JP2010059541A - Ferritic-austenitic stainless steel having excellent ingot crack resistance and workability, and method for producing the same - Google Patents

Ferritic-austenitic stainless steel having excellent ingot crack resistance and workability, and method for producing the same Download PDF

Info

Publication number
JP2010059541A
JP2010059541A JP2009179055A JP2009179055A JP2010059541A JP 2010059541 A JP2010059541 A JP 2010059541A JP 2009179055 A JP2009179055 A JP 2009179055A JP 2009179055 A JP2009179055 A JP 2009179055A JP 2010059541 A JP2010059541 A JP 2010059541A
Authority
JP
Japan
Prior art keywords
less
stainless steel
ferritic
austenitic stainless
workability
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009179055A
Other languages
Japanese (ja)
Other versions
JP5546178B2 (en
Inventor
Eiichiro Ishimaru
詠一朗 石丸
Akihiko Takahashi
明彦 高橋
Shigeo Fukumoto
成雄 福元
Masaharu Hatano
正治 秦野
Ken Kimura
謙 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Stainless Steel Corp
Original Assignee
Nippon Steel and Sumikin Stainless Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumikin Stainless Steel Corp filed Critical Nippon Steel and Sumikin Stainless Steel Corp
Priority to JP2009179055A priority Critical patent/JP5546178B2/en
Publication of JP2010059541A publication Critical patent/JP2010059541A/en
Application granted granted Critical
Publication of JP5546178B2 publication Critical patent/JP5546178B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a ferritic-austenitic stainless steel having excellent ingot crack resistance and workability with which cracks in the surface of an ingot is solved by regulating the composition of the steel and performing controlled cooling in a solidification-cooling process, and further, the cold rolled steel sheet to be obtained has workability, and to provide a method for producing the same. <P>SOLUTION: The ferritic-austenitic stainless steel having excellent ingot crack resistance and workability has a composition comprising, by mass, ≤0.10% C, ≤2.0% Si, ≤4.0% Mn, <0.050% P, <0.010% S, 17 to 25% Cr, 0.6 to 5.0% Ni and 0.01 to <0.15% N, and the balance iron with inevitable impurities, and in which DF value is controlled to ≤70. The method for producing the steel is characterized in that the total time in the range of 1,100 to 900°C upon cooling of an ingot is controlled to ≥40 min by continuous casting so as to control the ratio of the ferritic phase at ordinary temperature to 35 to 70%. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

ステンレス鋼を大きく分類するとオーステナイト系ステンレス鋼、フェライト系ステンレス鋼、2相(フェライト・オーステナイト)系ステンレス鋼に分けられる。オーステナイト系ステンレス鋼は、Niを7%以上含有し、成形性に優れた鋼種が多い。フェライト系ステンレス鋼はNiをほとんど含有せず、一般的に成形性はオーステナイト系ステンレス鋼に比べてかなり低い。一方、2相(フェライト・オーステナイト)系ステンレス鋼は、これまで成形性、耐食性などにおいてオーステナイト系ステンレス鋼とフェライト系ステンレス鋼の中間的な位置づけを持つ鋼種が多い。しかし近年、フェライト・オーステナイト系ステンレス鋼においても塑性加工時のオーステナイト相の加工誘起マルテンサイト変態(以下、TRIP現象)を活用してオーステナイト系ステンレス鋼に近い成形性を有する技術が開発されている。特許文献1では主構成相がフェライト相であり、残留オーステナイト相を含有するステンレス鋼を用いて、TRIP現象によって引張破断伸びを高めた技術が記載されている。特許文献2ではオーステナイト相の安定性を規定し、引張伸びを高める方法が述べられている。特許文献3においてはオーステナイト相の分率ならびにオーステナイト相中のC、N量を規定し、引張試験における全伸びを高める技術が示されている。しかし、いずれの場合にも延性を向上するための知見は存在するが、フェライト・オーステナイト系ステンレス鋼の製造上の大きな課題である鋳塊の置き割れや低靭性に関する記載は認められず、延性の高いフェライト・オーステナイト系ステンレス鋼が得られたとしても、高歩留まりは期待できない。   Stainless steel can be broadly classified into austenitic stainless steel, ferritic stainless steel, and two-phase (ferrite / austenite) stainless steel. Austenitic stainless steel contains 7% or more of Ni, and many steel types are excellent in formability. Ferritic stainless steel contains little Ni and generally has a much lower formability than austenitic stainless steel. On the other hand, two-phase (ferrite / austenite) stainless steels have so far many steel types that have an intermediate position between austenitic stainless steels and ferritic stainless steels in terms of formability and corrosion resistance. However, in recent years, a technology having formability close to that of austenitic stainless steel has also been developed in ferrite-austenitic stainless steel by utilizing the work-induced martensitic transformation (hereinafter referred to as TRIP phenomenon) of the austenitic phase during plastic working. Patent Document 1 describes a technique in which the tensile elongation at break is increased by the TRIP phenomenon using a stainless steel containing a retained austenite phase whose main constituent phase is a ferrite phase. Patent Document 2 describes a method of increasing the tensile elongation by defining the stability of the austenite phase. Patent Document 3 discloses a technique for increasing the total elongation in a tensile test by defining the austenite phase fraction and the amounts of C and N in the austenite phase. However, in any case, there is knowledge to improve the ductility, but there is no description of ingot placement cracks and low toughness, which is a major issue in the manufacture of ferritic / austenitic stainless steels. Even if a high ferritic / austenitic stainless steel is obtained, a high yield cannot be expected.

フェライト・オーステナイト系ステンレス鋼で鋳片の置き割れや低靭性が問題となるのはその組織生成に起因する。一般に、フェライト・オーステナイト系ステンレス鋼は、フェライト相とオーステナイト相のそれぞれに元素が分配されるため、例えばCr等のフェライト生成元素は、フェライト相に多く含まれる傾向を示すことが知られている。特にCrを多く含有するフェライト系ステンレス鋼は、靱性に乏しいことが製造時の課題として認識されており、フェライト・オーステナイト系ステンレス鋼のフェライト相においてもCrを多く含有する場合には同様の現象が発生することが容易に推定できる。   In ferrite and austenitic stainless steels, slab cracking and low toughness are problematic because of the formation of the structure. In general, ferrite-austenitic stainless steel is known to exhibit a tendency that a large amount of ferrite-forming elements such as Cr are contained in the ferrite phase because the elements are distributed in each of the ferrite phase and the austenite phase. In particular, ferritic stainless steel containing a large amount of Cr is recognized as a problem at the time of production due to poor toughness, and the same phenomenon occurs when the ferrite phase of ferrite-austenitic stainless steel contains a large amount of Cr. It can be estimated easily.

