JP2006236652A - 安定化層付き酸化物超電導線材とその製造方法 - Google Patents

安定化層付き酸化物超電導線材とその製造方法 Download PDF

Info

Publication number
JP2006236652A
JP2006236652A JP2005046722A JP2005046722A JP2006236652A JP 2006236652 A JP2006236652 A JP 2006236652A JP 2005046722 A JP2005046722 A JP 2005046722A JP 2005046722 A JP2005046722 A JP 2005046722A JP 2006236652 A JP2006236652 A JP 2006236652A
Authority
JP
Japan
Prior art keywords
layer
oxide superconducting
ago
wire
oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005046722A
Other languages
English (en)
Inventor
Kazutomi Kakimoto
一臣 柿本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP2005046722A priority Critical patent/JP2006236652A/ja
Publication of JP2006236652A publication Critical patent/JP2006236652A/ja
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Superconductors And Manufacturing Methods Therefor (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

【課題】 酸化物超電導層上に厚いAg安定化層を有し、優れた超電導特性を有する安定化層付き酸化物超電導線材とその製造方法の提供。
【解決手段】 テープ状の基材1上に成膜法により多結晶中間薄膜2と酸化物超電導層3を形成し、次いでこの酸化物超電導層上に成膜法によりAgO層10を成膜して被処理線材11を作製し、次いでこの被処理線材を酸素雰囲気中において熱処理し、AgO層をAg安定化層に変換するとともに、この変換により生じる酸素を酸化物超電導層に供給する酸素アニール工程を施して酸化物超電導線材12を製造することを特徴とする安定化層付き酸化物超電導線材の製造方法。
【選択図】 図1

