキャンイネーブル信号が印加され、前記第2PMOSトランジスタ及び前記第2NMOSトランジスタのゲートには、前記第2ノードの信号が印加され、前記第5NMOSトランジスタのゲートには、前記第1インバータの出力が印加され、前記第4NMOSトランジスタのゲートには、前記第2インバータの出力が印加され、前記第1ノードの出力は、前記反転パルス信号になり、前記第1インバータの出力は、前記パルス信号になる。
一実施形態において、前記スキャン及びリテンション用のラッチ部は、前記クロック信号、前記スキャンイネーブル信号、及び前記MTCMOS制御信号を入力され、前記内部クロック信号を生成する内部クロック生成部、前記スキャンイネーブル信号に応答して、前記スキャン入力信号及び前記ラッチ部から前記信号伝送ラインを介して入力された信号のうち一つを選択的に出力するためのマルチプレクサ、前記内部クロック信号に応答して、前記マルチプレクサの出力を伝達するための第1伝送ゲート、前記第1伝送ゲートの出力を反転させるための第1及び第2インバータ、前記内部クロック信号に応答して、前記第1インバータの出力を前記第1インバータ及び前記第2インバータの入力に伝達するための三状態バッファ、及び前記内部クロック信号に応答して、前記第2インバータの出力を前記信号伝送ラインに伝達するための第2伝送ゲートを備える。
望ましくは、前記内部クロック生成部は、電源電圧と第1ノードとの間に並列に連結された第1及び第2PMOSトランジスタ、前記第1ノードと第2ノードとの間に連結された第3PMOSトランジスタ、前記第2ノードと接地電圧との間に連結された第1NMOSトランジスタ、前記第2ノードと前記接地電圧との間に直列に連結された第2及び第3NMOSトランジスタ、前記スキャンイネーブル信号を反転させるための第1インバータ、及び前記第2ノードの出力を反転させる第2インバータを備え、前記第1PMOSトランジスタ及び前記第3NMOSトランジスタのゲートには、前記スキャンイネーブル信号が印加され、前記第2PMOSトランジスタ及び前記第2NMOSトランジスタのゲートには、前記クロック信号が印加され、前記第3PMOSトランジスタ及び前記第1NMOSトランジスタのゲートには、前記MTCMOS制御信号が印加され、前記第2ノードは、前記反転内部クロック信号になり、前記第1インバータの出力は、反転スキャンイネーブル信号になり、前記第2インバータの出力は、前記内部クロック信号になる。
望ましくは、前記マルチプレクサは、電源電圧と第3ノードとの間に直列に連結された第6及び第7PMOSトランジスタ、前記電源電圧と前記第3ノードとの間に直列に連結された第8及び第9PMOSトランジスタ、前記第3ノードと仮想グラウンドとの間に直列に連結された第6及び第7NMOSトランジスタ、及び前記第3ノードと前記仮想グラウンドとの間に直列に連結された第8及び第9NMOSトランジスタを備え、前記第6PMOSトランジスタ及び前記第7NMOSトランジスタのゲートには、前記信号伝送ラインが連結され、前記第7PMOSトランジスタ及び前記第8NMOSトランジスタのゲートには、前記スキャンイネーブル信号が印加され、前記第8PMOSトランジスタ及び前記第9NMOSトランジスタのゲートには、前記スキャン入力信号が印加され、前記第9PMOSトランジスタ及び前記第6NMOSトランジスタのゲートには、前記反転スキャンイネーブル信号が印加される。
望ましくは、前記第1伝送ゲートは、前記第3ノードと前記第1及び第2インバータの入力端との間に並列に連結された第10PMOSトランジスタ及び第10NMOSトランジスタを備え、前記第10PMOSトランジスタのゲートには、前記内部クロック信号が印加され、前記第10NMOSトランジスタのゲートには、前記反転内部クロック信号が印加され、前記第2伝送ゲートは、前記第2インバータの出力端と前記信号伝送ラインとの間に並列に連結された第11PMOSトランジスタ及び第11NMOSトランジスタを備え、前記第11PMOSトランジスタのゲートには、前記反転内部クロック信号が印加され、前記第11NMOSトランジスタのゲートには、前記内部クロック信号が印加される。
本発明の他の特徴によれば、クロック信号に応答してデータ入力信号をラッチして、データ出力信号に変換させるMTCMOSフリップフロップが、前記MTCMOSのノーマル動作時には、入力されたデータを受信し、パルス信号及び内部クロック信号に基づいて入力された前記入力データをラッチし、自身の出力端に伝送して前記フリップフロップの出力データとして出力するためのラッチ部、クロック信号に基づいてパルス信号及び反転パルス信号を発生させるパルス生成部、及び前記クロック信号に基づいて内部クロック信号及び反転内部クロック信号を発生させ、前記MTCMOSのスリープモード及びノーマルモードを制御するMTCMOS制御信号に応答して、前記MTCMOSのスリープモード時には、前記ノーマル動作時に前記ラッチ部で最終入力されたデータを保存し、前記MTCMOSがノーマル動作に転換する場合に保存されたデータを前記ラッチ部に伝達するデータリテンション機能を行うリテンション用のラッチ部を備え、前記ラッチ部と前記リテンション用のラッチ部とは、互いにデータをやり取りできる信号伝送ラインに連結されることを特徴とする。
一方、本発明のMTCMOSラッチ装置の特徴によれば、パルス信号及び内部クロック信号に基づいて、ノーマル動作モードの間に入力されるデータ信号をラッチし、前記入力されたデータ信号を出力データとして出力し、スキャン信号をラッチすることによってスキャン機能を行うラッチ部と、クロック信号及びスキャンイネーブル信号に基づいて、パルス信号を発生させるパルス生成部、及び前記クロック信号及び前記スキャンイネーブル信号に基づいて、内部クロック信号及び反転内部クロック信号を発生させ、ノーマルモードからスリープモードに進む時に前記ラッチ部から出力されたデータ信号を受信及び保存し、前記出力されたデータ信号は、前記スリープモードに進む前に前記ラッチ部に最終入力されたデータを備え、前記スリープモードから前記ノーマルモードに転換する場合に保存されたデータを前記ラッチ部に伝達するスキャン及びリテンション用のラッチ部を備えることを特徴とする。
本発明によるフリップフロップは、MTCMOSでスキャン機能及びデータリテンション機能を有し、データ入出力遅延を増大させずに動作速度を速くできる。
本発明と、本発明の動作上の利点及び本発明の実施によって達成される目的を十分に理解するためには、本発明の望ましい実施形態を例示する添付図面及び添付図面に記載された内容を参照しなければならない。
以下、添付された図面を参照して、本発明の望ましい実施形態を説明することによって、本発明を詳細に説明する。各図面に付された同一参照符号は、同一部材を示す。
図3は、高しきい電圧NMOSを使用したMTCMOSの概略図である。
図4は、図3に印加される信号の波形図である。
図3及び図4を参照すれば、スリープモード制御部31から出力される‘0'レベルのスイッチング制御信号SWが高しきい電圧のNMOSスイッチ35に印加されると、低しきい電圧CMOSで構成された論理回路部33の電源がオフになる。そして、図4に示したように‘0'レベルのスイッチング制御信号SWが印加される前に、クロックはローに固定され、次に、リテンション制御信号MTCが印加されてリテンションフリップフロップのデータを保護する。その後、スイッチング制御信号SWが印加されて論理回路部33の電源をオフさせる。
MTCMOSがノーマル動作に戻る場合には、前述した動作を逆に行う。すなわち、まず、‘1'レベルを有するスイッチング制御信号SWがNMOSスイッチ35に印加されて論理回路部33に電源を供給し、リテンションフリップフロップに保存されたデータを論理回路部33に復元させる。一方、‘0'レベルのスイッチング制御信号SWが印加される区間では、クロックやリセット/セットなどのリテンション関連信号を除外した全ての信号は未知(unknown)状態となる。
図5は、本発明の説明に使われる回路の記号を示す図である。
参照符号51及び52は、それぞれ仮想グラウンド及び実際グラウンドを示し、参照符号53及び54は、それぞれ高しきい電圧を有するPMOS及び高しきい電圧を有するNMOSであり、太い線で表示される。そして、参照符号55及び56は、それぞれ低しきい電圧を有するPMOS及び低しきい電圧を有するNMOSであり、細線で表示される。また、参照符号57は、実際のグラウンド52に連結された高しきい電圧を有するインバータであり、太い線で表示され、参照符号58は、仮想グラウンドに連結された低しきい電圧を有するインバータであり、細線で表示される。
図6は、本発明によるスキャン機能とリテンション機能を何れも有するフリップフロップを示す概略図である。
図6を参照すれば、本発明の第1実施形態によるフリップフロップ60は、ラッチ部61、パルス生成部63、及びスキャン及びリテンション用のラッチ部65を備える。
図6に示したフリップフロップ60は、高速及び低電力でラッチ機能とスキャン機能とのうち何れか一つを行い、また、MTCMOSに適用されて、MTCMOSがスリープモードに入る時にデータをリテンションする機能を行うことができる。
ラッチ部61は、フリップフロップのノーマル動作時に入力されたデータDを受信し、パルスP、PBに基づいて入力されたデータDを自身の出力端に伝送して出力データQとして出力する。
パルス生成部63は、クロック信号CK及びスキャンイネーブル信号TEに基づいて相補的なパルスP、PBを発生させる。そして、スキャン及びリテンション用のラッチ部65は、クロック信号CK及びスキャンイネーブル信号TEに基づいて相補的な内部クロック信号SC、SCBを発生させる。相補的なパルスP、PBと相補的な内部クロック信号SC、SCBとは、互いに排他的に生成される。
スキャン及びリテンション用のラッチ部65は、クロック信号CK、スキャンイネーブル信号TE及びMTCMOS制御信号MTCによって制御され、ラッチ部61とデータSOをやり取りする。フリップフロップ60がデータリテンション機能をする場合には、スキャン及びリテンション用のラッチ部65は、ラッチ部61からデータSOを入力して保存する。この場合、データSOは、ノーマル動作時にラッチ部61に存在するデータである。フリップフロップ60がスキャン機能をする場合には、スキャン及びリテンション用のラッチ部65は、スキャン入力信号TIを入力され、ラッチ部61は、スキャン及びリテンション用のラッチ部65からデータSOを入力されてスキャン機能をする。この場合データSOは、スキャン入力信号TIである。
