JP2006222419A - 電気光学調整器を使用するシステム及び方法 - Google Patents

電気光学調整器を使用するシステム及び方法 Download PDF

Info

Publication number
JP2006222419A
JP2006222419A JP2006013419A JP2006013419A JP2006222419A JP 2006222419 A JP2006222419 A JP 2006222419A JP 2006013419 A JP2006013419 A JP 2006013419A JP 2006013419 A JP2006013419 A JP 2006013419A JP 2006222419 A JP2006222419 A JP 2006222419A
Authority
JP
Japan
Prior art keywords
output beam
optical element
electro
output
array
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006013419A
Other languages
English (en)
Other versions
JP4699908B2 (ja
Inventor
Pradeep K Govil
ケイ.ゴーヴィル プラディープ
James Tsacoyeanes
ツァーコイアンス ジェームズ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ASML Holding NV
Original Assignee
ASML Holding NV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ASML Holding NV filed Critical ASML Holding NV
Publication of JP2006222419A publication Critical patent/JP2006222419A/ja
Application granted granted Critical
Publication of JP4699908B2 publication Critical patent/JP4699908B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70058Mask illumination systems
    • G03F7/70091Illumination settings, i.e. intensity distribution in the pupil plane or angular distribution in the field plane; On-axis or off-axis settings, e.g. annular, dipole or quadrupole settings; Partial coherence control, i.e. sigma or numerical aperture [NA]
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/7055Exposure light control in all parts of the microlithographic apparatus, e.g. pulse length control or light interruption
    • G03F7/70566Polarisation control

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Abstract

【課題】電気光学調整器を使用するシステム及び方法を提供すること。
【解決手段】システム及び方法は、動的に制御可能な光学要素のアレイを使用して、そこを通過して伝播するビームの1つ又は複数の部分を調節する。例えば、調節は、ビームの一部分中の水平と垂直に偏光された光の比を変化させることとすることができる。調節は、適切な電場を光学要素のそれぞれに加えることによって、実施することができ、それは、電気光学調整器になる。一実施例では、偏光器/検光器が、アレイの後に配置され、したがって所望の方向だけが送られる。偏光することは、それによって所望の光度プロフィールが得られ、例えば、ビーム全体にわたって強度を均一にすることができ、或いはビームを部分的又は完全に減衰(例えば遮断)するために使用することができる。
【選択図】図1

