JP2006185952A - 半導体装置及びその製造方法 - Google Patents
半導体装置及びその製造方法 Download PDFInfo
- Publication number
- JP2006185952A JP2006185952A JP2004374773A JP2004374773A JP2006185952A JP 2006185952 A JP2006185952 A JP 2006185952A JP 2004374773 A JP2004374773 A JP 2004374773A JP 2004374773 A JP2004374773 A JP 2004374773A JP 2006185952 A JP2006185952 A JP 2006185952A
- Authority
- JP
- Japan
- Prior art keywords
- region
- conductivity type
- semiconductor device
- concentration
- type semiconductor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 239000004065 semiconductor Substances 0.000 title claims description 113
- 238000004519 manufacturing process Methods 0.000 title claims description 43
- 238000000034 method Methods 0.000 title claims description 29
- 239000012535 impurity Substances 0.000 claims abstract description 72
- 239000000758 substrate Substances 0.000 claims abstract description 68
- 229910021332 silicide Inorganic materials 0.000 claims abstract description 37
- FVBUAEGBCNSCDD-UHFFFAOYSA-N silicide(4-) Chemical group [Si-4] FVBUAEGBCNSCDD-UHFFFAOYSA-N 0.000 claims abstract description 37
- 238000005468 ion implantation Methods 0.000 claims description 16
- 238000010438 heat treatment Methods 0.000 claims description 15
- 150000002500 ions Chemical class 0.000 claims description 14
- 229920002120 photoresistant polymer Polymers 0.000 claims description 11
- 230000000873 masking effect Effects 0.000 claims description 8
- 229910052751 metal Inorganic materials 0.000 claims description 8
- 239000002184 metal Substances 0.000 claims description 8
- 230000003071 parasitic effect Effects 0.000 abstract description 15
- 230000002708 enhancing effect Effects 0.000 abstract 1
- -1 boron ions Chemical class 0.000 description 16
- 108091006146 Channels Proteins 0.000 description 15
- 238000002513 implantation Methods 0.000 description 8
- 229910052785 arsenic Inorganic materials 0.000 description 7
- 229910052796 boron Inorganic materials 0.000 description 7
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 6
- 238000009792 diffusion process Methods 0.000 description 6
- 229910052814 silicon oxide Inorganic materials 0.000 description 6
- 229910052581 Si3N4 Inorganic materials 0.000 description 5
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 5
- 230000005611 electricity Effects 0.000 description 5
- 229910052710 silicon Inorganic materials 0.000 description 5
- 239000010703 silicon Substances 0.000 description 5
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 5
- 230000003068 static effect Effects 0.000 description 5
- 230000005684 electric field Effects 0.000 description 4
- 229910052698 phosphorus Inorganic materials 0.000 description 4
- 239000011574 phosphorus Substances 0.000 description 4
- 108010075750 P-Type Calcium Channels Proteins 0.000 description 3
- 238000000206 photolithography Methods 0.000 description 3
- 230000006378 damage Effects 0.000 description 2
- 238000005530 etching Methods 0.000 description 2
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 2
- 229920005591 polysilicon Polymers 0.000 description 2
- 230000005641 tunneling Effects 0.000 description 2
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- RQNWIZPPADIBDY-UHFFFAOYSA-N arsenic atom Chemical compound [As] RQNWIZPPADIBDY-UHFFFAOYSA-N 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/68—Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