例えば、スキャンイネーブル信号TEが第1状態‘0’である場合、ラッチ部61は、相補的なパルスP、PBの状態に基づいて、入力端に入力される入力データDをラッチする。すなわち、ラッチ部61は、正常なラッチ機能を行う。しかし、スキャンイネーブル信号TEが第2状態‘1'である場合、ラッチ部61は、相補的な内部クロック信号SC、SCBに基づいて、スキャン及びリテンション用のラッチ部65に入力されるスキャン入力信号TIをラッチする。すなわち、スキャン及びリテンション用のラッチ部65とラッチ部61とは、スキャン機能を行う。
MTCMOS制御信号MTC及びスキャンイネーブル信号TEが何れも第1状態‘0’であれば、フリップフロップ60は、ノーマル動作を行い、ラッチ部61の値は、SOラインを介してスキャン及びリテンション用のラッチ部65に常にそのまま伝達される。そして、MTCMOS制御信号MTCが第2状態‘1'であれば、スキャン及びリテンション用のラッチ部65は、それ以上ラッチ部61の値を受けず、最後に伝達された値を維持して、フリップフロップ60のパワーオフ時のデータを維持する。そして、フリップフロップ60のパワーオン時、ラッチ部61がスキャン及びリテンション用のラッチ部65のデータを取得するようになる。すなわち、パワーオフ前には、ラッチ部61とスキャン及びリテンション用のラッチ部65のデータが同一であり、パワーオフ後には、ラッチ部61には未知の値が保存されていて、パワーオン時のスキャン及びリテンション用のラッチ部65の値がSOラインを介してラッチ部61に伝えられる。そして、MTCMOS制御信号MTCが第2状態‘1'から第1状態’0’に遷移すれば、ノーマル動作を行う。
そして、MTCMOS制御信号MTCが第1状態‘0’であり、スキャンイネーブル信号TEが第2状態‘1'である場合、スキャン及びリテンション用のラッチ部65は、SOラインを介してラッチ部61でデータを保存せず、スキャン入力TI値を受け、スキャン及びリテンション用のラッチ部65はマスタになり、ラッチ部61はスレーブになるマスタスレーブフリップフロップ構造として動作する。この場合、パルス生成部63は動作せず、フリップフロップ60は、スキャン機能をマスタスレーブフリップフロップ構造を介して行う。すなわち、この場合、フリップフロップ60の出力はQであって、ノーマル動作と同一であるが、入力はDではないTIになる。そして、構造的にスキャンイネーブル信号TEは、クロック信号CKがロジックローである場合にのみ遷移しなければならない。これを保証するために、スキャンイネーブル信号TEをBラッチの出力に設計することもある。
図7は、本発明によるリテンション機能を何れも有するフリップフロップを示す概略図である。
図7を参照すれば、本発明の第2実施形態によるフリップフロップ70は、ラッチ部71、パルス生成部73及びリテンション用のラッチ部75を備える。
図7に示したフリップフロップ70は、図6のフリップフロップ60でスキャン機能を除去したものである。また、図1とは違って、図7のフリップフロップ70は、単一ラッチ部71にパルス基盤を適用したものであって、フリップフロップ10のノーマル動作時、データの入力から出力までの遅延を従来のフリップフロップ10の半分程度に減らすことができる。
図7を参照して、本発明の第2実施形態によるフリップフロップ70の動作を説明する。ラッチ部71は、図6のラッチ部61と同じ機能を行う。パルス生成部73は、クロック信号CKに基づいて相補的なパルスP、PBを発生させる。そして、リテンション用のラッチ部75は、クロック信号CKに基づいて相補的な内部クロック信号SC、SCBを発生させる。相補的なパルスP、PBと相補的な内部クロック信号SC、SCBとは、互いに排他的に生成される。また、リテンション用のラッチ部75は、クロック信号CK及びMTCMOS制御信号MTCによって制御され、ラッチ部71とデータSOをやり取りする。フリップフロップ70がデータリテンション機能を行う場合には、リテンション用のラッチ部75は、ラッチ部71からデータSOを入力して保存する。この場合、データSOは、ノーマル動作時にラッチ部71に存在するデータである。
MTCMOS制御信号MTCが第1状態‘0’であれば、フリップフロップ70は、ノーマル動作を行い、ラッチ部71の値は、SOラインを介してリテンション用のラッチ部75に常にそのまま伝達される。そして、MTCMOS制御信号MTCが第2状態‘1'であれば、リテンション用のラッチ部75は、それ以上ラッチ部71の値を受けず、最後に伝達された値を維持してフリップフロップ70のパワーオフ時のデータを維持する。そして、フリップフロップ70のパワーオン時、ラッチ部71がリテンション用のラッチ部75のデータを取得する。すなわち、パワーオフ前は、ラッチ部71とリテンション用のラッチ部75のデータが同一であり、パワーオフ後には、ラッチ部71には未知の値が保存されていて、パワーオン時にリテンション用のラッチ部75の値がSOラインを介してラッチ部71に伝えられる。そして、MTCMOS制御信号MTCが第2状態‘1'から第1状態‘0’に遷移すると、ノーマル動作を行う。
図8A及び図8Bは、図6及び図7に示したラッチ部を構成する回路の回路図である。
図8Aを参照すれば、ラッチ部80は、三状態バッファ81で構成された伝送回路部とインバータ82、及び2個の三状態バッファ83、84で構成されたラッチとで構成される。
第1三状態バッファ81は、入力信号Dを受信し、パルス生成部63で生成されるパルス信号P、PBに応答して、入力信号Dをインバータ82に出力する。第2三状態バッファ83は、スキャン及びリテンション用のラッチ部65で生成される内部クロック信号SC、SCBに応答して、第1三状態バッファ81から入力されたデータを出力し、第3三状態バッファ84は、パルス信号P、PBに応答して第2三状態バッファ83から入力されたデータを出力する。
第2三状態バッファ83及び第3三状態バッファ84は、ラッチを形成し、第2三状態バッファ83の出力SOは、スキャン及びリテンション用のラッチ部65に入力される。また、スキャン及びリテンション用のラッチ部65の出力SOが第3三状態ラッチ部84に入力されることもある。そして、インバータ82から出力された信号は、ラッチ部80の出力信号Qとなる。一方、第1ないし第3三状態バッファ81ないし83は、インバータと伝送ゲートとで構成された伝送回路に置き換えられる。
図8Bを参照すれば、ラッチ部90は、第1三状態バッファ91を備え、前記第1三状態バッファ91は、入力信号Dを受信し、パルス生成部63で生成されるパルス信号P、PBに応答して、入力信号Dをインバータ92に出力する。PMOSトランジスタ93は、電源電圧と第1NMOSトランジスタ94との間に直列に連結され、第1三状態バッファ91の出力信号がゲートに印加される。第1NMOSトランジスタ94は、PMOSトランジスタ93と第2NMOSトランジスタ95との間に直列に連結され、第1三状態バッファ91の出力信号がゲートに印加される。第2NMOSトランジスタ95は、第1NMOSトランジスタ94と仮想グラウンドとの間に直列に連結され、内部クロック信号SCBが第2NMOSトランジスタ95のゲートに印加される。PMOSトランジスタ93及び第1NMOSトランジスタ94の連結ノードの信号SOは、第2三状態バッファ96に入力される。第2三状態バッファ96は、パルス信号P、PBに応答して、連結ノードの信号SOを出力する。
PMOSトランジスタ93、第1及び第2NMOSトランジスタ94、95及び第2三状態バッファ96は、ラッチを形成し、信号SOは、スキャン及びリテンション用のラッチ部65に入力される。また、スキャン及びリテンション用のラッチ部65の出力SOが第2三状態ラッチ部96に入力されることもある。そして、インバータ92から出力された信号は、ラッチ部90の出力信号Qとなる。図8Bにおいても、三状態バッファ91、96は、インバータと伝送ゲートとで構成された伝送回路に置き換えられる。
図9は、図6に示したパルス生成部を構成する回路の回路図である。
図9を参照すれば、パルス生成部100は、第1NANDゲート101、第2NANDゲート102、第1インバータ103、第1NMOSトランジスタ104、第2NMOSトランジスタ105、及び第2インバータ106で構成される。
第2NANDゲート102は、スキャンイネーブル信号TEに応答して信号を出力する伝送ゲートの機能を備える。
第1NANDゲート101は、クロック信号CKをゲートに入力され、電源電圧と第1ノード115との間に連結された第1PMOSトランジスタ107、電源電圧と第1ノード115との間に連結された第2PMOSトランジスタ108、第1ノード115と仮想グラウンドとの間に直列に連結された第3NMOSトランジスタ109及び第4NMOSトランジスタ110で構成される。第3NMOSトランジスタ109のゲートには、クロック信号CKが入力される。第2PMOSトランジスタ108のゲート及び第4NMOSトランジスタ110のゲートには、第2ノード116が連結される。
第2NANDゲート102は、電源電圧と仮想グラウンドとの間に直列に連結された第3及び第4PMOSトランジスタ111、112と第5及び第6NMOSトランジスタ113、114で構成される。第3PMOSトランジスタ111のゲートには、スキャンイネーブル信号TEが連結され、第4PMOSトランジスタ112のゲートには、クロック信号CKが入力され、第5NMOSトランジスタ113のゲートには、クロック信号CKが入力され、第6NMOSトランジスタ114のゲートには、第2インバータ106の出力が連結される。そして、第4PMOSトランジスタ112と第5NMOSトランジスタ113との連結ノードは、第2ノード116に連結される。
第1NANDゲート101の第1ノード115は、反転されたパルス信号PBになり、第1インバータ103に入力される。第1インバータ103から出力される信号は、パルス信号Pになる。また、第1NMOSトランジスタ104は、第2ノード116と仮想グラウンドとの間に連結され、ゲートには、第1インバータ103の出力が連結される。そして、第2NMOSトランジスタ105は、第2ノード116と仮想グラウンドとの間に連結され、ゲートには、スキャンイネーブル信号TEが入力される。第2インバータ106は、第2ノード116の信号が入力されて反転され、第6NMOSトランジスタ114のゲートに出力する。
図10は、図6に示したスキャン及びリテンション用のラッチ部を構成する回路の回路図である。
図10を参照すれば、スキャン及びリテンション用のラッチ部120は、内部クロック生成部121、第1伝送ゲート122、第2伝送ゲート123、マルチプレクサ124、第1インバータ125、三状態バッファ126、及び第2インバータ127で構成される。
内部クロック生成部121は、クロック信号CK、スキャンイネーブル信号TE及びMTCMOS制御信号MTCを入力され、内部クロック信号SC、SCBを生成する。