Description

本出願は、2004年10月26日出願の米国特許出願第10/972,582号、及び2004年12月7日出願の第11/005,222号に関連し、それらは、ともに参照によってその全体が本明細書に組み込まれる。
本発明は、電気光学調整器に関する。
放射の衝突ビームをパターン形成するパターン発生環境下では、そのビームは、その後対象物上に投影され、放射の照射ビーム及び/又はパターン形成されたビームの特性を制御することは、クリティカルである。これは、対象物上に正確にパターンを形成するために、ビーム及び/又はパターン形成されたビームを正確に制御しなければならないからである。
一般に、パターン形成システムは、静的光学システムを使用し、それは、通常、所望の特性を有した光ビームを生成するために、応用毎に設計され製作される。静的光学システムの実施例では、照射特性の変更が所望される、又は必要になったとき、新しい光学システムを設計して製作しなくてはならず、それは、資金及び時間の観点で高価である。照射源の出力が時間とともに変化し、通常これは考慮することができないので、望ましい結果より悪い結果にもなり得る。
照射器の均一性を制御するための現行の方法は、2つの一般的なクラスに分類される。即ち、静的及び動的な制御である。例えば、Unicom(均一性補正モジュール;uniformity correction module)は、低周波数の均一性変動を補正するために、使用することができる。他の例では、動的に調節可能なスリット(DYAS:dynamically adjustable slit)が、約0.5mmまでの空間周波数の均一性変動を補正するために使用され、それは、走査中に動的に補正する機能も有する。DYASは、不透明フィンガーを使用してフィールド面中の光を整えることによって、照射均一性を調節するために、使用することができる。
現在、均一性変動を補正する方法に対して、いくつかの限界が存在する。第1は、均一性制御が適用される面において、技法によると、その面上の照射セクタ全体とは異なり、縁部からの光がそれほどに遮断されるということである。これは、楕円率エラー及びテレセントリシィ・エラー(telecentricity error)をもたらす。第2に、均一性変動を補正するための機械的手段が、スペースの制約、ロバスト性、及び実現可能なアクチュエータの数が限られることによって、限定されることである。
瞳を塗り潰す均一性及び楕円率を制御するための、1つの現行の方法は、pupilcomを使用することである。Pupicom(瞳補正モジュール;pupil correction module)は、ロッド・ベースの照明器中に実装するように設計された。Pupicomは、バランス全体を補正することができず、範囲が限定される。
瞳を塗り潰す制御のための他の現行の方法は、照明器のNA(開口数)を正確に制御するためのクリーンアップ開口部を使用することである。他の問題が、軸外照明状態のためのクリーンアップ開口部の組み込みに関与し、それは、応用毎に異なる開口部が必要になることである。
したがって、必要なものは、照明の均一性、瞳の塗り潰し、及び/又はクリーンアップ開口部制御をより有効で効率的にもたらすシステム及び方法である。
本発明の一実施例によれば、システムは、リソグラフィ・ツール中で使用される電気光学調整器を含む。システムは、入力光ビームを受光し、変更された偏光状態を有した少なくとも1つの出力ビームを生成する、少なくとも1つの光学要素と、少なくとも1つの光学要素に結合された、少なくとも1つのペアの電極と、少なくとも1つのペアの電極に電気信号を加える制御システムとを含む。電気信号を加えることによって、少なくとも1つの出力ビームの変更された偏光状態が生成される。
本発明の一実施例によれば、リソグラフィ・ツールにおいて電気光学調整器を使用するための方法が提供される。この方法は、以下のステップを含む。少なくとも1つの光学要素を使用することによって、入力ビームの偏光状態を変更して、少なくとも1つの出力ビームを生成するステップ。少なくとも1つのペアの電極を少なくとも1つの光学要素に結合するステップ。制御システムを使用して、少なくとも1つのペアの電極に送られる電気信号を制御するステップ。電気信号を加えることによって、少なくとも1つの出力ビームの変更された偏光状態が生成される。
本発明の他の実施例は、動的に制御可能な光学要素のアレイと、発生器と、フィードバック・システムとを含んだシステムを提供する。発生器は、動的に制御可能な光学要素のアレイに加えられる電場を発生する。フィードバック・システムは、動的に制御可能な光学要素のアレイを通って伝播したビームの少なくとも一部分を検出し、それから制御信号を発生する。電場は、制御信号に基づき発生され、したがって加えられた電場が、少なくとも一方向で、動的に制御可能な光学要素のアレイ中の1つ又は複数の動的に制御可能な光学要素内の屈折率を変化させ、それによってビームの偏光が制御される。
本発明の別の実施例は、以下のステップを含んだ方法を提供する。動的に制御可能な光学要素のアレイ中の各光学要素内の屈折率を、その光学要素のそれぞれに加えたそれぞれの電場を使用して、変化させるステップ。光学要素のそれぞれを通って伝播するビームのそれぞれの部分の偏光状態を、屈折率の変化に基づき変更するステップ。偏光を変更するステップの後で、ビームのそれぞれの部分を検出するステップ。加えた電場を、検出するステップに基づき調節するステップ。
この実施例の一実施例では、方法は、パターン発生器を使用して、放射ビームをパターン形成するステップと、パターン形成されたビームを基板の対象部分上に投影するステップとをさらに含む。
本発明の他の実施例は、以下のステップを含んだ方法を提供する。パターン発生器を使用して放射ビームをパターン形成するステップ。パターン形成されたビームを基板の対象部分に向けて投影するステップ。動的に制御可能な光学要素のアレイ中の各光学要素内の屈折率を、その光学要素のそれぞれに加えたそれぞれの電場を使用して、変化させるステップ。光学要素のそれぞれを通って伝播するパターン形成され投影されたビームのそれぞれの部分の偏光状態を、屈折率の変化に基づき変更するステップ。偏光を変更するステップの後で、パターン形成され投影されたビームのそれぞれの部分を検出するステップ。加えた電場を、検出するステップに基づき調節するステップ。
本発明の別の実施例、特徴、及び利点、並びに本発明の様々な実施例の構造及び動作を、以下に添付の図面を参照して詳細に述べる。
添付図面は、本明細書に組み込まれており、本明細書の一部をなし、本発明の1つ又は複数の実施例を例示し、その記述と合わせて本発明の原理を説明し、当業者が本発明を実施し使用することができるように、さらに働く。
ここで、本発明について、添付図面を参照して述べる。図面では、同じ参照番号は、同一の、又は機能的に類似の要素を示すことができる。さらに、参照番号の最左端の諸数字によって、その参照番号が最初に現れる図面を識別することができる。
概観
具体的な構成及び配置が議論されるが、これは、例示の目的だけで行われていることを理解すべきである。当業者は、本発明の精神及び範囲を逸脱せずに、他の構成及び配置を使用することができることを認識するはずである。この発明は、他の様々な応用で使用することができることも、当業者に明らかなはずである。
本発明の実施例は、動的に制御可能な光学要素のアレイを通って伝播するビームの1つ又は複数の部分を調節するために使用されるアレイを使用するシステム及び方法を提供する。例えば、調節は、ビームの一部分中の水平及び垂直方向に偏光された光の比を変化させることとすることができる。調節は、適切な電場を光学要素のそれぞれに加えることによって、実施することができ、それは、電気光学調整器を形成する。一実施例では、偏光器/検光器が、アレイの後に配置され、したがって所望の方向だけが送られる。偏光することは、それによって所望の光度プロフィールが得られ、例えば、ビーム全体にわたって光度を均一にすることができ、或いはビームを部分的に又は完全に減衰(例えば遮断)するために使用することができる。様々な実施例では、局部的に(例えば、フィールド内の所望の位置で)、又は全体的に(例えば、フィールド全体にわたって)いずれかで、光特性を調節することができる。
例示の光学調整器
図1に、発生器104による電場Eを受ける光学要素102を含んだシステム100を示す。Z軸に対して平行に示されているが、電場Eは、適切に発生器104を配置することによって、x’軸に(例えばページ中へ)平行に、又はy’軸に平行にすることもできるはずである。これら及び他の構成は、本発明の範囲内に含まれると考えられる。ここで示した実施例では、電場は、光学要素102中を進む放射ビーム106の伝播方向に対して垂直である。光学要素102の隅部に、X、Y、及びZ方向での光学要素102の方向を示す。光学要素102に電場を加えることによって、電気光学調整器が形成され、それは、この実施例では、所与の偏光状態を有したビーム106の偏光状態を調整して、偏光が調整された出力ビーム108を生成するために、使用することができる。x’及びz方向に沿ったビーム106の成分の波面又は位相が、加える電場によってその方向の屈折率を変化させることによって、調整される。したがって、水平及び垂直方向に偏光されたビーム106の比は、電場の印加に基づき変化させることができる。
様々な実施例では、光学要素102によって施される、ビーム106の方向の回転量は、加える電圧又はクリスタルの厚さのいずれか、或いはその両方に基づかせることができる。例えば、光学要素の厚さが一定で、電圧を変化させた場合、偏光の回転の変化が実現できる。
