JP2006183129A - Austenitic-ferritic stainless steel having excellent formability - Google Patents

Austenitic-ferritic stainless steel having excellent formability Download PDF

Info

Publication number
JP2006183129A
JP2006183129A JP2005023492A JP2005023492A JP2006183129A JP 2006183129 A JP2006183129 A JP 2006183129A JP 2005023492 A JP2005023492 A JP 2005023492A JP 2005023492 A JP2005023492 A JP 2005023492A JP 2006183129 A JP2006183129 A JP 2006183129A
Authority
JP
Japan
Prior art keywords
mass
less
austenite phase
stainless steel
austenitic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005023492A
Other languages
Japanese (ja)
Other versions
JP4760032B2 (en
Inventor
Mitsusachi Fujisawa
光幸 藤澤
Yasushi Kato
康 加藤
Yoshihiro Yazawa
好弘 矢沢
Osamu Furukimi
古君  修
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2005023492A priority Critical patent/JP4760032B2/en
Publication of JP2006183129A publication Critical patent/JP2006183129A/en
Application granted granted Critical
Publication of JP4760032B2 publication Critical patent/JP4760032B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Heat Treatment Of Sheet Steel (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide austenitic-ferritic stainless steel having high formability whose ductility and deep drawability are excellent. <P>SOLUTION: The austenitic-ferritic stainless steel having excellent formability contains, in mass%, 0.2% or less of C, 4% or less of Si, 10% or less of Mn, 0.1% or less of P, 0.03% or less of S, 15 to 35% of Cr, 1 to 3% of Ni, and 0.05 to 0.6% of N, and the balance Fe with inevitable impurities, and is composed of a ferrite phase and an austenite phase, wherein the austenite phase contains C and N in a total amount of 0.16 to 2 mass%, and the proportion of the austenite phase is 10 to 85 volume%. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、成形性に優れたオーステナイト・フェライト系ステンレス鋼に関するものである。   The present invention relates to an austenitic ferritic stainless steel having excellent formability.

ステンレス鋼は、耐食性に優れた材料として、自動車用部材や建築用部材、厨房機器等の広い分野で用いられている。ステンレス鋼は、鋼が有する組織から一般に、オーステナイト系、フェライト系、オーステナイト・フェライト系およびマルテンサイト系の4つに分類されている。このうち、SUS304に代表されるオーステナイト系ステンレス鋼は、耐食性に優れると共に、加工性にも優れているため、最も一般的に用いられている。   Stainless steel is used as a material having excellent corrosion resistance in a wide range of fields such as automobile members, building members, and kitchen equipment. Stainless steels are generally classified into four types: austenitic, ferritic, austenitic / ferritic, and martensitic based on the structure of the steel. Among these, austenitic stainless steel represented by SUS304 is most commonly used because it has excellent corrosion resistance and workability.

しかしながら、オーステナイト系ステンレス鋼は、他のステンレス鋼に比べて高い加工性を有するものの、高価なNiを多量に含有しているため、価格が高いという問題がある。また、オーステナイト系ステンレス鋼は、成形限界近傍まで加工すると置き割れを起こし易いことや、応力腐食割れ(Stress Corrosion Cracking:SCC)に対する感受性が高いことのため、燃料タンクのように、安全性に対する要求が極めて高い部位に適用するには問題があった。また、マルテンサイト系ステンレス鋼は、強度は優れるものの、延性や張出成形性および耐食性に劣り、加工用途には適用できない。   However, although austenitic stainless steel has high workability compared to other stainless steels, it has a problem of high price because it contains a large amount of expensive Ni. In addition, austenitic stainless steel is prone to cracking when processed to near the forming limit and is highly sensitive to stress corrosion cracking (SCC). However, there was a problem in applying to a site with extremely high. In addition, martensitic stainless steel has excellent strength but is inferior in ductility, stretch formability and corrosion resistance, and cannot be applied to processing applications.

一方、フェライト系ステンレス鋼は、Crの含有量を増加させることで、耐食性を向上させることが可能であり、また、置き割れや応力腐食割れを起こし難いという優れた特性を有する。しかし、フェライト系ステンレス鋼は、オーステナイト系ステンレス鋼と比較して加工性、特に強度−延性バランスに劣るという欠点がある。   On the other hand, ferritic stainless steel can improve corrosion resistance by increasing the Cr content, and has excellent characteristics that it is difficult to cause cracking and stress corrosion cracking. However, ferritic stainless steel has a disadvantage that it is inferior in workability, particularly strength-ductility balance, compared to austenitic stainless steel.

そこで、フェライト系ステンレス鋼の加工性を改善する技術が提案されている。例えば、特許文献1には、Crを5〜60wt%含有したフェライト系ステンレス鋼板において、CおよびN含有量を低減すると共に、Ti,Nbを適量添加した深絞り成形性に優れるクロム鋼板とその製造方法が開示されている。しかし、特許文献1の鋼板は、深絞り性を改善するために、鋼中のCおよびN含有量をそれぞれC:0.03wt%以下、N:0.02wt%以下に低減しているため、鋼板強度が低くしかも延性の改善も不十分である、つまり、強度−延性バランスに劣るという問題がある。そのため、特許文献1の鋼板を自動車部材に適用した場合には、部材に対する要求強度を得るのに必要な板厚が厚くなり、軽量化に寄与できない他、張出し成形や深絞り成形、液圧成形等の厳しい加工用途には適用できないという問題があった。   Therefore, a technique for improving the workability of ferritic stainless steel has been proposed. For example, Patent Document 1 discloses a chromium steel sheet that is excellent in deep drawing formability by reducing the C and N contents and adding appropriate amounts of Ti and Nb in a ferritic stainless steel sheet containing 5 to 60 wt% Cr. A method is disclosed. However, in the steel sheet of Patent Document 1, the C and N contents in the steel are reduced to C: 0.03 wt% or less and N: 0.02 wt% or less, respectively, in order to improve deep drawability. However, the improvement of ductility is also insufficient, that is, the strength-ductility balance is inferior. Therefore, when the steel plate of Patent Document 1 is applied to an automobile member, the plate thickness necessary to obtain the required strength for the member is increased, and it cannot contribute to weight reduction. In addition, overhang forming, deep drawing forming, hydraulic forming There is a problem that it cannot be applied to severe processing applications such as.

そこで、上記オーステナイト系とフェライト系の中間に位置するオーステナイト・フェライト系ステンレス鋼板が、近年、注目されている。このオーステナイト・フェライト系ステンレス鋼板は、耐食性に優れているが、Ni含有量が4mass%以上と高いため、価格が依然として高価であるという問題がある。   Thus, in recent years, an austenitic / ferritic stainless steel sheet located between the austenitic and ferritic alloys has attracted attention. This austenitic ferritic stainless steel sheet is excellent in corrosion resistance, but has a problem that the price is still expensive because the Ni content is as high as 4 mass% or more.

この問題に対応するものとして、特許文献2に、Ni添加量を0.1%超1%未満に制限した上で、さらにオーステナイト安定性指数(IM指数:551−805(C+N)%−8.52Si%−8.57Mn%−12.51Cr%−36.02Ni%−34.52Cu%−13.96Mo%)を40〜115の範囲に制御することにより、引張り延びに優れるオーステナイト・フェライト系ステンレス鋼板が開示されている。
特開平08−020843号公報 特開平11−071643号公報
As a countermeasure to this problem, Patent Document 2 discloses that the Ni addition amount is limited to more than 0.1% and less than 1%, and further, an austenite stability index (IM index: 551-805 (C + N)%-8.52 Si%- An austenitic and ferritic stainless steel sheet that is excellent in tensile elongation by controlling the range of 8.57Mn% -12.51Cr% -36.02Ni% -34.52Cu% -13.96Mo%) in the range of 40 to 115 is disclosed.
Japanese Patent Laid-Open No. 08-020843 Japanese Patent Laid-Open No. 11-071643

しかしながら、上記特許文献2に開示されたオーステナイト・フェライト系ステンレス鋼板は、延性が向上しているとはいえまだ不十分であり、また、深絞り性も十分なものではなかった。従って、極度の張出し成形や液圧成形が施される用途への適用は依然として難しく、また、極度の深絞り成形が施される用途への適用も困難であるという問題があった。   However, the austenitic ferritic stainless steel sheet disclosed in Patent Document 2 is still insufficient even though the ductility is improved, and the deep drawability is not sufficient. Therefore, there is a problem that it is still difficult to apply to applications where extreme stretch molding or hydraulic molding is performed, and it is difficult to apply to applications where extreme deep drawing is performed.

本発明の目的は、従来技術が抱える上記問題点を解決し、延性および深絞り性に優れた高い成形性を有するオーステナイト・フェライト系ステンレス鋼を提供することにある。   An object of the present invention is to provide the austenitic ferritic stainless steel having high formability that is excellent in ductility and deep drawability by solving the above-mentioned problems of the prior art.

発明者らは、オーステナイト・フェライト系ステンレス鋼の成形性を改善するために、各種の成分および組織を有するステンレス鋼について、成形性の評価を行った。その結果、オーステナイト・フェライト系ステンレス鋼において、特に高い成形性を有する場合があることを見出した。そして、この原因についてさらに検討を進めた結果、Niを1〜3mass%含有したオーステナイト・フェライト系ステンレス鋼中では、オーステナイト相の体積分率とそのオーステナイト相内に固溶しているCおよびNの合計量が成形性に大きく影響していることを見出し、本発明を完成させた。   Inventors evaluated moldability about the stainless steel which has various components and structure | tissues, in order to improve the moldability of an austenitic ferritic stainless steel. As a result, it has been found that austenite-ferritic stainless steel may have particularly high formability. As a result of further investigation on this cause, in the austenitic ferritic stainless steel containing 1 to 3 mass% of Ni, the volume fraction of the austenite phase and the C and N dissolved in the austenite phase are included. It was found that the total amount has a great influence on the moldability, and the present invention was completed.