- H01L29/76—Unipolar devices, e.g. field effect transistors
- H01L29/772—Field effect transistors
- H01L29/78—Field effect transistors with field effect produced by an insulated gate
- H01L29/7833—Field effect transistors with field effect produced by an insulated gate with lightly doped drain or source extension, e.g. LDD MOSFET's; DDD MOSFET's
- H01L29/7835—Field effect transistors with field effect produced by an insulated gate with lightly doped drain or source extension, e.g. LDD MOSFET's; DDD MOSFET's with asymmetrical source and drain regions, e.g. lateral high-voltage MISFETs with drain offset region, extended drain MISFETs
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/02—Semiconductor bodies ; Multistep manufacturing processes therefor
- H01L29/06—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
- H01L29/08—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
- H01L29/0843—Source or drain regions of field-effect devices
- H01L29/0847—Source or drain regions of field-effect devices of field-effect transistors with insulated gate
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/66007—Multistep manufacturing processes
- H01L29/66075—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
- H01L29/66227—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
- H01L29/66409—Unipolar field-effect transistors
- H01L29/66477—Unipolar field-effect transistors with an insulated gate, i.e. MISFET
- H01L29/66568—Lateral single gate silicon transistors
- H01L29/66659—Lateral single gate silicon transistors with asymmetry in the channel direction, e.g. lateral high-voltage MISFETs with drain offset region, extended drain MISFETs
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- Ceramic Engineering (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Manufacturing & Machinery (AREA)
- Semiconductor Integrated Circuits (AREA)
- Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
- Insulated Gate Type Field-Effect Transistor (AREA)
Abstract
【課題】
静電保護用MISFETは、静電保護用MISFETの占有面積を従来よりも縮小する技術を提供する。また基板電流を発生しやすくすることで寄生バイポーラトランジスタを導通しやすくし、高い静電保護能力を備えた静電保護用MISFETを提供する。
【解決手段】
ドレインの非シリサイド領域の不純物濃度を薄くし、かつ接合を浅く形成することにより、従来よりも非シリサイド領域の比抵抗を高め、非シリサイド領域の占有面積を縮小する。さらに、非シリサイド領域の下方にウェルと同じ極性の中濃度不純物層を形成して、リーク電流の大きいpn接合を形成することにより基板電流を発生しやすくし、寄生バイポーラトランジスタを導通しやすくすることで、静電保護能力を高める。
【選択図】 図1
静電保護用MISFETは、静電保護用MISFETの占有面積を従来よりも縮小する技術を提供する。また基板電流を発生しやすくすることで寄生バイポーラトランジスタを導通しやすくし、高い静電保護能力を備えた静電保護用MISFETを提供する。
【解決手段】
ドレインの非シリサイド領域の不純物濃度を薄くし、かつ接合を浅く形成することにより、従来よりも非シリサイド領域の比抵抗を高め、非シリサイド領域の占有面積を縮小する。さらに、非シリサイド領域の下方にウェルと同じ極性の中濃度不純物層を形成して、リーク電流の大きいpn接合を形成することにより基板電流を発生しやすくし、寄生バイポーラトランジスタを導通しやすくすることで、静電保護能力を高める。
【選択図】 図1
Description
本発明は、半導体装置及びその製造方法に関し、特にLSI内部回路を静電破壊から保護するための静電保護半導体装置及びその製造方法に関する。
一般に半導体装置は静電気放電による破壊を受けやすいため、入出力端子とLSI内部回路との間には、内部回路を静電気から保護するための静電保護素子や、静電保護回路が設けられている。
図4は、n型MISFETとp型MISFETとを静電保護素子として用いた、一般的な入力保護回路を模式的に示したものである。
図4の入力保護回路は、n型MISFET1とp型MISFET2それぞれのドレインDn及びDpが入力端子3に接続され、n型MISFET1のソースSnがGND端子4に接続され、n型MISFET1の基板Bnが基板抵抗RnBを介してGND端子4に接続され、n型MISFET1のゲートGnが抵抗RnGを介してGND端子4に接続され、p型MISFET2のソースSpが電源端子5に接続され、p型MISFET2の基板Bpが基板抵抗RpBを介して電源端子5に接続され、p型MISFET2のゲートGpが抵抗RpGを介して電源端子5に接続されることにより構成されている。
