JP2010229457A - Ferritic-austenitic stainless steel having excellent ingot crack resistance and method of manufacturing steel sheet - Google Patents

Ferritic-austenitic stainless steel having excellent ingot crack resistance and method of manufacturing steel sheet Download PDF

Info

Publication number
JP2010229457A
JP2010229457A JP2009076400A JP2009076400A JP2010229457A JP 2010229457 A JP2010229457 A JP 2010229457A JP 2009076400 A JP2009076400 A JP 2009076400A JP 2009076400 A JP2009076400 A JP 2009076400A JP 2010229457 A JP2010229457 A JP 2010229457A
Authority
JP
Japan
Prior art keywords
less
stainless steel
austenitic stainless
ferritic
slab
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009076400A
Other languages
Japanese (ja)
Other versions
JP5361489B2 (en
Inventor
Eiichiro Ishimaru
詠一朗 石丸
Akihiko Takahashi
明彦 高橋
Shigeo Fukumoto
成雄 福元
Masaharu Hatano
正治 秦野
Ken Kimura
謙 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Stainless Steel Corp
Original Assignee
Nippon Steel and Sumikin Stainless Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumikin Stainless Steel Corp filed Critical Nippon Steel and Sumikin Stainless Steel Corp
Priority to JP2009076400A priority Critical patent/JP5361489B2/en
Publication of JP2010229457A publication Critical patent/JP2010229457A/en
Application granted granted Critical
Publication of JP5361489B2 publication Critical patent/JP5361489B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of manufacturing ferritic-austenitic stainless steel by a continuous casting method in which the composition of steel is regulated and by which a hot rolled steel sheet is efficiently manufactured without causing slab crack by a hot charge method requiring no composition heat maintaining furnace. <P>SOLUTION: The steel sheet contains, in mass%, ≤0.10% C, ≤2.0% Si, ≤4.0% Mn, <0.05% P, <0.010% S, 17-25% Cr, 0.60-5.00% Ni, 0.010-0.150% N, 0.01-0.1% Al and the balance iron and inevitable impurities, wherein DF value is controlled to 70-85. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、耐置き割れ性に優れたフェライト・オーステナイト系ステンレス鋼およびその鋼板の製造方法に関する。本発明によれば、高価かつ希少な元素であるNiを多量に含有することなく耐スラブ割れ性に優れたフェライト・オーステナイト系ステンレス鋼を製造することができるため、資源保護ならびに環境保全に貢献しうるものと考えられる。   The present invention relates to a ferritic / austenitic stainless steel excellent in crack resistance and a method for producing the steel plate. According to the present invention, ferritic / austenitic stainless steel having excellent slab cracking resistance can be produced without containing a large amount of expensive and rare element Ni, which contributes to resource protection and environmental conservation. It is thought that it is possible.

ステンレス鋼を大きく分類するとオーステナイト系ステンレス鋼、フェライト系ステンレス鋼、2相(フェライト・オーステナイト)系ステンレス鋼に分けられる。オーステナイト系ステンレス鋼は、Niを7%以上含有し、成形性に優れた鋼種が多い。フェライト系ステンレス鋼はNiをほとんど含有せず、一般的に成形性はオーステナイト系ステンレス鋼に比べてかなり低い。一方、2相(フェライト・オーステナイト)系ステンレス鋼は、これまで成形性、耐食性などにおいてオーステナイト系ステンレス鋼とフェライト系ステンレス鋼の中間的な位置づけを持つ鋼種が多い。しかし近年、フェライト・オーステナイト系ステンレス鋼においても塑性加工時のオーステナイト相の加工誘起マルテンサイト変態を活用してオーステナイト系ステンレス鋼に近い成形性を有する技術が開発されている。特許文献1では主構成相がフェライト相であり、残留オーステナイト相を含有するステンレス鋼を用いて、TRIP現象によって引張破断伸びを高めた技術が記載されている。特許文献2ではオーステナイト相の安定性を規定し、引張伸びを高める方法が述べられている。特許文献3においてはオーステナイト相の分率ならびにオーステナイト相中のC、N量を規定し、引張試験における全伸びを高める技術が示されている。   Stainless steel can be broadly classified into austenitic stainless steel, ferritic stainless steel, and two-phase (ferrite / austenite) stainless steel. Austenitic stainless steel contains 7% or more of Ni, and many steel types are excellent in formability. Ferritic stainless steel contains little Ni and generally has a much lower formability than austenitic stainless steel. On the other hand, two-phase (ferrite / austenite) stainless steels have so far many steel types that have an intermediate position between austenitic stainless steels and ferritic stainless steels in terms of formability and corrosion resistance. However, in recent years, a technology having formability close to that of austenitic stainless steel has also been developed in ferritic / austenitic stainless steels by utilizing the work-induced martensitic transformation of the austenitic phase during plastic working. Patent Document 1 describes a technique in which the tensile elongation at break is increased by the TRIP phenomenon using a stainless steel containing a retained austenite phase whose main constituent phase is a ferrite phase. Patent Document 2 describes a method of increasing the tensile elongation by defining the stability of the austenite phase. Patent Document 3 discloses a technique for increasing the total elongation in a tensile test by defining the austenite phase fraction and the amounts of C and N in the austenite phase.

一般に、フェライト・オーステナイト系ステンレス鋼は、フェライト相とオーステナイト相のそれぞれに元素が分配されるため、例えばCr等のフェライト生成元素は、フェライト相に多く含まれる傾向を示すことが知られている。Crを多く含有するフェライト系ステンレス鋼は、靱性に乏しいことが製造時の課題として認識されており、フェライト・オーステナイト系ステンレス鋼のフェライト相においても同様の現象が発生することが容易に推定できる。   In general, ferrite-austenitic stainless steel is known to exhibit a tendency that a large amount of ferrite-forming elements such as Cr are contained in the ferrite phase because the elements are distributed in each of the ferrite phase and the austenite phase. Ferritic stainless steel containing a large amount of Cr is recognized as a problem during production because of poor toughness, and it can be easily estimated that the same phenomenon occurs in the ferrite phase of ferrite-austenitic stainless steel.

ここで、Cr含有量が20%前後と比較的低いフェライト系ステンレス鋼板は、一般に製造効率のよい連続鋳造法により製造されている。この方法は連続鋳造により鋳片とした後、10m程度の長さに切断して積み重ね、それを保温カバーにより保温することにより次工程の加熱炉挿入までの間に温度が低下するのを防止し、次いで加熱炉で加熱して熱間圧延する方法いわゆるホットチャージ法が採られている。   Here, the ferritic stainless steel sheet having a relatively low Cr content of around 20% is generally manufactured by a continuous casting method with high manufacturing efficiency. In this method, slabs are formed by continuous casting, then cut and stacked to a length of about 10 m, and kept warm by a heat insulating cover to prevent the temperature from dropping until the next furnace is inserted. Then, a method of hot rolling by heating in a heating furnace, a so-called hot charge method is employed.