第1伝送ゲート122は、反転内部クロック信号SCBに応答してマルチプレクサ124の出力を出力し、第2伝送ゲート123は、内部クロック信号SCに応答して第2インバータ127の出力を出力する。マルチプレクサ124は、スキャンイネーブル信号TEに応答して、スキャン信号TI及びラッチ部120の出力信号SOを選択的に出力する。
第1インバータ125は、第1伝送ゲート122の出力を反転させ、三状態バッファ126は、内部クロック信号SCに応答して第1インバータ125の出力を反転させる。第1インバータ125及び三状態バッファ126の出力部は、各自の入力部に連結されてラッチを構成する。そして、第3インバータ127は、三状態バッファ126の出力を反転させて第2伝送ゲート123に伝達する。
内部クロック生成部121は、電源電圧と第1ノード135との間に連結された第1PMOSトランジスタ128及び第2PMOSトランジスタ129、第1ノード135と第2ノード136との間に連結された第3PMOSトランジスタ130、第2ノード136とグラウンドとの間に連結された第1NMOSトランジスタ131、第2ノード136とグラウンドとの間に直列に連結された第2及び第3NMOSトランジスタ132、133、第2ノードの出力を反転させる第3インバータ134、及びスキャンイネーブル信号TEを反転させる第4インバータ137を備える。
第1PMOSトランジスタ128及び第3NMOSトランジスタ133のゲートには、スキャンイネーブル信号TEが入力され、第2PMOSトランジスタ129及び第2NMOSトランジスタ132のゲートには、クロック信号CKが入力される。第3PMOSトランジスタ130及び第1NMOSトランジスタ131のゲートには、MTCMOS制御信号MTCが入力される。
第2ノード136は、反転された内部クロック信号SCBになり、第3インバータ134の出力は、内部クロック信号SCになる。そして、第4インバータ137の出力は、反転されたスキャンイネーブル信号TENになる。
第1伝送ゲート122は、第3ノード138と第1及び第2インバータ125、127の入力端との間に並列に連結された第4PMOSトランジスタ140及び第4NMOSトランジスタ141で構成される。第4PMOSトランジスタ140のゲートには、内部クロック信号SCが入力され、第4NMOSトランジスタ141のゲートには、反転内部クロック信号SCBが入力される。
第2伝送ゲート123は、第2インバータ127の出力とSO端子との間に並列に連結された第5PMOSトランジスタ142及び第5NMOSトランジスタ143で構成される。第5PMOSトランジスタ142のゲートには、反転内部クロック信号SCBが入力され、第5NMOSトランジスタ143のゲートには、内部クロック信号SCが入力される。
マルチプレクサ124は、電源電圧と第3ノード138との間に直列に連結された第6PMOSトランジスタ144及び第7PMOSトランジスタ145と、電源電圧と第3ノード138との間に直列に連結された第8PMOSトランジスタ146及び第9PMOSトランジスタ147とが並列に連結され、第3ノード138と仮想グラウンドとの間に直列に連結された第6NMOSトランジスタ148及び第7NMOSトランジスタ149と、第3ノード138と仮想グラウンドとの間に直列に連結された第8NMOSトランジスタ150及び第9NMOSトランジスタ151とが並列に連結される。第6PMOSトランジスタ144及び第7NMOSトランジスタ149のゲートには、SO端子が連結され、第8PMOSトランジスタ146及び第9NMOSトランジスタ151のゲートには、スキャン信号TIが入力され、第7PMOSトランジスタ145及び第8NMOSトランジスタ150のゲートには、スキャンイネーブル信号TEが入力され、第8NMOSトランジスタ148及び第9PMOSトランジスタ147のゲートには、反転されたスキャンイネーブル信号TENが入力される。
図6及び図8ないし図10を参照して、本発明の第1実施形態によるフリップフロップの動作過程を説明する。
まず、MTCMOS制御信号MTCとスキャンイネーブル信号TEが何れも‘0'である場合、図9のパルス生成部100の第2ノード116は、ロジックハイになり、クロック信号CKによってパルス信号P、PBが発生する。図8Bのラッチ部90は、パルス信号P、PBに応答して入力信号Dをラッチし、ラッチされた信号は、SOラインを介して図10のスキャン及びリテンション用のラッチ部120に伝えられる。また、図10のマルチプレクサ124は、スキャンイネーブル信号TEが‘0'であるので、ラッチ部90から出力されたデータSOを第1伝送ゲート122に出力し、図10の第1インバータ125及び三状態バッファ126がラッチ部90から出力されたデータSOをラッチする。
そして、MTCMOS制御信号MTCが‘0'であり、スキャンイネーブル信号TEが‘1'である場合、図9のパルス生成部100はオフになって、パルスP、PBは出力されない。そして、図10のマルチプレクサ124は、スキャン信号TIを第1伝送ゲート122に出力する。図8Bのラッチ部90は、パルス信号P、PBが伝達されないためにデータDを入力されず、SO端子を介して図10の第2インバータ127でスキャン信号TIをSO端子を介して入力される。この場合、図10の第1インバータ125及び三状態バッファ126はマスタになり、図8Bのラッチ部90はスレーブになるマスタスレーブ構造が形成される。
また、MTCMOS制御信号MTCが‘1’になると、図10の内部クロック信号SCは常に‘1’になる。したがって、図10の第1伝送ゲート122は、ターンオフになり、第2伝送ゲート123は、ターンオンになる。したがって、図10のスキャン及びリテンション用のラッチ部120は、図8Bのラッチ部90からそれ以上のデータSOを入力されず、最後に保存したデータをそのまま維持する。
図11は、図7に示したパルス生成部を構成する回路の回路図である。
図11を参照すれば、パルス生成部160は第1NANDゲート161及び第2NANDゲート162、第1インバータ163、第1NMOSトランジスタ164、及び第2インバータ165で構成される。
第1NANDゲート161は、クロック信号CKをゲートに入力され、電源電圧と第1ノード173との間に連結された第1PMOSトランジスタ166、電源電圧と第1ノード173との間に連結された第2PMOSトランジスタ167、第1ノード173と仮想グラウンドとの間に直列に連結された第2NMOSトランジスタ168及び第3NMOSトランジスタ169で構成される。第2NMOSトランジスタ168のゲートには、クロック信号CKが入力される。第2PMOSトランジスタ167のゲート及び第3NMOSトランジスタ169のゲートには、第2ノード174が連結される。
第2NANDゲート162は、電源電圧と仮想グラウンドとの間に直列に連結された第3PMOSトランジスタ170と、第4及び第5NMOSトランジスタ171、172とで構成される。第3PMOSトランジスタ170及び第4NMOSトランジスタ170のゲートには、クロック信号CKが入力され、第5NMOSトランジスタ172のゲートには、第2インバータ165の出力が連結される。
第1NANDゲート161の第1ノード173は、反転されたパルス信号PBになり、第1インバータ163に入力される。第1インバータ163から出力される信号は、パルス信号Pになる。また、第1NMOSトランジスタ164は、第2ノード174と仮想グラウンドとの間に連結され、ゲートは、第1インバータ163の出力が連結される。第2インバータ165は、第2ノード174の信号を入力されて反転させて、第5NMOSトランジスタ172のゲートに出力する。
図12は、図7に示したリテンション用のラッチ部を構成する回路の回路図である。
リテンション用のラッチ部180は、MTCMOS制御信号MTC(ここで、制御信号MTCは、内部クロック信号SCとして機能する)を反転させて、反転内部クロック信号SCBを生成する第1インバータ181、反転内部クロック信号SCBに応答してラッチ部から出力された信号SOを伝達する第1三状態バッファ183、第1三状態バッファ183の出力信号を反転させる第2インバータ187、第2インバータ187の出力信号をMTCMOS制御信号MTCに応答して伝達する第2三状態バッファ188、第2三状態バッファ188の出力を反転させる第3インバータ186、及びMTCMOS制御信号MTCに応答して第3インバータ186の出力信号をSO端子に伝達する伝送ゲート189を備える。
伝送ゲート189は、第3インバータ186の出力とSO端子との間に並列に連結されたPMOSトランジスタ184とNMOSトランジスタ185とで構成できる。PMOSトランジスタ184のゲートには、反転された内部クロック信号SCBが入力され、NMOSトランジスタ185のゲートには、MTCMOS制御信号MTCが入力される。第2インバータ187及び第2三状態バッファ188の出力部は、各自の入力部に連結されてラッチ182を構成する。
以下、図7、図8、図11及び図12を参照して、本発明の第2実施形態によるフリップフロップの動作過程を説明する。
まず、MTCMOS制御信号MTCが‘0'であると、図12で反転内部クロック信号SCBは、‘1'になる。図11のパルス生成部160では、クロック信号CKによってパルス信号P、PBが生成され、図8Bのラッチ部90では、パルス信号P、PBに応答して入力されたデータDをラッチする。そして、SO端子を介してデータを図12のリテンション用のラッチ部180に伝達する。MTCMOS制御信号MTCが‘0'であり、反転内部クロック信号SCBが‘1'であるので、図12の第1三状態バッファ183は、SO端子の信号を伝達し、伝送ゲート189は、ターンオフになる。したがって、SO端子を介して入力されたデータを第2インバータ187と第2三状態バッファ188でラッチする。
MTCMOS制御信号MTCが‘1'であると、内部反転クロック信号SCBは‘0’になる。この場合、図12の第1三状態バッファ183は、ターンオフになり、伝送ゲート189は、ターンオンになる。したがって、図12の第1三状態バッファ183は、SO端子のデータをそれ以上伝達しない。そして、図12のリテンション用のラッチ部180は、最後に保存したデータをそのまま維持する。そして、伝送ゲート189は、ターンオン状態であるので、リテンション用のラッチ部180でラッチされたデータは、フリップフロップがターンオンになる場合に、SO端子を介して図8Bのラッチ部に伝達されうる。
図13は、図7のフリップフロップにリセット機能を添加した本発明の第3実施形態によるラッチ部の回路図である。