図4の入力保護回路は、n型MISFET1とp型MISFET2それぞれのドレインDn及びDpが入力端子3に接続され、n型MISFET1のソースSnがGND端子4に接続され、n型MISFET1の基板Bnが基板抵抗RnBを介してGND端子4に接続され、n型MISFET1のゲートGnが抵抗RnGを介してGND端子4に接続され、p型MISFET2のソースSpが電源端子5に接続され、p型MISFET2の基板Bpが基板抵抗RpBを介して電源端子5に接続され、p型MISFET2のゲートGpが抵抗RpGを介して電源端子5に接続されることにより構成されている。
以下、図4を用いて入力保護回路の動作原理と、静電保護用MISFETであるn型MISFET1及びp型MISFET2の構造について説明する。
まず、正の静電気からの保護原理について説明する。電源端子5に電源電圧VDDが与えられている状態において、正の静電気が発生して入力端子3にVDD+α(α≒0.7V)以上の正の過剰電圧が与えられた場合を想定する。このとき、まずp型MISFET2のドレインDp−基板Bp間のpn接合ダイオード6が順バイアスされて導通し、電源端子5から過剰な正電荷が排出される。それでもなお正電荷が排出しきれず、入力端子3への印加電圧がさらに上昇すると、p型MISFET2のチャネルが導通し、pn接合ダイオード6に加えてp型MISFET2のチャネル経由でも、正電荷が排出される。
まず、正の静電気からの保護原理について説明する。電源端子5に電源電圧VDDが与えられている状態において、正の静電気が発生して入力端子3にVDD+α(α≒0.7V)以上の正の過剰電圧が与えられた場合を想定する。このとき、まずp型MISFET2のドレインDp−基板Bp間のpn接合ダイオード6が順バイアスされて導通し、電源端子5から過剰な正電荷が排出される。それでもなお正電荷が排出しきれず、入力端子3への印加電圧がさらに上昇すると、p型MISFET2のチャネルが導通し、pn接合ダイオード6に加えてp型MISFET2のチャネル経由でも、正電荷が排出される。
また、もしも電源端子5が開放された状態で、入力端子3に正の過剰電圧が印加された場合には、n型MISFET1のドレイン端で高電界が発生し、インパクトイオン化現象やバンド間トンネル現象による電流がドレインから基板に向けて流れる。この基板電流が基板抵抗RnBを流れることで生じる電圧降下により、n型MISFET1のソースSn−基板Bn−ドレインDnで構成される寄生npnバイポーラトランジスタ7のベース電位が上昇して寄生npnバイポーラトランジスタ7が導通し、n型MISFET1のドレインDnからソースSnへと大電流が流れ、GND端子4から過剰な正電荷が排出される。
次に、負の静電気からの保護原理について説明する。負の静電気が発生して入力端子3に−α以下の負の過剰電圧が与えられると、まずn型MISFET1のドレインDn−基板Bp間のpn接合ダイオード9が順バイアスされて導通し、GND端子4から過剰な負電荷が排出される。それでもなお負電荷が排出しきれず、入力端子3への印加電圧がさらに低下すると、n型MISFET1のチャネルが導通し、pn接合ダイオード9に加えてn型MISFET1のチャネル経由でも、負電荷が排出される。
また、もしもGND端子が開放された状態で、入力端子3に負の過剰電圧が印加された場合には、p型MISFET2のドレイン端で高電界が発生し、インパクトイオン化現象やバンド間トンネル現象による電流が基板からドレインに向けて流れる。この基板電流が基板抵抗RpBを流れることで生じる電圧降下により、p型MISFET2のソースSp−基板Bp−ドレインDpで構成される寄生pnpバイポーラトランジスタ8のベース電位が低下(負側に上昇)して寄生バイポーラトランジスタ8が導通し、p型MISFET2のソースSpからドレインDpへと大電流が流れ、電源端子5から過剰な負電荷が排出される。
以上のような原理で過剰な電荷が排出され、静電保護がなされる。しかしながら、大電流が流れる際に静電保護用MISFETのゲート端付近に集中して熱が発生するため、熱破壊がおきる場合がある。このような熱破壊を防ぐためには、静電保護用MISFETのドレイン領域を高抵抗にし、ゲート端付近での電流密度を低減して熱の集中を緩和することが必要である。
ドレイン領域を高抵抗にするための方法として、n型MISFET1及びp型MISFET2のドレイン領域の一部に非シリサイド領域10、11を設ける方法が提案されている。(例えば特許文献1参照。)一般に、MISFETにおいては配線接続時のコンタクト抵抗を小さくするために、ドレイン領域及びソース領域の表面を金属シリサイド化するが、静電保護用MISFETのドレイン領域においては、配線接続部の周辺のみにシリサイド領域12を形成し、ドレイン配線接続部とゲートとの間はシリサイド化せずに非シリサイド領域10、11としてそのままシリコン表面が露呈するように形成する。非シリサイド領域10、11の長さを1μm〜4μm程度にすることで、電流密度を低減して熱の集中を緩和するのに十分な高抵抗を得ることができる。
なお、静電保護用MISFETのゲート長は0.4μm程度であり、非シリサイド領域を含むドレイン領域およびソース領域をあわせると、静電保護用MISFETの全長は2μm〜5μmになる。
前述したように、静電保護用MISFETは長い非シリサイド領域を備えているために広い占有面積を必要とする。このためこれが半導体装置の微細化を阻む問題となっていた。
本発明は、前記実情に鑑みてなされたもので、静電保護用MISFETの占有面積を従来よりも縮小する技術を提供することを第1の目的とする。
また、静電保護用MISFETは一般に3.3Vや5V等の高駆動電圧MISFETの製造プロセスで製造されるが、高駆動電圧MISFETは、静電気排出要因である寄生バイポーラトランジスタの導通が起こりにくく、特に電源端子開放時の正電荷排出において十分な静電保護能力を得られない場合がある。なぜなら、一般に高駆動電圧MISFETは、ソース・ドレイン領域のゲート側端部に低濃度領域13L,14Lを有するいわゆるLDD(Lightly Doped Drain)構造を採用してドレイン端で発生する電界が緩和されているため、寄生バイポーラトランジスタを導通させるためのトリガとなる基板電流が発生しにくいためである。
また、静電保護用MISFETは一般に3.3Vや5V等の高駆動電圧MISFETの製造プロセスで製造されるが、高駆動電圧MISFETは、静電気排出要因である寄生バイポーラトランジスタの導通が起こりにくく、特に電源端子開放時の正電荷排出において十分な静電保護能力を得られない場合がある。なぜなら、一般に高駆動電圧MISFETは、ソース・ドレイン領域のゲート側端部に低濃度領域13L,14Lを有するいわゆるLDD(Lightly Doped Drain)構造を採用してドレイン端で発生する電界が緩和されているため、寄生バイポーラトランジスタを導通させるためのトリガとなる基板電流が発生しにくいためである。
そこで、基板電流を発生しやすくすることで寄生バイポーラトランジスタを導通しやすくし、高い静電保護能力を備えた静電保護用MISFETを提供することを、本発明の第2の目的とする。
前記第1の目的を達成するため、本発明に係る半導体装置は、静電保護用n型MISFETのドレインの非シリサイド領域の不純物層を、通例のMISFETを構成する不純物層よりも大きな比抵抗をもつ、比較的浅い低濃度もしくは中濃度第2導電型不純物層(n型中濃度不純物層)で構成する。
さらに、前記第2の目的を達成するため、上記半導体装置において、前記低濃度もしくは中濃度第2導電型不純物層の下方に中濃度もしくは高濃度の第1導電型不純物層を形成している。