Cr含有量が14%以下のフェライト系ステンレス鋼の場合遷移温度が低いので、切断から加熱炉挿入までが長くても、スラブを積み重ね、断熱材で保温カバーをかけた状態でも鋳片温度が遷移温度よりも低くなることはないので、鋳塊が残留応力によって割れることはない。   In the case of ferritic stainless steel with a Cr content of 14% or less, the transition temperature is low, so the slab temperature transitions even when the slab is piled up and the insulation cover is applied with a heat insulating material, even if the time from cutting to insertion of the furnace is long Since the temperature does not become lower than the temperature, the ingot is not cracked by residual stress.

20%を超える高Crフェライト系ステンレス鋼は前記したように靭性が低く、遷移温度が400〜500℃程度になる。高Crフェライト系ステンレス鋼の鋳片温度が鋳片切断から加熱炉挿入までの間に遷移温度以下に下がると、鋳片に横割れが発生するという問題があった。   As described above, the high Cr ferritic stainless steel exceeding 20% has low toughness and a transition temperature of about 400 to 500 ° C. When the slab temperature of high Cr ferritic stainless steel falls below the transition temperature between slab cutting and heating furnace insertion, there is a problem that transverse cracks occur in the slab.

横割れを生じさせる原因は、冷却過程でスラブに発生する内部応力である。すなわち、連続鋳造スラブは鋳型の下部より凝固が完了するまでの間、スプレー水を噴霧して凝固を促進するが、この冷却により大きな内部応力が発生している。また肉厚が200mm程度と薄いため温度も低下しやすく、靱性の乏しい鋼ではスラブの割れに対して非常に不利となる。大型の横割れはスラブの靱性が乏しい場合に何らかの欠陥を起点として熱応力により発生するものと考えられている。一旦横割れが発生すると加熱炉内でスラブが搬送器具より脱落し、抽出が不可能となることがあり、加熱炉操業に与える影響は甚大である。   The cause of transverse cracking is internal stress generated in the slab during the cooling process. That is, the continuous cast slab is sprayed with spray water until the solidification is completed from the lower part of the mold to promote the solidification, but a large internal stress is generated by this cooling. Further, since the wall thickness is as thin as about 200 mm, the temperature is likely to decrease, and steel with poor toughness is very disadvantageous for cracking of the slab. Large transverse cracks are thought to be generated by thermal stress starting from some defects when the toughness of the slab is poor. Once transverse cracking occurs, the slab may fall out of the conveying device in the heating furnace, making extraction impossible, and the effect on the heating furnace operation is significant.

したがって、温度低下を抑制する方法として、10〜30%までのCrを含む高純度フェライト系ステンレス鋼について連続鋳造スラブを熱塊直送にて加熱し、熱間圧延する方法が特許文献4に開示されている。このフェライト系ステンレス鋼の遷移温度は300℃程度であると記載されているが、25%以上の高Crを含有する場合には300℃以上になると推定され、連続鋳造に適用するためには、切断後の鋳片の温度低下を防止するため大容量の保熱炉に挿入しなければならなく、高価な設備が必要となる。   Therefore, as a method for suppressing the temperature decrease, Patent Document 4 discloses a method in which a continuous casting slab is heated by hot ingot direct feeding and hot-rolled for high-purity ferritic stainless steel containing 10 to 30% Cr. ing. The transition temperature of this ferritic stainless steel is described to be about 300 ° C., but when it contains 25% or more of high Cr, it is estimated that the transition temperature is 300 ° C. or more. In order to prevent the temperature drop of the slab after cutting, it must be inserted into a large-capacity heat-retaining furnace, and expensive equipment is required.

そこで、保熱炉を必要としないようにNb含有とC+N量を0.015%以下とすることで遷移温度を300℃以下として横割れ感受性を低下させる方法が特許文献5に記載されている。この方法は、組成を的確に把握できるフェライト系ステンレス鋼では有効であるが、フェライト・オーステナイト系ステンレス鋼では、製造時の温度変化にともないフェライト相の組成は変化するため、完全に横割れを防止することができていなかった。   Therefore, Patent Document 5 describes a method for reducing the transverse cracking sensitivity by setting the transition temperature to 300 ° C. or less by setting the Nb content and the C + N amount to 0.015% or less so as not to require a heat insulation furnace. This method is effective for ferritic stainless steels whose composition can be accurately grasped, but in ferritic and austenitic stainless steels, the composition of the ferrite phase changes with changes in temperature during manufacturing, so it completely prevents transverse cracking. I couldn't.

特開平10−219407号公報JP-A-10-219407 特開平11−71643号公報JP-A-11-71643 特開2006−169622号公報JP 2006-169622 A 特公昭61−44121号公報Japanese Examined Patent Publication No. 61-44121 特開平8−253813号公報JP-A-8-253813

上記のような課題に鑑み、本発明では実際の成形性に重要である均一伸びと凝固冷却過程で生じる鋳塊の割れを防止した耐鋳塊割れ性と加工性に優れたフェライト・オーステナイト系ステンレス鋼及びその製造方法を提供することを目的とする。   In view of the above problems, in the present invention, ferritic and austenitic stainless steels with excellent ingot crack resistance and workability that prevent the ingot cracking that occurs in the process of uniform elongation and solidification cooling, which is important for actual formability. It aims at providing steel and its manufacturing method.

本発明者らは、上記の課題に対し、均一伸びと耐鋳塊割れ性を両立する因子を調査するために実験室にて種々のフェライト・オーステナイト系ステンレス鋼を溶製し、凝固速度を変化させて鋳造し、熱間圧延を実施した。その後、焼鈍および冷間圧延、焼鈍を実施して薄鋼板を製造した。得られた鋳片表面の割れ個数を測定するとともに割れ部の組織を観察した。また、製造した薄鋼片を用いて引張試験を実施し均一伸びを測定した結果、下記(a)〜(c)の知見を得た。
(a)鋳片の割れはフェライト相を分断するか、もしくは、フェライト相とオーステナイト相の界面を伝って進展している。
(b)組成の組み合わせにより、割れが生じない範囲がある。
(c)割れが生じない組成では、均一伸びが30%以上になる。
In order to investigate the factors that achieve both uniform elongation and ingot cracking resistance, the present inventors have melted various ferritic and austenitic stainless steels in the laboratory to change the solidification rate. Casted and hot rolled. Thereafter, annealing, cold rolling and annealing were performed to manufacture a thin steel plate. The number of cracks on the surface of the obtained slab was measured and the structure of the cracks was observed. Moreover, as a result of implementing a tensile test using the manufactured thin steel piece and measuring uniform elongation, the following knowledge (a) to (c) was obtained.
(A) The crack of the slab breaks up the ferrite phase or progresses along the interface between the ferrite phase and the austenite phase.
(B) There is a range in which cracks do not occur depending on the combination of compositions.
(C) A uniform elongation is 30% or more in a composition in which no cracks occur.