図13のラッチ部190は、パルス信号Pに応答して入力されたデータDを伝達する第1三状態バッファ191、第1三状態バッファ191の出力を反転して、ラッチ部190の出力Qに送るインバータ193、電源電圧とSO端子との間に直列に連結された第1及び第2PMOSトランジスタ194、195、SO端子と仮想グラウンドとの間に直列に連結された第1及び第2NMOSトランジスタ196、198、SO端子と仮想グラウンドとの間に直列に連結され、第1及び第2NMOSトランジスタと並列に連結された第3NMOSトランジスタ197、及びSO端子の信号を、反転パルス信号PBに応答してインバータ193の入力に伝達する第2三状態バッファ192を備える。
ここで、第1PMOSトランジスタ194及び第1NMOSトランジスタ196のゲートには、第1三状態バッファ191の出力が連結され、第2PMOSトランジスタ195及び第3NMOSトランジスタ197のゲートには、リセット信号Rが印加される。そして、第2NMOSトランジスタ198のゲートには、反転内部クロック信号SCBが印加される。
図14は、図7のフリップフロップにリセット機能を添加した本発明の第3実施形態によるパルス生成部の回路図である。
図14のパルス生成部200は、電源電圧と第1ノード205に並列に連結された第1及び第2PMOSトランジスタ201、202、第1ノード205と仮想グラウンドとの間に直列に連結された第1及び第2NMOSトランジスタ203、204、電源電圧と仮想グラウンドとの間に直列に連結された第3及び第4PMOSトランジスタ207、208と第3及び第4NMOSトランジスタ209、210、第1ノード205の出力を反転させる第1インバータ211、第2NMOSトランジスタのゲートと仮想グラウンドとの間に連結された第5NMOSトランジスタ212、第2ノード206と仮想グラウンドとの間に連結された第6NMOSトランジスタ213、及び第2ノード206の出力を反転させて、第4NMOSトランジスタ210のゲートに出力するための第2インバータ214を備える。
ここで、第1PMOSトランジスタ201、第1NMOSトランジスタ203、第3PMOSトランジスタ207、及び第3NMOSトランジスタ209のゲートには、クロック信号CKが入力され、第2PMOSトランジスタ202及び第2NMOSトランジスタ204のゲートには、第2ノード206が連結され、第4PMOSトランジスタ208及び第6NMOSトランジスタ213のゲートには、リセット信号Rが連結され、第5NMOSトランジスタ212のゲートには、第1インバータ211の出力信号Qが印加され、第4NMOSトランジスタ210のゲートには、第2インバータ214の出力信号が印加される。
図15は、図7のフリップフロップにリセット機能を添加した本発明の第3実施形態によるリテンション用のラッチ部の回路図である。
図15のリテンション用のラッチ部220は、電源電圧と第1ノード227との間に並列に連結された第1及び第2PMOSトランジスタ221、222、第1ノード227と第2ノード228との間に連結された第3PMOSトランジスタ223、第2ノード228と接地電圧との間に直列に連結された第1及び第2NMOSトランジスタ224、225、第2ノード228と接地電圧との間に連結され、第1及び第2NMOSトランジスタ224、225と並列に連結された第3NMOSトランジスタ226、MTCMOS制御信号MTCを反転させて出力するための第1インバータ229、第2ノード228の信号をMTCMOS制御信号MTCに応答して伝達する第1三状態バッファ230、第1三状態バッファ230の出力を反転させる第2インバータ231、MTCMOS制御信号MTCに応答して、第2インバータ231の出力信号を伝達するための伝送ゲート233、及び反転内部クロック信号SCBに応答して、伝送ゲート233の出力信号を伝達するための第2三状態バッファ232を備える。
ここで、第1インバータ229の出力は、MTCMOS制御信号MTCの反転信号であって、反転内部クロック信号SCBになり、伝送ゲート233の出力は、SO端子に連結される。
また、第1PMOSトランジスタ221及び第1NMOSトランジスタ224のゲートには、リセット信号Rが印加され、第2PMOSトランジスタ222及び第2NMOSトランジスタ225のゲートには、第1インバータ229の出力信号が印加され、第3PMOSトランジスタ223及び第3NMOSトランジスタ226のゲートには、第1三状態バッファ232及び第2三状態バッファ230の出力に連結される。
伝送ゲート233は、第2インバータ231とSOラインとの間に並列に連結された第4PMOS及び第4NMOSトランジスタ234、235を備え、第4PMOSトランジスタ234のゲートには、前記反転内部クロック信号SCBが印加され、第4NMOSトランジスタ235のゲートには、MTCMOS制御信号MTCが印加されるように構成されうる。
図16は、図7のフリップフロップにセット機能を添加した本発明の第4実施形態によるラッチ部の回路図である。
図16のラッチ部240は、パルス信号Pに応答して入力されたデータDを伝達する第1三状態バッファ241、反転パルス信号PBに応答して第1ノード250の信号を伝達する第2三状態バッファ242、第1三状態バッファ241及び第2三状態バッファ242の出力に連結され、入力された信号を反転させてラッチ部の出力信号Qに出力する第1インバータ243、電源電圧と第1ノード250との間に並列に連結された第1及び第2PMOSトランジスタ244、245、第1ノード250と仮想グラウンドとの間に直列に連結された第1及び第2NMOSトランジスタ246、247、セット信号Sを反転させるための第2インバータ248、及びセット信号Sと内部クロック信号SCとを入力されて、NOR演算するNORゲート249を備える。
ここで、第1ノード250は、図15のリテンション用のラッチ部220に連結されたSO端子になり、第1PMOSトランジスタ244及び第1NMOSトランジスタ246のゲートには、第1及び第2三状態バッファ241、242の出力信号が印加され、第2PMOSトランジスタ245のゲートには、第2インバータ248の出力が印加され、第2NMOSトランジスタ247のゲートには、NORゲート249の出力信号が印加される。
図17は、図7のフリップフロップにセット機能を添加した本発明の第5実施形態によるラッチ部の回路図である。
図17のラッチ部260は、パルス信号Pに応答して入力されたデータDを伝達する第1三状態バッファ261、反転パルス信号PBに応答して第1ノード270の信号を伝達する第2三状態バッファ262、第1三状態バッファ261及び第2三状態バッファ262の出力に連結され、入力された信号を反転させてラッチ部の出力信号Qに出力する第1インバータ263、電源電圧と第1ノード270との間に並列に連結された第1及び第2PMOSトランジスタ264、265、第1ノード270と仮想グラウンドとの間に直列に連結された第1ないし第3NMOSトランジスタ266ないし268、及びセット信号を反転させるための第2インバータ269を備える。
ここで、第1ノード270は、図15のリテンション用のラッチ部220に連結されたSO端子になり、第1PMOSトランジスタ264及び第1NMOSトランジスタ266のゲートには、第1及び第2三状態バッファ261、262の出力信号が印加され、第2PMOSトランジスタ265及び第2NMOSトランジスタ267のゲートには、第2インバータ269の出力が印加され、第3NMOSトランジスタ268のゲートには、反転内部クロック信号SCBが印加される。
本発明の第4または5実施形態によるフリップフロップのパルス生成部は、図14のパルス生成部200と同一であり、本発明の第4または5実施形態によるフリップフロップのリテンション用のラッチ部は、図15のリテンション用のラッチ部220と同一である。
図13ないし図15に示した本発明の第3実施形態によるフリップフロップは、本発明の第2実施形態によるフリップフロップと同じ機能を行い、ここにリセット機能が追加されたものであり、図16に示した本発明の第4実施形態と図17に示した本発明の第5実施形態によるフリップフロップは、本発明の第2実施形態によるフリップフロップと同じ機能を行い、ここにセット機能が追加されたものである。
本発明は、図面に示す一実施形態を参考に説明されたが、これは、例示的なものに過ぎず、当業者ならば、これから多様な変形及び均等な他の実施形態が可能であるということが理解できるであろう。したがって、本発明の真の技術的保護範囲は、特許請求の範囲の技術的思想によって決定されなければならない。
本発明は、半導体回路の関連技術分野に好適に用いられる。
従来のデータリテンション機能を有するマスタスレーブフリップフロップを示す回路図である。 従来のスキャン機能を有するマスタスレーブフリップフロップを示す回路図である。 高しきい電圧NMOSを使用したMTCMOSの概略図である。 図3に印加される信号の波形図である。 本発明の説明に使われる回路の記号を示す図である。 本発明によるスキャン機能とリテンション機能を何れも有するフリップフロップの回路図である。 本発明によるリテンション機能を何れも有するフリップフロップの回路図である。 図6に示したラッチ部を構成する回路の回路図である。 図7に示したラッチ部を構成する回路の回路図である。 図6に示したパルス生成部を構成する回路の回路図である。 図6に示したスキャン及びリテンション用のラッチ部を構成する回路の回路図である。 図7に示したパルス生成部を構成する回路の回路図である。 図7に示したリテンション用のラッチ部を構成する回路の回路図である。 図7のフリップフロップにリセット機能を添加した本発明の第3実施形態によるラッチ部の回路図である。 図7のフリップフロップにリセット機能を添加した本発明の第3実施形態によるパルス生成部の回路図である。 図7のフリップフロップにリセット機能を添加した本発明の第3実施形態によるリテンション用のラッチ部の回路図である。 図7のフリップフロップにセット機能を添加した本発明の第4実施形態によるラッチ部の回路図である。 図7のフリップフロップにセット機能を添加した本発明の第5実施形態によるラッチ部の回路図である。
符号の説明
10、20、60、70 フリップフロップ
31 スリープモード制御部
33 論理回路部
61、71、80、90 ラッチ部
63、73 パルス生成部
65 スキャン及びリテンション用のラッチ部
75 リテンション用のラッチ部
81、91 第1三状態バッファ
82、92 インバータ
83、96 第2三状態バッファ
84 第3三状態バッファ
93 PMOSトランジスタ
94 第1NMOSトランジスタ
95 第2NMOSトランジスタ
R リセット信号
S セット信号
SC、SCB 内部クロック信号
P、PB パルス信号
CK クロック信号
TE スキャンイネーブル信号
MTC MTCMOS制御信号
D データ
Q 出力
TI スキャン入力信号