なお、上記構成は、第1導電型不純物層と第2導電型不純物層の導電型を入れ替えた構成にすることで、静電保護用p型MISFETにも適用可能である。
さらに、前記第2の目的を達成するため、上記半導体装置において、前記低濃度もしくは中濃度第2導電型不純物層の下方に中濃度もしくは高濃度の第1導電型不純物層を形成している。
なお、上記構成は、第1導電型不純物層と第2導電型不純物層の導電型を入れ替えた構成にすることで、静電保護用p型MISFETにも適用可能である。
すなわち、本発明の半導体装置は、半導体基板の表面部に形成された第1導電型の半導体層からなるチャネル領域と、前記チャネル領域の上方にゲート絶縁膜を介して形成されたゲート電極と、前記チャネル領域の側方表面に、前記チャネル領域を挟むように形成された第2導電型の不純物層からなるソース領域およびドレイン領域と、前記ソース領域または前記ドレイン領域が、チャネル領域側の端部と、前記ソース領域またはドレイン領域に形成されるコンタクト領域との間に、隣接領域よりも浅くかつ低濃度の第2導電型領域からなる低濃度第2導電型不純物層を具備したことを特徴とする。
この構成により、前記ソース領域またはドレイン領域に形成されるコンタクト領域との間に、隣接領域よりも浅くかつ低濃度の第2導電型領域からなる低濃度第2導電型不純物層を形成しているため、小面積領域で、電流密度を低減して熱の集中を緩和するのに十分な高抵抗を得ることができ、素子の小型化をはかることができる。
この構成により、前記ソース領域またはドレイン領域に形成されるコンタクト領域との間に、隣接領域よりも浅くかつ低濃度の第2導電型領域からなる低濃度第2導電型不純物層を形成しているため、小面積領域で、電流密度を低減して熱の集中を緩和するのに十分な高抵抗を得ることができ、素子の小型化をはかることができる。
また、本発明の半導体装置は、前記低濃度第2導電型不純物層の下方に、前記低濃度第2導電型不純物層と接合を形成するように形成され、前記低濃度第2導電型不純物層よりも高濃度の第1導電型の不純物層からなる高濃度第1導電型不純物層を具備したものを含む。
この構成により、この高濃度第1導電型不純物層の存在により、従来よりも電流がリークしやすく、すなわち基板電流が発生しやすくなるために、寄生バイポーラトランジスタが導通しやすくなることにより、静電保護能力を高めることができる。
この構成により、この高濃度第1導電型不純物層の存在により、従来よりも電流がリークしやすく、すなわち基板電流が発生しやすくなるために、寄生バイポーラトランジスタが導通しやすくなることにより、静電保護能力を高めることができる。
また、本発明の半導体装置は、前記ソースまたはドレイン領域は、チャネル領域側の端部と前記低濃度第2導電型不純物層との間に位置する表面に、低濃度の第2導電型領域からなる低濃度第2導電型領域を介して、より高濃度の第2導電型領域からなる中濃度第2導電型不純物層を配設したものを含む。
この構成により、さらに基板電流が発生しやすくなり、より寄生バイポーラトランジスタを導通しやすくすることができ、より一層静電保護能力を高めることができる。
この構成により、さらに基板電流が発生しやすくなり、より寄生バイポーラトランジスタを導通しやすくすることができ、より一層静電保護能力を高めることができる。
また、本発明の半導体装置は、前記コンタクト領域は、前記ソース領域及び前記ドレイン領域の表面の一部に形成された金属シリサイド層を含むものを含む。
この構成により、コンタクト位置ではコンタクト抵抗の低減をはかることができる。また金属シリサイド以外にも、高濃度領域を形成すれば同様の効果を奏効する。
この構成により、コンタクト位置ではコンタクト抵抗の低減をはかることができる。また金属シリサイド以外にも、高濃度領域を形成すれば同様の効果を奏効する。
また、本発明の半導体装置は、前記ソース領域及び前記ドレイン領域は、前記金属シリサイド層を介して形成される配線コンタクトを具備したものを含む。
この構成により、配線が形成されているため、コンタクト抵抗の低減が可能である。
この構成により、配線が形成されているため、コンタクト抵抗の低減が可能である。
また、本発明の半導体装置は、前記接合は前記半導体基板の表面から深さ0.05〜0.12μmの間に形成されているものを含む。
この構成により、電流経路を表面近傍に限定することができ、より高抵抗化をはかることができるため、より小面積で高抵抗を得ることが可能となる。
この構成により、電流経路を表面近傍に限定することができ、より高抵抗化をはかることができるため、より小面積で高抵抗を得ることが可能となる。
また、本発明の半導体装置の製造方法は、半導体基板の表面部にチャネル領域となる第1導電型の半導体層を形成する工程と、前記第1導電型の半導体層上にゲート絶縁膜を介してゲート電極を形成する工程と、前記第1導電型の半導体層上にイオン注入を行い、前記チャネル領域の側方表面に、前記チャネル領域を挟むように形成された第2導電型の不純物層からなるソース領域およびドレイン領域を形成する工程とを含み、前記ソース領域およびドレイン領域を形成する工程が、チャネル領域側の端部と、前記ソース領域またはドレイン領域に形成されるコンタクト領域との間に、隣接領域よりも浅くかつ低濃度の第2導電型領域からなる低濃度第2導電型不純物層を形成する不純物層形成工程を具備している。
この構成により、大幅なマスクの追加なしに、静電保護能力の高い半導体装置を形成することができる。
この構成により、大幅なマスクの追加なしに、静電保護能力の高い半導体装置を形成することができる。
また、本発明の半導体装置の製造方法は、前記ソース領域およびドレイン領域を形成する工程が、前記半導体基板の前記ゲート電極近傍に、前記ゲート電極をマスクとして第2導電型の不純物イオンを注入して、前記半導体基板の上層部に低濃度第2導電型不純物層を形成する第1の工程と、前記ゲート電極近傍をマスキングし、前記半導体基板に第2導電型の不純物イオンを注入して、前記半導体基板の上層部に前記低濃度第2導電型不純物層に隣接するように中濃度第2導電型不純物層を形成する第2の工程と、前記ゲート電極の側面にサイドウォールを形成する第3の工程と、前記中濃度第2導電型不純物層の上部をマスキングし、当該フォトレジストと前記ゲート電極と前記サイドウォールとをマスクとして、前記半導体基板に第2導電型の不純物イオンを注入して、前記サイドウォールの前記ゲート電極と接していない側の領域に高濃度第2導電型半導体層からなるソース領域及びドレイン領域を形成する第4の工程とを具備したものを含む。
この構成により、大幅なマスクの追加なしに、静電保護能力の高い半導体装置を形成することができる。
この構成により、大幅なマスクの追加なしに、静電保護能力の高い半導体装置を形成することができる。
また、本発明の半導体装置の製造方法は、前記第2の工程は、前記半導体基板に対して約800℃〜約950℃の温度で熱処理を施す工程を含み、前記第4の工程は、前記半導体基板に対して約950℃〜約1050℃の温度で熱処理を施す工程を含むものを含む。
この構成により、2回の熱拡散工程を含むが、1回目をより低温下で実現するようにしているため、拡散長の伸びを低減し、微細で高精度の半導体装置を形成することが可能となる。
この構成により、2回の熱拡散工程を含むが、1回目をより低温下で実現するようにしているため、拡散長の伸びを低減し、微細で高精度の半導体装置を形成することが可能となる。