以下に詳細に述べる。化学組成の異なるフェライト・オーステナイト系ステンレス鋼を数種類ラボ溶解した。その際に、鋳型の材質を変更することや保熱炉に入れるなどして冷却速度を変化させた。その際の、温度と時間の関係を記録した。得られた鋳片の表面スケールをHF/HNO3溶液で溶解除去し、表面に観察される割れ個数を測定するとともにフェライトメータを用いて、フェライト量を測定した。その後、割れが無くなるまで研削して熱間圧延を実施し、焼鈍、冷間圧延、焼鈍により厚さ1mmの薄鋼片を作製した。得られた薄鋼板をJIS13号B試験片に加工し、引張試験を実施して均一伸びを測定した。 Details are described below. Several types of ferrite and austenitic stainless steels with different chemical compositions were melted in the laboratory. At that time, the cooling rate was changed by changing the material of the mold or putting it in a heat-retaining furnace. The relationship between temperature and time was recorded. The surface scale of the obtained slab was dissolved and removed with an HF / HNO 3 solution, the number of cracks observed on the surface was measured, and the amount of ferrite was measured using a ferrite meter. Then, it grind | polished until there was no crack and implemented hot rolling, and produced the thin steel piece of thickness 1mm by annealing, cold rolling, and annealing. The obtained thin steel plate was processed into a JIS No. 13 B test piece, a tensile test was performed, and uniform elongation was measured.

その結果、鋳片の表面に割れが発生していない成分の組み合わせがあることを見出し、それらの関係を構成するDF値に至った。DF値は、フェライト相を安定させる元素とオーステナイト相を安定させる元素の関係で構成されており、各元素の効果は各元素間の相互関係に影響されるため係数が異なっている。このDF値と薄鋼板の均一伸びの関係を検討した結果、DF値が70以下で均一伸びが30%以上となることを見出した。
本発明はこの知見に基づきなされたもので、その発明の要旨は以下のとおりである。
As a result, it has been found that there is a combination of components in which cracks are not generated on the surface of the slab, and the DF values constituting these relationships have been reached. The DF value is composed of a relationship between an element that stabilizes the ferrite phase and an element that stabilizes the austenite phase, and the effect of each element is influenced by the mutual relationship between the elements, and therefore the coefficients are different. As a result of examining the relationship between the DF value and the uniform elongation of the thin steel sheet, it was found that the DF value was 70 or less and the uniform elongation was 30% or more.
The present invention has been made based on this finding, and the gist of the invention is as follows.

(1) 質量%で、
C:0.10%以下、
Si:2.0%以下、
Mn:4.0%以下、
P:0.050%以下、
S:0.010%以下、
Cr:17〜25%、
Ni:0.6〜5.0%、
N:0.01〜0.15%未満、
を含有し、残部が鉄及び不可避的不純物からなり、下記(1)式で表されるDF値が70以下であり、常温におけるフェライト相の比率が35%〜70%であることを特徴とする耐鋳塊割れ性と加工性に優れたフェライト・オーステナイト系ステンレス鋼。
DF値=7.2×(Cr+0.88×Mo+0.78×Si)
−8.9×(Ni+0.03×Mn+0.72×Cu+22×C+21×N)−44.9
・ ・ ・ (1)式
(1) In mass%,
C: 0.10% or less,
Si: 2.0% or less,
Mn: 4.0% or less,
P: 0.050% or less,
S: 0.010% or less,
Cr: 17 to 25%,
Ni: 0.6 to 5.0%,
N: 0.01 to less than 0.15%
The balance consists of iron and inevitable impurities, the DF value represented by the following formula (1) is 70 or less, and the ratio of the ferrite phase at room temperature is 35% to 70%. Ferritic / austenitic stainless steel with excellent ingot cracking resistance and workability.
DF value = 7.2 × (Cr + 0.88 × Mo + 0.78 × Si)
−8.9 × (Ni + 0.03 × Mn + 0.72 × Cu + 22 × C + 21 × N) −44.9
(1) Formula

(2) 質量%で、
Cu:2.0%以下、
Mo:2.0%以下、
の1種または2種を含有することを特徴とする上記(1)項記載の耐鋳塊割れ性と加工性に優れたフェライト・オーステナイト系ステンレス鋼。
(2) By mass%
Cu: 2.0% or less,
Mo: 2.0% or less,
The ferritic / austenitic stainless steel excellent in ingot cracking resistance and workability as described in the above item (1), comprising one or two of the following:

(3) 質量%で、
Nb:0.50%以下、
Ti:0.50%以下、
の1種または2種を含有することを特徴とする上記(1)または(2)項に記載の耐鋳塊割れ性と加工性に優れたフェライト・オーステナイト系ステンレス鋼。
(3) In mass%,
Nb: 0.50% or less,
Ti: 0.50% or less,
The ferritic / austenitic stainless steel excellent in ingot cracking resistance and workability as described in the above item (1) or (2), characterized by containing one or two of the above.

(4) 質量%で、
Ca:0.003%以下、
Mg:0.003%以下、
の1種または2種を含有することを特徴とする上記(1)乃至(3)項のいずれかに記載の耐鋳塊割れ性と加工性に優れたフェライト・オーステナイト系ステンレス鋼。
(4) By mass%
Ca: 0.003% or less,
Mg: 0.003% or less,
The ferritic / austenitic stainless steel excellent in ingot cracking resistance and workability according to any one of the above items (1) to (3), characterized by containing one or two of the following.

(5) 引張試験における均一伸びが30%以上であることを特徴とする上記(1)乃至(4)項のいずれかに記載の耐鋳塊割れ性と加工性に優れたフェライト・オーステナイト系ステンレス鋼。   (5) Ferrite-austenitic stainless steel excellent in ingot crack resistance and workability according to any one of (1) to (4) above, wherein uniform elongation in a tensile test is 30% or more steel.

(6) 上記(1)乃至(5)項のいずれかに記載の鋼を製造するに際し、凝固時の1100℃〜900℃間でのトータル時間を40分以上とすることを特徴とする耐鋳塊割れ性と加工性に優れたフェライト・オーステナイト系ステンレス鋼の製造方法。   (6) When manufacturing the steel according to any one of (1) to (5), the total time between 1100 ° C. and 900 ° C. during solidification is 40 minutes or more. A method for producing ferritic / austenitic stainless steel with excellent lump cracking and workability.