しかし、切断された鋳片が加熱炉に挿入されるまでにかなりの時間がかかる。すなわち、切断後次の加熱までの間に表面疵を除去する手入れを行ったり、圧延チャンスまで待機する時間が必要になるからであり、場合によっては切断から加熱炉挿入までに20時間もかかることがある。低Crフェライト系ステンレス鋼の場合遷移温度が低いので、切断から加熱炉挿入までが長くても、スラブを積み重ね、断熱材で保温カバーをかけた状態でも鋳片温度が遷移温度よりも低くなることはないので、スラブが残留応力によって割れることはない。   However, it takes a considerable time for the cut slab to be inserted into the heating furnace. That is, it is necessary to take care of removing surface flaws between cutting and next heating, or to wait until a rolling chance, and in some cases, it takes 20 hours from cutting to inserting the heating furnace. There is. In the case of low Cr ferritic stainless steel, the transition temperature is low, so the slab temperature will be lower than the transition temperature even if the slab is stacked and the insulation cover is applied with a heat insulating material, even if the time from cutting to insertion of the furnace is long. The slab will not crack due to residual stress.

連続鋳造スラブは鋳型の下部より凝固が完了するまでの間、スプレー水を噴霧して凝固を促進するが、この冷却により大きな内部応力が発生している。また肉厚が200mm程度と薄いため温度も低下しやすく、靱性の乏しい鋼ではスラブの割れに対して非常に不利となる。   The continuous cast slab is sprayed with spray water until solidification is completed from the lower part of the mold to promote solidification. However, a large internal stress is generated by this cooling. Further, since the wall thickness is as thin as about 200 mm, the temperature is likely to decrease, and steel with poor toughness is very disadvantageous for cracking of the slab.

20%を超える高Crフェライト系ステンレス鋼は前記したように靱性が低く、遷移温度が400〜500℃程度になる。高Crフェライト系ステンレス鋼を通常の連続鋳造におけるホットチャージ法を適用すると、鋳片温度が鋳片切断から加熱炉挿入までの間に遷移温度以下に下がり、鋳片に横割れが発生するという問題があった。   As described above, high Cr ferritic stainless steel exceeding 20% has low toughness and a transition temperature of about 400 to 500 ° C. When the hot charge method in normal continuous casting is applied to high Cr ferritic stainless steel, the slab temperature falls below the transition temperature between slab cutting and heating furnace insertion, and transverse cracks occur in the slab. was there.

大型の横割れはスラブの靱性が乏しい場合に何らかの欠陥を起点として熱応力により発生するものと考えられている。一旦横割れが発生すると加熱炉内でスラブが搬送器具より脱落し、抽出が不可能となることがあり、加熱炉操業に与える影響は甚大である。   Large transverse cracks are thought to be generated by thermal stress starting from some defects when the toughness of the slab is poor. Once transverse cracking occurs, the slab may fall out of the conveying device in the heating furnace, making extraction impossible, and the effect on the heating furnace operation is significant.

10〜30%までのCrを含む高純度フェライト系ステンレス鋼について連続鋳造スラブを熱塊直送にて加熱し、熱間圧延する方法が特許文献4に開示されている。このフェライト系ステンレス鋼の遷移温度は300℃程度であると記載されているが、25%以上の高Crを含有する場合には300℃以上になると推定され、連続鋳造に適用するためには、切断後の鋳片の温度低下を防止するため大容量の保熱炉に挿入しなければならなく、高価な設備が必要となる。   Patent Document 4 discloses a method in which a continuous cast slab is heated by hot ingot direct feeding and hot-rolled for high-purity ferritic stainless steel containing 10 to 30% Cr. The transition temperature of this ferritic stainless steel is described to be about 300 ° C., but when it contains 25% or more of high Cr, it is estimated that the transition temperature is 300 ° C. or more. In order to prevent the temperature drop of the slab after cutting, it must be inserted into a large-capacity heat-retaining furnace, and expensive equipment is required.

そこで、保熱炉を必要としないようにNb添加とC+N量を0.015%以下とすることで遷移温度を300℃以下として横割れ感受性を低下させる方法が特許文献5に記載されている。フェライト単相組織を有するフェライト系ステンレス鋼であれば、フェライト相の組成変化が無いのでこの方法が有効であるが、フェライト・オーステナイト系ステンレス鋼では、製造時の温度変化にともないフェライト相の組成は変化するため、このフェライト相に発生する横割れを完全に防止することができていなかった。   Therefore, Patent Document 5 describes a method for reducing the transverse cracking sensitivity by setting the transition temperature to 300 ° C. or less by adding Nb and the amount of C + N to 0.015% or less so as not to require a heat insulation furnace. This method is effective because there is no change in the composition of the ferrite phase if it is a ferritic stainless steel having a ferrite single-phase structure, but in the case of a ferrite-austenitic stainless steel, the composition of the ferrite phase changes with the temperature change during production. Therefore, the transverse cracks generated in the ferrite phase could not be completely prevented.

特開平10−219407号公報JP-A-10-219407 特開平11−71643号公報JP-A-11-71643 特開2006−169622号公報JP 2006-169622 A 特公昭61−44121号公報Japanese Examined Patent Publication No. 61-44121 特開平8−25313号公報JP-A-8-25313

上記のような課題に鑑み、本発明では、Cr量が17〜25%であるフェライト・オーステナイト系ステンレス鋼を連続鋳造法によりスラブを製造し、保熱炉を必要としないホットチャージ法にてスラブに割れを発生させることなく能率的に熱延鋼板を製造することができる耐置き割れ性に優れたフェライト・オーステナイト系ステンレス鋼および熱延鋼板の製造方法を提供することを目的とする。   In view of the above-described problems, in the present invention, a slab is manufactured by a continuous casting method of ferrite-austenitic stainless steel having a Cr content of 17 to 25%, and the slab is manufactured by a hot charge method that does not require a heat-retaining furnace An object of the present invention is to provide a ferritic / austenitic stainless steel and a method for producing a hot-rolled steel sheet that are capable of efficiently producing a hot-rolled steel sheet without causing cracks in the steel and excellent in crack resistance.

本発明者らは、フェライト・オーステナイト系ステンレス鋼を連続鋳造に適用した場合に、鋳片に切断してから熱間圧延のために加熱するまでの間に鋳片の温度が300℃以下になっても割れが発生しないようにするため、遷移温度を300℃以下にすべくフェライト・オーステナイト系ステンレス鋼の成分組成につき、ラボ鋳塊を用いて鋭意検討を重ねた。その結果、割れが発生してない成分の組み合わせがあることを見出し、本発明を完成した。   When the present inventors apply ferritic-austenitic stainless steel to continuous casting, the temperature of the slab becomes 300 ° C. or lower after being cut into a slab and heated for hot rolling. However, in order to prevent cracks from occurring, the component composition of ferrite-austenitic stainless steel was studied intensively using a lab ingot in order to set the transition temperature to 300 ° C. or lower. As a result, the present inventors have found that there is a combination of components in which no cracks are generated, and completed the present invention.

本発明の要旨は、次の通りである。   The gist of the present invention is as follows.