Claims (25)

  1. クロック信号に応答してデータ入力信号をラッチして、データ出力信号に変換させるMTCMOSフリップフロップにおいて、
    前記MTCMOSのノーマル動作時には、入力されたデータを受信し、パルス信号及び内部クロック信号に基づいて入力された前記入力データをラッチし、自身の出力端に伝送して前記フリップフロップの出力データとして出力し、前記MTCMOSのスキャン動作時には、スキャン信号をラッチするためのラッチ部と、
    クロック信号及びスキャンイネーブル信号に基づいて、パルス信号及び反転パルス信号を発生させるパルス生成部と、
    前記クロック信号及び前記スキャンイネーブル信号に基づいて、内部クロック信号及び反転内部クロック信号を発生させ、前記MTCMOSのスリープモード及びノーマルモードを制御するMTCMOS制御信号に応答して、前記MTCMOSのスリープモード時には、前記ノーマル動作時に前記ラッチ部から最終入力されたデータを保存し、前記MTCMOSがノーマル動作に転換する場合に保存されたデータを前記ラッチ部に伝達するデータリテンション機能を行い、前記MTCMOSのスキャン動作時には、前記スキャン信号を入力してラッチし、前記スキャン信号を前記ラッチ部に伝達するスキャン及びリテンション用のラッチ部と、を備え、
    前記ラッチ部と前記スキャン及びリテンション用のラッチ部とは、互いにデータをやり取りできる信号伝送ラインに連結されることを特徴とするフリップフロップ。
  2. 前記MTCMOSのスキャン動作時に、前記スキャン及びリテンション用のラッチ部はマスタになり、前記ラッチ部はスレーブになるマスタ−スレーブフリップフロップ構造として機能することを特徴とする請求項1に記載のフリップフロップ。
  3. 前記スキャンイネーブル信号が第1状態である場合、前記ラッチ部は、前記パルス信号の状態に基づいて前記ラッチ部の入力端に入力される前記入力データをラッチし、前記スキャンイネーブル信号が第2状態である場合、前記ラッチ部は、前記内部クロック信号に基づいて前記スキャン及びリテンション用のラッチ部に入力される前記スキャン入力信号をラッチすることを特徴とする請求項1に記載のフリップフロップ。
  4. 前記MTCMOS制御信号及び前記スキャンイネーブル信号が第1状態である場合、前記フリップフロップは、ノーマル機能を行い、
    前記MTCMOS制御信号が第1状態であり、前記スキャンイネーブル信号が第2状態である場合、前記フリップフロップは、スキャン機能を行い、
    前記MTCMOS制御信号が第2状態である場合、前記フリップフロップは、データリテンション機能を行うことを特徴とする請求項1に記載のフリップフロップ。
  5. 前記フリップフロップがノーマル機能を行う場合には、前記ラッチ部は、前記信号伝送ラインを介して前記スキャン及びリテンション用のラッチ部に常にデータを伝達し、
    前記フリップフロップがデータリテンション機能を行う場合には、前記スキャン及びリテンション用のラッチ部は、前記ラッチ部から出力される信号をそれ以上伝達せず、前記ノーマル動作時に前記ラッチ部から最終入力されたデータを維持し、
    前記フリップフロップが前記ノーマル機能へ戻る場合には、前記ラッチ部は、前記信号伝送ラインを介して前記スキャン及びリテンション用のラッチ部に保存されたデータを入力され、
    前記フリップフロップがスキャン機能を行う場合には、前記スキャン及びリテンション用のラッチ部は、前記スキャン入力信号を入力され、前記ラッチ部は、前記スキャン及びリテンション用のラッチ部から出力された前記スキャン入力信号を外部に出力し、前記スキャン及びリテンション用のラッチ部はマスタになり、前記ラッチ部はスレーブになるマスタ−スレーブフリップフロップ構造として機能することを特徴とする請求項4に記載のフリップフロップ。
  6. 前記ラッチ部は
    前記入力データを受信し、前記パルス信号に応答して、前記入力データを伝達する第1三状態バッファと、
    前記パルス信号に応答して、前記信号伝送ラインの信号を伝達する第2三状態バッファと、
    前記内部クロック信号に応答して、前記第1三状態バッファ及び前記第2三状態バッファの出力を前記信号伝送ラインに伝達する第3三状態バッファと、
    前記第1三状態バッファ及び前記第2三状態バッファの出力を反転させて出力するインバータと、を備え、
    前記インバータの出力は、前記フリップフロップの出力になることを特徴とする請求項1に記載のフリップフロップ。
  7. 前記ラッチ部は
    前記入力データを受信し、前記パルス信号に応答して、前記入力データを伝達する第1三状態バッファと、
    前記パルス信号に応答して、前記信号伝送ラインの信号を伝達する第2三状態バッファと、
    電源電圧と仮想グラウンドとの間に直列に連結されたPMOSトランジスタ、第1NMOSトランジスタ及び第2NMOSトランジスタと、
    前記第1三状態バッファ及び前記第2三状態バッファの出力を反転させて出力するインバータと、を備え、
    前記PMOSトランジスタ及び前記第1NMOSトランジスタのゲートには、前記第1三状態バッファ及び前記第2三状態バッファの出力が印加され、前記第2NMOSトランジスタのゲートには、前記反転内部クロック信号が印加され、前記PMOSトランジスタと前記第1NMOSトランジスタとの連結地点は、前記信号伝送ラインに連結されることを特徴とする請求項1に記載のフリップフロップ。
  8. 前記パルス生成部は、
    電源電圧と第1ノードとの間に並列に連結された第1及び第2PMOSトランジスタと、
    前記第1ノードと仮想グラウンドとの間に直列に連結された第1及び第2NMOSトランジスタと、
    電源電圧と第2ノードとの間に直列に連結された第3及び第4PMOSトランジスタと、
    前記第2ノードと仮想グラウンドとの間に直列に連結された第3及び第4NMOSトランジスタと、
    前記第2ノードと仮想グラウンドとの間に並列に連結された第5及び第6NMOSトランジスタと、
    前記第1ノードの出力を反転させて出力するための第1インバータと、
    前記第2ノードの出力を反転させて出力するための第2インバータと、を備え、
    前記第1PMOSトランジスタ、前記第1NMOSトランジスタ、前記第4PMOSトランジスタ、及び前記第3NMOSトランジスタのゲートには、前記クロック信号が印加され、前記第3PMOSトランジスタ及び前記第6NMOSトランジスタのゲートには、前記スキャンイネーブル信号が印加され、前記第2PMOSトランジスタ及び前記第2NMOSトランジスタのゲートには、前記第2ノードの信号が印加され、前記第5NMOSトランジスタのゲートには、前記第1インバータの出力が印加され、前記第4NMOSトランジスタのゲートには、前記第2インバータの出力が印加され、
    前記第1ノードの出力は、前記反転パルス信号になり、前記第1インバータの出力は、前記パルス信号になることを特徴とする請求項1に記載のフリップフロップ。
  9. 前記スキャン及びリテンション用のラッチ部は、
    前記クロック信号、前記スキャンイネーブル信号、及び前記MTCMOS制御信号を入力され、前記内部クロック信号を生成する内部クロック生成部と、
    前記スキャンイネーブル信号に応答して、前記スキャン入力信号及び前記ラッチ部から前記信号伝送ラインを介して入力された信号のうち一つを選択的に出力するためのマルチプレクサと、
    前記内部クロック信号に応答して、前記マルチプレクサの出力を伝達するための第1伝送ゲートと、
    前記第1伝送ゲートの出力を反転させるための第1及び第2インバータと、
    前記内部クロック信号に応答して、前記第1インバータの出力を前記第1インバータ及び前記第2インバータの入力に伝達するための三状態バッファと、
    前記内部クロック信号に応答して、前記第2インバータの出力を前記信号伝送ラインに伝達するための第2伝送ゲートと、を備えることを特徴とする請求項1に記載のフリップフロップ。
  10. 前記内部クロック生成部は、
    電源電圧と第1ノードとの間に並列に連結された第1及び第2PMOSトランジスタと、
    前記第1ノードと第2ノードとの間に連結された第3PMOSトランジスタと、
    前記第2ノードと接地電圧との間に連結された第1NMOSトランジスタと、