本発明によれば、高価かつ希少な元素であるNiを多量に含有することなく、鋳片の置き割れを防止できるとともに均一伸びに優れたフェライト・オーステナイト系ステンレス薄鋼板を得ることができ、従来、多量のNiを含有したオーステナイト系ステンレス鋼板が用いられていた部品に適用できるため、Niという資源の節約の点で地球環境に大きく貢献するものである。   According to the present invention, without containing a large amount of expensive and rare element Ni, it is possible to obtain a ferrite-austenitic stainless steel sheet that can prevent slab breakage and is excellent in uniform elongation. Since it can be applied to parts where austenitic stainless steel plates containing a large amount of Ni have been used, it contributes greatly to the global environment in terms of saving resources called Ni.

DF値と鋳塊表面の割れ個数の関係を示した図である。It is the figure which showed the relationship between DF value and the number of cracks of the ingot surface. DF値と均一伸びの関係を示した図である。It is the figure which showed the relationship between DF value and uniform elongation.

以下に本発明を詳細に説明する。   The present invention is described in detail below.

まず、本発明の重要な要素である合金元素の指標である、フェライト相を安定させる元素とオーステナイト相を安定させる元素の関係を規定した下記(1)式で示されるDF値の限定理由について説明する。
DF値=7.2×(Cr+0.88×Mo+0.78×Si)
−8.9×(Ni+0.03×Mn+0.72×Cu+22×C+21×N)−44.9
・ ・ ・ (1)式
First, the reason for limiting the DF value expressed by the following formula (1) that defines the relationship between the element that stabilizes the ferrite phase and the element that stabilizes the austenite phase, which is an index of the alloy element that is an important element of the present invention will be described. To do.
DF value = 7.2 × (Cr + 0.88 × Mo + 0.78 × Si)
−8.9 × (Ni + 0.03 × Mn + 0.72 × Cu + 22 × C + 21 × N) −44.9
(1) Formula

DF値70以下、フェライト相の比率35%〜70%:フェライト・オーステナイト系ステンレス鋼の金属組織は、フェライト相とオーステナイト相の2相で構成される。常温においても2相である理由は、各相に含まれる組成(特にNのような拡散速度が大きい元素)の影響が大きく、凝固から常温まで冷却過程において各温度域における平衡状態に近づこうと組成の分配が継続的に起こり、組織が形成されるためである。したがって、初期組成により形成される2相の相比率は温度と保持時間を組み合わせることで制御が可能である。温度が1100℃よりも高い場合には、フェライト相が安定で相率が高くなるため、フェライト相の引張特性が強く反映され均一伸びは30%未満となるためフェライト相の比率(フェライト相率)を70%以下とし、Nなどのオーステナイト相生成元素が多く含有されるとフェライト相率は低下していき、少なすぎると変形時の応力集中がフェライト相に生じるため、フェライト相の比率35%以上とした。フェライト相率は40〜60%が望ましい。   DF value of 70 or less, ferrite phase ratio of 35% to 70%: The metal structure of ferrite-austenitic stainless steel is composed of two phases of ferrite phase and austenite phase. The reason for being two phases at room temperature is that the composition contained in each phase (especially the element having a large diffusion rate such as N) is greatly influenced, and the composition tends to approach the equilibrium state in each temperature range during the cooling process from solidification to room temperature. This is because of the continuous distribution and organization. Therefore, the phase ratio of the two phases formed by the initial composition can be controlled by combining the temperature and the holding time. When the temperature is higher than 1100 ° C., the ferrite phase is stable and the phase ratio is high, so the tensile properties of the ferrite phase are strongly reflected and the uniform elongation is less than 30%, so the ratio of the ferrite phase (ferrite phase ratio) If the austenite phase-forming element such as N is contained in a large amount, the ferrite phase ratio will decrease, and if it is too small, stress concentration during deformation will occur in the ferrite phase, so the ferrite phase ratio will be 35% or more. It was. The ferrite phase ratio is preferably 40 to 60%.

図1は、DF値と鋳片表面の割れ個数の関係を示した結果である。DF値は70以下の場合に割れ個数は非常に少なくなる。DF値が70を超える場合には鋳片表面に割れが観察でき、表面に観察できる長さが大きくなる。断面観察から、割れはフェライト相とオーステナイト相の界面もしくはフェライト相を伝播していることが確認できた。DF値はフェライト相を安定させる元素とオーステナイト相を安定させる元素の関係を示している。DF値が70以下の場合にはフェライト相内に僅かに含有されるオーステナイト生成元素の比率が上昇するため、フェライト相の靭性が向上したと推定できる。したがって、本発明ではDF値を70以下に限定した。ここで、割れのサイズと深さ、個数の関係を調査した結果、表面から観察した際の割れ長さが1cm以上の割れ個数が2個/100cm2未満の場合には割れ深さが2mmで熱間圧延後に割れが観察できなかったことから、2個/100cm2未満をしきい値として設定した。ここで、割れ個数は、ラボ溶解した扁平鋳塊で表面積が大きい2面をから測定したが、実際に生産されるスラブサイズとは大きく異なるので、10cm2の個数に換算している。 FIG. 1 shows the relationship between the DF value and the number of cracks on the slab surface. When the DF value is 70 or less, the number of cracks becomes very small. When the DF value exceeds 70, cracks can be observed on the surface of the slab, and the length that can be observed on the surface becomes large. From the cross-sectional observation, it was confirmed that the crack propagated through the interface between the ferrite phase and the austenite phase or the ferrite phase. The DF value indicates the relationship between the element that stabilizes the ferrite phase and the element that stabilizes the austenite phase. When the DF value is 70 or less, it can be estimated that the toughness of the ferrite phase is improved because the ratio of the austenite-forming element slightly contained in the ferrite phase increases. Therefore, in the present invention, the DF value is limited to 70 or less. Here, as a result of investigating the relationship between the size, depth, and number of cracks, when the number of cracks with a crack length of 1 cm or more when observed from the surface is less than 2/100 cm 2 , the crack depth is 2 mm. Since no cracks could be observed after hot rolling, a threshold value of less than 2 pieces / 100 cm 2 was set. Here, the number of cracks was measured from two surfaces of a flat ingot melted in the laboratory and having a large surface area. However, since the number of cracks is greatly different from the actually produced slab size, it is converted to a number of 10 cm 2 .

均一伸び30%以上:均一伸びは金属材料が一様に変形していることを示す重要な指標である。つまり、フェライト相とオーステナイト相の変形抵抗や硬度差などが小さく、どれだけ一様に変形できるかを表していることから、図2に示されるようにDF値が70以下であれば2相の強度差は小さいため均一伸びは30%以上を示している。   Uniform elongation of 30% or more: Uniform elongation is an important index indicating that the metal material is uniformly deformed. That is, since the deformation resistance and hardness difference between the ferrite phase and the austenite phase are small and represent how uniformly the ferrite phase and the austenite phase can be deformed, if the DF value is 70 or less as shown in FIG. Since the difference in strength is small, the uniform elongation is 30% or more.