(1) 質量%で、
C:0.10%以下、
Si:2.0%以下、
Mn:4.0%以下、
P:0.050%以下、
S:0.010%以下、
Cr:17〜25%、
Ni:0.6〜5.0%、
Cu:2.0%以下、
Mo:2.0%以下、
N:0.01〜0.15%、
Al:0.01〜0.2%、
を含有し、残部が鉄及び不可避的不純物からなり、下記(1)式で表されるDF値が70〜85であることを特徴とする耐置き割れ性に優れたフェライト・オーステナイト系ステンレス鋼。
DF値=7.2×(Cr+0.88×Mo+0.78×Si)
−8.9×(Ni+0.03×Mn+0.72×Cu+22×C+21×N)− 44.9 ・・・・ (1)式
(1) In mass%,
C: 0.10% or less,
Si: 2.0% or less,
Mn: 4.0% or less,
P: 0.050% or less,
S: 0.010% or less,
Cr: 17 to 25%,
Ni: 0.6 to 5.0%,
Cu: 2.0% or less,
Mo: 2.0% or less,
N: 0.01 to 0.15%,
Al: 0.01-0.2%
Ferritic / austenitic stainless steel with excellent crack resistance, wherein the balance is iron and inevitable impurities, and the DF value represented by the following formula (1) is 70 to 85.
DF value = 7.2 × (Cr + 0.88 × Mo + 0.78 × Si)
−8.9 × (Ni + 0.03 × Mn + 0.72 × Cu + 22 × C + 21 × N) − 44.9 Formula (1)

(2) さらに、質量%で、
Nb:0.50%以下、
Ti:0.50%以下、
の1種または2種を含有することを特徴とする請求項1記載の耐置き割れ性に優れたフェライト・オーステナイト系ステンレス鋼。
(2) Furthermore, in mass%,
Nb: 0.50% or less,
Ti: 0.50% or less,
The ferritic / austenitic stainless steel with excellent crack resistance according to claim 1, characterized in that it contains one or two of the following.

(3) さらに、質量%で、
Ca:0.003%以下、
Mg:0.003%以下、
B:0.003%以下、
の1種または2種を含有することを特徴とする請求項1または2のいずれかに記載の耐置き割れ性に優れたフェライト・オーステナイト系ステンレス鋼。
(3) Furthermore, in mass%,
Ca: 0.003% or less,
Mg: 0.003% or less,
B: 0.003% or less,
The ferritic / austenitic stainless steel with excellent crack resistance according to claim 1, wherein the ferritic / austenitic stainless steel is excellent.

(4) 質量%で、
C:0.10%以下、
Si:2.0%以下、
Mn:4.0%以下、
P:0.050%以下、
S:0.010%以下、
Cr:17〜25%、
Ni:0.6〜5.0%、
Cu:2.0%以下、
Mo:2.0%以下、
N:0.01〜0.15%、
Al:0.01〜0.2%、
を含有し、残部が鉄及び不可避的不純物からなり、下記(1)式で表されるDF値が70〜85のフェライト・オーステナイト系ステンレス鋼を連続鋳造によりスラブとなし、引き続きその衝撃遷移温度以下に冷却することなく加熱し、次いで熱間圧延することを特長とする耐置き割れ性に優れたフェライト・オーステナイト系ステンレス鋼板の製造方法。
DF値=7.2×(Cr+0.88×Mo+0.78×Si)
−8.9×(Ni+0.03×Mn+0.72×Cu+22×C+
21×N)−44.9 (1)式
(4) By mass%
C: 0.10% or less,
Si: 2.0% or less,
Mn: 4.0% or less,
P: 0.050% or less,
S: 0.010% or less,
Cr: 17 to 25%,
Ni: 0.6 to 5.0%,
Cu: 2.0% or less,
Mo: 2.0% or less,
N: 0.01 to 0.15%,
Al: 0.01-0.2%
The balance is made of iron and unavoidable impurities, and the DF value of 70 to 85 represented by the following formula (1) is made into a slab by continuous casting, and continuously below its impact transition temperature. A method for producing a ferritic / austenitic stainless steel sheet having excellent crack resistance, which is characterized by heating without cooling to hot rolling and then hot rolling.
DF value = 7.2 × (Cr + 0.88 × Mo + 0.78 × Si)
−8.9 × (Ni + 0.03 × Mn + 0.72 × Cu + 22 × C +
21 * N) -44.9 (1) Formula

(5) 前記スラブが、さらに、質量%で、
Nb:0.50%以下、
Ti:0.50%以下、
の1種または2種を含有することを特徴とする請求項4に記載の耐置き割れ性に優れたフェライト・オーステナイト系ステンレス鋼板の製造方法。
(5) The slab is further in mass%,
Nb: 0.50% or less,
Ti: 0.50% or less,
1 or 2 types of these are contained, The manufacturing method of the ferritic-austenitic stainless steel plate excellent in the placement crack resistance of Claim 4 characterized by the above-mentioned.

(6) 前記スラブが、さらに、質量%で、
Ca:0.003%以下、
Mg:0.003%以下、
B:0.003%以下、
の1種または2種を含有することを特徴とする請求項4または5のいずれかに記載の耐置き割れ性に優れたフェライト・オーステナイト系ステンレス鋼板の製造方法。
(6) The slab is further in mass%,
Ca: 0.003% or less,
Mg: 0.003% or less,
B: 0.003% or less,
1 or 2 types of these are contained, The manufacturing method of the ferritic-austenitic stainless steel plate excellent in the placement crack resistance in any one of Claim 4 or 5 characterized by the above-mentioned.

以下、上記(1)〜(6)の鋼に係わる発明をそれぞれ本発明という。また、(1)〜(6)の発明を合わせて、本発明ということがある。   Hereinafter, the inventions related to the steels (1) to (6) are referred to as the present invention. The inventions (1) to (6) may be collectively referred to as the present invention.

本発明によれば、保熱炉を必要としないホットチャージ法にてスラブに割れを発生させることなく能率的に、高価かつ希少な元素であるNiを多量に含有しないフェライト・オーステナイト系ステンレス鋼板を製造することができるため、資源保護ならびに環境保全に大きく貢献するものである。   According to the present invention, a ferrite and austenitic stainless steel sheet that does not contain a large amount of Ni, which is an expensive and rare element, efficiently without causing cracks in the slab by a hot charge method that does not require a heat-retaining furnace. Since it can be manufactured, it greatly contributes to resource protection and environmental protection.

DF値の衝撃特性に及ぼす影響を示す図である。It is a figure which shows the influence which it has on the impact characteristic of DF value. 鋳塊の冷却温度と冷却時間との関係を示す図である。It is a figure which shows the relationship between the cooling temperature of an ingot, and cooling time.

本発明者らは、フェライト・オーステナイト系ステンレス鋼を連続鋳造に適用した場合に、鋳片に切断してから熱間圧延のために加熱するまでの間に鋳片の温度が300℃以下になっても割れが発生しないようにするため、遷移温度を300℃以下にすべくフェライト・オーステナイト系ステンレス鋼の成分組成につき、ラボ鋳塊を用いて鋭意検討を重ねた。その結果、割れが発生してない成分の組み合わせがあることを見出し、それらの関係を構成する下記(1)式に示すDF値に至った。
DF値=7.2×(Cr+0.88×Mo+0.78×Si)
−8.9×(Ni+0.03×Mn+0.72×Cu+22×C+21×N)− 44.9 ・・・・ (1)式
DF値は、フェライト相を安定させる元素とオーステナイト相を安定させる元素の関係を構成されており、各元素の効果は各元素間の相互関係に影響されるため係数が異なっている。DF値を70〜85の範囲で限定することで遷移温度を300℃以下、更には200℃以下にまで低下させることができるという知見を得るに至った。以下に、その代表的な実験結果について説明する。
When the present inventors apply ferritic-austenitic stainless steel to continuous casting, the temperature of the slab becomes 300 ° C. or less after being cut into a slab and heated for hot rolling. However, in order to prevent cracks from occurring, the component composition of ferrite-austenitic stainless steel was intensively studied using a lab ingot to reduce the transition temperature to 300 ° C. or less. As a result, it was found that there was a combination of components in which no cracks occurred, and the DF value shown in the following formula (1) constituting the relationship was reached.
DF value = 7.2 × (Cr + 0.88 × Mo + 0.78 × Si)
−8.9 × (Ni + 0.03 × Mn + 0.72 × Cu + 22 × C + 21 × N) − 44.9 (1) Formula DF value is an element that stabilizes the ferrite phase and an element that stabilizes the austenite phase. Since the relationship is constructed, the effect of each element is influenced by the mutual relationship between the elements, so the coefficients are different. By limiting the DF value within the range of 70 to 85, the inventors have found that the transition temperature can be lowered to 300 ° C. or lower, and further to 200 ° C. or lower. Below, the typical experimental result is demonstrated.