上記知見に基く本発明は、C:0.2mass%以下、Si:4mass%以下、Mn:10mass%以下、P:0.1mass%以下、S:0.03mass%以下、Cr:15〜35mass%、Ni:1〜3mass%、N:0.05〜0.6mass%を含有し、残部がFeおよび不可避的不純物からなり、フェライト相とオーステナイト相を含むステンレス鋼であって、上記オーステナイト相中のCとNの合計量が0.16〜2mass%、該オーステナイト相の体積分率が10〜85%であることを特徴とする成形性に優れるオーステナイト・フェライト系ステンレス鋼である。   The present invention based on the above knowledge is C: 0.2 mass% or less, Si: 4 mass% or less, Mn: 10 mass% or less, P: 0.1 mass% or less, S: 0.03 mass% or less, Cr: 15 to 35 mass%, Ni: 1 to 3 mass%, N: 0.05 to 0.6 mass%, with the balance being Fe and inevitable impurities, a stainless steel containing a ferrite phase and an austenite phase, the total amount of C and N in the austenite phase Is an austenitic-ferritic stainless steel with excellent formability, characterized by 0.16-2 mass% and a volume fraction of the austenite phase of 10-85%.

また、本発明のステンレス鋼は、上記成分組成に加えてさらに、下記A〜D群のうちから選ばれる少なくとも1以上の成分を含有することを特徴とする。

A群 V:0.5mass%以下
B群 Al:0.1mass%以下
C群 Mo:4mass%以下、Cu:4mass%以下のいずれか1種または2種
D群 B:0.01mass%以下、Ca:0.01mass%以下、Mg:0.01mass%以下、REM:0.1mass%以下のいずれか1種または2種以上
In addition to the above component composition, the stainless steel of the present invention further includes at least one component selected from the following groups A to D.
Group A V: 0.5 mass% or less B group Al: 0.1 mass% or less C group Mo: 4 mass% or less, Cu: 4 mass% or less One or two types D group B: 0.01 mass% or less, Ca: 0.01 Any one or more of mass% or less, Mg: 0.01 mass% or less, REM: 0.1 mass% or less

なお、本発明の上記ステンレス鋼は、下記式で定義される加工誘起マルテンサイト指数(Md(γ))を−30〜90とすれば、より優れた加工性を得ることができる。

Md(γ)=551−462(C(γ)+N(γ))−9.2Si(γ)−8.1Mn(γ)−13.7Cr(γ)−29Ni(γ)−29Cu(γ)−18.5Mo(γ)
ただし、C(γ)、N(γ)、Si(γ)、Mn(γ)、Cr(γ)、Ni(γ)、Cu(γ)およびMo(γ)は、それぞれオーステナイト相中のC量(mass%)、N量(mass%)、Si量(mass%)、Mn量(mass%)、Cr量(mass%)、Ni量(mass%)、Cu量(mass%)、Mo量(mass%)
In addition, the said stainless steel of this invention can obtain the more outstanding workability, if the process induction martensite index (Md ((gamma))) defined by a following formula shall be -30-90.
Md (γ) = 551−462 (C (γ) + N (γ)) − 9.2Si (γ) −8.1Mn (γ) −13.7Cr (γ) −29Ni (γ) −29Cu (γ) −18.5Mo (γ)
However, C (γ), N (γ), Si (γ), Mn (γ), Cr (γ), Ni (γ), Cu (γ) and Mo (γ) are the amounts of C in the austenite phase, respectively. (mass%), N amount (mass%), Si amount (mass%), Mn amount (mass%), Cr amount (mass%), Ni amount (mass%), Cu amount (mass%), Mo amount ( mass%)

本発明によれば、高価なNiを多量に含有することもなく、延性および深絞り性に優れた高い成形性を有するオーステナイト・フェライト系ステンレス鋼を安価に提供することができる。   According to the present invention, austenite-ferritic stainless steel having high formability excellent in ductility and deep drawability can be provided at low cost without containing a large amount of expensive Ni.

本発明に係るオーステナイト・フェライト系ステンレス鋼について説明する。
本発明のステンレス鋼は、Niを1〜3mass%含有した主としてオーステナイト相とフェライト相からなるオーステナイト・フェライト系ステンレス鋼であることが必要である。すなわち、本発明は、Niを1〜3mass%含有した主としてオーステナイト・フェライト系ステンレス鋼において、オーステナイト相の体積分率と、このオーステナイト相中に含まれるCとNの合計量がプレス成形性に大きな影響を与えることを見出したところに特徴がある。
The austenitic ferritic stainless steel according to the present invention will be described.
The stainless steel of the present invention is required to be an austenitic / ferritic stainless steel mainly containing an austenite phase and a ferrite phase containing 1 to 3 mass% of Ni. That is, in the present invention, mainly in austenitic / ferritic stainless steel containing 1 to 3 mass% of Ni, the volume fraction of the austenite phase and the total amount of C and N contained in the austenite phase are large in press formability. It is characterized by finding out that it has an effect.

上記オーステナイト相の体積分率は、鋼の全組織に対して体積率で10〜85%であることが必要である。オーステナイト相の体積分率が10%未満では、高い成形性が得られない。また85%を超えると、オーステナイト系ステンレス鋼特有の現象であるSCC割れが散見されるようになるからである。好ましいオーステナイト相の体積分率の範囲は、15〜80%である。   The volume fraction of the austenite phase needs to be 10 to 85% by volume with respect to the entire structure of the steel. If the volume fraction of the austenite phase is less than 10%, high formability cannot be obtained. Further, if it exceeds 85%, SCC cracks, a phenomenon peculiar to austenitic stainless steel, will be observed. A preferred austenite phase volume fraction range is 15-80%.

上記オーステナイト相の体積分率は、鋼の成分組成と焼鈍条件(温度、時間)を調整することによって制御することができる。具体的には、Cr量が低く、C,N量が高いほど、オーステナイト相の体積分率は増加する。また、焼鈍温度は、高過ぎるとオーステナイト相の体積分率が減少し、逆に、低過ぎるとC,Nが析出するため、やはりオーステナイト相の体積分率が減少する。従って、鋼成分に応じて、最大のオーステナイト相の体積分率が得られる温度範囲があり、本発明の成分組成では、その温度範囲は950〜1300℃である。焼鈍時間は、長い程、鋼の成分組成と温度によって決定される平衡状態のオーステナイト相の体積分率に近づくが、30秒程度であれば十分である。   The volume fraction of the austenite phase can be controlled by adjusting the composition of steel and the annealing conditions (temperature, time). Specifically, the volume fraction of the austenite phase increases as the Cr content is lower and the C and N content is higher. On the other hand, if the annealing temperature is too high, the volume fraction of the austenite phase decreases. On the other hand, if the annealing temperature is too low, C and N precipitate, so the volume fraction of the austenite phase also decreases. Therefore, there is a temperature range in which the maximum volume fraction of the austenite phase can be obtained depending on the steel component. In the composition of the present invention, the temperature range is 950 to 1300 ° C. The longer the annealing time is, the closer to the volume fraction of the austenite phase in an equilibrium state determined by the composition and temperature of the steel, but about 30 seconds is sufficient.

また、本発明のステンレス鋼においては、オーステナイト相中に含まれるCとNの合計量は0.16〜2mass%であることが必要である。オーステナイト相中のCとNの合計量が、0.16mass%未満では十分な成形性が得られない。一方、CとNの合計量が2mass%超え含有すると、焼鈍後の冷却時に炭化物、窒化物が多量に析出し、延性にはむしろ悪影響を及ぼすからである。なお、CとNの合計量は、好ましくは0.2〜2mass%、さらに好ましくは0.3〜1.5mass%の範囲である。   In the stainless steel of the present invention, the total amount of C and N contained in the austenite phase needs to be 0.16 to 2 mass%. If the total amount of C and N in the austenite phase is less than 0.16 mass%, sufficient formability cannot be obtained. On the other hand, if the total amount of C and N exceeds 2 mass%, a large amount of carbides and nitrides precipitate during cooling after annealing, and rather adversely affects the ductility. The total amount of C and N is preferably in the range of 0.2 to 2 mass%, more preferably 0.3 to 1.5 mass%.

上記オーステナイト相中のC,N量の制御は、鋼の成分組成と焼鈍条件(温度、時間)を調整することによって行うことができる。すなわち、鋼中のC,N量が多いとオーステナイト中のC,N量も増加する。また、鋼の成分組成が同一の場合は、焼鈍条件によって決定されたオーステナイト相の体積分率が低いほど、オーステナイト相中にC,Nを濃化させることができる。なお、オーステナイト相中のC,Nの測定は、EPMAにより測定することができる。   The amount of C and N in the austenite phase can be controlled by adjusting the composition of steel and the annealing conditions (temperature and time). That is, when the amount of C and N in steel is large, the amount of C and N in austenite also increases. Moreover, when the component composition of steel is the same, C and N can be concentrated in an austenite phase, so that the volume fraction of the austenite phase determined by annealing conditions is low. In addition, the measurement of C and N in an austenite phase can be measured by EPMA.

オーステナイト相の体積分率およびオーステナイト相中に含まれるCとNの合計量が、鋼の成形性に大きな影響を及ぼす理由について、まだ十分明らかとはなっていないが、発明者らは、以下のように考えている。
すなわち、C,N,Ni,Mnは、オーステナイト相生成元素、Cr,Siはフェライト相生成元素と考えられており、それらの元素は各相に濃化する傾向がある。中でもCとNは、鋼中の含有量および熱処理条件により、オーステナイト相への濃化度が顕著に変化する。また、オーステナイト相は、成形性と関係しており、オーステナイト相の体積分率が高いほど成形性は良好となる。
The reason why the volume fraction of the austenite phase and the total amount of C and N contained in the austenite phase have a great influence on the formability of the steel has not been clarified yet. I think so.
That is, C, N, Ni, and Mn are considered to be austenite phase forming elements, and Cr and Si are considered to be ferrite phase forming elements, and these elements tend to concentrate in each phase. Among these, C and N have a remarkable change in the concentration to the austenite phase depending on the content in the steel and the heat treatment conditions. The austenite phase is related to moldability, and the higher the volume fraction of the austenite phase, the better the moldability.