また、本発明の半導体装置の製造方法は、前記ソース領域およびドレイン領域を形成する工程が、前記ゲート電極の側面にサイドウォールを形成する第3の工程と、前記ゲート電極と前記サイドウォールとをマスクとして、前記半導体基板に第2導電型の不純物イオンを注入して、前記サイドウォールの前記ゲート電極と接していない側の領域に中濃度第2導電型半導体層を形成する第4の工程と、前記半導体基板表面の前記ソース領域およびドレイン領域を形成する領域の一部を除く領域をマスキングし、第1の導電型の不純物イオンを注入することにより、表面部に第2導電型低濃度層を形成する第5の工程とを具備したものを含む。
この構成によれば、低濃度領域を形成するに際し、高濃度領域の表面に逆導電型の不純物を導入することにより実現しようとするものである。より浅く低濃度の領域を形成することができる。
この構成によれば、低濃度領域を形成するに際し、高濃度領域の表面に逆導電型の不純物を導入することにより実現しようとするものである。より浅く低濃度の領域を形成することができる。
また、本発明の半導体装置の製造方法は、前記第5の工程の後、さらに高濃度第1の導電型の不純物イオンを深く注入することにより、第2導電型低濃度層の下方にこれと接合を形成するように高濃度第1導電型不純物層を形成する第6の工程とを含む。
この構成によれば、容易に高濃度第1導電型不純物層を形成することができる。
この構成によれば、容易に高濃度第1導電型不純物層を形成することができる。
また、本発明の半導体装置の製造方法は、前記第4の工程は、前記半導体基板に対して約800℃〜約950℃の温度で熱処理を施す工程を含み、前記第5の工程は、前記半導体基板に対して約950℃〜約1050℃の温度で熱処理を施す工程を含むものを含む。
この構成により、2回の熱拡散工程を含むが、1回目をより低温下で実現するようにしているため、拡散長の伸びを低減し、微細で高精度の半導体装置を形成することが可能となる。
この構成により、2回の熱拡散工程を含むが、1回目をより低温下で実現するようにしているため、拡散長の伸びを低減し、微細で高精度の半導体装置を形成することが可能となる。
また、本発明の半導体装置の製造方法は、前記第4の工程の熱処理は、5秒〜15秒実行され、前記第5の工程の熱処理は、5秒〜15秒実行されるものを含む。
この構成により、2回の熱拡散工程を含むが、短時間で実行するようにしているため、拡散長の伸びを低減し、微細で高精度の半導体装置を形成することが可能となる。
この構成により、2回の熱拡散工程を含むが、短時間で実行するようにしているため、拡散長の伸びを低減し、微細で高精度の半導体装置を形成することが可能となる。
また、本発明の半導体装置の製造方法は、前記ソース領域及びドレイン領域のうち、後にコンタクトを形成する領域の表面を金属シリサイド化する工程を含む。
この構成により、容易に低抵抗のコンタクトを得ることができる。
この構成により、容易に低抵抗のコンタクトを得ることができる。
静電保護用MISFETのドレインの非シリサイド領域の比抵抗が通例のMISFETよりも大きく形成されていることにより、従来よりも非シリサイド領域を短くすることができる。その結果、静電保護用MISFETの占有面積を縮小することが可能となる。
また、非シリサイド領域の中濃度第2導電型不純物層と、その下方に接して形成された中濃度もしくは高濃度第1導電型不純物層とで形成されるpn接合ダイオードは、通例のMISFETのドレイン(高濃度第1導電型不純物層)−基板(低濃度第1導電型不純物層)間に形成されるpn接合にくらべて逆方向バイアス時に発生する電界の強度が強くなるため、発生する基板電流も従来よりも大きくなる。したがって、静電保護用MISFETの寄生バイポーラトランジスタを導通させるためのトリガとなる基板電流が従来よりも大きくなるため、従来よりも、寄生バイポーラトランジスタが導通しやすくなり、静電保護能力を向上させることができる。
以下、本発明の実施の形態について、図面を参照しながら説明する。
(実施の形態1)
まず本発明の実施の形態1に係る静電保護用MISFETについて図1を参照しながら説明する。
図1は本発明による静電保護用n型MISFETを示す断面図である。
図1に示すように、p型の半導体基板101には、p型の不純物例えばホウ素イオンが低濃度にドーピングされてなるpウェル領域102が形成されている。また半導体基板101の上部には、シリコン酸化膜あるいはシリコン酸窒化膜等からなるゲート絶縁膜103を介して、ポリシリコンからなるゲート電極104が形成されている。ゲート電極104の側面には、シリコン酸化膜もしくはシリコン窒化膜もしくはシリコン酸窒化膜あるいは、それらの重ねあわせで形成されてなるサイドウォール105が形成されている。
(実施の形態1)
まず本発明の実施の形態1に係る静電保護用MISFETについて図1を参照しながら説明する。
図1は本発明による静電保護用n型MISFETを示す断面図である。
図1に示すように、p型の半導体基板101には、p型の不純物例えばホウ素イオンが低濃度にドーピングされてなるpウェル領域102が形成されている。また半導体基板101の上部には、シリコン酸化膜あるいはシリコン酸窒化膜等からなるゲート絶縁膜103を介して、ポリシリコンからなるゲート電極104が形成されている。ゲート電極104の側面には、シリコン酸化膜もしくはシリコン窒化膜もしくはシリコン酸窒化膜あるいは、それらの重ねあわせで形成されてなるサイドウォール105が形成されている。
半導体基板101の表面部におけるゲート絶縁膜103の直下の領域には、p型不純物が中濃度にドーピングされてなるp型のチャネル領域106が形成されている。また、半導体基板101の表面部におけるゲート電極104の両側方の領域には、ヒ素あるいはリンイオン等のn型不純物によりドーピングされてなるソース領域107およびドレイン領域108が形成されている。
ソース領域107およびドレイン領域108のうち、チャネル領域106と接する付近には、n型不純物が低濃度にドーピングされてなるLDD領域109が形成されている。ソース領域107およびドレイン領域108に配線接続するためのコンタクト部には、シリサイド領域110が形成されている。
ドレイン領域108のうちシリサイド領域110とゲート電極104との間の領域、厳密にいうとシリサイド領域110とLDD領域109との間の領域は、非シリサイド領域111となっており、非シリサイド領域111における半導体基板101の表面部には、n型不純物が高濃度にドーピングされてなるn+領域112に挟まれる形で、n+領域112より低めの濃度でn型不純物がドーピングされてなるn+’領域113が形成されている。
そしてこのn+’領域113の下方にはp型不純物が中濃度もしくは高濃度にドーピングされてなるp+’領域114が形成されている。なお、n+’領域113とp+’領域114との接合面は半導体基板101の表面から、深さ0.05〜0.12μmの深さに形成されている。
なお、上記実施の形態1の半導体装置は、n型領域とp型領域を入れ替えた構成にすることで、静電保護用p型MISFETにも適用可能である。
上記構成によれば非シリサイド領域111が、従来よりも低いドーピング濃度のn+’領域113として比較的浅く形成されているために、非シリサイド領域がn+領域のみで深く形成されている従来の静電保護用MISFETに比べて、非シリサイド領域の比抵抗が大きい。従って、従来の静電保護用MISFETと同等の抵抗機能を、従来よりも短い長さの非シリサイド領域で実現することができ、静電保護用MISFETの占有面積を縮小することができる。