まず、本発明の重要な要素である合金元素の指標であるDF値について説明する。   First, the DF value that is an index of an alloy element that is an important element of the present invention will be described.

DF値70〜85:フェライト・オーステナイト系ステンレス鋼の金属組織は、フェライト相とオーステナイト相の2相で構成される。常温においても2相である理由は、各相に含まれる組成(特にNのような拡散速度が大きい元素)の影響が大きく、凝固から常温まで冷却過程において各温度域における平衡状態に近づこうと組成の分配が継続的に起こり、組織が形成されるためである。DF値と遷移温度の関係を図1に示す。DF値が85を超える場合にはホットチャージ法を適用しても鋳塊の温度が遷移温度以下となり鋳塊表面に割れが観察でき、表面に観察できる長さが大きくなる。したがって、DF値の上限を85とした。常温まで冷却し鋳塊表面の割れを観察すると、DF値85未満であっても割れが観察されるようになり、DF値70で割れが観察できなくなる。したがって、DF値の下限を70とした。よって、ホットチャージ法を適用することにより割れが発生しなくなるDF値70〜85を本発明の範囲とした。ここでDF値はフェライト相を安定させる元素とオーステナイト相を安定させる元素の関係を示していることから、DF値が70以下の場合にはフェライト相内に僅かに含有されるオーステナイト生成元素の比率が上昇するため、フェライト相の靭性が向上し、ホットチャージ法を適用する必要がないと推定できる。よって、本発明においては、DF値70以下は本発明の外とした。   DF value 70 to 85: The metal structure of ferrite-austenitic stainless steel is composed of two phases, a ferrite phase and an austenite phase. The reason for being two phases at room temperature is that the composition contained in each phase (especially the element having a large diffusion rate such as N) is greatly influenced, and the composition tends to approach the equilibrium state in each temperature range during the cooling process from solidification to room temperature. This is because of the continuous distribution and organization. The relationship between the DF value and the transition temperature is shown in FIG. When the DF value exceeds 85, the temperature of the ingot becomes lower than the transition temperature even when the hot charge method is applied, and cracks can be observed on the surface of the ingot, and the length that can be observed on the surface becomes large. Therefore, the upper limit of the DF value is set to 85. When cooling to room temperature and observing cracks on the ingot surface, cracks are observed even when the DF value is less than 85, and cracks cannot be observed at a DF value of 70. Therefore, the lower limit of the DF value is set to 70. Therefore, the range of the present invention is a DF value of 70 to 85 at which cracking does not occur by applying the hot charge method. Here, since the DF value indicates the relationship between the element that stabilizes the ferrite phase and the element that stabilizes the austenite phase, when the DF value is 70 or less, the ratio of the austenite-forming element slightly contained in the ferrite phase Therefore, it can be estimated that the toughness of the ferrite phase is improved and it is not necessary to apply the hot charge method. Therefore, in the present invention, a DF value of 70 or less is outside the present invention.

以下に成分の限定理由を述べる。なお、以下に示す「%」とは質量%を表す。   The reasons for limiting the components are described below. In addition, "%" shown below represents mass%.

(C:0.10%以下)
Cはオーステナイト相の安定度に大きな影響を及ぼす元素である。0.10%超の含有をするとオーステナイト相の硬度が著しく上昇する場合がある。またCr炭化物の析出を促進するために粒界腐食の発生をもたらすため、0.10%を上限とした。また耐食性の点からCは低くするほうが好ましいが、低減するためには精錬時のコスト増加を招く。好ましくは、0.01〜0.04%の範囲であり、さらに好ましくは、0.025〜0.04%の範囲である。
(C: 0.10% or less)
C is an element that greatly affects the stability of the austenite phase. If the content exceeds 0.10%, the hardness of the austenite phase may remarkably increase. Further, in order to promote the precipitation of Cr carbide, it causes the occurrence of intergranular corrosion, so the upper limit was made 0.10%. Moreover, although it is more preferable to make C low from a corrosion-resistant point, in order to reduce, the cost increase at the time of refining will be caused. Preferably, it is 0.01 to 0.04% of range, and more preferably 0.025 to 0.04% of range.

(Si:2.0%以下)
Siは脱酸元素として使われたり、耐酸化性向上のために含有されたりする場合がある。しかし、2.0%超の含有は材料の硬質化をもたらし、均一伸びが低下するため、これを上限とした。またSiを極低減するためには精錬時のコスト増加を招く。好ましくは、0.05〜1.0%の範囲であり、さらに好ましくは、0.4〜1.0%の範囲である。
(Si: 2.0% or less)
Si may be used as a deoxidizing element or may be contained for improving oxidation resistance. However, if the content exceeds 2.0%, the material is hardened and the uniform elongation is lowered, so this was made the upper limit. Moreover, in order to reduce Si extremely, the cost at the time of refining is increased. Preferably, it is in the range of 0.05 to 1.0%, and more preferably in the range of 0.4 to 1.0%.

(Mn::4.0%以下)
Mnはオーステナイト相に濃化し、オーステナイト相の安定度を変化させるのに重要な役割を持つ。しかし多量の含有は耐食性や熱間加工性の低下をもたらすため、上限を4.0%とした。0.05%未満とするには製錬工程におけるコスト増加を招くため、下限を0.05%とすることが望ましい。耐食性の点からは低い方が好ましく上限は3.0%とすることが望ましい。
(Mn :: 4.0% or less)
Mn concentrates in the austenite phase and plays an important role in changing the stability of the austenite phase. However, a large amount causes a decrease in corrosion resistance and hot workability, so the upper limit was made 4.0%. In order to make it less than 0.05%, the cost in the smelting process is increased, so the lower limit is desirably made 0.05%. From the viewpoint of corrosion resistance, a lower value is preferable, and the upper limit is preferably set to 3.0%.

(P:0.050%以下)
Pは不可避的に混入する元素であり、またCrなどの原料に含有されているため、低減することが困難であるが、多量に含有した場合には成形性を低下させるため、上限を0.050%未満とした。
(P: 0.050% or less)
P is an element that is inevitably mixed and is difficult to reduce because it is contained in a raw material such as Cr. Less than 050%.