以下に鋼成分の限定理由を述べる。なお、以下に示す「%」とは質量%を表す。   The reasons for limiting the steel components are described below. In addition, "%" shown below represents mass%.

C:Cはオーステナイト相の安定度に大きな影響を及ぼす元素である。0.10%超の含有をするとオーステナイト相の硬度が著しく上昇する場合がある。またCr炭化物の析出を促進するために粒界腐食の発生をもたらすため、0.10%を上限とした。また耐食性の点からCは低くするほうが好ましいが、低減するためには精錬時のコスト増加を招く。好ましくは、0.01〜0.04%の範囲であり、さらに好ましくは、0.025〜0.04%の範囲である。   C: C is an element that greatly affects the stability of the austenite phase. If the content exceeds 0.10%, the hardness of the austenite phase may remarkably increase. Further, in order to promote the precipitation of Cr carbide, it causes the occurrence of intergranular corrosion, so the upper limit was made 0.10%. Moreover, although it is more preferable to make C low from a corrosion-resistant point, in order to reduce, it causes the cost increase at the time of refining. Preferably, it is 0.01 to 0.04% of range, and more preferably 0.025 to 0.04% of range.

Si:Siは脱酸元素として使われたり、耐酸化性向上のために含有されたりする場合がある。しかし、2.0%超の含有は材料の硬質化をもたらし、均一伸びが低下するため、これを上限とした。またSiを極低減するためには精錬時のコスト増加を招く。好ましくは、0.05〜1.0%の範囲であり、さらに好ましくは、0.4〜1.0%の範囲である。   Si: Si may be used as a deoxidizing element or may be contained for improving oxidation resistance. However, if the content exceeds 2.0%, the material is hardened and the uniform elongation is lowered, so this was made the upper limit. Moreover, in order to reduce Si extremely, the cost at the time of refining is increased. Preferably, it is in the range of 0.05 to 1.0%, and more preferably in the range of 0.4 to 1.0%.

Mn:Mnはオーステナイト相に濃化し、オーステナイト相の安定度を変化させるのに重要な役割を持つ。しかし多量の含有は耐食性や熱間加工性の低下をもたらすため、上限を4.0%とした。0.05%未満とするには製錬工程におけるコスト増加を招くため、下限を0.05%とすることが望ましい。耐食性の点からは低い方が好ましく上限は3.0%とすることが望ましい。   Mn: Mn concentrates in the austenite phase and plays an important role in changing the stability of the austenite phase. However, a large amount causes a decrease in corrosion resistance and hot workability, so the upper limit was made 4.0%. In order to make it less than 0.05%, the cost in the smelting process is increased. From the viewpoint of corrosion resistance, a lower value is preferable, and the upper limit is preferably set to 3.0%.

P:Pは不可避的に混入する元素であり、またCrなどの原料に含有されているため、低減することが困難であるが、多量に含有した場合には成形性を低下させるため、上限を0.050%未満とした。   P: P is an element inevitably mixed in, and since it is contained in raw materials such as Cr, it is difficult to reduce it. However, if it is contained in a large amount, the formability is lowered, so the upper limit is set. It was less than 0.050%.

S:SはMnと結合して介在物をつくり、発銹の基点となる場合があるため、上限を0.010%未満とした。低いほど耐食性からは好ましいため、0.003%以下とすることが望ましい。   S: S binds to Mn to form inclusions, which may serve as a starting point for glazing, so the upper limit was made less than 0.010%. Since it is preferable from the viewpoint of corrosion resistance, the lower the content, the lower the content is preferably 0.003% or less.

Cr:Crは耐食性を確保するために必要な元素であり、17%以上の含有が必要である。しかし、多量の含有は熱間加工割れを原因となり、精錬工程のコスト増加につながるため、上限を25%とした。好ましくは、20〜23%の範囲である。   Cr: Cr is an element necessary for ensuring corrosion resistance, and the content of 17% or more is necessary. However, a large amount causes hot working cracks and leads to an increase in the cost of the refining process, so the upper limit was made 25%. Preferably, it is 20 to 23% of range.

Ni:Niはオーステナイト安定化元素であり、オーステナイト相の安定度を調整するために重要な元素である。また熱間加工割れを抑制する効果を持つため、0.6%以上含有させる。5.0%を超える含有は、原料コストの増加をもたらし、またオーステナイト、フェライトの2相組織得ることが困難になる場合があるため、これを上限とした。好ましくは、0.6〜2.4%の範囲である。さらに好ましくは、0.6〜2.2%の範囲である。   Ni: Ni is an austenite stabilizing element and is an important element for adjusting the stability of the austenite phase. Moreover, in order to have an effect which suppresses a hot work crack, it is made to contain 0.6% or more. If the content exceeds 5.0%, the raw material cost increases, and it may be difficult to obtain a two-phase structure of austenite and ferrite, so this was made the upper limit. Preferably, it is 0.6 to 2.4% of range. More preferably, it is 0.6 to 2.2% of range.

N:NはC同様にオーステナイト相の安定度に大きな影響を及ぼす元素である。また固溶して存在した場合に耐食性を向上させる効果を持つため、0.01以上含有することとする。但し、0.15%以上含有した場合は均一伸びが低下する場合が認められるほか、Cr窒化物が析出しやすくなって逆に耐食性の低下をもたらすため、これを上限とした。安定して効果を得るためには0.06%以上が好ましい。   N: N, like C, is an element that greatly affects the stability of the austenite phase. Moreover, since it has the effect of improving corrosion resistance when it exists in solid solution, it shall contain 0.01 or more. However, when the content is 0.15% or more, the uniform elongation may be reduced, and Cr nitride is liable to precipitate, and conversely, the corrosion resistance is lowered. In order to acquire an effect stably, 0.06% or more is preferred.

また、選択的に下記元素を含有することができる。   Moreover, the following elements can be selectively contained.

Cu:CuもNi同様、オーステナイト安定化元素であり、オーステナイト相の安定度を調整するために重要な元素である。ただし、2.0%を超える含有は熱間加工時の割れを促進し、また強度を上昇させるため、これを上限とした。安定して効果を得るためには、0.1%以上が好ましい。   Cu: Cu, like Ni, is an austenite stabilizing element and is an important element for adjusting the stability of the austenite phase. However, if the content exceeds 2.0%, cracking during hot working is promoted and the strength is increased, so this was made the upper limit. In order to obtain an effect stably, 0.1% or more is preferable.