    前記第2ノードと前記接地電圧との間に直列に連結された第2及び第3NMOSトランジスタと、
    前記スキャンイネーブル信号を反転させるための第1インバータと、
    前記第2ノードの出力を反転させる第2インバータと、を備え、
    前記第1PMOSトランジスタ及び前記第3NMOSトランジスタのゲートには、前記スキャンイネーブル信号が印加され、前記第2PMOSトランジスタ及び前記第2NMOSトランジスタのゲートには、前記クロック信号が印加され、前記第3PMOSトランジスタ及び前記第1NMOSトランジスタのゲートには、前記MTCMOS制御信号が印加され、
    前記第2ノードは、前記反転内部クロック信号になり、前記第1インバータの出力は、反転スキャンイネーブル信号になり、前記第2インバータの出力は、前記内部クロック信号になることを特徴とする請求項9に記載のフリップフロップ。
  11. 前記マルチプレクサは、
    電源電圧と第3ノードとの間に直列に連結された第6及び第7PMOSトランジスタと、
    前記電源電圧と前記第3ノードとの間に直列に連結された第8及び第9PMOSトランジスタと、
    前記第3ノードと仮想グラウンドとの間に直列に連結された第6及び第7NMOSトランジスタと、
    前記第3ノードと前記仮想グラウンドとの間に直列に連結された第8及び第9NMOSトランジスタと、を備え、
    前記第6PMOSトランジスタ及び前記第7NMOSトランジスタのゲートには、前記信号伝送ラインが連結され、前記第7PMOSトランジスタ及び前記第8NMOSトランジスタのゲートには、前記スキャンイネーブル信号が印加され、前記第8PMOSトランジスタ及び前記第9NMOSトランジスタのゲートには、前記スキャン入力信号が印加され、前記第9PMOSトランジスタ及び前記第6NMOSトランジスタのゲートには、前記反転スキャンイネーブル信号が印加されることを特徴とする請求項10に記載のフリップフロップ。
  12. 前記第1伝送ゲートは、
    前記第3ノードと前記第1及び第2インバータの入力端との間に並列に連結された第10PMOSトランジスタ及び第10NMOSトランジスタを備え、前記第10PMOSトランジスタのゲートには、前記内部クロック信号が印加され、前記第10NMOSトランジスタのゲートには、前記反転内部クロック信号が印加され、
    前記第2伝送ゲートは、
    前記第2インバータの出力端と前記信号伝送ラインとの間に並列に連結された第11PMOSトランジスタ及び第11NMOSトランジスタを備え、前記第11PMOSトランジスタのゲートには、前記反転内部クロック信号が印加され、前記第11NMOSトランジスタのゲートには、前記内部クロック信号が印加されることを特徴とする請求項11に記載のフリップフロップ。
  13. クロック信号に応答してデータ入力信号をラッチして、データ出力信号に変換させるMTCMOSフリップフロップにおいて、
    前記MTCMOSのノーマル動作時には、入力されたデータを受信し、パルス信号及び内部クロック信号に基づいて入力された前記入力データをラッチし、自身の出力端に伝送して前記フリップフロップの出力データとして出力するためのラッチ部と、
    クロック信号に基づいてパルス信号及び反転パルス信号を発生させるパルス生成部と、
    前記クロック信号に基づいて内部クロック信号及び反転内部クロック信号を発生させ、前記MTCMOSのスリープモード及びノーマルモードを制御するMTCMOS制御信号に応答して、前記MTCMOSのスリープモード時には、前記ノーマル動作時に前記ラッチ部から最終入力されたデータを保存し、前記MTCMOSがノーマル動作に転換する場合に保存されたデータを前記ラッチ部に伝達するデータリテンション機能を行うリテンション用のラッチ部と、を備え、
    前記ラッチ部と前記リテンション用のラッチ部とは、互いにデータをやり取りできる信号伝送ラインに連結されることを特徴とするフリップフロップ。
  14. 前記ラッチ部は、
    前記入力データを受信し、前記パルス信号に応答して、前記入力データを伝達する第1三状態バッファと、
    前記パルス信号に応答して、前記信号伝送ラインの信号を伝達する第2三状態バッファと、
    前記内部クロック信号に応答して、前記第1三状態バッファ及び前記第2三状態バッファの出力を前記信号伝送ラインに伝達する第3三状態バッファと、
    前記第1三状態バッファ及び前記第2三状態バッファの出力を反転させて出力するインバータと、を備え、
    前記インバータの出力は、前記フリップフロップの出力になることを特徴とする請求項13に記載のフリップフロップ。
  15. 前記ラッチ部は
    前記入力データを受信し、前記パルス信号に応答して、前記入力データを伝達する第1三状態バッファと、
    前記パルス信号に応答して、前記信号伝送ラインの信号を伝達する第2三状態バッファと、
    電源電圧と仮想グラウンドとの間に直列に連結されたPMOSトランジスタ、第1NMOSトランジスタ及び第2NMOSトランジスタと、
    前記第1三状態バッファ及び前記第2三状態バッファの出力を反転させて前記ラッチ部の出力信号として出力するインバータと、を備え、
    前記PMOSトランジスタ及び前記第1NMOSトランジスタのゲートには、前記第1三状態バッファ及び前記第2三状態バッファの出力が印加され、前記第2NMOSトランジスタのゲートには、前記反転内部クロック信号が印加され、前記PMOSトランジスタと前記第1NMOSトランジスタとの連結地点は、前記信号伝送ラインに連結されることを特徴とする請求項13に記載のフリップフロップ。
  16. 前記パルス生成部は、
    電源電圧と第1ノードとの間に並列に連結された第1及び第2PMOSトランジスタと、
    前記第1ノードと仮想グラウンドとの間に直列に連結された第1及び第2NMOSトランジスタと、
    電源電圧と仮想グラウンドとの間に直列に連結された第3PMOSトランジスタ及び第3及び第4NMOSトランジスタと、
    第2ノードと仮想グラウンドとの間に連結された第5NMOSトランジスタと、
    前記第1ノードの出力を反転させて出力するための第1インバータと、
    前記第2ノードの出力を反転させて出力するための第2インバータと、を備え、
    前記第1PMOSトランジスタ、前記第1NMOSトランジスタ、前記第3PMOSトランジスタ、及び前記第3NMOSトランジスタのゲートには、前記クロック信号が印加され、前記第2PMOSトランジスタ及び前記第2NMOSトランジスタのゲートには、前記第2ノードの信号が印加され、前記第5NMOSトランジスタのゲートには、前記第1インバータの出力が印加され、前記第4NMOSトランジスタのゲートには、前記第2インバータの出力が印加され、
    前記第1ノードの出力は、前記反転パルス信号になり、前記第1インバータの出力は、前記パルス信号になることを特徴とする請求項13に記載のフリップフロップ。
  17. 前記フリップフロップは、リテンション用のラッチ部を備え、前記リテンション用のラッチ部は、
    前記MTCMOS制御信号を前記内部クロック信号として使用し、
    前記MTCMOS制御信号を反転させて、前記反転内部クロック信号を生成する第1インバータと、
    前記内部クロック信号に応答して、前記信号伝送ラインでの入力を伝達する第1三状態バッファと、
    前記第1三状態バッファの出力を反転させる第2及び第3インバータと、
    前記内部クロック信号に応答して、前記第2インバータの出力を前記第2インバータの入力端及び前記第3インバータの入力端に伝達する第2三状態バッファと、
    前記内部クロック信号に応答して、前記第3インバータの出力を前記信号伝送ラインに伝達する伝送ゲートと、を備えることを特徴とする請求項13に記載のフリップフロップ。
  18. 前記伝送ゲートは、
    前記第3インバータの出力端と前記信号伝送ラインとの間に並列に連結されたPMOSトランジスタ及びNMOSトランジスタを備え、
    前記PMOSトランジスタのゲートには、前記反転内部クロック信号が印加され、前記NMOSトランジスタのゲートには、前記内部クロック信号が印加されることを特徴とする請求項17に記載のフリップフロップ。
  19. 前記ラッチ部は、
    前記入力データを受信し、前記パルス信号に応答して、入力されたデータを伝達する第1三状態バッファと、