(S:0.010%以下)
SはMnと結合して介在物をつくり、発銹の基点となる場合があるため、上限を0.010%未満とした。低いほど耐食性からは好ましいため、0.003%以下とすることが望ましい。
(S: 0.010% or less)
Since S may combine with Mn to form inclusions and serve as a starting point for rusting, the upper limit was made less than 0.010%. Since it is preferable from the viewpoint of corrosion resistance, the lower the content, the lower the content of 0.003%.

(Cr:17〜25%)
Crは耐食性を確保するために必要な元素であり、17%以上の含有が必要である。しかし、多量の含有は熱間加工割れの原因となり、精錬工程のコスト増加につながるため、上限を25%とした。好ましくは、20〜23%の範囲である。
(Cr: 17-25%)
Cr is an element necessary for ensuring corrosion resistance and needs to be contained in an amount of 17% or more. However, a large amount causes hot working cracks and leads to an increase in the cost of the refining process, so the upper limit was made 25%. Preferably, it is 20 to 23% of range.

(Ni:0.6〜5.0%)
Niはオーステナイト安定化元素であり、オーステナイト相の安定度を調整するために重要な元素である。また熱間加工割れを抑制する効果を持つため、0.6%以上含有させる。5.0%を超える含有は、原料コストの増加をもたらし、またオーステナイト、フェライトの2相組織得ることが困難になる場合があるため、これを上限とした。好ましくは、0.6〜2.4%の範囲である。さらに好ましくは、0.6〜2.2%の範囲である。
(Ni: 0.6-5.0%)
Ni is an austenite stabilizing element and is an important element for adjusting the stability of the austenite phase. Moreover, since it has an effect which suppresses a hot work crack, it is made to contain 0.6% or more. If the content exceeds 5.0%, the raw material cost increases, and it may be difficult to obtain a two-phase structure of austenite and ferrite, so this was made the upper limit. Preferably, it is 0.6 to 2.4% of range. More preferably, it is 0.6 to 2.2% of range.

(N:0.01〜0.15%)
NはC同様にオーステナイト相の安定度に大きな影響を及ぼす元素である。また固溶して存在した場合に耐食性を向上させる効果を持つため、0.01以上含有することとする。但し、0.15%以上含有した場合は均一伸びが低下する場合が認められるほか、Cr窒化物が析出しやすくなって逆に耐食性の低下をもたらすため、これを上限とした。安定して効果を得るためには0.06以上が好ましい。
(N: 0.01-0.15%)
N, like C, is an element that greatly affects the stability of the austenite phase. Moreover, since it has the effect of improving corrosion resistance when it exists in solid solution, it shall contain 0.01 or more. However, when the content is 0.15% or more, the uniform elongation may be reduced, and Cr nitride is liable to precipitate and conversely causes a decrease in corrosion resistance. In order to obtain an effect stably, 0.06 or more is preferable.

(Cu:2.0%以下)
CuもNi同様、オーステナイト安定化元素であり、オーステナイト相の安定度を調整するために重要な元素である。ただし、2.0%を超える含有は熱間加工時の割れを促進し、また強度を上昇させるため、これを上限とした。安定して効果を得るためには、0.1%以上が好ましい。
(Cu: 2.0% or less)
Cu, like Ni, is an austenite stabilizing element, and is an important element for adjusting the stability of the austenite phase. However, if the content exceeds 2.0%, cracking during hot working is promoted and the strength is increased, so this was made the upper limit. In order to obtain an effect stably, 0.1% or more is preferable.

(Mo:2.0%以下)
Moは耐食性を向上させる元素であるため、選択的に含有しても良い。0.1%以上の含有により、耐食性向上効果が発揮される。安定して効果を得るためには、0.5%以上が好ましい。ただし、2.0%を超えると均一伸びが低下し、原料コストが大きく増加するため、これを上限とした。
(Mo: 2.0% or less)
Since Mo is an element that improves the corrosion resistance, it may be selectively contained. By containing 0.1% or more, the corrosion resistance improving effect is exhibited. In order to obtain an effect stably, 0.5% or more is preferable. However, when it exceeds 2.0%, the uniform elongation is lowered and the raw material cost is greatly increased.

(Al:0.01〜0.2%)
Alは鋼の脱酸能力が非常に大きい元素であり、フェライト相の靱性向上の観点から必ず添加する必要がある。脱酸により酸化物系介在物を減少させ高い靱性を得るためには0.01%以上の含有が必要である。一方過剰な添加は鋼の硬質化を招き、加工性を低下させる可能性があるので0.2%以下の含有量とする。好ましくは、0.02〜0.1%の範囲である。
(Al: 0.01-0.2%)
Al is an element having a very large deoxidizing ability of steel, and must be added from the viewpoint of improving the toughness of the ferrite phase. In order to reduce oxide inclusions by deoxidation and obtain high toughness, a content of 0.01% or more is necessary. On the other hand, excessive addition leads to hardening of the steel and may deteriorate the workability, so the content is made 0.2% or less. Preferably, it is 0.02 to 0.1% of range.

また、選択的に下記元素を含有することができる。   Moreover, the following elements can be selectively contained.

(Nb:0.50%以下、Ti:0.50%以下、の1種または2種)
Nbは溶接熱影響部の粗大化を防止する効果があるが、0.50%超の含有は均一伸びを低下させるため、これを上限とした。安定して効果を得るためには、0.03%以上が望ましい。
(One or two of Nb: 0.50% or less, Ti: 0.50% or less)
Nb has the effect of preventing the weld heat-affected zone from becoming coarse, but the content exceeding 0.50% lowers the uniform elongation, so this was made the upper limit. In order to obtain an effect stably, 0.03% or more is desirable.

TiもNb同様、溶接熱影響部の粗大化を防止する効果を有する。さらには凝固組織を微細等軸晶化するため、0.03%以上の含有が好ましい。ただし、0.50%超の含有は均一伸びを低下させるため、これを上限とした。   Ti, like Nb, has an effect of preventing the weld heat affected zone from becoming coarse. Furthermore, the content is preferably 0.03% or more in order to finely equiax the solidified structure. However, the content exceeding 0.50% lowers the uniform elongation, so this was made the upper limit.

(Ca:0.003%以下、Mg:0.003%以下、B:0.003%以下、の1種または2種)
Caは脱硫、脱酸のために若干含有されることがある。但し、0.003%超の含有によって熱間加工割れが生じやすくなり、また耐食性が低下するため、これを上限とした。安定して効果を得るためには。0.0005%以上が望ましい。
(Ca: 0.003% or less, Mg: 0.003% or less, B: 0.003% or less)
Ca may be slightly contained for desulfurization and deoxidation. However, the content of over 0.003% tends to cause hot working cracks and lowers the corrosion resistance, so this was made the upper limit. To obtain a stable effect. 0.0005% or more is desirable.

Mgは、脱酸だけでなく、凝固組織を微細化する効果を持つ。これらの効果を安定して発揮するためには、0.0005%以上の含有が望ましい。また、0.003%超の含有は製鋼工程でのコスト増加をもたらすため、これを上限とした。   Mg has not only deoxidation but also an effect of refining the solidified structure. In order to stably exhibit these effects, the content is preferably 0.0005% or more. Moreover, since content exceeding 0.003% brings about the cost increase in a steelmaking process, this was made into the upper limit.