例えば、従来の静電保護用MISFETの非シリサイド領域が、ドーズ量5×1015cm−2で接合深さが0.2μm程度になるようにヒ素イオンを注入されて形成されたn+領域であった場合、非シリサイド領域をドーズ量5×1014cm−2で接合深さが0.1μm程度になるようにヒ素イオンを注入して中濃度n型領域として形成することにより、非シリサイド領域の抵抗値を5倍程度高めることができる。従ってこの場合は非シリサイド領域の占有面積を従来の5分の1に縮小することが可能である。
また、実施の形態1のもう一つの特徴である非シリサイド領域111に形成されるn+’領域114からなるpn接合ダイオードは、n+領域と低濃度p型領域で形成される113とp+’領域114からなるpn接合ダイオードは、n+領域と低濃度p型領域とで形成される従来の静電保護用MISFETのドレイン−pウェル間pn接合ダイオードにくらべて逆方向バイアス時のリーク電流が大きくなる。従って静電保護用MISFETの寄生バイポーラトランジスタを導通させるためのトリガとなる基板電流が従来よりも大きくなり、従来よりも、寄生バイポーラトランジスタが導通しやすくなり、静電保護能力が向上する。
例えば、n+’領域113が、注入エネルギー5keV及びドーズ量5×1014cm−2にてヒ素イオン注入され、p+’領域114が注入エネルギー10keV及びドーズ量5×1013cm−2にてホウ素イオン注入されて形成された場合、pn接合の逆方向バイアス時のリーク電流は従来に比べて2桁以上増加する。これにより、寄生npnバイポーラトランジスタを従来よりも1V程度低いドレイン電圧で導通させることができる。
(実施の形態2)
実施の形態2は、実施の形態1に係る半導体装置を製造するための方法である。
本発明の実施の形態2に係る静電保護用MISFETの製造方法について、図2(a)〜(f)及び図1を参照しながら説明する。
実施の形態2は、実施の形態1に係る半導体装置を製造するための方法である。
本発明の実施の形態2に係る静電保護用MISFETの製造方法について、図2(a)〜(f)及び図1を参照しながら説明する。
まず図2(a)に示すように、p型のシリコン基板からなる半導体基板101にホウ素イオンを200keV〜2000keVの注入エネルギー及び1×1013cm−2〜1×1014cm−2のドーズ量でイオン注入することにより低濃度のpウェル領域102を形成した後、半導体基板101の表面部にホウ素イオンを15keV〜100keV及び、1×1012cm−2〜1×1013cm−2のドーズ量でイオン注入することにより、pウェル領域102の上部に中濃度p型のチャネル領域106を形成する。
次に、半導体基板101の表面を酸化、もしくは酸窒化して、3nmから9nmの厚さを有する絶縁膜を形成し、続いて前記絶縁膜の全面を覆うように200nmから300nmの厚さでポリシリコン膜を堆積し、リンイオンを10keV〜20keVの注入エネルギー及び1×1015cm−2〜1×1016cm−2のドーズ量でイオン注入する。続いて前記ポリシリコン膜及び前記絶縁膜をパターニングすることにより図2(b)に示すようにゲート絶縁膜103及びゲート電極104を形成する。
次に、図2(c)に示すように、後にn+’領域113になる領域の上部をフォトリソグラフィー技術により第1のフォトレジスト116でマスキングし、フォトレジスト116とゲート電極104をマスクとして、リンイオンを40keV〜60keVの注入エネルギー及び1×1013cm−2〜1×1014cm−2のドーズ量でイオン注入することにより、LDD領域109を形成する。
次に、図2(d)に示すように、ゲート電極104及びLDD領域109をフォトリソグラフィー技術により第2のフォトレジスト117でマスキングし、続いてヒ素イオンを3keV〜10keVの注入エネルギー及び5×1014cm−2〜1×1015cm−2のドーズ量でイオン注入することにより、n+’領域113を形成し、続いてホウ素イオンを10keV〜20keVの注入エネルギー及び2×1013cm−2〜8×1013cm−2のドーズ量でイオン注入することにより、n+’領域113の下部に、p+’領域114を形成する。その後、半導体基板101に対して、不活性ガス雰囲気中において例えば900℃の温度下で10秒間の熱処理を施す。
次に、半導体基板101の全面を覆うように、シリコン酸化膜もしくはシリコン窒化膜を堆積させ、続いて、堆積させたシリコン酸化膜もしくはシリコン窒化膜に対し、異方性エッチングを行うことにより図2(e)に示すようにゲート電極104の側面にサイドウォール105を形成する。
次に、図2(f)に示すように、n+’領域113の上部をフォトリソグラフィー技術により第3のフォトレジスト118でマスキングし、続いてヒ素イオンを40keV〜60keVの注入エネルギー及び1×1015cm−2〜6×1015cm−2のドーズ量でイオン注入することにより、n+領域112を形成する。その後、半導体基板101に対して、1000℃の高温下で10秒間の熱処理を施す。
以後は従来のMISFETの製造方法に従って、図1に示すように配線と接続シリサイド領域110を形成し、静電保護用n型MISFETが完成する。
以後は従来のMISFETの製造方法に従って、図1に示すように配線と接続シリサイド領域110を形成し、静電保護用n型MISFETが完成する。
なお、通常、半導体装置の製造工程においては、入出力回路用の高駆動電圧MISFET(静電保護用MISFETも含む)と内部回路用の低駆動電圧MISFETとを同時に製造しているが、前記実施の形態2においては、低駆動電圧MISFET用の工程は省略して説明している。
また、前記実施の形態において、900℃の温度下で10秒行われる熱処理は、800℃〜950℃の温度下で、5秒〜15秒行われるものであってもよい。
また、1000℃の高温下で10秒行われる熱処理は、950℃〜1050℃の高温下で、5秒〜15秒行われる熱処理であってもよい。
また、1000℃の高温下で10秒行われる熱処理は、950℃〜1050℃の高温下で、5秒〜15秒行われる熱処理であってもよい。
高駆動電圧MISFET(静電保護用MISFETも含む)と内部回路用の低駆動電圧MISFETとを同時に製造するCMOSプロセスにおいては、LDD領域109形成用のイオン注入工程からp型MISFETを保護するためのマスキング処理を行う工程で第1のフォトレジスト116を同時に形成することができる。また低駆動電圧MISFET用のイオン注入工程から高駆動電圧MISFETを保護するためのマスキング処理を行う工程で第2のフォトレジスト117を同時に形成することができる。さらに、またn+’領域113を形成するためのイオン注入及びp+’領域114を形成するためのイオン注入は、それぞれ低駆動電圧MISFET製造工程のエクステンション注入及びポケット注入と共通化可能であり、またn+領域112形成用のイオン注入工程からp型MISFETを保護するためのマスキング処理工程において第3のフォトレジスト118を同時に形成することができるので、従来の製造方法からプロセス工程数やマスク数を追加することなく、本発明を実施することができる。
(実施の形態3)
次に本発明の実施の形態3として、この半導体装置の他の製造方法について説明する。実施の形態3は実施の形態1に係る半導体装置の別の製造方法であり、図2(b)のゲート電極104を形成する工程までは、第2の実施の形態2と同様である。
本発明の実施の形態3に係る静電保護用MISFETの製造方法について、図2(b)及び図3(a)〜(e)を参照しながら説明する。
次に本発明の実施の形態3として、この半導体装置の他の製造方法について説明する。実施の形態3は実施の形態1に係る半導体装置の別の製造方法であり、図2(b)のゲート電極104を形成する工程までは、第2の実施の形態2と同様である。