その理由は、鋼は、引張変形を受けると、均一変形を経た後、局部的にネッキング(くびれ)が生じて、やがて破断に至るのが一般的であるが、本発明のステンレス鋼は、オーステナイト相が存在するため、微小なネッキングが生じ始めると、その部位のオーステナイト相がマルテンサイト相に加工誘起変態し、他の部位に比べて硬くなるため、その部位のネッキングがそれ以上進まなくなり、代わりに他の部位の変形が進行する結果、鋼全体が均一に変形して高い延性が得られるからである。   The reason for this is that when steel is subjected to tensile deformation, it generally undergoes uniform deformation, and then locally necking (necking) occurs and eventually breaks, but the stainless steel of the present invention is austenitic. When a minute necking begins to occur due to the presence of a phase, the austenite phase at that site undergoes processing-induced transformation to the martensite phase and becomes harder than other sites, so that the necking at that site does not progress further, instead This is because, as a result of the progress of deformation of other parts, the entire steel is uniformly deformed and high ductility is obtained.

そこで、鋼組成や熱処理条件を調整し、オーステナイト相の体積分率を高めるとともに、オーステナイト相中のCとNの合計量を高めてやれば、オーステナイト相が安定化し、加工を受けたときに加工誘起変態を適度に起こして、延性向上効果が効果的に発現し、優れた加工性を得ることができる。そのためには、オーステナイト相の体積分率が10%以上で、オーステナイト相中のCとNの合計量が0.16mass%以上であることが必要となる。一方、オーステナイト相中のCとNの合計量が0.16mass%未満では、オーステナイト相が不安定化し、加工時にオーステナイト相の多くがマルテンサイト相に変態して延性が低下するため、オーステナイト相の体積分率をいくら高めても、プレス成形性は向上しない。また、オーステナイト相の体積分率を85%以下に制限する理由は、85%を超えると、SCC感受性が高まるため好ましくないからである。   Therefore, by adjusting the steel composition and heat treatment conditions to increase the volume fraction of the austenite phase and increase the total amount of C and N in the austenite phase, the austenite phase is stabilized and processed when subjected to processing. The induced transformation is appropriately caused, and the effect of improving ductility is effectively exhibited, and excellent workability can be obtained. For that purpose, it is necessary that the volume fraction of the austenite phase is 10% or more and the total amount of C and N in the austenite phase is 0.16 mass% or more. On the other hand, if the total amount of C and N in the austenite phase is less than 0.16 mass%, the austenite phase becomes unstable and most of the austenite phase transforms into a martensite phase during processing, resulting in a decrease in ductility. No matter how much the fraction is increased, the press formability is not improved. The reason why the volume fraction of the austenite phase is limited to 85% or less is that if it exceeds 85%, the SCC sensitivity increases, which is not preferable.

さらに、発明者らは、本発明のオーステナイト・フェライト系ステンレス鋼は、オーステナイト相中のC,N,Si,Mn,Cr,Ni,Cu,Mo含有量から下記式;
Md(γ)=551−462(C(γ)+N(γ))−9.2Si(γ)−8.1Mn(γ)−13.7Cr(γ)−29Ni(γ)−29Cu(γ)−18.5Mo(γ)
ただし、C(γ)、N(γ)、Si(γ)、Mn(γ)、Cr(γ)、Ni(γ)、Cu(γ)およびMo(γ)は、それぞれオーステナイト相中のC量(mass%)、N量(mass%)、Si量(mass%)、Mn量(mass%)、Cr量(mass%)、Ni量(mass%)、Cu量(mass%)、Mo量(mass%)
で定義されるオーステナイト相の加工誘起マルテンサイト指数(Md(γ))を−30〜90の範囲に制御することにより、更に高い延性特性が得ることができる、具体的には、板厚0.8mmでも48%以上の全伸びが得られることを見出した。
Furthermore, the inventors have determined that the austenitic ferritic stainless steel of the present invention has the following formula from the contents of C, N, Si, Mn, Cr, Ni, Cu, and Mo in the austenitic phase:
Md (γ) = 551−462 (C (γ) + N (γ)) − 9.2Si (γ) −8.1Mn (γ) −13.7Cr (γ) −29Ni (γ) −29Cu (γ) −18.5Mo ( γ)
However, C (γ), N (γ), Si (γ), Mn (γ), Cr (γ), Ni (γ), Cu (γ) and Mo (γ) are the amounts of C in the austenite phase, respectively. (mass%), N amount (mass%), Si amount (mass%), Mn amount (mass%), Cr amount (mass%), Ni amount (mass%), Cu amount (mass%), Mo amount ( mass%)
By controlling the work-induced martensite index (Md (γ)) of the austenite phase defined by -30 to 90, higher ductility characteristics can be obtained. Specifically, the thickness is 0.8 mm. However, they found that a total elongation of 48% or more was obtained.

上記Md(γ)は、オーステナイト相が加工を受けた際の加工誘起マルテンサイト変態のし易さを示す指数であり、この指数が高いほど、加工に伴うマルテンサイト変態が起こり易いことを意味する。そして、上記Md(γ)が−30〜90の範囲が好ましい理由は、−30未満の場合には、加工誘起マルテンサイト変態が起こり難いため、微小なネッキングが生じ始めるときに、微小ネッキング部で発生する加工誘起マルテンサイト量が少ないからであり、また、Md(γ)が90を超える場合には、微小なネッキングが生じ始める前に鋼全体でオーステナイト相がマルテンサイト変態してしまうため、微小なネッキングが生じ始めるときには、加工誘起マルテンサイトのもととなるオーステナイト相が少なくなるからである。従って、Md(γ)を−30〜90の範囲に制御した場合にのみ、微小ネッキングが生じ始めた時に、ネッキング部位での発生するマルテンサイト量が最適化されて、非常に高い延性を示すものと考えられる。   The above Md (γ) is an index indicating the ease of processing-induced martensitic transformation when the austenite phase is processed. The higher this index is, the easier the martensitic transformation associated with processing occurs. . The reason why the above Md (γ) is preferably in the range of −30 to 90 is that when it is less than −30, the processing-induced martensite transformation hardly occurs. This is because the amount of work-induced martensite generated is small, and when Md (γ) exceeds 90, the austenite phase undergoes martensitic transformation throughout the steel before micronecking begins to occur. This is because when a large amount of necking begins to occur, the austenite phase that becomes the basis of the processing-induced martensite decreases. Therefore, only when Md (γ) is controlled in the range of −30 to 90, when the minute necking begins to occur, the amount of martensite generated at the necking site is optimized and exhibits very high ductility. it is conceivable that.

次に、本発明に係るオーステナイト・フェライト系ステンレス鋼の成分組成を限定する理由について説明する。
C:0.2mass%以下
Cは、オーステナイト相の体積分率を高めると共に、オーステナイト相中に濃化してオーステナイト相の安定度を高める重要な元素である。上記効果を得るためには、0.003mass%以上含有することが好ましい。しかし、C量が、0.2mass%を超えると、Cを固溶させるための熱処理温度が著しく高くなり、生産性が低下する。そのため、C量は0.2mass%以下に制限する。好ましくは0.15mass%未満である。さらに、耐応力腐食割れ性を改善する観点からは、Cは0.10mass%未満であることがより好ましい。
Next, the reason for limiting the component composition of the austenitic ferritic stainless steel according to the present invention will be described.
C: 0.2 mass% or less C is an important element that increases the volume fraction of the austenite phase and concentrates in the austenite phase to increase the stability of the austenite phase. In order to acquire the said effect, it is preferable to contain 0.003 mass% or more. However, when the amount of C exceeds 0.2 mass%, the heat treatment temperature for dissolving C is extremely high, and the productivity is lowered. Therefore, the amount of C is limited to 0.2 mass% or less. Preferably it is less than 0.15 mass%. Further, from the viewpoint of improving the stress corrosion cracking resistance, C is more preferably less than 0.10 mass%.

Si:4mass%以下
Siは、脱酸剤として添加される元素であり、0.01mass%以上含有することが好ましい。しかし、Siの添加量が4mass%を超えると、鋼材強度が高くなって冷間加工性を劣化させるため、4mass%以下とする。好ましくは1.2mass%以下である。さらに、鋭敏化による耐食性の劣化を防止する観点からは、Si量は0.4mass%以下に制限するのがより好ましい。
Si: 4 mass% or less
Si is an element added as a deoxidizer, and is preferably contained in an amount of 0.01 mass% or more. However, if the addition amount of Si exceeds 4 mass%, the steel material strength increases and the cold workability deteriorates, so the amount is set to 4 mass% or less. Preferably it is 1.2 mass% or less. Furthermore, from the viewpoint of preventing deterioration of corrosion resistance due to sensitization, the Si content is more preferably limited to 0.4 mass% or less.

Mn:10mass%以下
Mnは、脱酸剤として、また、オーステナイト相のMd(γ)調整用元素として有効な元素であり、適宜添加することができる。上記効果を得るためには、0.01mass%以上含有することが好ましい。しかし、添加量が10mass%を超えると熱間加工性が劣化するため、10mass%以下とする。好ましくは7mass%以下である。
Mn: 10 mass% or less
Mn is an effective element as a deoxidizer and as an element for adjusting Md (γ) of the austenite phase, and can be added as appropriate. In order to acquire the said effect, it is preferable to contain 0.01 mass% or more. However, if the added amount exceeds 10 mass%, the hot workability deteriorates, so it is set to 10 mass% or less. Preferably it is 7 mass% or less.

P:0.1mass%以下
Pは、熱間加工性に有害な元素であり、特に、0.1mass%を超えると悪影響が顕著となるので0.1mass%以下とする。好ましくは、0.05mass%以下である。
P: 0.1 mass% or less P is an element harmful to hot workability. In particular, if it exceeds 0.1 mass%, the adverse effect becomes significant, so 0.1 mass% or less. Preferably, it is 0.05 mass% or less.