Bは粒界強度を上昇させるのに有効な元素である。このような効果を安定して発揮するためには、0.0005%以上の含有が望ましい。また、0.003%超の含有は多量のホウ化物生成を招き、耐食性を著しく低下させる。   B is an element effective for increasing the grain boundary strength. In order to stably exhibit such an effect, the content is preferably 0.0005% or more. Further, if the content exceeds 0.003%, a large amount of boride is formed, and the corrosion resistance is remarkably lowered.

次に、衝撃遷移温度以下に冷却することなく加熱する理由について説明する。
鋳片を鋳造後遷移温度以下に冷却して加熱すると炉内で鋳片の内部の引張応力が降伏応力を超え鋳片が割れるため、鋳片が遷移温度以上の温度にある状態で加熱しなければならない。連続鋳造スラブの衝撃遷移温度は、製造工程中には測定することは不可能であるが、スラブを小さく切断して冷却しこの小片よりシャルピー試験片を採取し試験することで求められる。シャルピー試験は、JIS Z 2242に従って実施した。尚、用いたVノッチ試験片は鋳塊金型の幅方向から鋳塊表層を約2mm研削した部位から採取し、試験数3の平均値を算出した。
Next, the reason for heating without cooling below the impact transition temperature will be described.
When the slab is cooled to below the transition temperature after casting and heated, the tensile stress inside the slab exceeds the yield stress and the slab cracks, so the slab must be heated at a temperature above the transition temperature. I must. The impact transition temperature of a continuously cast slab cannot be measured during the manufacturing process, but can be obtained by cutting a slab into small pieces, cooling it, collecting a Charpy test piece from this piece, and testing it. The Charpy test was performed according to JIS Z 2242. The V-notch test piece used was taken from the site where the ingot surface layer was ground by about 2 mm from the width direction of the ingot mold, and the average value of the number of tests 3 was calculated.

本発明では前記成分規制により連続鋳造スラブの遷移温度を300℃以下まで低下させることができ、鋳片の切断後7時間以上経過してからでも加熱炉に挿入することが可能である。遷移温度が250℃の場合は、切断後10数時間経過しても割れの発生はない。   In the present invention, the transition temperature of the continuously cast slab can be lowered to 300 ° C. or less by the above-mentioned component regulation, and it can be inserted into the heating furnace even after 7 hours or more have passed after the slab has been cut. When the transition temperature is 250 ° C., no cracking occurs even after 10 hours after cutting.

以下、実施例に基づいて本発明を具体的に説明する。   Hereinafter, the present invention will be specifically described based on examples.

表1に示す化学組成の鋼を真空高周波溶解炉により、厚さ30mm、幅100mm幅の鋳塊とし、180mmの長さに溶断して鋳塊を採取した。   Steel having the chemical composition shown in Table 1 was made into an ingot having a thickness of 30 mm and a width of 100 mm using a vacuum high-frequency melting furnace, and melted to a length of 180 mm to collect the ingot.

Figure 2010229457
Figure 2010229457

なお、表1に示した成分の各鋼について遷移温度は、事前に溶解した鋳塊からサンプルを採取し、常温まで冷却し、シャルピー試験片の加工をおこなって求めておいた。鋳塊の冷却時間と温度の関係を図2に示す。その際、鋳塊の冷却速度をスラブに近づけるため鋳塊を重ね合わせた部分に熱電対を設置して温度変化を観察した。   In addition, about each steel of the component shown in Table 1, the transition temperature was calculated | required by taking a sample from the ingot which melt | dissolved beforehand, cooling to normal temperature, and processing the Charpy test piece. The relationship between the ingot cooling time and temperature is shown in FIG. At that time, in order to make the ingot cooling rate close to that of the slab, a thermocouple was installed in the portion where the ingots were overlapped, and the temperature change was observed.

溶断した各鋳塊を積み重ねて保温カバーをかけ、徐冷し最初に切断した1枚の鋳塊が遷移温度よりも55〜115℃高い温度になった時点で加熱炉に挿入し、1200℃に均熱した後熱間圧延を行った。一方、比較例として、鋼No.1の鋳塊温度が遷移温度よりも60℃低くなった時点で加熱炉に挿入した。   Each melted ingot is stacked, covered with a heat insulating cover, slowly cooled, and when the first ingot cut first becomes 55 to 115 ° C. higher than the transition temperature, it is inserted into a heating furnace to 1200 ° C. After soaking, hot rolling was performed. On the other hand, as a comparative example, Steel No. When the ingot temperature of No. 1 became 60 ° C. lower than the transition temperature, it was inserted into the heating furnace.

鋳込み完了から熱間圧延終了までに要した時間と、熱延鋼板の表面状況を表2に示す。ここで示す鋳塊の横割れは、熱延加熱炉に挿入する際に鋳塊切断面を目視観察し確認できる割れの個数を示している。   Table 2 shows the time required from the completion of casting to the end of hot rolling and the surface condition of the hot-rolled steel sheet. The horizontal crack of the ingot shown here indicates the number of cracks that can be confirmed by visually observing the cut surface of the ingot when inserted into a hot-rolling heating furnace.

熱間圧延後の鋼板の表面状況は、表面研削後の疵の除去状況により判断した。片面10平方cm当たり約40μmの研削を実施し仕上げは#600とした。その部位に鋳片割れで一般に用いられるカラーチェックを実施し、5mmの割れがない場合を良好とした。研削後も割れが残り、除去不可能と判断した大型の割れが発生した部位は切断除去してスクラップとした。また、鋳塊の脆化が激しい場合は熱間圧延開始前に、あるいは1〜2パス後に大きな割れが見られ、圧延不能と判断してスクラップ処理とした。   The surface condition of the steel sheet after hot rolling was judged by the condition of removal of wrinkles after surface grinding. A grinding of about 40 μm per 10 cm 2 on one side was performed and the finish was # 600. A color check generally used for slab cracking was performed on the part, and the case where there was no crack of 5 mm was determined as good. Cracks remained after grinding, and the parts where large cracks were judged to be impossible to remove were cut and removed into scrap. Moreover, when the ingot was severely embrittled, a large crack was observed before the start of hot rolling or after one or two passes, and it was judged that rolling was impossible, and the scrap was processed.

Figure 2010229457
Figure 2010229457

表2に示されるように、本発明で規制する成分のフェライト・オーステナイト系ステンレス鋼は遷移温度が300℃以下と著しく低いので、鋳込み完了から加熱炉に挿入するまでの時間を長くしてもスラブに割れが発生しない。しかし、比較例の鋼No.1およびNo.11のように加熱炉挿入温度が160℃以下と低い場合には、組成条件を満足していても熱延板に割れが観察できる。参考例として示す鋼No.24では、DF値が70未満であるため、80℃と常温に近い加熱炉挿入温度でも熱延板に割れは観察できなかった。   As shown in Table 2, since the transition temperature of the ferrite-austenitic stainless steel as a component regulated in the present invention is remarkably low at 300 ° C. or less, even if the time from completion of casting to insertion into the heating furnace is increased, the slab No cracking occurs. However, comparative steel No. 1 and no. When the heating furnace insertion temperature is as low as 160 ° C. or lower as in No. 11, cracks can be observed in the hot-rolled sheet even if the composition conditions are satisfied. Steel No. shown as a reference example. In No. 24, since the DF value was less than 70, no cracks could be observed in the hot-rolled sheet even at 80 ° C. and a furnace insertion temperature close to room temperature.