本発明の実施の形態3に係る静電保護用MISFETの製造方法について、図2(b)及び図3(a)〜(e)を参照しながら説明する。
実施の形態2の要領でゲート電極104を形成した後、図3(a)に示すように、このゲート電極104をマスクとして、リンイオンを40keV〜60keVの注入エネルギー及び1×1013cm−2〜1×1014cm−2のドーズ量でイオン注入することにより、LDD領域109を形成する。
次に、半導体基板101の全面を覆うように、シリコン酸化膜もしくはシリコン窒化膜を堆積させ、続いて、堆積させたシリコン酸化膜もしくはシリコン窒化膜に対し、異方性エッチングを行うことにより図3(b)に示すようにゲート電極104の側面にサイドウォール105を形成する。
次に、図3(c)に示すように、ヒ素イオンを40keV〜60keVの注入エネルギー及び1×1015cm−2〜6×1015cm−2のドーズ量でイオン注入することにより、n+領域112を形成する。
次に、図3(d)に示すように、後にn+’領域113となる領域の上部を開口した状態でフォトレジスト119を形成し、続いてホウ素イオンを5keV〜10keVの注入エネルギー及び1×1015cm−2〜5×1015cm−2のドーズ量でイオン注入して、開口部における半導体基板101の表面付近のn型不純物濃度を低下させてn+’領域113を形成し、続いてホウ素イオンを12keV〜50keVの注入エネルギー及び2×1015cm−2〜8×1015cm−2のドーズ量でイオン注入することにより、n+’領域113の下部にp+’領域114を形成する。その後、半導体基板101に対して、1000℃の高温下で10秒間の熱処理を施す。
以後は従来のMISFETの製造方法に従って、シリサイド領域110を形成し、図3(e)に示す、静電保護用n型MISFETが完成する。
CMOSプロセスにおいては、p型MISFETのソース及びドレインのp+領域形成用のイオン注入工程からn型MISFETを保護するためのマスキング処理を行う時に、フォトレジスト119を同時に形成することができる。またn+’領域113及びp+’領域114を形成するためのイオン注入は、p型MISFETのソース及びドレインのp+領域形成用のイオン注入と共通化することができるため、従来の製造方法からプロセス工程の追加やマスク数を増加することなく、本発明を実施することができる。
本発明に係る半導体装置及びその製造方法は、静電保護用MISFETの面積を低減しつつ静電保護能力を高めることができるので、低コストで高信頼性なLSIチップを製造する上で有用である。
13 n+領域
14 p+領域
101 p型の半導体基板
102 pウェル領域
103 ゲート絶縁膜
104 ゲート電極
105 サイドウォール
106 p型のチャネル領域
107 ソース領域
108 ドレイン領域
109 LDD領域
110 シリサイド領域
111 非シリサイド領域
112 n+領域
113 n+’領域
114 p+’領域
14 p+領域
101 p型の半導体基板
102 pウェル領域
103 ゲート絶縁膜
104 ゲート電極
105 サイドウォール
106 p型のチャネル領域
107 ソース領域
108 ドレイン領域
109 LDD領域
110 シリサイド領域
111 非シリサイド領域
112 n+領域
113 n+’領域
114 p+’領域
Claims (14)
- 半導体基板の表面部に形成された第1導電型の半導体層からなるチャネル領域と、
前記チャネル領域の上方にゲート絶縁膜を介して形成されたゲート電極と、
前記チャネル領域の側方表面に、前記チャネル領域を挟むように形成された第2導電型の不純物層からなるソース領域およびドレイン領域と、
前記ソース領域または前記ドレイン領域が、チャネル領域側の端部と、前記ソース領域またはドレイン領域に形成されるコンタクト領域との間に、隣接領域よりも浅くかつ低濃度の第2導電型領域からなる低濃度第2導電型不純物層を具備したMIS型半導体装置。 - 請求項1に記載のMIS型半導体装置であって、
前記低濃度第2導電型不純物層の下方に、前記低濃度第2導電型不純物層と接合を形成するように形成され、前記低濃度第2導電型不純物層よりも高濃度の第1導電型の不純物層からなる高濃度第1導電型不純物層を具備したMIS型半導体装置。 - 請求項1または2に記載のMIS型半導体装置であって、
前記ソースまたはドレイン領域は、チャネル領域側の端部と前記低濃度第2導電型不純物層との間に位置する表面に、低濃度の第2導電型領域からなる低濃度第2導電型領域を介して、より高濃度の第2導電型領域からなる中濃度第2導電型不純物層を配設したMIS型半導体装置。 - 請求項1乃至3のいずれかに記載のMIS型半導体装置であって、
前記コンタクト領域は、前記ソース領域及び前記ドレイン領域の表面の一部に形成された金属シリサイド層を含むMIS型半導体装置。 - 請求項4に記載のMIS型半導体装置であって、
前記ソース領域及び前記ドレイン領域は、前記金属シリサイド層を介して形成される配線コンタクトを具備したMIS型半導体装置。 - 請求項1に記載のMIS型半導体装置であって、
前記接合は前記半導体基板の表面から深さ0.05〜0.12μmの間に形成されていることを特徴とするMIS型半導体装置。 - 半導体基板の表面部にチャネル領域となる第1導電型の半導体層を形成する工程と、
前記第1導電型の半導体層上にゲート絶縁膜を介してゲート電極を形成する工程と、
前記第1導電型の半導体層上にイオン注入を行い、前記チャネル領域の側方表面に、前記チャネル領域を挟むように形成された第2導電型の不純物層からなるソース領域およびドレイン領域を形成する工程とを含み、
前記ソース領域およびドレイン領域を形成する工程が、チャネル領域側の端部と、前記ソース領域またはドレイン領域に形成されるコンタクト領域との間に、隣接領域よりも浅くかつ低濃度の第2導電型領域からなる低濃度第2導電型不純物層を形成する不純物層形成工程を具備したMIS型半導体装置の製造方法。 - 請求項7に記載のMIS型半導体装置の製造方法であって、
前記ソース領域およびドレイン領域を形成する工程が、
前記半導体基板の前記ゲート電極近傍に、前記ゲート電極をマスクとして第2導電型の不純物イオンを注入して、前記半導体基板の上層部に低濃度第2導電型不純物層を形成する第1の工程と、
前記ゲート電極近傍をマスキングし、前記半導体基板に第2導電型の不純物イオンを注入して、前記半導体基板の上層部に前記低濃度第2導電型不純物層に隣接するように中濃度第2導電型不純物層を形成する第2の工程と、
前記ゲート電極の側面にサイドウォールを形成する第3の工程と、
前記中濃度第2導電型不純物層の上部をマスキングし、当該フォトレジストと前記ゲート電極と前記サイドウォールとをマスクとして、前記半導体基板に第2導電型の不純物イオンを注入して、前記サイドウォールの前記ゲート電極と接していない側の領域に高濃度第2導電型半導体層からなるソース領域及びドレイン領域を形成する第4の工程とを具備したMIS型半導体装置の製造方法。 - 請求項8に記載のMIS型半導体装置の製造方法であって、
前記第2の工程は、前記半導体基板に対して約800℃〜約950℃の温度で熱処理を施す工程を含み、
前記第4の工程は、前記半導体基板に対して約950℃〜約1050℃の温度で熱処理を施す工程を含むMIS型半導体装置の製造方法。 - 請求項7に記載のMIS型半導体装置の製造方法であって、
前記ソース領域およびドレイン領域を形成する工程が、
前記ゲート電極の側面にサイドウォールを形成する第3の工程と、