一実施例では、偏光器112が、光学要素102の後に配置される。この実施例では、ビーム106の偏光は、最初、矢印110で示すように偏光されており、矢印114の方向に出力ビーム108を配向する偏光器112を使用して、偏光/濾過される。ここに示したように偏光器112が配向されているので、ビーム106の強度は、入射偏光に基づき変化することになり、それは、発生器104によって制御される。一実施例では、偏光器112の方向に依存して、偏光器112に衝突する光は、0から100%まで減衰させることができる。
この実施例では、システム100は、横方向電気光学振幅調整器である。代替実施例では、システム100は、縦方向振幅調整器として動作するように、製作することができることも、理解すべきである。
一実施例では、システム100は、検出器116及びフィードバック経路118を含んだ制御システムも含む。出力ビーム108は、検出器116で受光され、それは、フィードバック経路118を通って発生器104へ送られる制御信号119を発生する。この実施例では、出力ビーム108は、それが所望の許容差になるまで、調節することができる。
システム100が、以下に述べるように、リソグラフィ・システム中に配置されるとき、検出器116は、以下でさらに議論するように、リソグラフィ・システム内の様々な位置に配置することができる。
電気光学調整器を形成するために、例えば、参照によってその全体が本明細書に組み込まれる、2004年10月26日出願の、「電気光学調整器を使用するシステム及び方法(System and Method Utilizing an Electrooptical Modulator)」と題した米国特許出願第10/972,582号に記載されているような、光学要素及び発生器の他の配置を使用することもできることを、理解すべきである。
一実施例では、光学要素102は、クリスタル材料である。例えば、使用することができる1つのクリスタル材料は、リトアニア国ヴィルニアスのEKSMA Co.が製造する三ホウ酸塩リチウム(LiB)(LBO)である。他の実施例では、カリウム二水素リン酸塩(KHPO)(KDPとしても知られる)、又はアンモニウム二水素リン酸塩(NHPO)(ADPとしても知られる)を使用することができ、それらは、LBOと類似の電気光学的特性を示すが、伝達効率がLBOより低い。しかし、他の知られた材料は、本発明の範囲を逸脱することなく使用することもできる。
上記の実施例では、電気光学調整器100は、線形の電気光学的効果を利用しており、その効果は、電場を加えることによる、光学要素(例えばクリスタル)中の異なる方向での屈折率の変化から生じる。この効果は、反転対称性を有しないクリスタル中だけに存在する。これは、楕円方程式の指数で表すことができ、それは、電場によるクリスタルの異方性の変化を表す。以下の方程式は、クリスタル中で任意に選択された直交座標系について、楕円の指数の方程式の一般形を記述したものである。
Figure 2006222419
ここで、nは、使用された材料について、屈折率の定数である。
加えた電場(E)による屈折率(n)の変化は、次のように行列形式で表すことができる。
Figure 2006222419
この表現での第2の行列は、電気光学的テンソルであり、図1に関して上記で議論された。非ゼロ要素がこのテンソル中に存在した場合、材料は、電気光学的効果を示す。
通常、座標系は、電場が加えられた場合、方程式1が次のように変形されるように、決められる。
Figure 2006222419
電気光学的テンソルの性質が正確なことに依存して、電場を加えるための方向は、垂直の方向で屈折率の変化を誘起するように、決定することができる。したがって、電気光学調整器100の特性は、動的な制御が可能である。というのは、屈折率が、電圧に依存しているので、入射する電場成分間で垂直の方向に遅延が誘起されるからである。その方向は、対象のクリスタルの対称性に依存して選択される。遅延は、加えられた電圧及び対応する電気光学的テンソルの成分に比例する。この正味の効果は、2つの方向間で位相差を変化させる電圧を生成することであり、それは、異なる応用に使用することができる。
他の実施例では、照射器及び/又は投影オプティックスの瞳面上に配置された電気光学調整器100によって、全体的に(例えば、イメージ面中のフィールド全体にわたり)、又は局部的に(例えば、イメージ面中のフィールド内の1つ又は複数の部分において)HVバイアスをともに補正するための、楕円率変化が可能になる。
一実施例では、電気光学調整器100のための電気光学システムによって、均一性の変動を補正するための、従来システム中での機械的装置に比較して極めて速い応答時間の達成が可能になる。この速い応答時間によって、線量の均一性を著しく向上させる、走査中のリアルタイム補正が可能になる。
例示の電気光学調整器のアレイ
図2、3、及び4に、本発明の様々な実施例による、電気光学調整器200、300、及び400のアレイ220、320、及び420を示す。図2、3、及び4に示すビームの数、サイズ、及び/又は形状は、単に例示するものであり、電気光学調整器のアレイを使用する具体的な応用に基づく様々な実施例によって、異なる形状及びサイズとすることができ、或いは複数のビームとすることができることを理解すべきである。
図2に、1×n(nは、1より大きい正の整数)の電気光学調整器200のアレイ220を示し、それぞれの調整器は、本発明の一実施例によって、調整器100に類似とすることができる。各調整器200は、調整器200の2つの対向する側面に結合された電極222と、2つの対向する末端部に結合された支持部224とを有する。この斜視図では、電極222は、垂直方向の電極である。この構成によって、アレイ220を通って伝播するビーム206の一方向調整が可能になる。この実施例では、ビーム206は、長方形の横断面を有する。したがって、ビーム206は、ビーム206の横断面に対するアレイ220及び電極222の方向に依存して、X又はY方向の1つで調整することができる。4つの電気光学調整器200が示されているが、本発明の範囲に含まれると意図されるが、任意の数を使用することができることを理解すべきである。
一実施例では、電極は、ここで示すような水平の代わりに、光学要素200間で垂直に配置することができる。このようにして、上記及び以下に述べるように、ビーム206のそれぞれの部分の偏光を調整することができる。
図3に、電気光学調整器300のスタックされたn×m(n及びmは、1より大きい、又はそれと等しい正の整数)のアレイ320を示してあり、それぞれの調整器は、本発明の一実施例によって、調整器100に類似とすることができる。この実施例では、第1のスタック、スタックAは、電気光学調整器300Aを含み、第2のスタック、スタックBは、電気光学調整器300Bを含む。第1及び第2のスタックは、隣接した点線328として示してある。スタックを追加して使用することができるはずであることも、理解すべきである。図1の電気光学調整器100を参照すると、スタックAは、電気光学調整器100と類似に配向され、一方、スタックB中の電気光学調整器300Bは、電気光学調整器300Aに対してy軸のまわりを90°回転されており、またその逆も同じである。
各調整器300は、その2つの対向する側面に結合された電極326を有する。アレイ320は、調整器300の2つの対向する末端部に結合された支持部324も含む。この配置によって、アレイ320を通って伝播するビーム306の2方向調整が可能になる。この実施例では、ビーム306は、長方形の横断面を有し、そのビームは、ビーム306の横断面に対してアレイ320及び電極326が配向されているので、X及びY方向で調整することができる。24個の電気光学調整器300が示されているが、本発明の範囲に含まれると意図されるが、任意の数を使用することができることを理解すべきである。
一実施例では、光学要素300間で、水平の電極の代わりに垂直の電極を使用することができる。
図4A、4B、及び4Cに、本発明の様々な実施例による、電気光学調整器400の様々なアレイを示す。これらは、構成のセットを余すところなく示すのではなく、構成を例示したセットを示すだけのものである。
図4Aに、環状セクションを含んだアレイ420Aを示し、そこでは、各セクションが、電気光学調整器400である。上記に議論したアレイ220及び320中の調整器200及び300に類似した調整器400は、上記に議論した機能を可能にするために、それらの側面に結合された電極422/426を有する。5個の環状セクションとして示されているが、任意の数の環状セクションを使用することができるはずである。同じように偏光を変化させるために、1つ又は複数の環状セクションを合わせて使用することもできる。
図4Bに、セクタを含んだアレイ420Bを示し、そこでは、各セクタが、本発明の一実施例によって、電気光学調整器400である。上記に議論したアレイ220及び320中の調整器200及び300と類似である調整器400は、上記に議論した機能を可能にするために、それらの側面に結合された電極422/426を有する。6個のセクタとして示されているが、任意の数のセクタを使用することができ、それは用途に特化される。
図4Cに、セクタを含んだアレイ420Cを示し、そこでは、1つ又は複数のセクタが、本発明の一実施例によって、環状セクションの1つ又は複数の部分を含む。この実施例では、各セクタ及び各環状セクションは、別個の電気光学調整器400とすることができる。上記に議論したアレイ220及び320中の調整器200及び300と類似である調整器400は、上記に議論した機能を可能にするために、それらの側面に結合された電極422/426を有する。任意の数のセクタ及び/又は環状セクションを使用することができる。
一実施例では、複数の同心アレイを使用することができるとき、電極は、アレイ上に衝突する放射ビームの隣接しない部分を変化させることができるように、配置し励磁することができる。