Description

本発明は、Agからなる安定化層を備えた酸化物系超電導線材の製造方法に関するもので、この安定化層付き酸化物超電導線材は、超電導発電機、エネルギー貯蔵、電力輸送などへの応用開発が進められているものである。
一般に超電導テープなどの超電導体にあっては、臨界温度と臨界電流と臨界磁界の3つのパラメータで規定される臨界条件の範囲内において超電導状態を維持することができる。一方、超電導体の使用条件によっては、超電導体の一部の領域に常電導の芽が発生して発熱を引き起こし、この領域が伝播して広がると、超電導体の全体が常電導状態に転移するクエンチを引き起こすおそれがある。そこで一般的に、前記超電導体のクエンチ現象を阻止するために、超電導体に良導電性の金属製の安定化材を複合して設け、通電中に前記常電導の芽を生じた場合において、前記の安定化材に電流を流すことができるような構成を採用し、超電導体の安定化を図ることがなされている。
このような安定化材を複合した酸化物系超電導線材の一構成例として、テープ状の基材上に酸化物超電導層を形成し、この酸化物超電導層上に、Agからなる安定化層をスパッタリングあるいは蒸着などの成膜法により形成することが知られている(例えば、特許文献1,2参照。)。
図2は、従来の安定化層を備えた酸化物超電導テープの製造方法を説明する図である。この従来の製造方法では、図2(a)に示すように、テープ状の基材1上に酸化物からなる多結晶中間薄膜2を成膜し、この多結晶中間薄膜2上に酸化物超電導層3を成膜し、次に図2(b)に示すように酸化物超電導層3上にスパッタリング法等によってAg安定化層4を成膜して被処理線材5を作製する。このように得られた被処理線材5は、酸化物超電導層3を形成している結晶自体に電気的な異方性が存在するため、そのままでは臨界電流密度が低い。すなわち、酸化物超電導体はその結晶軸のa軸方向とb軸方向には電気を流し易いが、c軸方向には電気を流しにくいことが知られている。このため酸化物超電導線材として使用するためには、結晶配向性の良好な状態の酸化物超電導体を形成し、そのうえ電気を流そうとする方向に酸化物超電導体結晶のa軸あるいはb軸を配向させ、その他の方向に酸化物超電導体結晶のc軸を配向させる必要がある。そして、臨界電流(Ic)や臨界電流密度(Jc)等の超電導特性の向上の目的から、酸化物超電導体の結晶性を向上させて均質化し、結晶軸の方向を整えるため、被処理線材5を酸素雰囲気炉に入れ、図2(c)に示すように酸素含有ガス雰囲気下で基材1の下側から被処理線材5を酸化物超電導層3の成膜温度よりも低い400〜500℃の温度で被処理線材に熱処理を施し、酸化物超電導層3中に酸素を導入して酸化物超電導層3を理論組成(例えば、YBaCu7−x)に近づけて、酸化物超電導層4とする酸素アニール工程を施すことにより、酸化物超電導線材6が得られる。
特開平7−73759号公報 特開2004−71410号公報
しかしながら、前述した従来技術にあっては、酸化物超電導線材の高Ic化に伴い、Ag安定化層4の膜厚を厚くするに従って、酸素アニール工程中で酸化物超電導層3の超電導特性が劣化し易いという問題があった。
図3は、Ag安定化層4の膜厚を厚くした場合における酸素アニール工程中で生じる酸化物超電導層3の超電導特性の劣化を説明する図である。酸化物超電導層3上にAg安定化層4を厚く成膜した被処理線材5を、図3(a)に示す酸素雰囲気炉中に入れ、酸素含有ガス雰囲気下で基材1側からヒータ7で加熱する。アニール時間が短い場合には、図3(b)に示すように、Ag安定化層4が厚いために該層を通して酸化物超電導層3に酸素が導入されず、酸素不足の酸化物超電導層8となって、得られる酸化物超電導線材の超電導特性が劣化してしまう。一方、アニール時間が長い場合には、各層間の反応が促進され、反応層9が形成されてしまい、得られる酸化物超電導線材の超電導特性が劣化してしまう。
本発明は前記事情に鑑みてなされ、酸化物超電導層上に厚いAg安定化層を有し、優れた超電導特性を有する安定化層付き酸化物超電導線材(以下、酸化物超電導線材と略記する。)とその製造方法の提供を目的とする。
前記目的を達成するため、本発明は、テープ状の基材上に成膜法により多結晶中間薄膜と酸化物超電導層を形成し、次いでこの酸化物超電導層上に成膜法によりAgO層を成膜して被処理線材を作製し、次いでこの被処理線材を酸素雰囲気中において熱処理し、AgO層をAg安定化層に変換するとともに、この変換により生じる酸素を酸化物超電導層に供給する酸素アニール工程を施して酸化物超電導線材を製造することを特徴とする酸化物超電導線材の製造方法を提供する。
本発明の酸化物超電導線材の製造方法において、前記AgO層をスパッタリング法により成膜するとともに、このスパッタリングの際に、AgOターゲット温度が100℃以下となるように冷却しながら成膜を行うことが好ましい。
本発明の酸化物超電導線材の製造方法において、前記AgO層をスパッタリング法により成膜する際に、Ar+Oプラズマによりスパッタリングを行うことが好ましい。
また本発明は、テープ状の基材上に成膜法により多結晶中間薄膜と酸化物超電導層が形成され、該酸化物超電導層上にAg安定化層が形成された酸化物超電導線材であって、前記Ag安定化層が、前記酸化物超電導層上にAgO層を形成した被処理線材を160℃以上に加熱してAgOをAgに変換することによって形成されたものであることを特徴とする酸化物超電導線材を提供する。