Mo:Moは耐食性を向上させる元素であるため、選択的に含有しても良い。0.1%以上の含有により、耐食性向上効果が発揮される。安定して効果を得るためには、0.5%以上が好ましい。ただし、2.0%を超えると均一伸びが低下し、原料コストが大きく増加するため、これを上限とした。   Mo: Since Mo is an element that improves corrosion resistance, it may be selectively contained. By containing 0.1% or more, the corrosion resistance improving effect is exhibited. In order to obtain an effect stably, 0.5% or more is preferable. However, when it exceeds 2.0%, the uniform elongation is lowered and the raw material cost is greatly increased.

Nb:Nbは溶接熱影響部の粗大化を防止する効果があるが、0.50%超の含有は均一伸びを低下させるため、これを上限とした。安定して効果を得るためには、0.03%以上が望ましい。   Nb: Nb has the effect of preventing the weld heat-affected zone from becoming coarse, but the content exceeding 0.50% lowers the uniform elongation, so this was made the upper limit. In order to obtain an effect stably, 0.03% or more is desirable.

Ti:TiもNb同様、溶接熱影響部の粗大化を防止する効果を有する。さらには凝固組織を微細等軸晶化するため、0.03%以上の含有が好ましい。ただし、0.50%超の含有は均一伸びを低下させるため、これを上限とした。   Ti: Ti, as well as Nb, has the effect of preventing the weld heat affected zone from becoming coarse. Furthermore, the content is preferably 0.03% or more in order to finely equiax the solidified structure. However, the content exceeding 0.50% lowers the uniform elongation, so this was made the upper limit.

Ca:Caは脱硫、脱酸のために若干含有されることがある。但し、0.003%超の含有によって熱間加工割れが生じやすくなり、また耐食性が低下するため、これを上限とした。安定して効果を得るためには、0.0005%以上が望ましい。   Ca: Ca may be slightly contained for desulfurization and deoxidation. However, the content of over 0.003% tends to cause hot working cracks and lowers the corrosion resistance, so this was made the upper limit. In order to obtain the effect stably, 0.0005% or more is desirable.

Mg:Mgは、脱酸だけでなく、凝固組織を微細化する効果を持つ。これらの効果を安定して発揮するためには、0.0005%以上の含有が望ましい。また、0.003%超の含有は製鋼工程でのコスト増加をもたらすため、これを上限とした。   Mg: Mg has not only deoxidation but also an effect of refining the solidified structure. In order to stably exhibit these effects, the content is preferably 0.0005% or more. Moreover, since content exceeding 0.003% brings about the cost increase in a steelmaking process, this was made into the upper limit.

次に製造方法についての限定理由を述べる。
前述のように良好な耐鋳塊割れ性を得るためには組成を制御する必要があるが、化学組成のみならず、フェライト相の比率を制御する必要がある。例えば、以下に記載するような製造条件を満足することにより得られるものである。計算熱力学によって求められるオーステナイト相の相比率は、1100〜900℃の間で極大値を示すことから、この温度を通過したトータル時間が重要である。トータル時間が40分未満の場合では、フェライト相比率に変化が見られ時間の経過とともに収束する傾向が確認できた。トータル時間が40分以上で、フェライトメータによるフェライト相比率の変化が見られなくなったので、元素分配が平衡に近づいたと判断した。平衡状態に近い分配が生じていれば、その後の加工熱処理においても、元素の再分配を最小減に抑制できる。900℃未満の冷却過程では、元素の移動はC、Nを除きほとんど変化しない。また、1100℃を超える温度域ではオーステナイト相が温度低下とともに増加していくことから、各相の組成はその後の冷却過程で大幅に変化するため、組織制御において不適である。
Next, the reason for limiting the manufacturing method will be described.
As described above, in order to obtain good ingot cracking resistance, it is necessary to control the composition, but it is necessary to control not only the chemical composition but also the ratio of the ferrite phase. For example, it is obtained by satisfying the production conditions as described below. Since the phase ratio of the austenite phase obtained by computational thermodynamics shows a maximum value between 1100 and 900 ° C., the total time passing through this temperature is important. When the total time was less than 40 minutes, the ferrite phase ratio was changed, and a tendency to converge with time could be confirmed. Since the change in the ferrite phase ratio by the ferrite meter was not observed after the total time of 40 minutes or more, it was judged that the element distribution was close to equilibrium. If the distribution close to the equilibrium state occurs, the redistribution of elements can be suppressed to a minimum reduction even in the subsequent heat treatment. In the cooling process below 900 ° C., the movement of elements hardly changes except for C and N. In addition, since the austenite phase increases with a decrease in temperature in the temperature range exceeding 1100 ° C., the composition of each phase changes significantly in the subsequent cooling process, which is unsuitable for structure control.

以下、実施例に基づいて本発明を詳細に説明する。   Hereinafter, the present invention will be described in detail based on examples.

表1に示す鋼No.1〜20の20鋼種を用いて、ラボ溶解、熱間圧延、熱延板焼鈍、冷間圧延、最終焼鈍の工程を経て1.0mm厚の薄鋼板を作製した。鋼板を製造するにあたり、ラボ溶解後の鋳塊を冷却することなしに熱処理炉内で1100〜900℃の温度域のみ制御冷却した.常温まで冷却した後、鋳塊表面の割れを測定した。その後、鋳塊の割れが無くなるまで研削し加熱温度1200℃で60分の保持後、10パスの熱間圧延により4mm厚の熱延板を作製し、1050℃×1分の熱延板焼鈍、酸洗を経て、冷間圧延により1mmtまで展伸した。最終焼鈍温度及び時間は1050℃×1分とし、圧延方向と平行な方向から採取したJIS13号B試験片を用いた引張試験を実施し、均一伸びを測定した。DF値が70以下の本発明例の鋼では、均一伸びは30%以上であった。比較例の鋼では、DF値が70超であり均一伸びが30%未満である。これらの鋼の1100〜900℃の温度域の制御冷却条件は、全てトータル時間を40分以上として実施しており、δ/γの元素分配は平衡に近づいていると推定され、DF値の効果が均一伸びに反映されている。   Steel No. shown in Table 1 Using 20 steel types 1 to 20, a 1.0 mm thick thin steel sheet was produced through the steps of laboratory melting, hot rolling, hot rolled sheet annealing, cold rolling, and final annealing. In producing the steel sheet, only the temperature range of 1100 to 900 ° C. was controlled and cooled in the heat treatment furnace without cooling the ingot after melting in the laboratory. After cooling to room temperature, the cracks on the ingot surface were measured. Then, after grinding until the ingot crack is eliminated and holding at a heating temperature of 1200 ° C. for 60 minutes, a hot-rolled sheet having a thickness of 4 mm is produced by hot rolling of 10 passes, and 1050 ° C. × 1 minute of hot-rolled sheet annealing, After pickling, it was extended to 1 mm by cold rolling. The final annealing temperature and time were set to 1050 ° C. × 1 minute, a tensile test using a JIS No. 13 B specimen taken from a direction parallel to the rolling direction was performed, and uniform elongation was measured. In the steel of the present invention example having a DF value of 70 or less, the uniform elongation was 30% or more. In the steel of the comparative example, the DF value exceeds 70 and the uniform elongation is less than 30%. The controlled cooling conditions in the temperature range of 1100 to 900 ° C. for these steels are all implemented with a total time of 40 minutes or more, and the element distribution of δ / γ is estimated to be close to equilibrium, and the effect of the DF value Is reflected in the uniform elongation.