一実施例では、この配置によって、均一性変動中の高空間周波数成分の補正が可能になる。
一実施例では、アレイは、比較的高速で動作し、それによってイメージ面のフィールドの走査中、空間の均一性補正が可能になる。
一実施例では、偏光変化が、セクタに基づき、それによってセクタに合わせた偏光変化の制御が可能になる。環状リングを有した、図4A及び4Cで上記に示した実施例では、偏光はリングに合わせて変化させることができる。
一実施例では、異なる構成によって、異なる瞳位置で偏光の変化が可能になり、それによって異なる極の角度(例えばセクタの幅、セクタの角度幅)が決まり、異なる照射モードが可能になる。例えば、4個の環状セクタを使用したとき、四極子照射モードを実際、使用することができる。他の実施例では、例えば環状構成で異なる半径の6個のリングを選択することによって、六極子を使用することができる。他の実施例では、環状セクタの位置又は部分が、例えば累積的な環状リングの厚さを調節するように、半径方向に選択される。
例示の電極配置
図5、6、及び7に、本発明の様々な実施例による、電気光学調整器700上の電極722/726の様々な配置について、それぞれ端面図、側面図、及び斜視図を示す。上記に述べた実施例では、電極は、1つ又は複数の電気光学調整器の2つの対向する側面、又は対向する側面の2つのセットのいずれかに結合された。しかし、図5、6、及び7に示すように、複数の電極722/726は、電気光学調整器700の各側面に結合することができる。これは、調整器700を通って伝播する1つ又は複数の放射ビーム(図示せず)の制御性を高めるために、実施することができる。この斜視図では水平に示されているが、垂直に結合された電極を使用することもできる。
したがって、様々な配置で、光学要素102の側面、又は光学要素102のアレイに結合された電極722/726を使用することによって、光学要素102、又はそのアレイを通って伝播する光は、必要に応じて又は所望のように、極めて正確に制御、又は修正することができる。したがって、光の特性、例えば均一性、楕円率、テレセントリシティ(telecentricity)、又は同様なものは、必要に応じて又は所望のように、修正することができる。上記又は以下に議論するように、これは、例えば照射又は投影システム中で瞳の塗り潰し、又は形状を制御するために、使用することができる。
ビームが、電気光学調整器を通って入射面中に送られ、出射面から出るような上記の諸実施例が議論されたが、他の実施例では、入射表面と反対側の表面が反射コーティング、層、物質、又は材料を有することができることを理解すべきである。即ち、ビームが電気光学調整器を通って送られる代わりに、そのビームは、電場を使用してその特性が変化された後、入射面と反対側の表面から反射されて、入射面から外に戻される。他の実施例では、反射面は、入射面とは反対側に置かないことができ、又は光が、3つの異なる面から入射し、反射し、出射することができる。
例示の強度均一性配置
図8に、本発明の一実施例による光度均一システム800を示す。システム800は、電気光学調整器802のアレイと、検光器804(例えば、強度均一制御検光器)(偏光器としても知られ、そう呼ばれる)とを含む。放射ビーム808の個々の部分806−1から806−n(nは、1より大きい、又はそれに等しい正の整数)が、調整器802上に衝突する。一実施例では、ビーム806のビーム部分808が、修正されて出力ビーム810−1から810−nを形成する。出力ビーム810は、偏光器804上に衝突し、修正されて出力ビーム812−1から812−nを形成することができる。
この実施例では、各入力ビーム808−1から808−nの偏光状態は、各電気光学調整器802−1から802−nを使用して変化させることができる。ここに示した実施例では、部分808−1の偏光方向は、調整器802−1によって変化せずに出力ビーム810−1を形成し、部分808−2の偏光方向は、調整器802−2によって角度αだけ回転して出力ビーム810−2を形成し、部分808−3の偏光方向は、角度βだけ回転して出力ビーム810−3を形成する。上記に述べたように、偏光方向の回転は、加える電場の大きさに基づく。例えば、これは、フィードバック・システム116、118、及び119を使用して制御することができる。
次いで、アレイ802の後に偏光器804を配置することによって、部分812−1及び812−2として示すように、一定の方向だけが送られて出力ビーム812を形成し、それによって実際、強度調節が実施される。偏光器804は、特定の偏光状態を送って強度を変化させる。例えば、ビーム806が、一方向で線形であり、ビーム806内の一位置808−nで強度を変化させることが所望された場合、その位置808−nは、その調整器802−nを使用して楕円にすることができるはずである。これは、その方向の線形成分を減少する。即ち、偏光器804は、所望の角度で入射した光を送るだけであり、その偏光角度以外のすべては、排除される。即ち、光度は、ビーム806のその部分808−nで変化する。したがって、最終出力ビーム812は、所望の光度プロフィールを有する。
一実施例では、これによって、ビーム806の横断面中の様々な部分808−nにおける強度調整が可能になり、それは、電気光学調整器802−nのアレイの使用を介して、異なる偏光状態又は角度を適用することによって実施される。したがって、出力ビーム810−nが偏光器804を通過したとき、光度の変動が、出力ビーム812中のビーム806の横断面全体にわたって見られる。
例えば、ビーム806がy方向で線形の場合(偏光状態)、調整器802−nが電圧を加えられたときに複屈折状態になるので、調整器802−nを使用して、2つの屈折率間の関係を変化させる。実際、ビーム806の各部分808−nは、2つの成分に分けられる。一方の成分は、他方の成分より速く各調整器802−n中を進み、それによってそれぞれの出力ビーム810−nが楕円に偏光される。それぞれの出力ビーム810−nが線形偏光器804中を進むとき、一方の成分は、除去され、他方の成分は、減少して出力ビーム812中の強度変動を補正する。
一実施例では、ビーム806は、線形に偏光され、偏光器804を通過後まで、この状態に保持される。システム800から出るビームが、ランダムに偏光されるが、所望の強度プロフィールをなお有するようにすることを可能にするために、偏光器804の後で、ランダム偏光装置(図示せず)が使用される。
一実施例では、システム800は、ビーム806を生成する照射システム中に配置される。例えば、以下で議論するリソグラフィ環境下では、フィードバック信号が、ビーム横断面のイメージ面のモニタ強度から送られる。ビーム全体にわたって光度の均一性を制御するために変化させることが必要な、ビーム内の偏光状態が決定され、調整器802−nを制御するために使用される。他の実施例では、フィードバックは、光がリソグラフィ・システムのパターン発生器に衝突する前に検出された光に、基づかせることができる。
一実施例では、偏光器は必要がなく、これは削除される。例えば、異なる方向を有したアレイの形で電気光学的調整を構成することによって、異なる偏光状態を有した出力ビームが得られる。
一実施例では、システム800は、瞳塗り潰し均一性及び楕円率を制御するために、及び/又はクリーンアップ開口部として使用するために、照射器の瞳に配置される。各調整器802−nの発生器(具体的に図示せず)の電圧を調節することによって、各調整器802−nから出射する偏光状態は、アレイ802に入射したときと同じ偏光状態から、楕円又は入射ビームから90°回転した偏光状態までの範囲を取ることができるはずである。どんな場合でも、水平に偏光された光と垂直に偏光された光との比は、要素802−n毎に連続的に変化させることができる。偏光器804は、線形検光器として働き、所望の偏光状態を選び出す。最終結果は、必要なレベルまでの、所望の瞳塗り潰しの空間周波数の強度補正である。
一実施例では、軸外照射には必要になるように、不要な周波数を完全に除去するために、偏光状態は、ビーム806が検光器804をまったく通過しないように、90°回転されるはずである。そのような構成では、システム800は、クリーンアップ開口部として働くはずである。
一実施例では、システム800は、少なくとも瞳を有した光学システムの後に、配置することができる。瞳のシグマは、測定することができ、それを使用して各調整器802−nを制御し、システム800を調節し、それによって所要のシグマが得られるまで、例えば光度の大きさを制御することによってクリーンアップ開口部又は開口数を修正することができる。
例示の環境;リソグラフィ
図9、10、及び11に、本発明の様々な実施例による、電気光学調整器をその中に有した様々なリソグラフィ・システム900、1000、及び1100を示す。これらのシステムでは、照射システム902/1002/1102からの放射が、パターン発生器904/1004/1104を照射してパターン形成された光を生成し、それは、パターン発生器904/1004/1104から投影システム908/1008/1108を経由して工作物906/1006/1106に向けられる。
システム1000では、光は、ビーム・スプリッタ1005を介してパターン発生器1004と行き来するように向けられる。