本発明は、酸化物超電導層上に成膜法によりAgO層を成膜して被処理線材を作製し、次いでこの被処理線材を酸素雰囲気中において熱処理し、AgO層をAg安定化層に変換するとともに、この変換により生じる酸素を酸化物超電導層に供給する酸素アニール工程を施して酸化物超電導線材を製造することにより、AgO層の膜厚を大きくしても酸素アニール工程で酸化物超電導層に十分な酸素を供給することができ、酸化物超電導層が酸素不足にならずに厚いAg安定化層を持った酸化物超電導線材を製造することができる。
また、酸素アニール工程を実施する際、AgO層がAg安定化層に変換されて酸素が供給されるので、酸化物超電導層に短時間で十分な酸素を供給でき、酸素アニール工程の所要時間を短縮でき、生産効率を向上させることができる。
また、酸素アニール工程の加熱時間を短縮できるので、各層間の反応を抑制でき、優れた超電導特性を持った酸化物超電導線材を製造できる。
以下、本発明の実施の形態を図面を参照して説明する。
図1は、本発明に係る酸化物超電導線材の製造方法の一実施形態を説明する図である。図1中、符号1はテープ状の基材、2は酸化物からなる多結晶中間薄膜、3は酸化物超電導層、4はAg安定化層、7はヒータ、10はAgO層、11は被処理線材、12は酸化物超電導線材である。
本実施形態の製造方法では、まず、図1(a)に示すように、基材1上に多結晶中間薄膜2と酸化物超電導層3を順次成膜する。
基材1の構成材料としては、ステンレス鋼、銅、または、ハステロイなどのニッケル合金などの各種金属材料から適宜選択される長尺の金属テープを用いることができる。この基材1の厚みは、0.01〜0.5mm、好ましくは0.02〜0.15mmとされる。基材1の厚みが0.5mm以上では、後述する酸化物超電導体の薄膜3の膜厚に比べて厚く、オーバーオール(酸化物超電導導体全断面積)あたりの臨界電流密度としては低下してしまう。一方、基材1の厚みが0.01mm未満では、著しく基材1の強度が低下し、酸化物超電導導層3の補強効果を消失してしまう。
この基材1上には拡散バリアとしての多結晶中間薄膜2を成膜法により形成する。この多結晶中間薄膜2は、後に多結晶中間薄膜2の上に形成される酸化物超電導層3の結晶に近い結晶組織を有し、酸化物超電導層3の熱膨張率に近い熱膨張率を有するものが好ましい。よって、多結晶中間薄膜2を構成する材料は、YSZ(イットリア安定化ジルコニア)、SrTiO、MgOなどのセラミックス系の材料が好ましい。この多結晶中間薄膜2を形成する具体的方法は、スパッタ法、真空蒸着法、レーザ蒸着法、化学気相成長法(CVD)などのいずれの成膜法を用いても良い。基材1として長尺のものを用いる場合は、使用する成膜装置の真空チャンバの内部にテープの送出装置と巻取装置を設け、送出装置から送り出した基材1を真空チャンバの内部で連続的に所定の速度で移動させながら巻取装置で巻き取り、移動中の基材に連続成膜処理を行なえば良い。なお、ここで行なう成膜処理においては長尺の基材1を用いることを想定しているので、均質な膜を連続的に長時間成膜することが可能なレーザ蒸着法を用いることが好ましい。
基材1上に多結晶中間薄膜2を形成したならば、次に多結晶中間薄膜2上に酸化物超電導層3を形成する。ここで形成する酸化物超電導層3は、YBaCu7−x、YBaCu、YBaCuなる組成、(Bi,Pb)CaSrCu、(Bi,Pb)CaSrCuなる組成、あるいはTlBaCaCu、TlBaCaCu、TlBaCaCuなる組成などに代表される臨界温度の高い酸化物超電導体からなるものである。
この酸化物超電導層3の成膜においても前記と同様の種々の成膜法を用いることができるが、均質な膜を連続的に長時間成膜することが可能なレーザ蒸着法を用いることが好ましい。このレーザ蒸着を行なうには、ターゲットとして例えばYBaCu7−xなる組成の酸化物あるいは酸化物超電導体ターゲットを使用し、基材を500〜800℃程度の所望の温度に加熱し、真空チャンバの内部を酸素を含む減圧雰囲気とし、基材1を1時間に数10cm程度の速度で移動させながら成膜処理を行えば良い。この処理によって数時間〜数10時間の処理で1〜数μm程度の厚さの酸化物超電導層3を長さ数10cm〜数mにわたり形成することができる。
次に、前記の酸化物超電導層3の上にAgO層10をスパッタリング法により形成し、図1(b)に示す被処理線材11を作製する。このAgO層10をスパッタリング法で形成するには、ターゲット自体にAgO板を用い、スパッタリングの際に、このターゲット温度が100℃を超えないように十分冷却しながらスパッタリングを行う必要がある。また、このスパッタリング時、基材1は100℃以下の温度となるように、常温とするか、必要に応じて冷却してもよい。AgOは、約160℃以上に加熱すると酸素を離してAgに変換するので、スパッタリングの際にターゲット及び基材1側の温度を100℃以下としておけば、スパッタリングの際にAgOの分解を未然に防ぐことができ、安定してAgO層10を形成することができる。
また、このAgO層10の成膜時、スパッタリング装置内の雰囲気ガスは、Ar+O混合ガス雰囲気とし、Ar+Oプラズマによりスパッタリングを行うことが望ましい。このようにAr+Oプラズマによりスパッタリングを行うことで、スパッタリング時にターゲットから叩き出されたAgO粒子が酸素を離してAgに変換されることを抑制することができ、酸化物超電導層3上に高純度のAgO層10を形成することができる。