Figure 2010059541
Figure 2010059541

1100〜900℃におけるトータル時間、フェライト相比率と鋳塊表面の割れ個数および均一伸びを表2に示す。   Table 2 shows the total time at 1100 to 900 ° C, the ferrite phase ratio, the number of cracks on the ingot surface, and the uniform elongation.

Figure 2010059541
Figure 2010059541

表2に示されるように、本発明で規制するDF値70以下のフェライト・オーステナイト系ステンレス鋼で発明条件(組成、トータル時間40分以上、フェライト相比率が35〜70%)を満たす場合は鋳塊表面に割れが発生せず、均一伸びが30%以上の値を示している。しかし、比較鋼のNo.13の場合は、均一伸びが30%以上を示しているもののDF値外れのために鋳塊表面に割れが発生している。   As shown in Table 2, when the ferrite-austenitic stainless steel with a DF value of 70 or less regulated in the present invention satisfies the invention conditions (composition, total time 40 minutes or more, ferrite phase ratio 35 to 70%), casting No cracks occur on the lump surface, and the uniform elongation shows a value of 30% or more. However, no. In the case of 13, the uniform elongation is 30% or more, but cracks are generated on the ingot surface due to the DF value being off.

また、1100〜900℃におけるトータル時間が40分未満の条件では、フェライト相とオーステナイト相の元素分配が不十分なため、均一伸びが30%未満となっている。   Further, under the condition where the total time at 1100 to 900 ° C. is less than 40 minutes, the elemental distribution of the ferrite phase and the austenite phase is insufficient, so the uniform elongation is less than 30%.

本発明は、耐鋳塊割れ性と加工性に優れたフェライト・オーステナイト系ステンレス鋼及びその製造方法に関する。本発明によれば、高価かつ希少な元素であるNiを多量に含有することなく加工性に優れたフェライト・オーステナイト系ステンレス鋼を製造することができるため、資源保護ならびに環境保全に貢献しうるものと考えられる。   The present invention relates to a ferritic / austenitic stainless steel excellent in ingot crack resistance and workability and a method for producing the same. According to the present invention, ferritic and austenitic stainless steels excellent in workability can be produced without containing a large amount of expensive and rare element Ni, which can contribute to resource protection and environmental conservation. it is conceivable that.

Claims (6)

質量%で、
C:0.10%以下、
Si:2.0%以下、
Mn:4.0%以下、
P:0.050%以下、
S:0.010%以下、
Cr:17〜25%、
Ni:0.6〜5.0%、
N:0.01〜0.15%未満、
を含有し、残部が鉄及び不可避的不純物からなり、下記(1)式で表されるDF値が70
以下であり、常温におけるフェライト相の比率が35%〜70%であることを特徴とする
耐鋳塊割れ性と加工性に優れたフェライト・オーステナイト系ステンレス鋼。
DF値=7.2×(Cr+0.88×Mo+0.78×Si)
−8.9×(Ni+0.03×Mn+0.72×Cu+22×C+21×N)−44.9
・・・(1)式
% By mass
C: 0.10% or less,
Si: 2.0% or less,
Mn: 4.0% or less,
P: 0.050% or less,
S: 0.010% or less,
Cr: 17 to 25%,
Ni: 0.6 to 5.0%,
N: 0.01 to less than 0.15%
The balance is made of iron and inevitable impurities, and the DF value represented by the following formula (1) is 70.
A ferritic / austenitic stainless steel excellent in ingot crack resistance and workability, characterized in that the ratio of the ferrite phase at normal temperature is 35% to 70%.
DF value = 7.2 × (Cr + 0.88 × Mo + 0.78 × Si)
−8.9 × (Ni + 0.03 × Mn + 0.72 × Cu + 22 × C + 21 × N) −44.9
... (1) Formula
質量%で、
Cu:2.0%以下、
Mo:2.0%以下、
の1種または2種を含有することを特徴とする請求項1記載の耐鋳塊割れ性と加工性に優
れたフェライト・オーステナイト系ステンレス鋼。
% By mass
Cu: 2.0% or less,
Mo: 2.0% or less,
The ferritic / austenitic stainless steel excellent in ingot cracking resistance and workability according to claim 1, characterized by containing at least one of the following.
質量%で、
Nb:0.50%以下、
Ti:0.50%以下、
の1種または2種を含有することを特徴とする請求項1または2記載の耐鋳塊割れ性と加
工性に優れたフェライト・オーステナイト系ステンレス鋼。
% By mass
Nb: 0.50% or less,
Ti: 0.50% or less,
The ferritic / austenitic stainless steel excellent in ingot cracking resistance and workability according to claim 1 or 2, characterized by containing at least one of the following.
質量%で、
Ca:0.003%以下、
Mg:0.003%以下、
の1種または2種を含有することを特徴とする請求項1乃至3のいずれかに記載の耐鋳塊
割れ性と加工性に優れたフェライト・オーステナイト系ステンレス鋼。
% By mass
Ca: 0.003% or less,
Mg: 0.003% or less,
The ferritic / austenitic stainless steel excellent in ingot cracking resistance and workability according to any one of claims 1 to 3, characterized by containing at least one of the following.
引張試験における均一伸びが30%以上であることを特徴とする請求項1乃至4のいず
れかに記載の耐鋳塊割れ性と加工性に優れたフェライト・オーステナイト系ステンレス鋼
The ferrite-austenitic stainless steel excellent in ingot crack resistance and workability according to any one of claims 1 to 4, wherein the uniform elongation in a tensile test is 30% or more.
請求項1乃至5のいずれかに記載の鋼を製造するに際し、凝固時の1100℃〜900
℃間でのトータル時間を40分以上とすることを特徴とする耐鋳塊割れ性と加工性に優れ
たフェライト・オーステナイト系ステンレス鋼の製造方法。
In producing the steel according to any one of claims 1 to 5, from 1100 ° C to 900 at the time of solidification.
A method for producing a ferritic / austenitic stainless steel excellent in ingot cracking resistance and workability, characterized in that the total time between temperatures is 40 minutes or more.
JP2009179055A 2008-08-04 2009-07-31 Ferritic / austenitic stainless steel with excellent ingot crack resistance and workability and method for producing the same Active JP5546178B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009179055A JP5546178B2 (en) 2008-08-04 2009-07-31 Ferritic / austenitic stainless steel with excellent ingot crack resistance and workability and method for producing the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2008200963 2008-08-04
JP2008200963 2008-08-04
JP2009179055A JP5546178B2 (en) 2008-08-04 2009-07-31 Ferritic / austenitic stainless steel with excellent ingot crack resistance and workability and method for producing the same