一実施例では、パターン形成された光916/1016/1116は、フィードバック・システム918/1018/1118において、検出器920/1020/1120によって、受光することができる。パターン形成され受光された光916/1016/1116を表す信号922/1022/1122が、検出器920/1020/1120から制御器922/1022/1122に送られて、制御信号924/1024/1124を生成するために使用される。制御信号924/1024/1124は、光学的特性、例えば上記で議論した強度、均一性、楕円率、テレセントリシティなどについての実際の(測定された)値対所望値に基づく、補償又は調節信号とすることができる。例えば、図1に示した実施例では、制御信号924は、発生器104のノード110において受け取られる制御信号119であり、それは、電場Eの発生を動的に制御して、光学要素102を通過する光ビーム106の伝播を動的に制御するために使用される。
様々な実施例では、工作物906/1006/1106は、ただしこれらに限定されないが、基板、ウェハ、フラット・パネル表示基板、プリント・ヘッド、マイクロ又はナノ流体デバイス、又は類似の物である。
知られているように、照射システム902/1002/1102は、光源910/1010/1110と、照射オプティックス912/1012/1112とを含むことができ、パターン発生器は、オプティックス914/1014/1114を含むことができる。これらのオプティックスの1つ又はその両方は、1つ又は複数の光学要素(例えばレンズ、ミラーなど)を含むことができる。例えば、オプティックス912/1012/1112の1つ又はその両方は、上記に述べた電気光学調整器又は調整器のアレイのいずれでも含むことができ、それは、照射光926/1026/1126がパターン発生器904/1004/1104に到達する前に、照射光を動的に制御するために使用することができる。これは、従来の環状単一極、複数極、又はクェーサー照明モードの1つを制御するために使用することができる。
一実施例では、投影システム908/1008/1108は、1つ又は複数の光学要素(例えばレンズ、ミラーなど)を含む。例えば、投影システム908/1008/1108は、上記に述べた電気光学調整器又は調整器のアレイのいずれも含むことができ、それは、パターン形成された光916/1016/1116が工作物906/1006/1106に到達する前に、そのパターン形成された光を動的に制御するために使用することができる。
様々な実施例では、パターン発生器904/1004/1104は、当業者に明らかになるはずのように、マスク・ベース又はマスクなしのパターン発生器とすることができる。マスク・ベース又はマスクなしのシステムは、リソグラフィ、フォトリソグラフィ、マイクロリソグラフィ、また浸漬式リソグラフィのシステムと関連付けることができる。
例えば、リソグラフィ・システム900、1000、及び1100の1つで、上記に述べた電気光学調整器のアレイの1つなど、アレイを使用して、レチクルに向ける光の配分を切り換えることによって、均一性変動が能動的に制御され、アレイ中の各電気光学調整器にかかる電圧を変化させることによって、光損失量が減少する。
一実施例では、システム900、1000、又は1100中で使用される電気光学調整器は、パターン発生器904/1004/1104、又は工作物906/1006/1106が配置される面のいずれかにおいて、光の角度配分を制御し、瞳を塗り潰すための、異なって回折するアレイの必要を実際無くすために使用することができる。
一実施例では、システム900、1000、又は1100中で使用される電気光学調整器は、投影システム908/1008/1108中で、瞳の塗り潰し、又は形状を制御するために使用することができる。
例示の動作
図12に、本発明の一実施例による方法1200を表すフローチャートを示す。ステップ1202で、動的に制御可能な光学要素のアレイ中の各光学要素内の屈折率が、光学要素のそれぞれに加えられたそれぞれの電場を使用して、変更される。ステップ1204で、光学要素のそれぞれを通って伝播するビームのそれぞれの部分の偏光状態が、屈折率の変化に基づき、変更される。ステップ1206で、ビームの部分のそれぞれが、偏光を変化させるステップの後で検出される。ステップ1208で、加えた電場が、検出するステップに基づき、調節される。
図13に、本発明の一実施例による方法1300を表すフローチャートを示す。ステップ1302で、動的に制御可能な光学要素のアレイ中の各光学要素内の屈折率が、光学要素のそれぞれに加えられたそれぞれの電場を使用して、変更される。ステップ1304で、光学要素のそれぞれを通って伝播するビームのそれぞれの部分の偏光状態が、屈折率の変化に基づき、変更される。ステップ1306で、ビームの部分のそれぞれが、偏光を変化させるステップの後で検出される。ステップ1308で、加えた電場が、検出するステップに基づき、調節される。ステップ1310で、放射ビームが、パターン発生器を使用してパターン形成される。ステップ1312で、パターン形成されたビームが、基板の対象部分上に投影される。
図14に、本発明の一実施例による方法1400を表すフローチャートを示す。ステップ1402で、放射ビームが、パターン発生器を使用してパターン形成される。ステップ1404で、パターン形成されたビームが、基板の対象部分に向けて投影される。ステップ1406で、動的に制御可能な光学要素のアレイ中の各光学要素内の屈折率が、光学要素のそれぞれに加えられたそれぞれの電場を使用して、変更される。ステップ1408で、光学要素のそれぞれを通って伝播する、パターン形成され投影されたビームのそれぞれの部分の偏光状態が、屈折率の変化に基づき、変更される。ステップ1410で、パターン形成され投影されたビームの部分のそれぞれが、偏光を変化させるステップの後で検出される。ステップ1412で、加えた電場が、検出するステップに基づき、調節される。
本発明の様々な実施例を上記に述べてきたが、これらは、例としてだけで提示されており、限定するものでないことを理解すべきである。その形及び細部において様々な変更が、本発明の精神及び範囲から逸脱することなく、その中で実施できることは、当業者に明らかになるはずである。したがって、本発明の広がり及び範囲は、上記に述べた例示の実施例のいずれにも限定されるべきでなく、特許請求の範囲及びその等価物だけによって定義されるべきである。
概要及び要約の章ではなく、詳細な説明の章が、請求項を解釈するのに使用されることを企図していると理解すべきである。概要及び要約の章は、本発明者(達)が考察するように、1つ又は複数の、ただしすべてではない、本発明の例示の実施例を述べることができ、したがって本発明及び特許請求の項をどのようにも限定しないことが、企図される。
本発明の一実施例による電気光学調整器を示す図である。 本発明の一実施例による、電気光学調整器のアレイを示す図である。 本発明の一実施例による、電気光学調整器のアレイを示す図である。 本発明の一実施例による、電気光学調整器のアレイを示す図である。 本発明の一実施例による、電気光学調整器上の電極の配置を示す図である。 本発明の一実施例による、電気光学調整器上の電極の配置を示す図である。 本発明の一実施例による、電気光学調整器上の電極の配置を示す図である。 本発明の一実施例による光度均一システムを示す図である。 本発明の一実施例による、電気光学調整器をその中に有したリソグラフィ・システムを示す図である。 本発明の一実施例による、電気光学調整器をその中に有したリソグラフィ・システムを示す図である。 本発明の一実施例による、電気光学調整器をその中に有したリソグラフィ・システムを示す図である。 本発明の一実施例による方法を表すフローチャート図である。 本発明の一実施例による方法を表すフローチャート図である。 本発明の一実施例による方法を表すフローチャート図である。
符号の説明
E 電場
X、Y、Z 座標軸
α、β 角度
100 システム、電気光学調整器
102 光学要素
104 発生器
106 放射ビーム
108 出力ビーム
110 矢印
112 偏光器
114 矢印
116 検出器、フィードバック・システム
118 フィードバック経路、フィードバック・システム
119 制御信号、フィードバック・システム
200 電気光学調整器、光学要素
206 ビーム
220 アレイ
222 電極
224 支持部
300A 電気光学調整器
300B 電気光学調整器
320 アレイ
324 支持部
326 電極
328 点線
400 電気光学調整器
420A アレイ
420B アレイ
420C アレイ
422 電極
426 電極
700 電気光学調整器
722 電極
726 電極
800 光度均一システム、システム
802 アレイ
802−1〜802−n 電気光学調整器、要素
804 検光器、偏光器
806 ビーム
806−1〜806−n 部分
808 放射ビーム、ビーム部分
808−1〜808−n 入力ビーム、位置、部分
810 出力ビーム
810−1〜810−n 出力ビーム
812 出力ビーム
812−1〜812−n 修正された出力ビーム、部分
900 リソグラフィ・システム
902 照射システム
904 パターン発生器
906 対象物
908 投影システム
910 光源
912 照射オプティックス
914 オプティックス
916 光
920 検出器
922 制御器
924 制御信号
1000 リソグラフィ・システム
1002 照射システム
1004 パターン発生器
1005 ビーム・スプリッタ
1006 対象物
1008 投影システム
1010 光源
1012 照射オプティックス
1014 オプティックス
1016 光
1018 フィードバック・システム
1020 検出器
1022 制御器
1024 制御信号
1100 リソグラフィ・システム
1102 照射システム
1104 パターン発生器
1106 対象物
1108 投影システム
1110 光源
1112 照射オプティックス
1114 オプティックス
1116 光
1118 フィードバック・システム
1120 検出器
1122 制御器
1124 制御信号
1200 方法
1300 方法
1400 方法