このAgO層10の厚さは特に限定されないが、後述する酸素アニール工程によってこのAgO層10が変換されて生じるAg安定化層4が十分な安定化作用を発揮し得る厚さとなるように設定することができる。特に、本発明によれば、酸素アニール工程によってAgO層10をAg安定化層4に変換させる際に生じる酸素を酸化物超電導層3に供給できるので、酸化物超電導層3上に直接Agを成膜する従来技術よりも厚いAg安定化層4を形成することができる。
次に、AgO層10を形成した被処理線材11を酸素含有ガス雰囲気とした加熱炉内に入れ、図1(c)に示すように、酸素含有ガス雰囲気下で基材1の下側からヒータ7により被処理線材11を300〜600℃程度、好ましくは400〜500℃程度の温度に加熱する酸素アニール工程を行う。
この酸素アニール工程において前記被処理線材11を160℃以上に加熱すると、AgO層10中のAgOが酸素を放出してAgに変換される。さらに、アニール温度を400〜500℃程度とすれば、AgOから生じたAg粒子同士が結合し、酸化物超電導層3上にAg安定化層4が形成される。
この酸素アニール工程において、AgO層10から放出された酸素の一部は、AgO層10直下の酸化物超電導層3に導入される。この酸素の導入によって酸化物超電導層3を構成する酸化物超電導体の結晶を理論組成(例えば、YBaCu7−x)に近づけることができ、その結果、酸化物超電導体の結晶性が向上して均質化され、結晶軸の方向が整えられる。本実施形態では、酸化物超電導層3の直上に形成したAgO層10から酸素を直接導入できるように構成したので、酸素アニール工程で極めて効率よく酸化物超電導層3に酸素を導入することができ、短時間の加熱処理で酸化物超電導体の結晶性を向上させることができる。
この酸素アニール工程の加熱時間は、1〜100時間、好ましくは5〜60時間、さらに好ましくは20〜50時間の範囲とする。この酸素アニール工程の終了後、炉内を放冷し、加熱炉から酸化物超電導線材12を取り出す。
得られる酸化物超電導線材12は、図1(c)に示すように、基材1上に多結晶中間薄膜2、酸化物超電導層3及びAg安定化層4が順に形成された構造になっている。このAg安定化層4は、前述したAgO層10を加熱してAgからなるAg安定化層4に変換することによって形成されたもので、前述した通り、酸化物超電導層3上に直接Agを成膜する従来技術よりも厚く形成することができる。
本実施形態では、酸化物超電導層3上に成膜法によりAgO層10を成膜して被処理線材11を作製し、次いでこの被処理線材11を酸素雰囲気中において熱処理し、AgO層10をAg安定化層4に変換するとともに、この変換により生じる酸素を酸化物超電導層3に供給する酸素アニール工程を行って酸化物超電導線材12を製造することにより、AgO層10の膜厚を大きくしても酸素アニール工程で酸化物超電導層3に十分な酸素を供給することができ、酸化物超電導層3が酸素不足にならずに厚いAg安定化層4を持った酸化物超電導線材12を製造することができる。
また、酸素アニール工程を実施する際、AgO層10がAg安定化層4に変換されて酸素が供給されるので、酸化物超電導層3に短時間で十分な酸素を供給でき、酸素アニール工程の所要時間を短縮でき、生産効率を向上させることができる。
また、酸素アニール工程の加熱時間を短縮できるので、各層間の反応を抑制でき、優れた超電導特性を持った酸化物超電導線材12を製造できる。
[比較例]
図2に示す従来技術によって、酸化物超電導線材を製造した。
テープ状の基材1上にYSZからなる多結晶中間薄膜2を形成し、この多結晶中間薄膜2上にYBaCu7−xからなる厚さ2μmの酸化物超電導層3を形成し、さらに酸化物超電導層3上に厚さ50μmのAg安定化層4を形成して被処理線材5を作製した。
次に、この被処理線材5を加熱炉に入れ、酸素雰囲気下で500℃に加熱して酸素アニール工程を行った。1〜100時間の範囲でアニール時間を変えて、得られる酸化物超電導線材の臨界電流(Ic)特性を測定し、比較した。その結果、アニール時間が約70時間のところにIc特性のピークが見られ、そのIc値は350Aであった。
[実施例]
図1に示す本発明の製造方法によって、酸化物超電導線材を製造した。
テープ状の基材1上にYSZからなる多結晶中間薄膜2を形成し、この多結晶中間薄膜2上にYBaCu7−xからなる厚さ2μmの酸化物超電導層3を形成し、さらに酸化物超電導層3上にスパッタリング法によって厚さ50μmのAgO層10を形成して被処理線材11を作製した。
次に、この被処理線材5を加熱炉に入れ、酸素雰囲気下で500℃に加熱して酸素アニール工程を行った。1〜100時間の範囲でアニール時間を変えて、得られる酸化物超電導線材12の臨界電流(Ic)特性を測定し、比較した。その結果、Ic特性のピークが短時間側にシフトし、しかもその最高Ic特性が変わらない温度範囲が、20〜50時間であり、比較例とは好ましいアニール時間の傾向が異なっていた。その時のIc値は400Aと比較例よりも高くなった。
本発明に係る酸化物超電導線材の製造方法の一実施形態を示す断面図である。 従来の酸化物超電導線材の製造方法の一例を示す断面図である。 従来法による酸素アニール工程で生じる超電導特性の劣化を説明する断面図である。
符号の説明
1…基材、2…多結晶中間薄膜、3…超電導層、4…Ag安定化層、5,11…被処理線材、6,12…酸化物超電導線材(安定化層付き酸化物超電導線材)、7…ヒータ、10…AgO層。