比較鋼No.15はAl量が少なく下限を外れており、脱酸が不十分であり粗大酸化物が散在したため、および鋳塊の遷移温度よりも加熱炉挿入温度が低いため、熱延疵が多発した。比較鋼No.16の場合は、Nが多く上限をはずれ、N起因のボイドが発生しかつ粒界にフィルム状の炭窒化物が析出したため、熱延疵が多発した。比較鋼No.17はMnが上限を外れたため高Mn起因で熱間加工性が低下し、熱延時に疵が発生した。比較鋼No.18は鋳塊の遷移温度よりも加熱炉挿入温度が低いため、およびDF値が上限を外れ、かつAlが上限を外れたため、鋳塊割れと高Al起因の硬質化で熱延疵が多発した。比較鋼No.19ではDF値が上限を外れ、遷移温度が非常に高く、鋳込み完了後6時間という短時間で加熱炉に挿入しても遷移温度を下まわったため、鋳塊に割れが発生した。比較鋼No.20はSiが上限を外れ、Siによる硬質化が著しく熱延時に疵が発生した。比較鋼No.21はTiが上限を外れ、かつDF値が85以上であるため、加熱炉挿入前に割れが観察され、熱延板にも割れが発生していた。比較鋼No.22は鋳塊の遷移温度よりも加熱炉挿入温度が低いため、およびC、Niが上限を外れ、かつDF値が85以上であるため、加熱炉挿入前に割れが観察され、熱延板にも割れが発生していた。比較鋼No.23はCr、Cu、Mo、Nbが上限を外れ、かつDF値が下限を外れたため、熱延疵が多発した。   Comparative steel No. No. 15 had a small amount of Al and was below the lower limit. Deoxidation was insufficient, coarse oxides were scattered, and the furnace insertion temperature was lower than the ingot transition temperature, so hot rolling occurred frequently. Comparative steel No. In the case of No. 16, N was large and the upper limit was exceeded, voids due to N were generated, and film-like carbonitrides were deposited at the grain boundaries, so hot rolling occurred frequently. Comparative steel No. In No. 17, since Mn deviated from the upper limit, hot workability deteriorated due to high Mn, and wrinkles occurred during hot rolling. Comparative steel No. No. 18 had a heating furnace insertion temperature lower than the transition temperature of the ingot, and because the DF value was out of the upper limit and Al was out of the upper limit, hot rolling was frequently caused by ingot cracking and hardening due to high Al. . Comparative steel No. In No. 19, the DF value exceeded the upper limit, the transition temperature was very high, and even if it was inserted into the heating furnace in a short time of 6 hours after the completion of casting, the transition temperature fell below, so cracking occurred in the ingot. Comparative steel No. In No. 20, Si deviated from the upper limit, and hardening due to Si was remarkable and wrinkles occurred during hot rolling. Comparative steel No. In No. 21, since Ti exceeded the upper limit and the DF value was 85 or more, cracks were observed before inserting the heating furnace, and cracks were also generated in the hot-rolled sheet. Comparative steel No. No. 22 has a heating furnace insertion temperature lower than the transition temperature of the ingot, and C and Ni are outside the upper limit and the DF value is 85 or more. Also cracks occurred. Comparative steel No. In No. 23, Cr, Cu, Mo, and Nb deviated from the upper limit and the DF value deviated from the lower limit, so hot rolling occurred frequently.

本発明により、フェライト・オーステナイト系ステンレス鋼板の連続鋳造−ホットチャージ法による製造が可能となる。   According to the present invention, it is possible to produce a ferritic / austenitic stainless steel sheet by a continuous casting-hot charge method.

本発明は、耐鋳塊割れ性に優れたフェライト・オーステナイト系ステンレス鋼及びその製造方法に関する。本発明によれば、高価かつ希少な元素であるNiを多量に含有することなく加工性に優れたフェライト・オーステナイト系ステンレス鋼を製造することができるため、資源保護ならびに環境保全に貢献しうるものと考えられる。   The present invention relates to a ferritic / austenitic stainless steel excellent in ingot crack resistance and a method for producing the same. According to the present invention, ferritic and austenitic stainless steels excellent in workability can be produced without containing a large amount of expensive and rare element Ni, which can contribute to resource protection and environmental conservation. it is conceivable that.

Claims (6)

質量%で、
C:0.10%以下、
Si:2.0%以下、
Mn:4.0%以下、
P:0.050%以下、
S:0.010%以下、
Cr:17〜25%、
Ni:0.6〜5.0%、
Cu:2.0%以下、
Mo:2.0%以下、
N:0.01〜0.15%、
Al:0.01〜0.2%、
を含有し、残部が鉄及び不可避的不純物からなり、下記(1)式で表されるDF値が70〜85であることを特長とする耐置き割れ性に優れたフェライト・オーステナイト系ステンレス鋼。
DF値=7.2×(Cr+0.88×Mo+0.78×Si)
−8.9×(Ni+0.03×Mn+0.72×Cu+22×C+21×N)− 44.9 ・・・・ (1)式
% By mass
C: 0.10% or less,
Si: 2.0% or less,
Mn: 4.0% or less,
P: 0.050% or less,
S: 0.010% or less,
Cr: 17 to 25%,
Ni: 0.6 to 5.0%,
Cu: 2.0% or less,
Mo: 2.0% or less,
N: 0.01 to 0.15%,
Al: 0.01-0.2%
Ferritic / austenitic stainless steel with excellent crack resistance, characterized in that the balance is made of iron and inevitable impurities, and the DF value represented by the following formula (1) is 70 to 85.
DF value = 7.2 × (Cr + 0.88 × Mo + 0.78 × Si)
−8.9 × (Ni + 0.03 × Mn + 0.72 × Cu + 22 × C + 21 × N) − 44.9 Formula (1)
さらに、質量%で、
Nb:0.50%以下、
Ti:0.50%以下、
の1種または2種を含有することを特徴とする請求項1記載の耐置き割れ性に優れたフェライト・オーステナイト系ステンレス鋼。
Furthermore, in mass%,
Nb: 0.50% or less,
Ti: 0.50% or less,
The ferritic / austenitic stainless steel with excellent crack resistance according to claim 1, characterized in that it contains one or two of the following.
さらに、質量%で、
Ca:0.003%以下、
Mg:0.003%以下、
B:0.003%以下、
の1種または2種を含有することを特徴とする請求項1または2のいずれかに記載の耐置き割れ性に優れたフェライト・オーステナイト系ステンレス鋼。
Furthermore, in mass%,
Ca: 0.003% or less,
Mg: 0.003% or less,
B: 0.003% or less,
The ferritic / austenitic stainless steel with excellent crack resistance according to claim 1, wherein the ferritic / austenitic stainless steel is excellent.
質量%で、
C:0.10%以下、
Si:2.0%以下、
Mn:4.0%以下、
P:0.050%以下、
S:0.010%以下、
Cr:17〜25%、
Ni:0.6〜5.0%、
Cu:2.0%以下、
Mo:2.0%以下、
N:0.01〜0.15%、
Al:0.01〜0.2%、
を含有し、残部が鉄及び不可避的不純物からなり、下記(1)式で表されるDF値が70〜85のフェライト・オーステナイト系ステンレス鋼を連続鋳造によりスラブとなし、引き続きその衝撃遷移温度以下に冷却することなく加熱し、次いで熱間圧延することを特長とする耐置き割れ性に優れたフェライト・オーステナイト系ステンレス鋼板の製造方法。
DF値=7.2×(Cr+0.88×Mo+0.78×Si)
−8.9×(Ni+0.03×Mn+0.72×Cu+22×C+21×N)− 44.9 ・・・・ (1)式
% By mass
C: 0.10% or less,
Si: 2.0% or less,
Mn: 4.0% or less,
P: 0.050% or less,
S: 0.010% or less,
Cr: 17 to 25%,
Ni: 0.6 to 5.0%,
Cu: 2.0% or less,
Mo: 2.0% or less,
N: 0.01 to 0.15%,
Al: 0.01-0.2%
The balance is made of iron and unavoidable impurities, and the DF value of 70 to 85 represented by the following formula (1) is made into a slab by continuous casting, and continuously below its impact transition temperature. A method for producing a ferritic / austenitic stainless steel sheet having excellent crack resistance, which is characterized by heating without cooling to hot rolling and then hot rolling.
DF value = 7.2 × (Cr + 0.88 × Mo + 0.78 × Si)
−8.9 × (Ni + 0.03 × Mn + 0.72 × Cu + 22 × C + 21 × N) − 44.9 Formula (1)
前記スラブが、さらに、質量%で、
Nb:0.50%以下、
Ti:0.50%以下、
の1種または2種を含有することを特徴とする請求項4に記載の耐置き割れ性に優れたフェライト・オーステナイト系ステンレス鋼板の製造方法。
The slab is further mass%,
Nb: 0.50% or less,
Ti: 0.50% or less,
1 or 2 types of these are contained, The manufacturing method of the ferritic-austenitic stainless steel plate excellent in the placement crack resistance of Claim 4 characterized by the above-mentioned.
前記スラブが、さらに、質量%で、
Ca:0.003%以下、
Mg:0.003%以下、
B:0.003%以下、
の1種または2種を含有することを特徴とする請求項4または5のいずれかに記載の耐置き割れ性に優れたフェライト・オーステナイト系ステンレス鋼板の製造方法。
The slab is further mass%,
Ca: 0.003% or less,
Mg: 0.003% or less,
B: 0.003% or less,
One type or two types of these are contained, The manufacturing method of the ferrite austenitic stainless steel plate excellent in the placement cracking resistance in any one of Claim 4 or 5 characterized by the above-mentioned.
JP2009076400A 2009-03-26 2009-03-26 Ferritic / austenitic stainless steel with excellent ingot cracking resistance and method for producing the same Active JP5361489B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009076400A JP5361489B2 (en) 2009-03-26 2009-03-26 Ferritic / austenitic stainless steel with excellent ingot cracking resistance and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009076400A JP5361489B2 (en) 2009-03-26 2009-03-26 Ferritic / austenitic stainless steel with excellent ingot cracking resistance and method for producing the same