Claims (23)

  1. リソグラフィ・ツール中で使用するための電気光学調整器を含むシステムにおいて、
    入力光ビームを受光し、偏光状態が変化した少なくとも1つの出力ビームを生成する少なくとも1つの光学要素と、
    前記少なくとも1つの光学要素に結合された電極の少なくとも1つのペアと、
    前記電極の少なくとも1つのペアに電気信号を加える制御システムとを含むシステムであって、
    前記電気信号の前記印加が、前記少なくとも1つの出力ビームの前記変化した偏光状態を生成するシステム。
  2. 前記電極の少なくとも1つのペアの第1及び第2の電極が、前記光学要素の対向する側面上に使用され、したがって前記少なくとも1つの出力ビームの複数のビームが生成される、請求項1に記載のシステム。
  3. 前記1つ又は複数の光学要素の少なくとも2つが、前記少なくとも1つの出力ビームの少なくとも2つを生成するために、使用される、請求項1に記載のシステム。
  4. 放射ビームを生成する照射装置と、
    前記ビームをパターン形成し、対物面上に位置するパターン発生器と、
    前記パターン形成されたビームを基板の対象部分上に投影し、瞳面を含んだ投影システムとをさらに含み、
    前記調整器が、前記対物面又は瞳面の少なくとも1つの中に位置する、請求項1に記載のシステム。
  5. 前記少なくとも1つの出力ビームの少なくとも一部分を検出し、前記制御システムへ送られるフィードバック信号をそこから発生するために配置されたフィードバック・システムをさらに含む、請求項1に記載のシステム。
  6. 前記少なくとも1つの出力光ビームを受光し、均一な強度プロフィールを有した第2の出力ビームをそこから生成するために配置された検光器をさらに含む、請求項1に記載のシステム。
  7. 前記少なくとも1つの出力光ビームを受光し、前記少なくとも1つの出力ビーム毎に所望の出力強度を有した第2の出力ビームを生成するために配置された検光器をさらに含む、請求項1に記載のシステム。
  8. 前記調整器の後に配置された光学システムと、
    前記光学システムの瞳の実際のシグマ値を測定し、前記制御システムへ送られる制御信号を発生する検出器とをさらに含む、請求項1に記載のシステム。
  9. 前記制御システムが、前記光学システムのクリーンアップ開口部又は開口数を調節して、所望のシグマ値を生成する、請求項8に記載のシステム。
  10. 前記少なくとも1つの光学要素のアレイをさらに含み、
    前記アレイ中の前記少なくとも1つの光学要素のそれぞれが、前記少なくとも1つの出力ビームのそれぞれの部分の偏光状態を変化させるために使用される、請求項1に記載のシステム。
  11. 前記リソグラフィ・システムが、半導体ウェハ、又はフラット・パネル表示基板の1つを露光するために使用される、請求項1に記載のシステム。
  12. 請求項1に記載の前記システムを使用した、フラット・パネル表示装置の形成。
  13. リソグラフィ・ツール中で電気光学調整器を使用するための方法において、
    少なくとも1つの光学要素を使用して、入力ビームの偏光状態を変化させて、少なくとも1つの出力ビームを生成するステップと、
    前記少なくとも1つの光学要素に電極の少なくとも1つのペアを結合するステップと、
    制御システムを使用して、前記電極の少なくとも1つのペアに送られる電気信号を制御するステップとを含む方法であって、
    前記電気信号の前記印加が、前記少なくとも1つの出力ビームの前記変化した偏光状態を生成する方法。
  14. 前記少なくとも1つの出力ビームの複数のビームが生成されるように、前記光学要素の対向した側面上で使用される、前記電極の少なくとも1つのペアの第1及び第2の電極を結合するステップをさらに含む、請求項13に記載の方法。
  15. 前記1つ又は複数の光学要素の少なくとも2つを使用して、前記少なくとも1つの出力ビームの少なくとも2つを生成するステップをさらに含む、請求項13に記載の方法。
  16. フィードバック・システムを使用して、前記少なくとも1つの出力ビームの少なくとも一部分を検出するステップと、
    前記制御システムに送られる前記検出するステップからのフィードバック信号を発生するステップとをさらに含む、請求項13に記載の方法。
  17. 前記少なくとも1つの出力光ビームを受光し、均一な強度プロフィールを有した第2の出力ビームをそこから生成する検光器を配置するステップをさらに含む、請求項13に記載の方法。
  18. 前記少なくとも1つの出力光ビームを受光し、前記少なくとも1つの出力ビーム毎に所望の出力強度を有した第2の出力ビームを生成する検光器を配置するステップをさらに含む、請求項13に記載の方法。
  19. 前記調節器の後に光学システムを配置するステップと、
    前記光学システムの瞳の実際のシグマ値を測定するステップと、
    前記制御するステップ中に使用される制御信号を、前記測定するステップに基づき発生するステップとをさらに含む、請求項13に記載の方法。
  20. 前記制御システムが、前記光学システムのクリーンアップ開口部又は開口数を調節して、所望のシグマ値を生成する、請求項19に記載の方法。
  21. 前記少なくとも1つの光学要素のアレイを形成するステップをさらに含み、
    前記アレイ中の前記少なくとも1つの光学要素のそれぞれが、前記少なくとも1つの出力ビームのそれぞれの部分の偏光状態を変化させるために使用される、請求項13に記載の方法。
  22. 半導体ウェハ又はフラット・パネル表示基板の1つを露光するために、前記リソグラフィ・システムを使用するステップをさらに含む、請求項13に記載の方法。
  23. 請求項22に記載の前記方法を使用した、フラット・パネル表示装置の形成。
JP2006013419A 2005-01-24 2006-01-23 電気光学調整器を使用するシステム及び方法 Expired - Fee Related JP4699908B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US11/039,900 US20060164711A1 (en) 2005-01-24 2005-01-24 System and method utilizing an electrooptic modulator
US11/039,900 2005-01-24