Claims (4)

  1. テープ状の基材上に成膜法により多結晶中間薄膜と酸化物超電導層を形成し、次いでこの酸化物超電導層上に成膜法によりAgO層を成膜して被処理線材を作製し、次いでこの被処理線材を酸素雰囲気中において熱処理し、AgO層をAg安定化層に変換するとともに、この変換により生じる酸素を酸化物超電導層に供給する酸素アニール工程を施して酸化物超電導線材を製造することを特徴とする安定化層付き酸化物超電導線材の製造方法。
  2. 前記AgO層をスパッタリング法により成膜するとともに、このスパッタリングの際に、AgOターゲット温度が100℃以下となるように冷却しながら成膜を行うことを特徴とする請求項1に記載の安定化層付き酸化物超電導線材の製造方法。
  3. 前記AgO層をスパッタリング法により成膜する際に、Ar+Oプラズマによりスパッタリングを行うことを特徴とする請求項2に記載の安定化層付き酸化物超電導線材の製造方法。
  4. テープ状の基材上に成膜法により多結晶中間薄膜と酸化物超電導層が形成され、該酸化物超電導層上にAg安定化層が形成された酸化物超電導線材であって、前記Ag安定化層が、前記酸化物超電導層上にAgO層を形成した被処理線材を160℃以上に加熱してAgOをAgに変換することによって形成されたものであることを特徴とする安定化層付き酸化物超電導線材。
JP2005046722A 2005-02-23 2005-02-23 安定化層付き酸化物超電導線材とその製造方法 Withdrawn JP2006236652A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005046722A JP2006236652A (ja) 2005-02-23 2005-02-23 安定化層付き酸化物超電導線材とその製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005046722A JP2006236652A (ja) 2005-02-23 2005-02-23 安定化層付き酸化物超電導線材とその製造方法