前記ゲート電極と前記サイドウォールとをマスクとして、前記半導体基板に第2導電型の不純物イオンを注入して、前記サイドウォールの前記ゲート電極と接していない側の領域に中濃度第2導電型半導体層を形成する第4の工程と、
前記半導体基板表面の前記ソース領域およびドレイン領域を形成する領域の一部を除く領域をマスキングし、第1の導電型の不純物イオンを注入することにより、表面部に第2導電型低濃度層を形成する第5の工程とを具備したMIS型半導体装置の製造方法。 - 請求項10に記載のMIS型半導体装置の製造方法であって、
前記第5の工程の後、さらに高濃度第1の導電型の不純物イオンを深く注入することにより、第2導電型低濃度層の下方にこれと接合を形成するように高濃度第1導電型不純物層を形成する第6の工程とを含むMIS型半導体装置の製造方法。 - 請求項10に記載のMIS型半導体装置の製造方法であって、
前記第4の工程は、前記半導体基板に対して約800℃〜約950℃の温度で熱処理を施す工程を含み、
前記第5の工程は、前記半導体基板に対して約950℃〜約1050℃の温度で熱処理を施す工程を含むMIS型半導体装置の製造方法。 - 請求項12に記載のMIS型半導体装置の製造方法であって、
前記第4の工程の熱処理は、5秒〜15秒実行され、
前記第5の工程の熱処理は、5秒〜15秒実行されるMIS型半導体装置の製造方法。 - 請求項7乃至13のいずれかに記載のMIS型半導体装置の製造方法であって、
前記ソース領域及びドレイン領域のうち、後にコンタクトを形成する領域の表面を金属シリサイド化する工程を含むMIS型半導体装置の製造方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004374773A JP2006185952A (ja) | 2004-12-24 | 2004-12-24 | 半導体装置及びその製造方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004374773A JP2006185952A (ja) | 2004-12-24 | 2004-12-24 | 半導体装置及びその製造方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2006185952A true JP2006185952A (ja) | 2006-07-13 |
Family
ID=36738865
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004374773A Withdrawn JP2006185952A (ja) | 2004-12-24 | 2004-12-24 | 半導体装置及びその製造方法 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2006185952A (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010087291A (ja) * | 2008-09-30 | 2010-04-15 | Sony Corp | トランジスタ型保護素子、半導体集積回路およびその製造方法 |
JP2011129944A (ja) * | 2011-02-07 | 2011-06-30 | Sony Corp | トランジスタ型保護素子および半導体集積回路 |
-
2004
- 2004-12-24 JP JP2004374773A patent/JP2006185952A/ja not_active Withdrawn
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010087291A (ja) * | 2008-09-30 | 2010-04-15 | Sony Corp | トランジスタ型保護素子、半導体集積回路およびその製造方法 |
JP2011129944A (ja) * | 2011-02-07 | 2011-06-30 | Sony Corp | トランジスタ型保護素子および半導体集積回路 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8722522B2 (en) | Electro-static discharge protection device, semiconductor device, and method for manufacturing electro-static discharge protection device | |
JP4845410B2 (ja) | 半導体装置 | |
US20130161739A1 (en) | Dummy gate for a high voltage transistor device | |
JP2006019511A (ja) | 半導体装置及びその製造方法 | |
JP2006013450A (ja) | 半導体装置およびその製造方法 | |
JP2005142321A (ja) | 半導体集積回路装置およびその製造方法 | |
US7192823B2 (en) | Manufacturing method for transistor of electrostatic discharge protection device | |
JP2002324847A (ja) | 半導体装置およびその製造方法 | |
JP2009158621A (ja) | 半導体装置 | |
JP4131647B2 (ja) | 半導体装置の製造方法 | |
US5610427A (en) | Electrostatic protection device for use in semiconductor integrated circuit | |
JP4765014B2 (ja) | 半導体集積回路装置およびその製造方法 | |
JP5431663B2 (ja) | 半導体装置及びその製造方法 | |
JPH05102475A (ja) | 半導体装置とその製造方法 | |
JP3734413B2 (ja) | 静電保護用mos型ダイオード、並びに入出力保護回路及びそれを備えた半導体装置 | |
US20090159984A1 (en) | Semiconductor Device and Method for Manufacturing the Same | |
JP2006185952A (ja) | 半導体装置及びその製造方法 | |
JP2003051552A (ja) | 半導体集積回路装置の製造方法 | |
JP2004221223A (ja) | Mis型半導体装置及びその製造方法 | |
JP3788439B2 (ja) | 半導体装置の製造方法 | |
JP2002222869A (ja) | 半導体集積回路装置およびその製造方法 | |
JP3403117B2 (ja) | 半導体装置の製造方法 | |
JP5416478B2 (ja) | 半導体装置 | |
JP2013172085A (ja) | 半導体装置の製造方法及び半導体装置 | |
JP4921925B2 (ja) | 半導体装置の製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Application deemed to be withdrawn because no request for examination was validly filed |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20080304 |