Publications (2)

Publication Number Publication Date
JP2010229457A true JP2010229457A (en) 2010-10-14
JP5361489B2 JP5361489B2 (en) 2013-12-04

Family

ID=43045541

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009076400A Active JP5361489B2 (en) 2009-03-26 2009-03-26 Ferritic / austenitic stainless steel with excellent ingot cracking resistance and method for producing the same

Country Status (1)

Country Link
JP (1) JP5361489B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0472013A (en) * 1990-07-11 1992-03-06 Nippon Steel Corp Manufacture of two phase stainless steel having excellent corrosion resistance to concentrated sulfuric acid
JPH1060597A (en) * 1996-08-14 1998-03-03 Sumitomo Metal Ind Ltd High strength dual phase stainless steel excellent in toughness
JP2008038214A (en) * 2006-08-08 2008-02-21 Nippon Steel & Sumikin Stainless Steel Corp Duplex stainless steel
JP2010059541A (en) * 2008-08-04 2010-03-18 Nippon Steel & Sumikin Stainless Steel Corp Ferritic-austenitic stainless steel having excellent ingot crack resistance and workability, and method for producing the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0472013A (en) * 1990-07-11 1992-03-06 Nippon Steel Corp Manufacture of two phase stainless steel having excellent corrosion resistance to concentrated sulfuric acid
JPH1060597A (en) * 1996-08-14 1998-03-03 Sumitomo Metal Ind Ltd High strength dual phase stainless steel excellent in toughness
JP2008038214A (en) * 2006-08-08 2008-02-21 Nippon Steel & Sumikin Stainless Steel Corp Duplex stainless steel
JP2010059541A (en) * 2008-08-04 2010-03-18 Nippon Steel & Sumikin Stainless Steel Corp Ferritic-austenitic stainless steel having excellent ingot crack resistance and workability, and method for producing the same

Also Published As

Publication number Publication date
JP5361489B2 (en) 2013-12-04

Similar Documents

Publication Publication Date Title
JP5908936B2 (en) Ferritic stainless steel sheet for flange, manufacturing method thereof and flange part
CN101346486B9 (en) Duplex stainless steel
JP5972870B2 (en) Austenitic-ferritic stainless steel with improved machinability
TWI460293B (en) Duplex stainless steel, duplex stainless steel slab, and duplex stainless steel material
JP5349015B2 (en) Method for producing Ni-saving austenitic stainless hot-rolled steel sheet, slab and hot-rolled steel sheet
KR101280102B1 (en) Continuously cast slab and process for production of same
KR101705135B1 (en) Ferritic stainless steel sheet
KR101711317B1 (en) Ferritic stainless steel sheet with excellent blanking workability and process for manufacturing same
WO2014132627A1 (en) Thick steel plate and production method for thick steel plate
JP5918796B2 (en) Ferritic stainless hot rolled steel sheet and steel strip with excellent toughness
CN102725432A (en) Highly corrosion-resistant hot-rolled ferrite stainless steel sheet having excellent toughness
KR20160105874A (en) Ferritic stainless steel and method for producing same
JP5329632B2 (en) Duplex stainless steel, duplex stainless steel cast, and duplex stainless steel
JP5546178B2 (en) Ferritic / austenitic stainless steel with excellent ingot crack resistance and workability and method for producing the same
JP5670064B2 (en) Ferrite single-phase stainless steel slab manufacturing method
JP5453747B2 (en) Stainless cold-rolled steel sheet excellent in punching processability and manufacturing method thereof
JP7082669B2 (en) High-strength, high-toughness hot-rolled steel sheet and its manufacturing method
JP2012172211A (en) METHOD OF MANUFACTURING LOW Ni AUSTENITIC STAINLESS STEEL SHEET
JP2017160491A (en) High strength stainless steel material excellent in processability and manufacturing method therefor
JP5361489B2 (en) Ferritic / austenitic stainless steel with excellent ingot cracking resistance and method for producing the same
KR101940427B1 (en) Ferritic stainless steel sheet
JP5424917B2 (en) Duplex stainless steel with excellent crack resistance and hot workability
JP5329634B2 (en) Duplex stainless steel, duplex stainless steel cast, and duplex stainless steel
JP5599209B2 (en) Ferrite single-phase stainless steel slab
JP2023091866A (en) Manufacturing method of steel plate with low fin cracking occurrence rate, and steel raw material for steel plate production

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111108

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130730

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130813

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130903

R150 Certificate of patent or registration of utility model

Ref document number: 5361489

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250