S:0.03mass%以下
Sは、熱間加工性に有害な元素であり、特に、0.03mass%を超えると悪影響が顕著となるので0.03mass%以下とする。好ましくは、0.02mass%以下である。
S: 0.03 mass% or less S is an element harmful to hot workability. In particular, if it exceeds 0.03 mass%, the adverse effect becomes significant, so 0.03 mass% or less. Preferably, it is 0.02 mass% or less.

Cr:15〜35mass%
Crは、ステンレス鋼に耐食性を付与する最も重要な成分であり、15mass%未満では、十分な耐食性が得られない。一方、Crは、フェライト安定化元素であり、その量が35mass%を超えると、鋼中にオーステナイト相を形成することが困難となる。よって、Crは、15〜35mass%に制限する必要がある。好ましくは17〜30mass%、さらに好ましくは18〜28mass%の範囲である。
Cr: 15-35mass%
Cr is the most important component for imparting corrosion resistance to stainless steel, and if it is less than 15 mass%, sufficient corrosion resistance cannot be obtained. On the other hand, Cr is a ferrite stabilizing element. If the amount exceeds 35 mass%, it becomes difficult to form an austenite phase in the steel. Therefore, Cr needs to be limited to 15 to 35 mass%. Preferably it is 17-30 mass%, More preferably, it is the range of 18-28 mass%.

Ni:1〜3mass%
Niは、オーステナイト生成元素であり、耐隙間腐食性向上のためには1mass%以上が必要である。しかし、3mass%を超えるとフェライト相中のNi量が増加してフェライト相の延性が劣化し、成形性の低下を招くので、3mass%以下に制限する。好ましくは1〜2mass%である。
Ni: 1-3 mass%
Ni is an austenite-forming element and needs to be 1 mass% or more for improving crevice corrosion resistance. However, if it exceeds 3 mass%, the amount of Ni in the ferrite phase increases and the ductility of the ferrite phase deteriorates, resulting in a decrease in formability, so it is limited to 3 mass% or less. Preferably it is 1-2 mass%.

N:0.05〜0.6mass%
Nは、Cと同様にオーステナイト相の体積分率を高めると共に、オーステナイト相中に濃化し、オーステナイトを安定化する元素である。しかし、Nが0.6mass%を超えると、鋳造時にブローホールを発生するようになる。また0.05mass%未満では、オーステナイト相中のNの濃化が不十分となる。よって、0.05〜0.6mass%の範囲とする。なお、Nの含有量は、好ましくは0.1〜0.4mass%である。さらに、Nは、オーステナイト相生成の観点からは0.18mass%以上、熱間加工性の観点からは0.34mass%以下であることが好ましい。
N: 0.05-0.6mass%
N, like C, is an element that increases the volume fraction of the austenite phase and concentrates in the austenite phase to stabilize the austenite. However, when N exceeds 0.6 mass%, blow holes are generated during casting. If it is less than 0.05 mass%, the concentration of N in the austenite phase becomes insufficient. Therefore, it is set as the range of 0.05-0.6 mass%. The N content is preferably 0.1 to 0.4 mass%. Furthermore, N is preferably 0.18 mass% or more from the viewpoint of austenite phase generation and 0.34 mass% or less from the viewpoint of hot workability.

本発明のステンレス鋼は、上記の必須とする成分以外に、下記の成分を必要に応じて含有してもよい。   The stainless steel of the present invention may contain the following components as necessary in addition to the essential components.

V:0.5mass%以下
Vは、鋼の組織を微細化し、強度を高める元素であり、要求特性に応じて、0.005mass%以上添加することが好ましい。ただし、0.5mass%を超えると、Cおよび/またはNを固溶させるための熱処理温度が著しく高くなり、生産性の低下を招く。そのため、Vの添加量は0.5mass%以下に制限するのが好ましい。より好ましくは0.2mass%以下である。
V: 0.5 mass% or less V is an element that refines the structure of steel and increases strength, and is preferably added in an amount of 0.005 mass% or more depending on required characteristics. However, when it exceeds 0.5 mass%, the heat treatment temperature for dissolving C and / or N is remarkably increased, leading to a decrease in productivity. Therefore, it is preferable to limit the addition amount of V to 0.5 mass% or less. More preferably, it is 0.2 mass% or less.

Al:0.1mass%以下
Alは、強力な脱酸剤であり、脱酸元素として添加する場合は、0.003mass%以上とすることが好ましい。ただし、0.1mass%を超えると、窒化物を形成して表面疵の原因となるので、0.1mass%以下に制限するのが好ましい。より好ましくは0.02mass%以下である。
Al: 0.1 mass% or less
Al is a strong deoxidizing agent, and when added as a deoxidizing element, it is preferable to set it to 0.003 mass% or more. However, if it exceeds 0.1 mass%, a nitride is formed and causes surface defects. Therefore, it is preferably limited to 0.1 mass% or less. More preferably, it is 0.02 mass% or less.

Mo:4mass%以下、Cu:4mass%以下のいずれか1種または2種
Moは、耐食性を向上させるために適宜添加することができ、その効果を得るには、0.1mass%以上添加することが好ましい。しかし、4mass%を超えると効果が飽和するので、4mass%以下に制限するのが好ましい。より好ましくは2mass%以下である。同様に、Cuは、耐食性を向上させるために適宜添加することができるので、添加する場合には0.1mass%以上であることが好ましい。しかし、4mass%を超えると熱間加工性が劣化するので、4mass%以下に制限するのが好ましい。より好ましくは2mass%以下である。
Any one or two of Mo: 4 mass% or less, Cu: 4 mass% or less
Mo can be added as appropriate in order to improve the corrosion resistance. To obtain the effect, it is preferable to add 0.1 mass% or more. However, since the effect is saturated when it exceeds 4 mass%, it is preferable to limit it to 4 mass% or less. More preferably, it is 2 mass% or less. Similarly, since Cu can be added as appropriate in order to improve the corrosion resistance, when added, it is preferably 0.1 mass% or more. However, since hot workability will deteriorate when it exceeds 4 mass%, it is preferable to restrict to 4 mass% or less. More preferably, it is 2 mass% or less.

B:0.01mass%以下、Ca:0.01mass%以下、Mg:0.01mass%以下、REM:0.1mass%以下のうちのいずれか1種または2種以上
B,Ca,Mgは、熱間加工性を向上させる成分であり、適宜添加することができる。その効果を得るためには0.0003mass%以上添加することが好ましい。しかし、0.01mass%を超えると耐食性が劣化するので、それぞれ0.01mass%以下に制限するのが好ましい。より好ましくはそれぞれ0.005mass%以下である。同様に、REMは、熱間加工性を向上させる成分として適宜添加することができ、その場合には、0.002mass%以上であることが好ましい。しかし、0.1mass%を超えると耐食性が劣化するので、0.1mass%以下に制限するのが好ましい。より好ましくは0.05mass%以下である。なお、上記REMは、La,Ce等の希土類元素のことを意味する。
B: 0.01 mass% or less, Ca: 0.01 mass% or less, Mg: 0.01 mass% or less, REM: Any one or more of 0.1 mass% or less B, Ca, Mg has hot workability It is a component to improve and can be added as appropriate. In order to obtain the effect, 0.0003 mass% or more is preferably added. However, since corrosion resistance will deteriorate if it exceeds 0.01 mass%, it is preferable to limit each to 0.01 mass% or less. More preferably, it is 0.005 mass% or less respectively. Similarly, REM can be appropriately added as a component for improving hot workability, and in that case, it is preferably 0.002 mass% or more. However, since corrosion resistance will deteriorate when it exceeds 0.1 mass%, it is preferable to limit to 0.1 mass% or less. More preferably, it is 0.05 mass% or less. The REM means a rare earth element such as La or Ce.

なお、その他に、Ti,Nbを添加してもよい。Tiは、熱間加工性を向上させる成分として適宜添加することができる。上記効果を得るためには、0.002mass%以上添加することが好ましい。しかし、0.1mass%を超えると耐食性が劣化するので、0.1mass%以下に制限するのが好ましい。Nbは、鋭敏化(粒界のクロム炭化物、クロム窒化物の生成による耐食性劣化)を抑える元素として添加することができる。上記効果を得るためには、0.002mass%以上添加することが好ましい。しかし、2mass%を超えると、Nbの炭窒化物が多量に生成し、鋼中の固溶C,Nが消費されるため好ましくない。
本発明のステンレス鋼においては、上記成分以外の残部は、Feおよび不可避的不純物である。なお、Oは、介在物による表面疵を防止する観点から、0.05mass%以下に制御するのが好ましい。
In addition, Ti and Nb may be added. Ti can be appropriately added as a component for improving hot workability. In order to acquire the said effect, adding 0.002 mass% or more is preferable. However, since corrosion resistance will deteriorate when it exceeds 0.1 mass%, it is preferable to limit to 0.1 mass% or less. Nb can be added as an element that suppresses sensitization (corrosion resistance deterioration due to the formation of chromium carbide and chromium nitride at grain boundaries). In order to acquire the said effect, adding 0.002 mass% or more is preferable. However, if it exceeds 2 mass%, a large amount of Nb carbonitride is generated and solute C and N in the steel are consumed, which is not preferable.
In the stainless steel of the present invention, the balance other than the above components is Fe and inevitable impurities. In addition, it is preferable to control O to 0.05 mass% or less from a viewpoint of preventing the surface flaw by an inclusion.