    前記パルス信号に応答して、前記信号伝送ラインの信号を伝達する第2三状態バッファと、
    前記第1三状態バッファ及び前記第2三状態バッファの出力を反転させて、前記ラッチ部の出力信号として出力するインバータと、
    電源電圧と前記信号伝送ラインとの間に直列に連結された第1及び第2PMOSトランジスタと、
    前記信号伝送ラインと仮想グラウンドとの間に直列に連結された第1及び第2NMOSトランジスタと、
    前記信号伝送ラインと前記仮想グラウンドとの間に連結される第3NMOSトランジスタと、を備え、
    前記第1PMOSトランジスタ及び前記第1NMOSトランジスタのゲートには、前記第1及び第2三状態バッファの出力端が連結され、前記第2NMOSトランジスタのゲートには、前記反転内部クロック信号が印加され、前記第2PMOSトランジスタ及び前記第3NMOSトランジスタのゲートには、前記フリップフロップをリセットするためのリセット信号が印加されることを特徴とする請求項13に記載のフリップフロップ。
  20. 前記パルス生成部は、
    電源電圧と第1ノードとの間に並列に連結された第1及び第2PMOSトランジスタと、
    前記第1ノードと仮想グラウンドとの間に直列に連結された第1及び第2NMOSトランジスタと、
    前記電源電圧と仮想グラウンドとの間に直列に連結された第3及び第4PMOSトランジスタ、及び第3及び第4NMOSトランジスタと、
    第2ノードと仮想グラウンドとの間に並列に連結された第5及び第6NMOSトランジスタと、
    前記第1ノードの出力を反転させる第1インバータと、
    前記第2ノードの出力を反転させる第2インバータと、を備え、
    前記第1PMOSトランジスタ、前記第1NMOSトランジスタ、前記第3PMOSトランジスタ、及び前記第3NMOSトランジスタのゲートには、前記クロック信号が印加され、前記第2PMOSトランジスタ、前記第2NMOSトランジスタのゲートには、前記第2ノードが連結され、前記第4PMOSトランジスタ及び前記第6NMOSトランジスタのゲートには、前記フリップフロップをリセットするためのリセット信号が連結され、前記第5NMOSトランジスタのゲートには、前記第1インバータの出力信号が印加され、前記第4NMOSトランジスタのゲートには、前記第2インバータの出力信号が印加されることを特徴とする請求項13に記載のフリップフロップ。
  21. 前記フリップフロップは、リテンション用のラッチ部を備え、前記リテンション用のラッチ部は、
    前記MTCMOS制御信号を前記内部クロック信号として使用し、
    電源電圧と第1ノードとの間に並列に連結された第1及び第2PMOSトランジスタと、
    前記第1ノードと第2ノードとの間に連結された第3PMOSトランジスタと、
    前記第2ノードと接地電圧との間に直列に連結された第1及び第2NMOSトランジスタと、
    前記第2ノードと前記接地電圧との間に連結された第3NMOSトランジスタと、
    前記MTCMOS制御信号を反転させて、前記反転内部クロック信号を生成するための第1インバータと、
    前記第2ノードの信号を前記内部クロック信号に応答して伝達するための第1三状態バッファと、
    前記第1三状態バッファの出力を反転させる第2インバータと、
    前記内部クロック信号に応答して、前記第2インバータの出力信号を前記信号伝送ラインに伝達するための伝送ゲートと、
    前記内部クロック信号に応答して、前記伝送ゲートの出力信号または前記信号伝送ラインの信号を伝達するための第2三状態バッファと、を備え、
    前記第1PMOSトランジスタ及び前記第1NMOSトランジスタのゲートには、前記フリップフロップをリセットするためのリセット信号が印加され、前記第2PMOSトランジスタ及び前記第2NMOSトランジスタのゲートには、前記第1インバータの出力信号が印加され、前記第3PMOSトランジスタ及び前記第3NMOSトランジスタのゲートには、前記第1三状態バッファ及び前記第2三状態バッファの出力端が連結されることを特徴とする請求項13に記載のフリップフロップ。
  22. 前記伝送ゲートは、
    前記第2インバータと前記信号伝送ラインとの間に並列に連結された第4PMOS及び第4NMOSトランジスタを備え、
    前記第4PMOSトランジスタにゲートには、前記反転内部クロック信号が印加され、前記第4NMOSトランジスタのゲートには、前記内部クロック信号が印加されることを特徴とする請求項21に記載のフリップフロップ。
  23. 前記ラッチ部は、
    前記入力データを受信し、前記パルス信号に応答して、前記入力データを伝達する第1三状態バッファと、
    前記パルス信号に応答して、前記信号伝送ラインの信号を伝達する第2三状態バッファと、
    前記第1三状態バッファ及び前記第2三状態バッファの出力を反転させて、前記ラッチ部の出力信号として出力する第1インバータと、
    電源電圧と前記信号伝送ラインとの間に並列に連結された第1及び第2PMOSトランジスタと、
    前記信号伝送ラインと仮想グラウンドとの間に直列に連結された第1及び第2NMOSトランジスタと、
    前記フリップフロップをリセットさせるために、セット信号を反転させる第2インバータと、
    前記セット信号と前記内部クロック信号とを入力されて、NOR演算するNORゲートと、を備え、
    前記第1PMOSトランジスタ及び前記第1NMOSトランジスタのゲートには、前記第1及び第2三状態バッファの出力端に連結され、前記第2PMOSトランジスタのゲートには、前記第2インバータの出力端が連結され、前記第2NMOSトランジスタのゲートには、前記NORゲートの出力端が連結されることを特徴とする請求項13に記載のフリップフロップ。
  24. 前記ラッチ部は、
    前記入力データを受信し、前記パルス信号に応答して、前記入力データを伝達する第1三状態バッファと、
    前記パルス信号に応答して、前記信号伝送ラインの信号を伝達する第2三状態バッファと、
    前記第1三状態バッファ及び前記第2三状態バッファの出力を反転させて、前記ラッチ部の出力信号として出力する第1インバータと、
    電源電圧と前記信号伝送ラインとの間に並列に連結された第1及び第2PMOSトランジスタと、
    前記信号伝送ラインと仮想グラウンドとの間に直列に連結された第1ないし第3NMOSトランジスタと、
    前記フリップフロップをリセットするためにセット信号を反転させる第2インバータと、を備え、
    前記第1PMOSトランジスタ及び前記第1NMOSトランジスタのゲートには、前記第1及び第2三状態バッファの出力端が連結され、前記第2PMOSトランジスタ及び前記第2NMOSトランジスタのゲートには、前記第2インバータの出力端が連結され、前記第3NMOSトランジスタのゲートには、前記反転内部クロック信号が印加されることを特徴とする請求項13に記載のフリップフロップ。
  25. パルス信号及び内部クロック信号に基づいて、ノーマル動作モードの間に入力されるデータ信号をラッチし、前記入力されたデータ信号を出力データとして出力し、スキャン信号をラッチすることによってスキャン機能を行うラッチ部と、
    クロック信号及びスキャンイネーブル信号に基づいてパルス信号を発生させるパルス生成部と、
    前記クロック信号及び前記スキャンイネーブル信号に基づいて内部クロック信号及び反転内部クロック信号を発生させ、ノーマルモードからスリープモードに進む時、前記ラッチ部から出力されたデータ信号を受信及び保存し、前記出力されたデータ信号は、前記スリープモードに進む前に前記ラッチ部に最終入力されたデータを備え、前記スリープモードから前記ノーマルモードに転換する場合に、保存されたデータを前記ラッチ部に伝達するスキャン及びリテンション用のラッチ部と、を備えることを特徴とするMTCMOSラッチ装置。
JP2006057462A 2005-03-03 2006-03-03 スキャン機能及びデータリテンション機能を有する高速パルス基盤のフリップフロップ Pending JP2006246486A (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020050017575A KR100630740B1 (ko) 2005-03-03 2005-03-03 스캔 기능을 갖는 고속 펄스 기반의 리텐션 플립플롭