Publications (1)

Publication Number Publication Date
JP2006236652A true JP2006236652A (ja) 2006-09-07

Family

ID=37044078

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005046722A Withdrawn JP2006236652A (ja) 2005-02-23 2005-02-23 安定化層付き酸化物超電導線材とその製造方法

Country Status (1)

Country Link
JP (1) JP2006236652A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011052736A1 (ja) 2009-10-30 2011-05-05 財団法人国際超電導産業技術研究センター 低交流損失マルチフィラメント型超電導線材及びその製造方法
JP2014002848A (ja) * 2012-06-15 2014-01-09 Fujikura Ltd 酸化物超電導線材およびその製造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011052736A1 (ja) 2009-10-30 2011-05-05 財団法人国際超電導産業技術研究センター 低交流損失マルチフィラメント型超電導線材及びその製造方法
JP2014002848A (ja) * 2012-06-15 2014-01-09 Fujikura Ltd 酸化物超電導線材およびその製造方法

Similar Documents

Publication Publication Date Title
JP5630941B2 (ja) 超伝導体被覆テープのための二軸配向フィルム堆積
JP5016139B2 (ja) 高温超伝導体積層ワイヤ用の2面接合部
JP4713012B2 (ja) テープ状酸化物超電導体
WO2016129469A1 (ja) 超電導線材の製造方法および超電導線材接合用部材
US20110045986A1 (en) Mesh-type stabilizer for filamentary coated superconductors
JP2008210600A (ja) 希土類系テープ状酸化物超電導体及びそれに用いる複合基板
WO2011099301A1 (ja) 酸化物超電導線材及び酸化物超電導線材の製造方法
JP2008310986A (ja) テープ状酸化物超電導体
JP2007220467A (ja) 超電導薄膜材料の製造方法、超電導機器、および超電導薄膜材料
JP2006236652A (ja) 安定化層付き酸化物超電導線材とその製造方法
JP2010238634A (ja) 酸化物超電導線材とその製造方法及びそれに用いる基板の製造装置
JP5624839B2 (ja) 酸化物超電導導体用基材及びその製造方法と酸化物超電導導体及びその製造方法
JP2008130255A (ja) 超電導線材、およびその製造方法
JP2012022882A (ja) 酸化物超電導導体用基材及びその製造方法と酸化物超電導導体及びその製造方法
JP4744266B2 (ja) Gd―Ba―Cu系酸化物超電導長尺体とその製造方法
JP4128358B2 (ja) 酸化物超電導導体の製造方法
JP2009295579A (ja) 被覆された導体のための、形状を変化させた基板の製造方法及び上記基板を使用する被覆された導体
JPH0773759A (ja) 安定化層を備えた酸化物超電導テープの製造方法
JP2603688B2 (ja) 超電導材料の改質方法
JP5764404B2 (ja) 超電導線の製造方法
JPWO2012111678A1 (ja) 超電導線材及び超電導線材の製造方法
JP5739630B2 (ja) Y系超電導線材の製造方法及びy系超電導線材
JPH05213699A (ja) 酸化物超電導体の製造方法
JPH04179004A (ja) 酸化物超電導テープ導体
JP2010238633A (ja) 希土類系厚膜酸化物超電導線材の製造方法

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20080513