表1に示した成分組成を有する各種鋼を真空溶解あるいは窒素分圧を制御した雰囲気下で溶製し、鋼スラブとした後、常法に従って、熱間圧延、冷間圧延し、その後、窒素分圧を制御した雰囲気下で、表2に示したように950〜1300℃の温度範囲で30〜600秒の仕上焼鈍を行い、オーステナイト相の体積分率およびオーステナイト相中のCとNの合計量が異なる、板厚:1.25mmの各種冷延焼鈍板を作製し、これらの冷延焼鈍板について、下記の要領で、組織観察、オーステナイト相中のC,N分析および限界絞り比(LDR)の測定を行った。
<組織観察>
冷延焼鈍板の圧延方向の断面組織を、光学顕微鏡を用いて500倍で全厚×0.1mm以上の範囲に亘って観察し、オーステナイト相の面積率を測定してオーステナイト相の体積分率とした。具体的には、試料の圧延方向断面を研磨した後、赤血塩溶液(フェリシアン化カリウム30g+水酸化カリウム30g+水60ml)あるいは王水でエッチング後、白黒写真撮影を行い、白色部(オーステナイト相とマルテンサイト相)と灰色部(フェライト相)の占める割合を画像解析により求め、白色部の分率をオーステナイト相の体積分率とした。なお、まれに、白色部と灰色部が反転することがあるが、この場合は、EPMA分析を併用することで確認することができる。
<オーステナイト相中のC,N分析>
上記断面を研摩した試料を用いて、EPMAによるオーステナイト相中のC,Nの分析を行った。具体的には、C,Nは、オーステナイト相に濃化する特徴があるので、まず、断面全体について、CまたはNの定性マッピングを行ってオーステナイト相を特定した後、フェライト相に電子ビームがかからないように、オーステナイト相のほぼ中心部についてC,Nを定量分析した。測定領域は約1μmφの範囲で、各試料について3点以上測定し、その平均値を代表値とした。
<限界絞り比>
上記冷延焼鈍板から、直径(ブランク径)を種々の大きさに変えた円形の試験片を打ち抜き、この試験片を、ポンチ径:35mm、板押え力:1tonの条件で円筒絞り成形し、破断することなく絞れる最大のブランク径をポンチ径で割って限界絞り比(LDR)を求め、深絞り性を評価した。なお、円筒絞り成形に用いた試験片の打ち抜き径は、絞り比が0.1間隔となるよう変化させた。
Various steels having the composition shown in Table 1 were melted in an atmosphere with vacuum melting or controlled nitrogen partial pressure to form a steel slab, followed by hot rolling and cold rolling according to a conventional method, and then nitrogen. In a controlled partial pressure atmosphere, finish annealing is performed for 30 to 600 seconds in the temperature range of 950 to 1300 ° C as shown in Table 2, and the volume fraction of the austenite phase and the total of C and N in the austenite phase Various cold-rolled annealed sheets with different thicknesses and thicknesses of 1.25 mm were prepared, and these cold-rolled annealed sheets were subjected to structure observation, C and N analysis in the austenite phase, and limit drawing ratio (LDR) in the following manner. Was measured.
<Tissue observation>
The cross-sectional structure in the rolling direction of the cold-rolled annealed sheet was observed over a range of 500 mm or more in total thickness x 0.1 mm using an optical microscope, and the area ratio of the austenite phase was measured to determine the volume fraction of the austenite phase. did. Specifically, after polishing the cross section in the rolling direction of the sample, it was etched with a red blood salt solution (30 g of potassium ferricyanide + 30 g of potassium hydroxide + 60 ml of water) or aqua regia, and then a black and white photograph was taken to obtain a white portion (austenite phase and martensite). The proportion of the site portion) and the gray portion (ferrite phase) was determined by image analysis, and the white portion fraction was defined as the volume fraction of the austenite phase. In rare cases, the white part and the gray part may be reversed, but in this case, it can be confirmed by using EPMA analysis together.
<Analysis of C and N in austenite phase>
Analysis of C and N in the austenite phase by EPMA was performed using a sample whose surface was polished. Specifically, since C and N have a feature of being concentrated in the austenite phase, first, the qualitative mapping of C or N is performed on the entire cross section to identify the austenite phase, and then no electron beam is applied to the ferrite phase. As described above, C and N were quantitatively analyzed in the substantially central part of the austenite phase. The measurement area was about 1 μmφ, and three or more points were measured for each sample, and the average value was used as the representative value.
<Limit drawing ratio>
From the cold-rolled annealed plate, circular test pieces with different diameters (blank diameters) were punched out, and this test piece was subjected to cylindrical drawing under the conditions of punch diameter: 35 mm and plate pressing force: 1 ton. The maximum blank diameter that can be squeezed without breaking was divided by the punch diameter to determine the limit drawing ratio (LDR), and the deep drawability was evaluated. The punching diameter of the test piece used for the cylindrical drawing was changed so that the drawing ratio was 0.1 interval.

上記測定の結果を表2に併記して示した。また、図1に、限界絞り比に及ぼす鋼中のNi量、オーステナイト相の体積分率およびオーステナイト相中のCとNの合計量の影響を示した。これらの結果から、本発明の条件を満たす、すなわち、Niを1〜3mass%含有し、オーステナイト相の体積分率が10〜85%で、かつオーステナイト相中のCとNの合計量が0.16〜2%であるオーステナイト・フェライト系ステンレス鋼板は、いずれも限界絞り比が2.1以上の高い値を示しており、深絞り性に優れていることがわかる。これに対して、オーステナイト相の体積分率が10〜85%の範囲外および/またはオーステナイト中のCとNの合計量が0.16mass%未満のオーステナイト・フェライト系ステンレス鋼板は、いずれも限界絞り比が2.1未満と低く、深絞り性が劣ることがわかる。また、オーステナイト相の体積分率およびオーステナイト相中のCとNの合計量が本発明範囲内でも、鋼板中のNi量が3mass%を超えるオーステナイト・フェライト系ステンレス鋼板は、やはり限界絞り比が2.1未満と低く、深絞り性が劣ることがわかる。   The results of the above measurements are shown together in Table 2. FIG. 1 shows the effects of the amount of Ni in the steel, the volume fraction of the austenite phase, and the total amount of C and N in the austenite phase on the limit drawing ratio. From these results, the conditions of the present invention are satisfied, that is, containing 1 to 3 mass% of Ni, the volume fraction of the austenite phase is 10 to 85%, and the total amount of C and N in the austenite phase is 0.16 to All the 2% austenitic and ferritic stainless steel sheets have a high limit drawing ratio of 2.1 or higher, indicating that they are excellent in deep drawability. On the other hand, austenitic and ferritic stainless steel sheets whose volume fraction of austenite phase is outside the range of 10 to 85% and / or the total amount of C and N in the austenite is less than 0.16 mass% are all limited drawing ratios. Is as low as less than 2.1, indicating that the deep drawability is poor. In addition, even when the volume fraction of the austenite phase and the total amount of C and N in the austenite phase are within the range of the present invention, the austenite-ferritic stainless steel plate in which the Ni content in the steel plate exceeds 3 mass% still has a limit drawing ratio of 2.1. It can be seen that the deep drawability is poor.

Figure 2006183129
Figure 2006183129

Figure 2006183129
Figure 2006183129

表3に示した成分組成を有する各種鋼を真空溶解あるいは窒素分圧を0〜1気圧に制御した雰囲気下で溶製し、鋼スラブとした後、常法に従って、熱間圧延、熱延板焼鈍、冷間圧延し、表4に示した焼鈍温度で1分間の仕上焼鈍を行い、オーステナイト相の体積分率およびオーステナイト相中のCとNの合計量が異なる板厚0.8mmの各種冷延焼鈍板を作製した。上記のようにして得た冷延焼鈍板について、下記の要領で、組織観察、オーステナイト相中の成分分析、引張試験および限界絞り比(LDR)の測定を行った。
<組織観察>
冷延焼鈍板の圧延方向の断面組織を、光学顕微鏡を用いて、500倍で全厚×0.1mm以上の範囲に亘って観察し、オーステナイト相の面積率を測定してオーステナイト相の体積分率とした。具体的には、試料の圧延方向断面を研磨した後、赤血塩溶液(フェリシアン化カリウム30g+水酸化カリウム30g+水60ml)または王水でエッチング後、白黒写真撮影を行い、白色部(オーステナイト相とマルテンサイト相)と灰色部(フェライト相)の占める割合を画像解析により求め、白色部の分率をオーステナイト相の体積分率とした。
<オーステナイト相中の成分分析>
上記断面を研摩した試料を用いて、EPMAによるオーステナイト相中の成分分析を行った。具体的には、C,Nは、オーステナイト相に濃化する特徴があるので、まず、断面全体について、CまたはNの定性マッピングを行ってオーステナイト相を特定した上で、フェライト相に電子ビームがかからないようにオーステナイト相のほぼ中心部について、C,N,Si,Mn,Cr,Ni,CuおよびMoを定量分析した。測定領域は約1μmφの範囲で、各試料について3点以上測定し、その平均値を代表値とした。その結果を、表4に示した。また、これらの測定値を元に、下記式;
Md(γ)=551−462(C(γ)+N(γ))−9.2Si(γ)−8.1Mn(γ)−13.7Cr(γ)−29Ni(γ)−29Cu(γ)−18.5Mo(γ)
ただし、C(γ)、N(γ)、Si(γ)、Mn(γ)、Cr(γ)、Ni(γ)、Cu(γ)およびMo(γ)は、それぞれオーステナイト相中のC量(mass%)、N量(mass%)、Si量(mass%)、Mn量(mass%)、Cr量(mass%)、Ni量(mass%)、Cu量(mass%)、Mo量(mass%)
で定義される加工誘起マルテンサイト指数(Md(γ))を求めた。
<引張試験>
冷延焼鈍板から、圧延方向に対して0°(平行)、45°および90°の各方向からJIS 13号B引張試験片を採取して、室温、大気中で、引張速度10mm/分の条件で引張試験を行った。引張試験では、各方向の破断までの全伸びを測定し、下記式;
El={El(0°)+2El(45°)+El(90°)}/4)
を用いて平均伸び(El)を計算し、これを全伸びとして評価した。
<限界絞り比>
上記冷延焼鈍板から、直径(ブランク径)を種々の大きさに変えた円形の試験片を打ち抜き、この試験片を、ポンチ径:35mm、板押え力:1tonの条件で円筒絞り成形し、破断することなく絞れる最大のブランク径をポンチ径で割って限界絞り比(LDR)を求め、深絞り性を評価した。なお、円筒絞り成形に用いた試験片の打ち抜き径は、絞り比が0.1間隔となるよう変化させた。
Various steels having the composition shown in Table 3 were melted under vacuum or in an atmosphere in which the nitrogen partial pressure was controlled to 0 to 1 atm to form a steel slab, followed by hot rolling and hot rolling in accordance with conventional methods. Annealing and cold rolling, finish annealing for 1 minute at the annealing temperature shown in Table 4, various cold rolling with 0.8mm thickness with different volume fraction of austenite phase and total amount of C and N in austenite phase An annealed plate was produced. The cold-rolled annealed sheet obtained as described above was subjected to structure observation, component analysis in the austenite phase, tensile test, and measurement of limit drawing ratio (LDR) in the following manner.
<Tissue observation>
The cross-sectional structure in the rolling direction of the cold-rolled annealed sheet is observed over an area of 500 times the total thickness x 0.1 mm or more using an optical microscope, and the area ratio of the austenite phase is measured to determine the volume fraction of the austenite phase. It was. Specifically, after polishing the cross section in the rolling direction of the sample, after etching with a red blood salt solution (potassium ferricyanide 30 g + potassium hydroxide 30 g + 60 ml water) or aqua regia, a black and white photograph was taken, and the white part (austenite phase and martensite) The proportion of the site portion) and the gray portion (ferrite phase) was determined by image analysis, and the white portion fraction was defined as the volume fraction of the austenite phase.
<Analysis of components in austenite phase>
Component analysis in the austenite phase was performed by EPMA using a sample obtained by polishing the cross section. Specifically, since C and N have a feature of being concentrated in the austenite phase, first, the qualitative mapping of C or N is performed on the entire cross section to identify the austenite phase, and then an electron beam is generated in the ferrite phase. C, N, Si, Mn, Cr, Ni, Cu and Mo were quantitatively analyzed about the substantially central part of the austenite phase so as not to be applied. The measurement area was about 1 μmφ, and three or more points were measured for each sample, and the average value was used as the representative value. The results are shown in Table 4. In addition, based on these measured values, the following formula:
Md (γ) = 551−462 (C (γ) + N (γ)) − 9.2Si (γ) −8.1Mn (γ) −13.7Cr (γ) −29Ni (γ) −29Cu (γ) −18.5Mo ( γ)
However, C (γ), N (γ), Si (γ), Mn (γ), Cr (γ), Ni (γ), Cu (γ) and Mo (γ) are the amounts of C in the austenite phase, respectively. (mass%), N amount (mass%), Si amount (mass%), Mn amount (mass%), Cr amount (mass%), Ni amount (mass%), Cu amount (mass%), Mo amount ( mass%)
The processing-induced martensite index (Md (γ)) defined by
<Tensile test>
JIS No. 13 B tensile test specimens were taken from cold-rolled annealed plates from 0 ° (parallel), 45 ° and 90 ° directions with respect to the rolling direction. A tensile test was performed under the conditions. In the tensile test, the total elongation to break in each direction is measured and the following formula:
El = {El (0 °) + 2El (45 °) + El (90 °)} / 4)
Was used to calculate the average elongation (El), and this was evaluated as the total elongation.
<Limit drawing ratio>
From the cold-rolled annealed plate, circular test pieces having different diameters (blank diameters) were punched out, and this test piece was subjected to cylindrical drawing under the conditions of punch diameter: 35 mm and plate pressing force: 1 ton. The maximum blank diameter that could be squeezed without breaking was divided by the punch diameter to determine the limit drawing ratio (LDR), and the deep drawability was evaluated. The punching diameter of the test piece used for the cylindrical drawing was changed so that the drawing ratio was 0.1 interval.