Publications (2)

Publication Number Publication Date
JP2010059541A true JP2010059541A (en) 2010-03-18
JP5546178B2 JP5546178B2 (en) 2014-07-09

Family

ID=42186645

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009179055A Active JP5546178B2 (en) 2008-08-04 2009-07-31 Ferritic / austenitic stainless steel with excellent ingot crack resistance and workability and method for producing the same

Country Status (1)

Country Link
JP (1) JP5546178B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010229457A (en) * 2009-03-26 2010-10-14 Nippon Steel & Sumikin Stainless Steel Corp Ferritic-austenitic stainless steel having excellent ingot crack resistance and method of manufacturing steel sheet
JP2012201960A (en) * 2011-03-28 2012-10-22 Nippon Steel & Sumikin Stainless Steel Corp Duplex stainless steel with good acid resistance
WO2018114865A1 (en) 2016-12-21 2018-06-28 Sandvik Intellectual Property Ab An object comprising a duplex stainless steel and the use thereof
CN111996438A (en) * 2020-07-20 2020-11-27 振石集团东方特钢有限公司 Production method for improving yield strength of ultralow-N Ti-containing austenitic stainless steel medium plate product

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06240411A (en) * 1993-02-10 1994-08-30 Nkk Corp Dual phase stainless steel excellent in strength, toughness, and corrosion resistance and production of dual phase stainless steel material
JP2006183129A (en) * 2004-01-29 2006-07-13 Jfe Steel Kk Austenitic-ferritic stainless steel having excellent formability
JP2008038214A (en) * 2006-08-08 2008-02-21 Nippon Steel & Sumikin Stainless Steel Corp Duplex stainless steel

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06240411A (en) * 1993-02-10 1994-08-30 Nkk Corp Dual phase stainless steel excellent in strength, toughness, and corrosion resistance and production of dual phase stainless steel material
JP2006183129A (en) * 2004-01-29 2006-07-13 Jfe Steel Kk Austenitic-ferritic stainless steel having excellent formability
JP2008038214A (en) * 2006-08-08 2008-02-21 Nippon Steel & Sumikin Stainless Steel Corp Duplex stainless steel

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010229457A (en) * 2009-03-26 2010-10-14 Nippon Steel & Sumikin Stainless Steel Corp Ferritic-austenitic stainless steel having excellent ingot crack resistance and method of manufacturing steel sheet
JP2012201960A (en) * 2011-03-28 2012-10-22 Nippon Steel & Sumikin Stainless Steel Corp Duplex stainless steel with good acid resistance
WO2018114865A1 (en) 2016-12-21 2018-06-28 Sandvik Intellectual Property Ab An object comprising a duplex stainless steel and the use thereof
CN110088323A (en) * 2016-12-21 2019-08-02 山特维克知识产权股份有限公司 Product and application thereof comprising two phase stainless steel
CN110088323B (en) * 2016-12-21 2022-03-22 山特维克知识产权股份有限公司 Article comprising a duplex stainless steel and use thereof
CN111996438A (en) * 2020-07-20 2020-11-27 振石集团东方特钢有限公司 Production method for improving yield strength of ultralow-N Ti-containing austenitic stainless steel medium plate product
CN111996438B (en) * 2020-07-20 2022-04-08 振石集团东方特钢有限公司 Production method for improving yield strength of ultralow-N Ti-containing austenitic stainless steel medium plate product

Also Published As

Publication number Publication date
JP5546178B2 (en) 2014-07-09

Similar Documents

Publication Publication Date Title
JP5888476B2 (en) Material for stainless cold-rolled steel sheet and manufacturing method thereof
CA2804320C (en) Austenite-ferrite stainless steel of improved machinability
JP6115691B1 (en) Steel plate and enamel products
KR101828199B1 (en) Abrasion-resistant steel plate and method for manufacturing the same
EP2050832A1 (en) Two-phase stainless steel
JP5349015B2 (en) Method for producing Ni-saving austenitic stainless hot-rolled steel sheet, slab and hot-rolled steel sheet
TWI460293B (en) Duplex stainless steel, duplex stainless steel slab, and duplex stainless steel material
JP6763141B2 (en) Manufacturing method of steel plate for LPG tank
JP6723210B2 (en) Nickel-based alloy
JP2010023049A (en) Continuously cast slab of steel and method for producing the same
JP5018863B2 (en) Duplex stainless steel with excellent alkali resistance
JP6842257B2 (en) Fe-Ni-Cr-Mo alloy and its manufacturing method
KR101850231B1 (en) Ferritic stainless steel and method for producing same
JP5546178B2 (en) Ferritic / austenitic stainless steel with excellent ingot crack resistance and workability and method for producing the same
JPWO2016051437A1 (en) Ferritic stainless steel and manufacturing method thereof
JP5656432B2 (en) Ferritic / austenitic stainless steel sheet with excellent press formability and manufacturing method thereof
JP5329632B2 (en) Duplex stainless steel, duplex stainless steel cast, and duplex stainless steel
JP5670064B2 (en) Ferrite single-phase stainless steel slab manufacturing method
JP6359783B1 (en) Austenitic stainless steel sheet and manufacturing method thereof
JP6093063B1 (en) High-strength stainless steel material excellent in workability and its manufacturing method
JP2012172211A (en) METHOD OF MANUFACTURING LOW Ni AUSTENITIC STAINLESS STEEL SHEET
JP6134553B2 (en) Duplex stainless steel with good acid resistance
JP5361489B2 (en) Ferritic / austenitic stainless steel with excellent ingot cracking resistance and method for producing the same
JP3518517B2 (en) Manufacturing method of high chromium / ferritic heat resistant steel
JP2019112696A (en) Ferritic stainless steel sheet and manufacturing method therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120307

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130918

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131001

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140225

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140403

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140422

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140513

R150 Certificate of patent or registration of utility model

Ref document number: 5546178

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250