Publications (2)

Publication Number Publication Date
JP2006222419A true JP2006222419A (ja) 2006-08-24
JP4699908B2 JP4699908B2 (ja) 2011-06-15

Family

ID=36696468

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006013419A Expired - Fee Related JP4699908B2 (ja) 2005-01-24 2006-01-23 電気光学調整器を使用するシステム及び方法

Country Status (2)

Country Link
US (1) US20060164711A1 (ja)
JP (1) JP4699908B2 (ja)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150036786A (ko) 2003-04-09 2015-04-07 가부시키가이샤 니콘 노광 방법 및 장치, 그리고 디바이스 제조 방법
TWI569308B (zh) 2003-10-28 2017-02-01 尼康股份有限公司 照明光學裝置、曝光裝置、曝光方法以及元件製造 方法
TWI519819B (zh) * 2003-11-20 2016-02-01 尼康股份有限公司 光束變換元件、光學照明裝置、曝光裝置、以及曝光方法
TWI395068B (zh) * 2004-01-27 2013-05-01 尼康股份有限公司 光學系統、曝光裝置以及曝光方法
TWI412067B (zh) 2004-02-06 2013-10-11 尼康股份有限公司 偏光變換元件、光學照明裝置、曝光裝置以及曝光方法
US7876420B2 (en) * 2004-12-07 2011-01-25 Asml Holding N.V. System and method utilizing an electrooptic modulator
KR20080066041A (ko) * 2005-11-10 2008-07-15 가부시키가이샤 니콘 조명 광학 장치, 노광 장치 및 노광 방법
US7738079B2 (en) * 2006-11-14 2010-06-15 Asml Netherlands B.V. Radiation beam pulse trimming
KR101624009B1 (ko) 2009-07-31 2016-05-24 칼 짜이스 에스엠티 게엠베하 광학 빔 편향 소자 및 조정 방법
US20110037962A1 (en) * 2009-08-17 2011-02-17 Nikon Corporation Polarization converting unit, illumination optical system, exposure apparatus, and device manufacturing method
US20110205519A1 (en) * 2010-02-25 2011-08-25 Nikon Corporation Polarization converting unit, illumination optical system, exposure apparatus, and device manufacturing method
DE102011084637A1 (de) * 2011-10-17 2013-04-18 Carl Zeiss Smt Gmbh Mikrolithographisches Belichtungsverfahren, sowie Beleuchtungseinrichtung

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07307281A (ja) * 1994-05-12 1995-11-21 Nec Corp 半導体装置の露光装置および露光方法
JPH09199394A (ja) * 1996-01-19 1997-07-31 Sony Corp 露光用照明装置
JPH1032160A (ja) * 1996-07-17 1998-02-03 Toshiba Corp パターン露光方法及び露光装置
JP2003022534A (ja) * 2001-07-09 2003-01-24 Sony Corp 光記録媒体作製用原盤の製造方法
WO2004077533A1 (ja) * 2003-02-28 2004-09-10 Kabushiki Kaisha Hayashi Soken 露光装置