上記試験の結果を、表4中に併記して示した。オーステナイト相中のCとNの合計量が0.16〜2mass%である本発明の鋼板でも、Md(γ)を適正な範囲に制御することにより、更に大きく改善され、特に、Md(γ)を−30〜90の範囲に制御した場合には、全伸びが48%以上(板厚0.8mm)と、非常に優れた延性特性が得られることがわかる。   The results of the above test are shown together in Table 4. Even in the steel sheet of the present invention in which the total amount of C and N in the austenite phase is 0.16 to 2 mass%, the Md (γ) is further improved by controlling the Md (γ) to an appropriate range. It can be seen that when the thickness is controlled in the range of 30 to 90, the total elongation is 48% or more (plate thickness 0.8 mm), and very excellent ductility characteristics can be obtained.

Figure 2006183129
Figure 2006183129

Figure 2006183129
Figure 2006183129

本発明鋼は、自動車部材や厨房機器等の素材として好適に用いることができる。   The steel of the present invention can be suitably used as a material for automobile members and kitchen equipment.

鋼板中のNi含有量、オーステナイト相の体積分率およびオーステナイト相中のCとNの合計量と限界絞り比との関係を示すグラフである。It is a graph which shows the relationship between Ni content in a steel plate, the volume fraction of an austenite phase, the total amount of C and N in an austenite phase, and a limit drawing ratio.

Claims (5)

C:0.2mass%以下、Si:4mass%以下、Mn:10mass%以下、P:0.1mass%以下、S:0.03mass%以下、Cr:15〜35mass%、Ni:1〜3mass%、N:0.05〜0.6mass%を含有し、残部がFeおよび不可避的不純物からなり、フェライト相とオーステナイト相を含むステンレス鋼であって、上記オーステナイト相中のCとNの合計量が0.16〜2mass%、該オーステナイト相の体積分率が10〜85%であることを特徴とする成形性に優れるオーステナイト・フェライト系ステンレス鋼。 C: 0.2 mass% or less, Si: 4 mass% or less, Mn: 10 mass% or less, P: 0.1 mass% or less, S: 0.03 mass% or less, Cr: 15 to 35 mass%, Ni: 1 to 3 mass%, N: 0.05 A stainless steel containing a ferrite phase and an austenite phase, the total amount of C and N in the austenite phase being 0.16 to 2 mass%, the austenite An austenitic ferritic stainless steel with excellent formability, characterized by a phase volume fraction of 10 to 85%. 上記成分組成に加えてさらに、Vを0.5mass%以下含有したものであることを特徴とする請求項1に記載のオーステナイト・フェライト系ステンレス鋼。 2. The austenitic ferritic stainless steel according to claim 1, further comprising 0.5 mass% or less of V in addition to the above component composition. 上記成分組成に加えてさらに、Alを0.1mass%以下含有したものであることを特徴とする請求項1または2に記載のオーステナイト・フェライト系ステンレス鋼。 The austenitic ferritic stainless steel according to claim 1 or 2, further comprising 0.1 mass% or less of Al in addition to the above component composition. 上記成分組成に加えてさらに、Mo:4mass%以下、Cu:4mass%以下のいずれか1種または2種を含有したものであることを特徴とする請求項1〜3のいずれか1項に記載のオーステナイト・フェライト系ステンレス鋼。 4. In addition to the above component composition, Mo: 4 mass% or less and Cu: 4 mass% or less, any one or two of them are contained. Austenitic ferritic stainless steel. 上記成分組成に加えてさらに、B:0.01mass%以下、Ca:0.01mass%以下、Mg:0.01mass%以下、REM:0.1mass%以下のいずれか1種または2種以上を含有したものであることを特徴とする請求項1〜4のいずれか1項に記載のオーステナイト・フェライト系ステンレス鋼。
In addition to the above component composition, B: 0.01 mass% or less, Ca: 0.01 mass% or less, Mg: 0.01 mass% or less, REM: 0.1 mass% or less, or one or more of them are contained. The austenitic ferritic stainless steel according to any one of claims 1 to 4, wherein
JP2005023492A 2004-01-29 2005-01-31 Austenitic ferritic stainless steel with excellent formability Active JP4760032B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005023492A JP4760032B2 (en) 2004-01-29 2005-01-31 Austenitic ferritic stainless steel with excellent formability

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2004021283 2004-01-29
JP2004021283 2004-01-29
JP2004347306 2004-11-30
JP2004347306 2004-11-30
JP2005023492A JP4760032B2 (en) 2004-01-29 2005-01-31 Austenitic ferritic stainless steel with excellent formability

Publications (2)

Publication Number Publication Date
JP2006183129A true JP2006183129A (en) 2006-07-13
JP4760032B2 JP4760032B2 (en) 2011-08-31

Family

ID=36736454

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005023492A Active JP4760032B2 (en) 2004-01-29 2005-01-31 Austenitic ferritic stainless steel with excellent formability

Country Status (1)

Country Link
JP (1) JP4760032B2 (en)

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008163359A (en) * 2006-12-27 2008-07-17 Nippon Steel & Sumikin Stainless Steel Corp Stainless steel sheet for structural member having excellent impact absorbing property
JP2008291282A (en) * 2007-05-22 2008-12-04 Nippon Steel & Sumikin Stainless Steel Corp High strength dual-phase stainless steel sheet with excellent shape fixability, and its manufacturing method
WO2009017258A1 (en) 2007-08-02 2009-02-05 Nippon Steel & Sumikin Stainless Steel Corporation Ferritic-austenitic stainless steel excellent in corrosion resistance and workability and process for manufacturing the same
JP2009035782A (en) * 2007-08-02 2009-02-19 Nippon Steel & Sumikin Stainless Steel Corp Ferritic-austenitic stainless steel with excellent corrosion resistance and workability, and its manufacturing method
WO2009093652A1 (en) 2008-01-22 2009-07-30 Nippon Steel & Sumikin Stainless Steel Corporation Ferrite-austenite stainless steel sheet for structural members excellent in workability and impact absorption characteristics and process for the production of the sheet
WO2009099010A1 (en) 2008-02-05 2009-08-13 Nippon Steel & Sumikin Stainless Steel Corporation Ferrite-austenite stainless steel sheet excellent in ridging resistance and workability and process for manufacturing the same
WO2009119895A1 (en) 2008-03-26 2009-10-01 新日鐵住金ステンレス株式会社 Low-alloy duplex stainless steel wherein weld heat-affected zones have good corrosion resistance and toughness
JP2010059541A (en) * 2008-08-04 2010-03-18 Nippon Steel & Sumikin Stainless Steel Corp Ferritic-austenitic stainless steel having excellent ingot crack resistance and workability, and method for producing the same
JP2010084220A (en) * 2008-10-02 2010-04-15 Nippon Steel & Sumikin Stainless Steel Corp Two phase stainless hot-rolled steel having excellent impact toughness and method for producing the same
WO2011102499A1 (en) * 2010-02-18 2011-08-25 新日鐵住金ステンレス株式会社 Duplex stainless steel material for vacuum vessels, and process for manufacturing same
JP2011184792A (en) * 2010-02-12 2011-09-22 Nippon Steel & Sumikin Stainless Steel Corp Ferritic-austenitic stainless steel sheet having excellent press formability, and method for producing the same
JP2011208244A (en) * 2010-03-30 2011-10-20 Nippon Steel & Sumikin Stainless Steel Corp Ferritic-austenitic stainless steel sheet to be press-formed causing small earring, and method for manufacturing the same
WO2011135170A1 (en) 2010-04-29 2011-11-03 Outokumpu Oyj Method for manufacturing and utilizing ferritic-austenitic stainless steel with high formability
JP2012126992A (en) * 2010-11-25 2012-07-05 Jfe Steel Corp Austenite-ferrite duplex stainless steel for fuel tank
WO2012121380A1 (en) 2011-03-09 2012-09-13 新日鐵住金ステンレス株式会社 Two-phase stainless steel exhibiting excellent corrosion resistance in weld
WO2013113718A1 (en) * 2012-02-03 2013-08-08 Klaus Kuhn Edelstahlgiesserei Gmbh Duplex steel with improved notch-impact strength and machinability
CN103547695A (en) * 2011-04-18 2014-01-29 奥托库姆普联合股份公司 Method for manufacturing and utilizing ferritic-austenitic stainless steel
CN103890214A (en) * 2011-09-07 2014-06-25 奥托库姆普联合股份公司 Duplex stainless steel
EP2762597A4 (en) * 2011-09-28 2015-08-19 Posco Low-alloy duplex stainless steel having outstanding corrosion resistance and hot working properties
JP2015221945A (en) * 2007-11-29 2015-12-10 エイティーアイ・プロパティーズ・インコーポレーテッド Lean austenitic stainless steel
US20160115574A1 (en) * 2013-06-13 2016-04-28 Outokumpu Oyj Duplex ferritic austenitic stainless steel
US9624564B2 (en) 2007-12-20 2017-04-18 Ati Properties Llc Corrosion resistant lean austenitic stainless steel
JP6140856B1 (en) * 2016-02-19 2017-05-31 新日鐵住金ステンレス株式会社 Ferritic / austenitic stainless steel sheet with excellent formability and method for producing the same
JP2017145460A (en) * 2016-02-17 2017-08-24 新日鐵住金ステンレス株式会社 Ferrite-austenitic stainless steel sheet for structural member excellent in puncture resistance at low temperature and manufacturing method thereof
US9822435B2 (en) 2007-12-20 2017-11-21 Ati Properties Llc Lean austenitic stainless steel
US9862168B2 (en) 2011-01-27 2018-01-09 Nippon Steel & Sumikin Stainless Steel Corporation Alloying element-saving hot rolled duplex stainless steel material, clad steel plate having duplex stainless steel as cladding material therefor, and production method for same
US9873932B2 (en) 2007-12-20 2018-01-23 Ati Properties Llc Lean austenitic stainless steel containing stabilizing elements
JP6315158B1 (en) * 2017-09-19 2018-04-25 新日鐵住金株式会社 Stainless steel sheet and method for producing the same, separator for polymer electrolyte fuel cell, polymer electrolyte fuel cell, and polymer electrolyte fuel cell
WO2018117477A1 (en) * 2016-12-23 2018-06-28 주식회사 포스코 Duplex stainless steel having excellent corrosion resistance and moldability, and manufacturing method therefor
JP2018197377A (en) * 2017-05-24 2018-12-13 Jfeスチール株式会社 Two-phase stainless steel having excellent corrosion resistance and hydrogen brittleness resistance
JP2018197376A (en) * 2017-05-24 2018-12-13 Jfeスチール株式会社 Two-phase stainless steel having excellent corrosion resistance and hydrogen brittleness resistance
CN111742075A (en) * 2018-02-15 2020-10-02 山特维克知识产权股份有限公司 Novel duplex stainless steel
WO2021241133A1 (en) * 2020-05-28 2021-12-02 日鉄ステンレス株式会社 Two-phase ferrite/austenite stainless steel material and corrosion resistant member

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3556879A4 (en) 2017-01-23 2020-01-15 JFE Steel Corporation Ferritic/austenitic duplex stainless steel plate

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5651222B1 (en) * 1970-12-23 1981-12-03
JPH02305940A (en) * 1989-05-22 1990-12-19 Nippon Steel Corp Two-phase stainless steel for building material
JPH05247594A (en) * 1992-03-03 1993-09-24 Sumitomo Metal Ind Ltd Dual phase stainless steel excellent in weatherability
JPH10219407A (en) * 1997-02-07 1998-08-18 Kawasaki Steel Corp Ferritic stainless steel excellent in ductility, and its production
WO2002027056A1 (en) * 2000-09-27 2002-04-04 Avestapolarit Aktiebolag (Publ) Ferritic-austenitic stainless steel

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5651222B1 (en) * 1970-12-23 1981-12-03
JPH02305940A (en) * 1989-05-22 1990-12-19 Nippon Steel Corp Two-phase stainless steel for building material
JPH05247594A (en) * 1992-03-03 1993-09-24 Sumitomo Metal Ind Ltd Dual phase stainless steel excellent in weatherability
JPH10219407A (en) * 1997-02-07 1998-08-18 Kawasaki Steel Corp Ferritic stainless steel excellent in ductility, and its production
WO2002027056A1 (en) * 2000-09-27 2002-04-04 Avestapolarit Aktiebolag (Publ) Ferritic-austenitic stainless steel

Cited By (66)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008163359A (en) * 2006-12-27 2008-07-17 Nippon Steel & Sumikin Stainless Steel Corp Stainless steel sheet for structural member having excellent impact absorbing property
JP2008291282A (en) * 2007-05-22 2008-12-04 Nippon Steel & Sumikin Stainless Steel Corp High strength dual-phase stainless steel sheet with excellent shape fixability, and its manufacturing method
EP3434802A1 (en) 2007-08-02 2019-01-30 Nippon Steel & Sumikin Stainless Steel Corporation Ferritic-austenitic stainless steel excellent in corrosion resistance and workability and method of production of same
WO2009017258A1 (en) 2007-08-02 2009-02-05 Nippon Steel & Sumikin Stainless Steel Corporation Ferritic-austenitic stainless steel excellent in corrosion resistance and workability and process for manufacturing the same
JP2009035782A (en) * 2007-08-02 2009-02-19 Nippon Steel & Sumikin Stainless Steel Corp Ferritic-austenitic stainless steel with excellent corrosion resistance and workability, and its manufacturing method
US9617628B2 (en) 2007-11-29 2017-04-11 Ati Properties Llc Lean austenitic stainless steel
US10370748B2 (en) 2007-11-29 2019-08-06 Ati Properties Llc Lean austenitic stainless steel
JP2015221945A (en) * 2007-11-29 2015-12-10 エイティーアイ・プロパティーズ・インコーポレーテッド Lean austenitic stainless steel
US10323308B2 (en) 2007-12-20 2019-06-18 Ati Properties Llc Corrosion resistant lean austenitic stainless steel
US9873932B2 (en) 2007-12-20 2018-01-23 Ati Properties Llc Lean austenitic stainless steel containing stabilizing elements
US9822435B2 (en) 2007-12-20 2017-11-21 Ati Properties Llc Lean austenitic stainless steel
US9624564B2 (en) 2007-12-20 2017-04-18 Ati Properties Llc Corrosion resistant lean austenitic stainless steel
US8303733B2 (en) 2008-01-22 2012-11-06 Nippon Steel & Sumikin Stainless Steel Corporation Ferrite-austenite stainless steel sheet for structural component excellent in workability and impact-absorbing property and method for producing the same
WO2009093652A1 (en) 2008-01-22 2009-07-30 Nippon Steel & Sumikin Stainless Steel Corporation Ferrite-austenite stainless steel sheet for structural members excellent in workability and impact absorption characteristics and process for the production of the sheet
WO2009099010A1 (en) 2008-02-05 2009-08-13 Nippon Steel & Sumikin Stainless Steel Corporation Ferrite-austenite stainless steel sheet excellent in ridging resistance and workability and process for manufacturing the same
US8226780B2 (en) 2008-02-05 2012-07-24 Nippon Steel Ferrite-austenite stainless steel sheet excellent in ridging resistance and workability and process for manufacturing the same
KR20160010887A (en) 2008-03-26 2016-01-28 닛폰 스틸 앤드 스미킨 스테인레스 스틸 코포레이션 Low-alloy duplex stainless steel wherein weld heat-affected zones have good corrosion resistance and toughness
US9212412B2 (en) 2008-03-26 2015-12-15 Nippon Steel & Sumikin Stainless Steel Corporation Lean duplex stainless steel excellent in corrosion resistance and toughness of weld heat affected zone
WO2009119895A1 (en) 2008-03-26 2009-10-01 新日鐵住金ステンレス株式会社 Low-alloy duplex stainless steel wherein weld heat-affected zones have good corrosion resistance and toughness
KR20160010886A (en) 2008-03-26 2016-01-28 닛폰 스틸 앤드 스미킨 스테인레스 스틸 코포레이션 Low-alloy duplex stainless steel wherein weld heat-affected zones have good corrosion resistance and toughness
JP2010059541A (en) * 2008-08-04 2010-03-18 Nippon Steel & Sumikin Stainless Steel Corp Ferritic-austenitic stainless steel having excellent ingot crack resistance and workability, and method for producing the same
JP2010084220A (en) * 2008-10-02 2010-04-15 Nippon Steel & Sumikin Stainless Steel Corp Two phase stainless hot-rolled steel having excellent impact toughness and method for producing the same
JP2011184792A (en) * 2010-02-12 2011-09-22 Nippon Steel & Sumikin Stainless Steel Corp Ferritic-austenitic stainless steel sheet having excellent press formability, and method for producing the same
CN102770572A (en) * 2010-02-18 2012-11-07 新日铁住金不锈钢株式会社 Duplex stainless steel material for vacuum vessels, and process for manufacturing same
WO2011102499A1 (en) * 2010-02-18 2011-08-25 新日鐵住金ステンレス株式会社 Duplex stainless steel material for vacuum vessels, and process for manufacturing same
JP2011168838A (en) * 2010-02-18 2011-09-01 Nippon Steel & Sumikin Stainless Steel Corp Duplex stainless steel material for vacuum vessel and method for manufacturing the same
JP2011208244A (en) * 2010-03-30 2011-10-20 Nippon Steel & Sumikin Stainless Steel Corp Ferritic-austenitic stainless steel sheet to be press-formed causing small earring, and method for manufacturing the same
JP2013530305A (en) * 2010-04-29 2013-07-25 オウトクンプ オサケイティオ ユルキネン Production and utilization of ferritic / austenitic stainless steel with high formability
EP2563945A1 (en) 2010-04-29 2013-03-06 Outokumpu, Oyj Method for manufacturing and utilizing ferritic-austenitic stainless steel with high formability
TWI512111B (en) * 2010-04-29 2015-12-11 Outokumpu Oy Method for manufacturing and utilizing ferritic-austenitic stainless steel with high formability
WO2011135170A1 (en) 2010-04-29 2011-11-03 Outokumpu Oyj Method for manufacturing and utilizing ferritic-austenitic stainless steel with high formability
US10407746B2 (en) 2010-04-29 2019-09-10 Outokumpu Oyj Method for manufacturing and utilizing ferritic-austenitic stainless steel
AU2011247272B2 (en) * 2010-04-29 2016-04-28 Outokumpu Oyj Method for manufacturing and utilizing ferritic-austenitic stainless steel with high formability
EP2563945A4 (en) * 2010-04-29 2016-12-07 Outokumpu Oy Method for manufacturing and utilizing ferritic-austenitic stainless steel with high formability
JP2012126992A (en) * 2010-11-25 2012-07-05 Jfe Steel Corp Austenite-ferrite duplex stainless steel for fuel tank
US9862168B2 (en) 2011-01-27 2018-01-09 Nippon Steel & Sumikin Stainless Steel Corporation Alloying element-saving hot rolled duplex stainless steel material, clad steel plate having duplex stainless steel as cladding material therefor, and production method for same
WO2012121380A1 (en) 2011-03-09 2012-09-13 新日鐵住金ステンレス株式会社 Two-phase stainless steel exhibiting excellent corrosion resistance in weld
US9365914B2 (en) 2011-03-09 2016-06-14 Nippon Steel & Sumikin Stainless Steel Corporation Duplex stainless steel superior in corrosion resistance of weld
JP2014511944A (en) * 2011-04-18 2014-05-19 オウトクンプ オサケイティオ ユルキネン Production and utilization of ferritic and austenitic stainless steels
EP2699704A1 (en) 2011-04-18 2014-02-26 Outokumpu, Oyj Method for manufacturing and utilizing ferritic-austenitic stainless steel
CN103547695A (en) * 2011-04-18 2014-01-29 奥托库姆普联合股份公司 Method for manufacturing and utilizing ferritic-austenitic stainless steel
US11555231B2 (en) 2011-09-07 2023-01-17 Outokumpu Oyj Duplex stainless steel
EP2753724A1 (en) 2011-09-07 2014-07-16 Outokumpu Oyj Duplex stainless steel
CN103890214A (en) * 2011-09-07 2014-06-25 奥托库姆普联合股份公司 Duplex stainless steel
US10280491B2 (en) 2011-09-28 2019-05-07 Posco Low-alloy duplex stainless steel having outstanding corrosion resistance and hot working properties
EP2762597A4 (en) * 2011-09-28 2015-08-19 Posco Low-alloy duplex stainless steel having outstanding corrosion resistance and hot working properties
WO2013113718A1 (en) * 2012-02-03 2013-08-08 Klaus Kuhn Edelstahlgiesserei Gmbh Duplex steel with improved notch-impact strength and machinability
CN104254627A (en) * 2012-02-03 2014-12-31 克劳斯·库恩不锈钢铸造有限公司 Duplex steel with improved notch-impact strength and machinability
JP2015511272A (en) * 2012-02-03 2015-04-16 クラウス クーン エーデルシュタールギーセライ ゲーエムベーハー Duplex steel with improved notched impact strength and machinability
AU2014279972B2 (en) * 2013-06-13 2018-01-04 Outokumpu Oyj Duplex ferritic austenitic stainless steel
US11566309B2 (en) * 2013-06-13 2023-01-31 Outokumpu Oyj Duplex ferritic austenitic stainless steel
JP2016526601A (en) * 2013-06-13 2016-09-05 オウトクンプ オサケイティオ ユルキネンOutokumpu Oyj Duplex ferrite and austenitic stainless steel
US20160115574A1 (en) * 2013-06-13 2016-04-28 Outokumpu Oyj Duplex ferritic austenitic stainless steel
JP2017145460A (en) * 2016-02-17 2017-08-24 新日鐵住金ステンレス株式会社 Ferrite-austenitic stainless steel sheet for structural member excellent in puncture resistance at low temperature and manufacturing method thereof
JP6140856B1 (en) * 2016-02-19 2017-05-31 新日鐵住金ステンレス株式会社 Ferritic / austenitic stainless steel sheet with excellent formability and method for producing the same
JP2017145487A (en) * 2016-02-19 2017-08-24 新日鐵住金ステンレス株式会社 Ferrite austenite stainless steel sheet excellent in moldability and manufacturing method therefor
WO2018117477A1 (en) * 2016-12-23 2018-06-28 주식회사 포스코 Duplex stainless steel having excellent corrosion resistance and moldability, and manufacturing method therefor
JP2018197377A (en) * 2017-05-24 2018-12-13 Jfeスチール株式会社 Two-phase stainless steel having excellent corrosion resistance and hydrogen brittleness resistance
JP2018197376A (en) * 2017-05-24 2018-12-13 Jfeスチール株式会社 Two-phase stainless steel having excellent corrosion resistance and hydrogen brittleness resistance
WO2019058409A1 (en) * 2017-09-19 2019-03-28 新日鐵住金株式会社 Stainless steel sheet and production method therefor, separator for solid polymer fuel battery, solid polymer fuel battery cell and solid polymer fuel battery
JP6315158B1 (en) * 2017-09-19 2018-04-25 新日鐵住金株式会社 Stainless steel sheet and method for producing the same, separator for polymer electrolyte fuel cell, polymer electrolyte fuel cell, and polymer electrolyte fuel cell
CN111742075A (en) * 2018-02-15 2020-10-02 山特维克知识产权股份有限公司 Novel duplex stainless steel
US11306378B2 (en) 2018-02-15 2022-04-19 Sandvik Intellectual Property Ab Duplex stainless steel
CN114901870A (en) * 2020-05-28 2022-08-12 日铁不锈钢株式会社 Ferritic-austenitic duplex stainless steel material and corrosion resistant member
WO2021241133A1 (en) * 2020-05-28 2021-12-02 日鉄ステンレス株式会社 Two-phase ferrite/austenite stainless steel material and corrosion resistant member
CN114901870B (en) * 2020-05-28 2024-02-06 日铁不锈钢株式会社 Ferrite-austenite duplex stainless steel material and corrosion resistant member

Also Published As

Publication number Publication date
JP4760032B2 (en) 2011-08-31

Similar Documents

Publication Publication Date Title
JP4760032B2 (en) Austenitic ferritic stainless steel with excellent formability
JP4760031B2 (en) Austenitic ferritic stainless steel with excellent formability
KR100957664B1 (en) Austenitic-ferritic stainless steel sheet
JP5021901B2 (en) Austenitic and ferritic stainless steel with excellent intergranular corrosion resistance
JP4852857B2 (en) Ferritic / austenitic stainless steel sheet with excellent stretch formability and crevice corrosion resistance
JP3504560B2 (en) High-strength hot-rolled steel sheet with good shape-freezing properties and excellent formability
JP5337473B2 (en) Ferritic / austenitic stainless steel sheet with excellent ridging resistance and workability and method for producing the same
JP5109233B2 (en) Ferritic / austenitic stainless steel with excellent corrosion resistance at welds
WO2009017258A1 (en) Ferritic-austenitic stainless steel excellent in corrosion resistance and workability and process for manufacturing the same
WO2013058274A1 (en) Duplex stainless steel, duplex stainless steel slab, and duplex stainless steel material
JP2009035782A (en) Ferritic-austenitic stainless steel with excellent corrosion resistance and workability, and its manufacturing method
JP2005089828A (en) Ferritic stainless steel sheet improved in crevice corrosion resistance
JP4867638B2 (en) High-strength bolts with excellent delayed fracture resistance and corrosion resistance
JP5404280B2 (en) High-strength, alloy-saving duplex stainless steel with excellent corrosion resistance in the heat affected zone
EP0735154A1 (en) Austenitic stainless steels for press forming
JP6279118B1 (en) High-strength duplex stainless steel with excellent corrosion resistance and bending workability
JP2007314837A (en) Age hardening type ferritic stainless steel sheet and age-treated steel material using the same
JP2017145487A (en) Ferrite austenite stainless steel sheet excellent in moldability and manufacturing method therefor
US11142814B2 (en) Ferritic-austenitic duplex stainless steel sheet
JP5653269B2 (en) Stainless steel wire and steel wire excellent in corrosion resistance, strength, and ductility, and methods for producing them.
JP2953303B2 (en) Martensite stainless steel
JP2022101237A (en) Ferrite-martensite double-phase stainless steel having excellent bendability, and method for producing the same
JP2023113375A (en) Duplex stainless steel shapes and method for producing the same
JPH1180911A (en) High purity chromium steel sheet for pump impeller
JP2021123751A (en) Ferritic stainless steel material for roll molding

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071108

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100406

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100607

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110215

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110411

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110510

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110523

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140617

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4760032

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250