Publications (1)

Publication Number Publication Date
JP2006246486A true JP2006246486A (ja) 2006-09-14

Family

ID=36943557

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006057462A Pending JP2006246486A (ja) 2005-03-03 2006-03-03 スキャン機能及びデータリテンション機能を有する高速パルス基盤のフリップフロップ

Country Status (3)

Country Link
US (1) US7332949B2 (ja)
JP (1) JP2006246486A (ja)
KR (1) KR100630740B1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008078754A (ja) * 2006-09-19 2008-04-03 Renesas Technology Corp 半導体集積回路
JP2010282411A (ja) * 2009-06-04 2010-12-16 Renesas Electronics Corp 半導体集積回路、半導体集積回路の内部状態退避回復方法
KR101612298B1 (ko) 2009-03-13 2016-04-14 삼성전자주식회사 파워 게이팅 회로 및 이를 포함하는 집적 회로

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100833179B1 (ko) 2006-02-15 2008-05-28 삼성전자주식회사 클러스터드 전압 스케일링을 위한 레벨 컨버팅 플립플롭 및펄스 발생기
US8067970B2 (en) * 2006-03-31 2011-11-29 Masleid Robert P Multi-write memory circuit with a data input and a clock input
KR101258530B1 (ko) * 2006-09-01 2013-04-30 삼성전자주식회사 딥스탑 모드를 구현하기 위한 시스템 온 칩 및 그 방법
US7644328B2 (en) 2007-03-22 2010-01-05 Intel Corporation Sharing routing of a test signal with an alternative power supply to combinatorial logic for low power design
JP2009027701A (ja) * 2007-06-20 2009-02-05 Kawasaki Microelectronics Kk 半導体集積回路
US8289060B2 (en) * 2007-06-22 2012-10-16 Freescale Semiconductor, Inc. Pulsed state retention power gating flip-flop
US7710177B2 (en) * 2007-09-12 2010-05-04 Freescale Semiconductor, Inc. Latch device having low-power data retention
US7791389B2 (en) * 2008-01-30 2010-09-07 Freescale Semiconductor, Inc. State retaining power gated latch and method therefor
KR101418016B1 (ko) * 2008-03-18 2014-07-11 삼성전자주식회사 스캔 입력 신호를 갖는 펄스 기반의 플립플롭
JP2009302903A (ja) * 2008-06-13 2009-12-24 Toshiba Corp 半導体集積回路
US20100153759A1 (en) * 2008-12-15 2010-06-17 Singhal Rakshit Power gating technique to reduce power in functional and test modes
US8352819B2 (en) * 2009-04-15 2013-01-08 Arm Limited State retention using a variable retention voltage
US8037382B2 (en) * 2009-08-13 2011-10-11 Advanced Micro Devices, Inc. Multi-mode programmable scan flop
US8301943B2 (en) * 2010-02-15 2012-10-30 Apple Inc. Pulse flop with enhanced scan implementation
US8732499B2 (en) 2011-05-27 2014-05-20 Arm Limited State retention circuit adapted to allow its state integrity to be verified
US8639960B2 (en) 2011-05-27 2014-01-28 Arm Limited Verifying state integrity in state retention circuits
US9595307B2 (en) 2014-05-22 2017-03-14 Samsung Electronics Co., Ltd. Volatile memory device and system-on-chip including the same
US9287858B1 (en) * 2014-09-03 2016-03-15 Texas Instruments Incorporated Low leakage shadow latch-based multi-threshold CMOS sequential circuit
US10048893B2 (en) * 2015-05-07 2018-08-14 Apple Inc. Clock/power-domain crossing circuit with asynchronous FIFO and independent transmitter and receiver sides
US10855257B2 (en) 2017-04-07 2020-12-01 Nxp Usa, Inc. Pulsed latch system with state retention and method of operation
US10374584B1 (en) * 2018-03-08 2019-08-06 Intel Corporation Low power retention flip-flop with level-sensitive scan circuitry
CN111600577A (zh) * 2020-06-22 2020-08-28 深圳比特微电子科技有限公司 反相输出动态d触发器

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1093397A (ja) 1996-09-13 1998-04-10 Nippon Telegr & Teleph Corp <Ntt> D型フリップフロップ
US5973529A (en) * 1997-01-06 1999-10-26 International Business Machines Corporation Pulse-to-static conversion latch with a self-timed control circuit
JPH11112297A (ja) * 1997-10-06 1999-04-23 Nec Corp ラッチ回路及びこのラッチ回路を有する半導体集積回路
JP3917734B2 (ja) * 1997-11-07 2007-05-23 富士通株式会社 半導体記憶装置
JP2001324544A (ja) 2000-05-16 2001-11-22 Oki Electric Ind Co Ltd スキャンパステスト用フリップフロップ回路
US6433601B1 (en) * 2000-12-15 2002-08-13 Koninklijke Philips Electronics N.V. Pulsed D-Flip-Flop using differential cascode switch
US6437623B1 (en) * 2001-02-13 2002-08-20 International Business Machines Corporation Data retention registers
US20030188241A1 (en) 2002-03-29 2003-10-02 International Business Machines Corporation CMOS low leakage power-down data retention mechanism
JP2004037264A (ja) 2002-07-03 2004-02-05 Sharp Corp スキャン機能付きフリップフロップ回路およびスキャンテスト回路
KR100446303B1 (ko) 2002-07-31 2004-08-30 삼성전자주식회사 Mtcmos용 클럭드 스캔 플립플롭
JP2004080172A (ja) 2002-08-13 2004-03-11 Yamaha Corp D型フリップフロップおよび電子回路
US7221205B2 (en) * 2004-07-06 2007-05-22 Arm Limited Circuit and method for storing data in operational, diagnostic and sleep modes
US7154317B2 (en) * 2005-01-11 2006-12-26 Arm Limited Latch circuit including a data retention latch
JP2006339948A (ja) * 2005-06-01 2006-12-14 Renesas Technology Corp パルスラッチ回路及び半導体集積回路

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008078754A (ja) * 2006-09-19 2008-04-03 Renesas Technology Corp 半導体集積回路
KR101612298B1 (ko) 2009-03-13 2016-04-14 삼성전자주식회사 파워 게이팅 회로 및 이를 포함하는 집적 회로
JP2010282411A (ja) * 2009-06-04 2010-12-16 Renesas Electronics Corp 半導体集積回路、半導体集積回路の内部状態退避回復方法

Also Published As

Publication number Publication date
KR100630740B1 (ko) 2006-10-02
KR20060098474A (ko) 2006-09-19
US7332949B2 (en) 2008-02-19
US20060197571A1 (en) 2006-09-07

Similar Documents

Publication Publication Date Title
JP2006246486A (ja) スキャン機能及びデータリテンション機能を有する高速パルス基盤のフリップフロップ
US7154317B2 (en) Latch circuit including a data retention latch
US7154319B2 (en) Pulse-based high-speed low-power gated flip-flop circuit
KR100519787B1 (ko) 슬립 모드에서 데이터 보존이 가능한 mtcmos플립플롭 회로
US20090066386A1 (en) Mtcmos flip-flop with retention function
US9331680B2 (en) Low power clock gated flip-flops
US20050225372A1 (en) High speed flip-flops and complex gates using the same
US7873896B2 (en) High performance pulsed storage circuit
KR20090040519A (ko) 리텐션 플립플롭 장치
US20120114068A1 (en) Flip-flop including keeper circuit
KR100850177B1 (ko) Mtcmos 플립플롭회로
KR102024470B1 (ko) 저전력 플립플롭
KR100446303B1 (ko) Mtcmos용 클럭드 스캔 플립플롭
TW202119759A (zh) 全數位靜態真單相時鐘(tspc)觸發器
US6956421B1 (en) Slave-less edge-triggered flip-flop
KR100630765B1 (ko) 동작속도가 향상된 플립플롭
US8151152B2 (en) Latch circuit including data input terminal and scan data input terminal, and semiconductor device and control method
US6970018B2 (en) Clocked cycle latch circuit
KR100333663B1 (ko) 저전력 및 안정화된 플립플롭
KR20030010246A (ko) 디-플립 플롭 회로
JPH1093397A (ja) D型フリップフロップ
JPH10276069A (ja) データラッチ回路
KR100611309B1 (ko) 래치 및 이를 구비하는 플립플롭
JPH11330917A (ja) フリップ・フロップ
JP3581217B2 (ja) レジスタ回路