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3443857A (en) * 1965-03-26 1969-05-13 Bell Telephone Labor Inc Compensated quadratic electro-optic modulator
US3532891A (en) * 1967-12-26 1970-10-06 Trw Inc Means for stabilization of transverse pockels' cells
US3988704A (en) * 1974-04-26 1976-10-26 Mcdonnell Douglas Corporation Broadband electrooptical modulator
AU4117585A (en) * 1984-03-19 1985-10-11 Kent State University Light modulating material comprising a liquid crystal dispersion in a synthetic resin matrix
US4851882A (en) * 1985-12-06 1989-07-25 Canon Kabushiki Kaisha Illumination optical system
JPH0782156B2 (ja) * 1986-05-23 1995-09-06 株式会社日立製作所 記録光学系
US5140366A (en) * 1987-05-29 1992-08-18 Canon Kabushiki Kaisha Exposure apparatus with a function for controlling alignment by use of latent images
JPH01271720A (ja) * 1988-04-25 1989-10-30 Minolta Camera Co Ltd 表示装置
US5299054A (en) * 1990-06-25 1994-03-29 Petrolaser, Inc. Optical switch
US5317446A (en) * 1992-09-29 1994-05-31 Eastman Kodak Company Electrooptic device for scanning using domain reversed regions
JP2698521B2 (ja) * 1992-12-14 1998-01-19 キヤノン株式会社 反射屈折型光学系及び該光学系を備える投影露光装置
JPH08179514A (ja) * 1994-12-22 1996-07-12 Canon Inc 露光装置および露光方法
US5872360A (en) * 1996-12-12 1999-02-16 Intel Corporation Method and apparatus using an infrared laser based optical probe for measuring electric fields directly from active regions in an integrated circuit
US6009110A (en) * 1998-03-11 1999-12-28 Lightwave Electronics Corporation Pulse amplitude control in frequency-converted lasers
AU6865300A (en) * 1999-09-10 2001-04-17 Nikon Corporation Light source and wavelength stabilization control method, exposure apparatus andexposure method, method for producing exposure apparatus, and device manufactur ing method and device
US6708003B1 (en) * 1999-12-16 2004-03-16 Northrop Grumman Corporation Optical energy transmission system utilizing precise phase and amplitude control
US6965464B2 (en) * 2000-03-16 2005-11-15 Lightsmyth Technologies Inc Optical processor
US6416075B1 (en) * 2000-04-28 2002-07-09 The Burton Corporation Tool-free adjustable binding strap
ES2168071B1 (es) * 2000-07-12 2003-07-16 Barros Alejandro Rodriguez Retrovisor modular con señales multiples intercambiables para vehiculos de 2, 3, 4 o mas ruedas.
US20030133651A1 (en) * 2002-01-16 2003-07-17 Teraphase Technologies, Inc. Filtering noise in optical signal transmission
AU2003211408A1 (en) * 2002-02-27 2003-09-09 Mitsui Chemicals, Inc. Ferroelectric substrate period polarization structure manufacturing method
US6924870B1 (en) * 2002-04-30 2005-08-02 Kent State University Liquid crystal on silicon diffractive light valve
US6903862B2 (en) * 2002-11-05 2005-06-07 Matsushita Electric Industrial Co., Ltd. Ultraviolet acoustooptic device and optical imaging apparatus using the same
JP2004247947A (ja) * 2003-02-13 2004-09-02 Olympus Corp 光学装置
US7142353B2 (en) * 2004-10-26 2006-11-28 Asml Holding N.V. System and method utilizing an electrooptic modulator
US7876420B2 (en) * 2004-12-07 2011-01-25 Asml Holding N.V. System and method utilizing an electrooptic modulator

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07307281A (ja) * 1994-05-12 1995-11-21 Nec Corp 半導体装置の露光装置および露光方法
JPH09199394A (ja) * 1996-01-19 1997-07-31 Sony Corp 露光用照明装置
JPH1032160A (ja) * 1996-07-17 1998-02-03 Toshiba Corp パターン露光方法及び露光装置
JP2003022534A (ja) * 2001-07-09 2003-01-24 Sony Corp 光記録媒体作製用原盤の製造方法
WO2004077533A1 (ja) * 2003-02-28 2004-09-10 Kabushiki Kaisha Hayashi Soken 露光装置

Also Published As

Publication number Publication date
JP4699908B2 (ja) 2011-06-15
US20060164711A1 (en) 2006-07-27

Similar Documents

Publication Publication Date Title
JP4699908B2 (ja) 電気光学調整器を使用するシステム及び方法
KR101212921B1 (ko) 마이크로리소그래픽 투영 노광 장치용 조명 시스템
JP5050026B2 (ja) 電気光学変調器、並びに電気光学変調器を使用するシステムおよび方法
KR101490008B1 (ko) 마이크로리소그래픽 투영 노광 장치 용 광학 시스템 및 마이크로리소그래픽 노광 방법
JP4860674B2 (ja) リソグラフィ装置、個別制御可能要素アレイ及びデバイス製造方法
JP4920041B2 (ja) 光学系とりわけマイクロリソグラフィック投影露光機における偏光分布に影響を与えるための装置及び方法
US8098366B2 (en) Optical system, in particular of a microlithographic projection exposure apparatus
JP6049043B2 (ja) マイクロリソグラフィ投影露光系のチャネルの欠陥を補償するための装置及び方法
JPH1032160A (ja) パターン露光方法及び露光装置
JP4023541B2 (ja) リソグラフ用投影装置およびデバイス製造方法
JP2011524642A (ja) マイクロリソグラフィ投影露光装置の光学系及びマイクロリソグラフィ露光方法
JP5892499B2 (ja) マイクロリソグラフィ投影露光装置のための光学系及びマイクロリソグラフィ露光方法
JP7311586B2 (ja) パルスストレッチャーおよび方法
JP4721870B2 (ja) 電気光学変調器を利用するシステムおよび方法
JP6390879B2 (ja) 照明光学系、露光装置、露光方法、およびデバイス製造方法
JP6659827B2 (ja) リソグラフィ方法及び装置
US8922753B2 (en) Optical system for a microlithographic projection exposure apparatus
WO2014077404A1 (ja) 照明光学系及び照明方法、並びに露光方法及び装置
JP2014179619A (ja) マイクロリソグラフィ投影露光装置のための光学系

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060919

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061129

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090319

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090331

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090630

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100525

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100819

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110208

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110303

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees