JP2011168838A - Duplex stainless steel material for vacuum vessel and method for manufacturing the same - Google Patents

Duplex stainless steel material for vacuum vessel and method for manufacturing the same Download PDF

Info

Publication number
JP2011168838A
JP2011168838A JP2010033822A JP2010033822A JP2011168838A JP 2011168838 A JP2011168838 A JP 2011168838A JP 2010033822 A JP2010033822 A JP 2010033822A JP 2010033822 A JP2010033822 A JP 2010033822A JP 2011168838 A JP2011168838 A JP 2011168838A
Authority
JP
Japan
Prior art keywords
less
steel
stainless steel
duplex stainless
steel material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010033822A
Other languages
Japanese (ja)
Other versions
JP5398574B2 (en
Inventor
Shinji Tsuge
信二 柘植
Haruhiko Kajimura
治彦 梶村
Yoichi Yamamoto
洋一 山本
Hiroshige Inoue
裕滋 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Stainless Steel Corp
Original Assignee
Nippon Steel and Sumikin Stainless Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumikin Stainless Steel Corp filed Critical Nippon Steel and Sumikin Stainless Steel Corp
Priority to JP2010033822A priority Critical patent/JP5398574B2/en
Priority to KR1020127021315A priority patent/KR101445952B1/en
Priority to CN201180010220.7A priority patent/CN102770572B/en
Priority to PCT/JP2011/053601 priority patent/WO2011102499A1/en
Priority to TW100105234A priority patent/TWI431126B/en
Publication of JP2011168838A publication Critical patent/JP2011168838A/en
Application granted granted Critical
Publication of JP5398574B2 publication Critical patent/JP5398574B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/004Heat treatment of ferrous alloys containing Cr and Ni
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/08Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for tubular bodies or pipes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/001Austenite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/08Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for tubular bodies or pipes
    • C21D9/14Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for tubular bodies or pipes wear-resistant or pressure-resistant pipes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an Ni-saving type duplex stainless steel material for a vacuum vessel, which replaces austenitic stainless steel. <P>SOLUTION: The duplex stainless steel material for a vacuum vessel has a composition comprising, by mass, ≤0.06% C, 0.05 to 1.5% Si, 0.5 to 10.0% Mn, ≤005% P, ≤0.010% S, 0.1 to 5.0% Ni, 18.0 to 25.0% Cr, 0.05 to 0.30% N and 0.001 to 0.05% Al, and in which the total hydrogen content in the steel is ≤3 ppm, and the balance Fe with inevitable impurities. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、真空容器用としてのガス脱離特性に優れた安価なNi節減型二相ステンレス鋼材およびその製造方法に関する。   The present invention relates to an inexpensive Ni-saving duplex stainless steel material excellent in gas desorption characteristics for a vacuum vessel and a method for producing the same.

半導体素子、液晶パネル、薄膜太陽電池の生産が近年急速に増加しており、さらに製品が大型化してゆく傾向にある。これら製品の製造には真空プロセスが必要であり、真空容器としてステンレス、アルミ、チタンなどの金属材料が使用されている。真空容器としてのステンレス鋼は従来よりSUS304鋼を代表とするオーステナイト系の材料が使用されている。また真空設備の大型化にともない板厚が80mm程度までの厚手のステンレス鋼材が使用されるようになっている。   The production of semiconductor elements, liquid crystal panels, and thin-film solar cells has been increasing rapidly in recent years, and the size of products has been increasing. The manufacture of these products requires a vacuum process, and metal materials such as stainless steel, aluminum, and titanium are used as vacuum containers. Conventionally, austenitic materials such as SUS304 steel have been used for stainless steel as a vacuum vessel. With the increase in size of vacuum equipment, thick stainless steel materials with a thickness of up to about 80 mm are being used.

真空容器用材料に求められる特性としてガスの放出が小さいことがあげられる。特に超高真空用材料としてオーステナイト系ステンレス鋼、アルミニウム合金、チタンなどのガス放出特性におよぼす表面研磨条件・ベーキング処理の影響などが研究され(非特許文献1参照)、研磨プロセスによる表面粗さの低減と表面酸化層の減少が有効であることが知られている。また100〜450℃での長時間ベーキングが有効であることも知られている(非特許文献2参照)。
また、Mnを多く含有するオーステナイトステンレス鋼材にMn含有量の高い被膜を形成させることにより真空特性を改善する知見が開示されており(特許文献1参照)、このような観点での材料開発も可能と考えられる。
A characteristic required for a vacuum vessel material is a small gas emission. In particular, the effects of surface polishing conditions and baking treatment on the gas release characteristics of austenitic stainless steel, aluminum alloy, titanium, etc. as ultra-high vacuum materials have been studied (see Non-Patent Document 1). It is known that reduction and reduction of the surface oxide layer are effective. It is also known that long-time baking at 100 to 450 ° C. is effective (see Non-Patent Document 2).
Moreover, the knowledge which improves a vacuum characteristic is disclosed by forming the coating film with high Mn content in the austenitic stainless steel material which contains many Mn (refer patent document 1), and material development from such a viewpoint is also possible. it is conceivable that.

もう一つの求められる特性は強度および溶接性である。真空容器の大型化にともない、この特性は益々重要になっている。特に予備排気室のように大気圧と真空を繰り返す部材では疲労特性の優れた高強度材の適用が合理的である。ところが、オーステナイト系ステンレス鋼の降伏強度下限値は200MPa程度であり、大型化する真空容器用の材料としては改善が望まれる特性である。   Another required property is strength and weldability. This characteristic becomes more and more important as the size of the vacuum vessel increases. In particular, for a member that repeats atmospheric pressure and vacuum, such as a preliminary exhaust chamber, it is reasonable to apply a high-strength material having excellent fatigue characteristics. However, the lower limit of the yield strength of austenitic stainless steel is about 200 MPa, which is a characteristic that is desired to be improved as a material for a vacuum vessel that increases in size.

二相ステンレス鋼はCr,Moを多く含有し、オーステナイト系ステンレス鋼に比べて強度が高い特徴を有するが、高価な材料であるため真空容器用としての適用事例は少ない。ところが最近、Ni含有量を節減し、Mn含有量を増加した二相ステンレス鋼が開発されてきており、鋼材コストの面からも容器材料の薄肉化を通じて適用可能性があると見られる。ただし、二相ステンレス鋼においてはNi節減、Mn添加のような成分設計の中で延性や靭性が損なわれる可能性があるとともに、真空特性(ガス離脱特性)についてはフェライト相とオーステナイト相の存在がどのように影響するか明確に知られていない。そこで本発明者らはNi節減型二相ステンレス鋼材の強度・靭性・表面特性・ガス離脱特性・熱処理特性・研磨特性に着目し、真空容器としての適用性についての検討をおこなった。   The duplex stainless steel contains a large amount of Cr and Mo, and has a characteristic that the strength is higher than that of the austenitic stainless steel, but since it is an expensive material, there are few application examples for vacuum vessels. Recently, however, duplex stainless steels with reduced Ni content and increased Mn content have been developed, and it may be applicable through thinning of container materials from the viewpoint of steel material cost. However, in duplex stainless steel, ductility and toughness may be impaired during component design such as Ni saving and Mn addition, and the presence of ferrite and austenite phases in terms of vacuum characteristics (gas release characteristics) It is not clearly known how it will affect. Accordingly, the present inventors have examined the applicability as a vacuum vessel, focusing on the strength, toughness, surface characteristics, gas release characteristics, heat treatment characteristics, and polishing characteristics of Ni-saving duplex stainless steel materials.

二相ステンレス鋼はフェライト相とオーステナイト相の組織から構成される材料であり、高い強度に加えて延性・靭性および溶接性を兼ね備えている。このためオーステナイト系ステンレス鋼の代替の前提としての基本的な特性を具備していると言える。ただし、靭性が乏しく、水素の固溶限の小さいフェライト相を50%程度含有していることの影響について把握する必要がある。また、真空容器用材料として最も大切な特性としては、機械・電解・化学研磨等により平滑で清浄な表面が得られること、水などの表面吸着ガスの脱離特性に優れること、鋼中水素の放出能が小さいことが挙げられ、二相ステンレス鋼材にこれらの特性を付与するための方法を明らかにし、真空容器用実用材料として開発することを目標とした。   Duplex stainless steel is a material composed of a ferrite phase and austenite phase structure, and has high strength, ductility, toughness and weldability. For this reason, it can be said that it has the basic characteristics as a premise of substituting austenitic stainless steel. However, it is necessary to grasp the influence of containing about 50% of a ferrite phase with poor toughness and a small hydrogen solubility limit. The most important characteristics for vacuum container materials are that a smooth, clean surface can be obtained by mechanical, electrolytic, chemical polishing, etc., and that the surface adsorption gas such as water has excellent desorption characteristics, The release ability is small, and the method for imparting these properties to the duplex stainless steel material was clarified, and the goal was to develop it as a practical material for vacuum vessels.

その開発遂行にあたり二相ステンレス鋼に関して、本発明者が目的としている真空容器用材料としての適用性を評価し、具体的に示した文献は見あたらない。二相ステンレス鋼はCr、Nを多く含有するため耐孔食性が高く、したがって鋼材表面を酸洗仕上げする工程の能率が小さいという課題を有している。このような課題認識の下、二相ステンレス鋼の冷間加工と真空特性の関連が重要であることに着目し、対象とする二相ステンレス鋼で0〜20%冷間加工材の真空特性についての基礎実験を実施した。その結果、冷間加工により鋼の水素の放出が促進されるとの新たな課題が存在することが明らかとなった。すなわちNi節減型二相ステンレス鋼の化学組成的に依存する製造工程上の特徴を考慮しつつ真空容器用二相ステンレス鋼材として開発するには鋼材表面の特性を的確に制御する必要性が認識された。   In carrying out the development, the applicability of the duplex stainless steel as a vacuum vessel material intended by the present inventor is evaluated, and there is no literature specifically shown. Since duplex stainless steel contains a large amount of Cr and N, it has a high pitting corrosion resistance, and therefore has a problem that the efficiency of the step of pickling finishing the steel surface is small. Recognizing that the relationship between cold working and vacuum characteristics of duplex stainless steel is important under the recognition of such issues, the vacuum characteristics of 0 to 20% cold worked material in the targeted duplex stainless steel The basic experiment was conducted. As a result, it has been clarified that there is a new problem that the release of hydrogen from steel is promoted by cold working. In other words, the need to accurately control the surface properties of steel materials has been recognized in order to develop dual-phase stainless steel materials for vacuum vessels, taking into account the characteristics of the manufacturing process that depends on the chemical composition of Ni-saving duplex stainless steels. It was.

特開2003-13181号公報JP2003-13181

J. Vac. Soc. Jpn. Vol. 50, No.1, 2007, p47-52J. Vac. Soc. Jpn. Vol. 50, No.1, 2007, p47-52 J. Vac. Soc. Jpn. Vol. 49, No.6, 2006, p335-338J. Vac. Soc. Jpn. Vol. 49, No. 6, 2006, p335-338 J. Vac. Soc. Jpn. Vol. 50, No.4 2007, p228J. Vac. Soc. Jpn. Vol. 50, No.4 2007, p228

本発明は、オーステナイト系ステンレス鋼に替わる真空容器用のNi節減型二相ステンレス鋼材を得ることを目的として、この鋼材の化学組成・表面特性および製造方法を明らかにするものである。   The present invention clarifies the chemical composition, surface characteristics, and manufacturing method of a steel material for the purpose of obtaining a Ni-saving type duplex stainless steel material for a vacuum vessel that replaces austenitic stainless steel.

本発明者らは上記課題を解決するため、以下のような実験をおこなった。
まず、種々の組成を有する二相ステンレス鋼を用いて熱間圧延・溶体化熱処理、および場合に応じて1000K以下での熱処理、を施した後、次いで種々の条件にてショットブラストおよび酸洗をおこない、板厚10mmから40mmの熱間圧延鋼材を得た。
得られた鋼材について引っ張り試験による強度測定、JIS B0601に定められた表面粗さ測定およびビッカース硬度測定による表皮下硬化深さの定量化を実施した。
In order to solve the above problems, the present inventors conducted the following experiment.
First, after performing hot rolling / solution heat treatment using duplex stainless steels having various compositions, and optionally heat treatment at 1000 K or less, then shot blasting and pickling are performed under various conditions. The hot-rolled steel material having a thickness of 10 mm to 40 mm was obtained.
The obtained steel was subjected to strength measurement by a tensile test, surface roughness measurement stipulated in JIS B0601, and quantification of subepidermal hardening depth by Vickers hardness measurement.

また、ガス脱離特性を評価するために、上記鋼材表面から機械加工により、3mm厚x14mmx14mmの寸法を有するガス分析用試料を切り出し、表面を平滑にするための機械研磨(#150番ベルト式研磨ないしは#600湿式研磨まで)した試料、また一部は機械研磨を省略し酸洗ままの試料、に対してリン酸系溶液を用いた電解研磨を施した後に脱離ガス分析を実施した。脱離ガス分析は、10^(-7)Paまで排気した分析用真空容器内で透明石英ステージに乗せた試料を昇温速度1.25℃/sで200℃まで加熱し、脱離してくる水および水素をイオン化して四重極質量分析計(QMS)で定量分析した。比較材としてSUS304鋼について同様の測定をおこない、相対値によって二相ステンレス鋼材の真空特性(ガス離脱特性)を評価した。
以上の実験を通じて、真空容器の用途に適した二相ステンレス鋼材の化学組成と表面特性および製造方法を明らかにし本発明に至った。
In addition, in order to evaluate gas desorption characteristics, a sample for gas analysis having a size of 3 mm thickness x 14 mm x 14 mm is cut out from the steel surface by machining, and mechanical polishing for smoothing the surface (# 150 belt type polishing) (Or up to # 600 wet polishing), and some of the samples without mechanical polishing and pickled as-washed were subjected to electrolytic polishing using a phosphoric acid solution and then subjected to desorption gas analysis. In the desorption gas analysis, a sample placed on a transparent quartz stage is heated to 200 ° C. at a heating rate of 1.25 ° C./s in an analytical vacuum vessel evacuated to 10 ^ (− 7) Pa, and desorbed. Water and hydrogen were ionized and quantitatively analyzed with a quadrupole mass spectrometer (QMS). The same measurement was performed on SUS304 steel as a comparative material, and the vacuum characteristics (gas release characteristics) of the duplex stainless steel material were evaluated based on relative values.
Through the experiments described above, the chemical composition and surface characteristics of a duplex stainless steel material suitable for vacuum vessel applications and the production method were clarified and the present invention was achieved.

すなわち、本発明の要旨とするところは以下の通りである。
(1)質量%で、C:0.06%以下,Si:0.05〜1.5%,Mn:0.5〜10.0%,P:0.05%以下,S:0.010%以下,Ni:0.1〜5.0%,Cr:18.0〜25.0%,N:0.05〜0.30%,Al:0.001〜0.05%以下を含有し、かつ鋼中全水素含有量が3ppm以下であり、残部がFeおよび不可避的不純物よりなることを特徴とする真空容器用二相ステンレス鋼材。
(2)表面粗度の最大断面高さRtが40μm以下かつ表皮下硬化層深さが0.15mm以下である(1)に記載の真空容器用二相ステンレス鋼材。
(3)さらに、質量%で、Mo:4.0%以下,Cu:3.0%以下、Ti:0.05%以下、Nb:0.20%以下、V:0.5%以下、W:1.0%以下、Co:2.0%以下、B:0.0050%以下、Ca:0.0050%以下、Mg:0.0030%以下、REM:0.10%以下のうちの1種または2種以上を含有することを特徴とする(1)又は(2)に記載の真空容器用二相ステンレス鋼材。
(4)降伏強度が400以上700MPa以下である(1)〜(3)のいずれか1項に記載の真空容器用二相ステンレス鋼材。
That is, the gist of the present invention is as follows.
(1) By mass%, C: 0.06% or less, Si: 0.05 to 1.5%, Mn: 0.5 to 10.0%, P: 0.05% or less, S: 0.010 %: Ni: 0.1 to 5.0%, Cr: 18.0 to 25.0%, N: 0.05 to 0.30%, Al: 0.001 to 0.05% or less A duplex stainless steel material for a vacuum vessel, wherein the total hydrogen content in the steel is 3 ppm or less, and the balance is Fe and inevitable impurities.
(2) The duplex stainless steel material for a vacuum container according to (1), wherein the maximum cross-sectional height Rt of the surface roughness is 40 μm or less and the epidermal hardened layer depth is 0.15 mm or less.
(3) Further, in terms of mass%, Mo: 4.0% or less, Cu: 3.0% or less, Ti: 0.05% or less, Nb: 0.20% or less, V: 0.5% or less, W : 1.0% or less, Co: 2.0% or less, B: 0.0050% or less, Ca: 0.0050% or less, Mg: 0.0030% or less, REM: 0.10% or less The duplex stainless steel material for vacuum containers according to (1) or (2), comprising seeds or two or more species.
(4) The duplex stainless steel material for vacuum containers according to any one of (1) to (3), wherein the yield strength is 400 or more and 700 MPa or less.

(5)400〜800Kの温度域で熱処理工程を施す工程を含むことを特徴とする(1)〜(4)のいずれか1項に記載の真空容器用二相ステンレス鋼材の製造方法。   (5) The method for producing a duplex stainless steel material for a vacuum vessel according to any one of (1) to (4), including a step of performing a heat treatment step in a temperature range of 400 to 800K.

本発明により、強度および脱離ガス特性に優れた二相ステンレス鋼材を提供することができ、半導体素子、液晶パネル、薄膜太陽電池などの製造に使用される真空容器用材料として従来オーステナイト系ステンレス鋼が使われていた部材の一部に代替し、従来の鋼材より薄肉化して用いることができるなど産業上寄与するところは極めて大である。   According to the present invention, it is possible to provide a duplex stainless steel material having excellent strength and desorption gas characteristics, and a conventional austenitic stainless steel as a material for a vacuum vessel used in the manufacture of semiconductor elements, liquid crystal panels, thin film solar cells and the like. There is a tremendous contribution to the industry in that it can be used as a substitute for some of the members that have been used and can be made thinner than conventional steel materials.

表皮下硬化深さを測定するための試料の形態を示す図である。It is a figure which shows the form of the sample for measuring subepidermal hardening depth.

以下に、本発明を具体的に説明する。先ず、本発明の(1)に記載の要件、すなわち、二相ステンレス鋼の化学組成および鋼中水素量の限定理由について説明する。   The present invention will be specifically described below. First, the requirements described in (1) of the present invention, that is, the reasons for limiting the chemical composition of the duplex stainless steel and the amount of hydrogen in the steel will be described.

Cは、ステンレス鋼の耐食性を確保するために、0.06%以下の含有量に制限する。0.06%を越えて含有させるとCr炭化物が生成して、耐食性,靱性が劣化する。好ましくは、0.03%以下である。   C limits the content to 0.06% or less in order to ensure the corrosion resistance of the stainless steel. If the content exceeds 0.06%, Cr carbide is generated, and the corrosion resistance and toughness deteriorate. Preferably, it is 0.03% or less.

Siは、鋼の溶製における脱酸のため0.05%以上添加する。しかしながら、1.5%を超えて添加すると靱性が劣化する。そのため、上限を1.5%に限定する。好ましい含有量は、0.2〜1.0%である。   Si is added in an amount of 0.05% or more for deoxidation in steel melting. However, if added over 1.5%, the toughness deteriorates. Therefore, the upper limit is limited to 1.5%. A preferable content is 0.2 to 1.0%.

Mnは、鋼の靭性および真空特性改善のため0.5%以上添加する。Mnの添加はオーステナイト相を増加させ靭性を改善する効果および酸化皮膜中に濃縮して酸化処理後の脱離ガス特性を改善する作用を有する。しかしながら、10.0%を超えて添加すると耐食性および靭性が劣化する。そのため、上限を10.0%に限定する。好ましい含有量は3.0〜8.0%である。   Mn is added in an amount of 0.5% or more for improving the toughness and vacuum characteristics of the steel. The addition of Mn has the effect of increasing the austenite phase and improving the toughness, and the effect of concentrating in the oxide film and improving the desorption gas characteristics after the oxidation treatment. However, if it exceeds 10.0%, corrosion resistance and toughness deteriorate. Therefore, the upper limit is limited to 10.0%. A preferable content is 3.0 to 8.0%.

Pは、不純物であり、鋼の熱間加工性および靱性を劣化させるため、0.05%以下に限定する。好ましくは、0.03%以下である。   P is an impurity and is limited to 0.05% or less in order to degrade the hot workability and toughness of steel. Preferably, it is 0.03% or less.

Sは、不純物であり、鋼の熱間加工性、靱性および耐食性をも劣化させるため、0.010%以下に限定する。好ましくは、0.0020%以下である。   S is an impurity and degrades the hot workability, toughness, and corrosion resistance of the steel, so it is limited to 0.010% or less. Preferably, it is 0.0020% or less.

Niは、鋼のオーステナイト組織を安定にし、各種酸に対する耐食性、さらに靭性を改善するため0.1%以上含有させる。一方、Niは、高価な合金であり、コストの観点より5.0%以下の含有量に制限する。好ましい含有量は1.5〜4%である。   Ni is contained in an amount of 0.1% or more in order to stabilize the austenite structure of the steel and improve the corrosion resistance against various acids and further toughness. On the other hand, Ni is an expensive alloy and is limited to a content of 5.0% or less from the viewpoint of cost. A preferable content is 1.5 to 4%.

Crは、鋼の基本的な耐食性を確保するため18.0%以上を含有させる。一方、25.0%を超えて含有させるとフェライト相分率が増加し、靭性および溶接部の耐食性を阻害する。このためCrの含有量は18.0%以上25.0%以下とする。好ましい含有量は19〜23%である。   Cr contains 18.0% or more in order to secure the basic corrosion resistance of steel. On the other hand, if the content exceeds 25.0%, the ferrite phase fraction increases, and the toughness and the corrosion resistance of the welded portion are impaired. Therefore, the Cr content is set to 18.0% or more and 25.0% or less. A preferable content is 19 to 23%.

Nは、鋼のオーステナイト相に固溶して強度、耐食性を高める有効な元素である。このために0.05%以上を含有させる。固溶限度はCr含有量に応じて高くなるが、本発明鋼においては、0.30%を超えて含有させるとCr窒化物を析出して靭性および耐食性を阻害するようになるため含有量の上限を0.30%とする。好ましい含有量は0.10〜0.25%である。   N is an effective element that improves the strength and corrosion resistance by dissolving in the austenite phase of steel. For this purpose, 0.05% or more is contained. The solid solution limit increases depending on the Cr content. However, in the steel of the present invention, if the content exceeds 0.30%, Cr nitride precipitates and the toughness and corrosion resistance are inhibited. The upper limit is 0.30%. A preferable content is 0.10 to 0.25%.

Alは、鋼の脱酸のための重要な元素であり、鋼中の酸素を低減するためにSiとあわせて含有させる。Si含有量が0.3%を越える場合は添加しなくて良い場合もあるが、酸素量の低減は靭性確保のために必須であり、このために0.001%以上の含有が必要である。一方、Alは、Nとの親和力が比較的大きな元素であり、過剰に添加するとAlNを生じて鋼の靭性を阻害する。その程度はN含有量にも依存するが、Alが0.05%を越えると靭性低下が著しくなるためその含有量の上限を0.05%とする。好ましくは、上限は0.03%である。   Al is an important element for deoxidation of steel, and is contained together with Si in order to reduce oxygen in the steel. When the Si content exceeds 0.3%, it may not be necessary to add, but the reduction of the oxygen content is essential for securing toughness, and for this reason, the content must be 0.001% or more. . On the other hand, Al is an element having a relatively large affinity with N, and if added excessively, AlN is generated and the toughness of the steel is inhibited. The degree depends on the N content, but if Al exceeds 0.05%, the toughness deteriorates remarkably, so the upper limit of the content is made 0.05%. Preferably, the upper limit is 0.03%.

O(酸素)は、非金属介在物の代表である酸化物を構成する主要な元素であり、過剰な含有は靭性を阻害する。また粗大なクラスター状酸化物が生成すると表面疵の原因となる。但し、本発明においては含有量の上限は特に規定するものではないが、好ましくは0.010%以下である。   O (oxygen) is a main element constituting an oxide that is representative of non-metallic inclusions, and excessive inclusion inhibits toughness. In addition, the formation of coarse clustered oxides causes surface defects. However, in the present invention, the upper limit of the content is not particularly specified, but is preferably 0.010% or less.

鋼中全水素量は真空容器材料から真空内に放出される水素または水の量に影響を及ぼす。また鋼中水素が鋼材表面で酸化されることで水に変化し、水の脱離を促進することが知られている。特にフェライト相を含有する二相ステンレス鋼では水素の拡散が大きいため鋼材中の全水素含有量を小さく制御しておくことが必要である。本発明者らは3ppm以下の含有量とすることでオーステナイト系ステンレス鋼と同水準のガス放出特性にできることを知見し、その含有量の上限を3ppmと定めた。鋼中水素量は少ないほど良く、2ppm以下、さらには1ppm以下が好ましい。   The total amount of hydrogen in the steel affects the amount of hydrogen or water released from the vacuum vessel material into the vacuum. Further, it is known that hydrogen in steel is changed to water by being oxidized on the surface of the steel material and promotes desorption of water. In particular, in a duplex stainless steel containing a ferrite phase, since hydrogen diffusion is large, it is necessary to control the total hydrogen content in the steel material to be small. The present inventors have found that by setting the content to 3 ppm or less, it is possible to achieve the same level of gas release characteristics as austenitic stainless steel, and the upper limit of the content is set to 3 ppm. The smaller the amount of hydrogen in the steel, the better, and 2 ppm or less, more preferably 1 ppm or less.

本発明の(2)は、鋼材の表面粗さ最大断面高さRtおよび表面硬度を規定するものである。Rtおよび表面硬度は鋼材の機械研磨特性に関する指標であり、表面が硬質な二相ステンレス鋼において機械的研磨と電気化学的研磨を組み合わせて平滑で清浄な表面を得るために好ましい鋼材素材の表面特性を規定した。実施例に示すようにRtが40μmを越える、または、表皮下硬化層深さが0.15mmを越える鋼材では#150までのベルト式機械研磨ないしは#600までの湿式エメリー紙研磨と電解研磨をおこなった後のガス脱離特性が良好でなかったため、上記の規定を定めた。このガス脱離特性低下の理由としては硬化層の存在が水素の脱離速度を大きくしている可能性があり、また、微視的な表層欠陥が残留していた可能性が考えられる。   (2) of this invention prescribes | regulates the surface roughness maximum cross-section height Rt and surface hardness of steel materials. Rt and surface hardness are indices related to the mechanical polishing characteristics of steel materials. Preferred surface characteristics of steel materials for obtaining a smooth and clean surface by combining mechanical polishing and electrochemical polishing in a duplex stainless steel with a hard surface. Stipulated. As shown in the examples, for steel materials with Rt exceeding 40 μm, or depth of epidermal hardened layer exceeding 0.15 mm, belt type mechanical polishing up to # 150 or wet emery paper polishing up to # 600 and electrolytic polishing are performed. Since the gas desorption characteristics after the test were not good, the above provisions were established. The reason for the deterioration of the gas desorption characteristics may be that the presence of the hardened layer may increase the desorption rate of hydrogen, and that microscopic surface layer defects may remain.

Rtは小さいほどが良く、好ましくは20μm以下、さらに好ましくは10μm以下である。
Rtを40μm以下かつ表皮下硬化層深さを0.15mm以下とするにはショットブラストの粒径、投射密度を適切に管理して酸洗をおこなえば良い。
Rt should be as small as possible, preferably 20 μm or less, more preferably 10 μm or less.
In order to set the Rt to 40 μm or less and the subepidermal hardened layer depth to 0.15 mm or less, the pickling may be performed by appropriately managing the particle size and projection density of the shot blast.

次いで、本発明の(3)に記載の限定理由について説明する。本発明の2相ステンレス鋼は上記(1)の組成に加え、必要に応じて、Mo,Cu,Ti,Nb,V,W,Co,B,Ca,Mg,REMのうちの1種または2種以上を含有させることができる。   Next, the reason for limitation described in (3) of the present invention will be described. In addition to the composition of (1) above, the duplex stainless steel of the present invention is optionally selected from one of Mo, Cu, Ti, Nb, V, W, Co, B, Ca, Mg, and REM. More than seeds can be included.

Moは、ステンレス鋼の耐食性を付加的に高める非常に有効な元素であり、必要に応じて含有させることができる。このためには0.2%以上含有させることが好ましい。本発明鋼ではコストの点より4.0%の含有量を上限とするが、Moは非常に高価な元素であり、さらには1.0%以下とすることが望ましい。   Mo is a very effective element that additionally increases the corrosion resistance of stainless steel, and can be contained as necessary. For this purpose, it is preferable to contain 0.2% or more. In the steel of the present invention, the upper limit is 4.0% in terms of cost, but Mo is a very expensive element, and is preferably 1.0% or less.

Cuは、ステンレス鋼の酸に対する耐食性を付加的に高める元素であり、かつ靭性を改善する作用を有する。3.0%を越えて含有させると固溶度を超えてεCuが析出し脆化を発生するので上限を3.0%とした。Cuはオーステナイト相を安定にし、靭性を改善する効果を有する。このために0.3%以上含有させることが推奨される。Cuを含有させる場合の好ましい含有量は0.3〜1.5%である。   Cu is an element that additionally increases the corrosion resistance of stainless steel to acids, and has the effect of improving toughness. If the content exceeds 3.0%, εCu precipitates exceeding the solid solubility and embrittlement occurs, so the upper limit was made 3.0%. Cu has the effect of stabilizing the austenite phase and improving toughness. For this reason, it is recommended to contain 0.3% or more. The preferable content when Cu is contained is 0.3 to 1.5%.

Tiは、極微量で酸化物、窒化物、硫化物を形成し鋼の凝固および高温加熱組織の結晶粒を微細化する元素であり、必要に応じて添加される。一方0.05%を越えて二相ステンレス鋼に含有させると粗大なTiNが生成して鋼の靭性を阻害するようになる。このためその含有量の上限を0.05%と定めた。Tiの好適な含有率は0.003〜0.020%である。   Ti is an element that forms oxides, nitrides, and sulfides in a very small amount, and solidifies the steel and refines the crystal grains of the high-temperature heating structure, and is added as necessary. On the other hand, if it exceeds 0.05% and is contained in the duplex stainless steel, coarse TiN is generated and the toughness of the steel is inhibited. For this reason, the upper limit of the content was set to 0.05%. A suitable content of Ti is 0.003 to 0.020%.

Nbは、熱間圧延組織の結晶粒微細化に有効な元素であって、しかも耐食性を高める作用も有する。Nbが形成する窒化物、炭化物は熱間加工および熱処理の過程で生成し、結晶粒成長を抑制し、鋼材を強化する作用を有する。このために0.01%以上含有させると良い。一方過剰な添加は熱間圧延前の加熱時に未固溶析出物として析出するようになって靭性を阻害するようになるためその含有量の上限を0.20%と定める。添加する場合の好ましい含有率範囲は、0.03%〜0.10%である。   Nb is an element effective for refinement of crystal grains in a hot rolled structure, and also has an effect of improving corrosion resistance. Nitrides and carbides formed by Nb are generated during the hot working and heat treatment processes, and have the effect of suppressing crystal grain growth and strengthening the steel material. For this reason, it is good to contain 0.01% or more. On the other hand, excessive addition causes precipitation as an undissolved precipitate during heating before hot rolling and impairs toughness, so the upper limit of its content is set to 0.20%. The preferable content range in the case of adding is 0.03% to 0.10%.

V、Wは、二相ステンレス鋼の耐食性を付加的に高めるために添加される元素である。
Vは、耐食性を高める目的のために0.05%以上含有させると良いが、0.5%を超えて含有させると粗大なV系炭窒化物が生成し、靱性が劣化する。そのため、上限を0.5%に限定する。添加する場合の好ましい含有量は0.1〜0.3%の範囲である。
V and W are elements added to additionally enhance the corrosion resistance of the duplex stainless steel.
V is preferably contained in an amount of 0.05% or more for the purpose of improving the corrosion resistance. However, if it exceeds 0.5%, coarse V-based carbonitrides are produced and the toughness is deteriorated. Therefore, the upper limit is limited to 0.5%. The preferable content when added is in the range of 0.1 to 0.3%.

Wは、Moと同様にステンレス鋼の耐食性を付加的に向上させる元素であり、Vに比べて固溶度が大きい。本発明鋼において耐食性を高める目的のためには1.0%を上限に含有させる。好ましい含有量は0.05〜0.5%である。   W, like Mo, is an element that additionally improves the corrosion resistance of stainless steel, and has a higher solid solubility than V. For the purpose of enhancing the corrosion resistance in the steel of the present invention, 1.0% is contained at the upper limit. A preferable content is 0.05 to 0.5%.

Coは、鋼の靭性と耐食性を高めるために有効な元素であり、選択的に添加される。その含有量が0.03%以上が好ましい。2.0%を越えて含有させると高価な元素であるためにコストに見合った効果が発揮されないようになるため上限を2.0%と定めた。添加する場合の好ましい含有量は0.03〜1.0%である。   Co is an element effective for enhancing the toughness and corrosion resistance of steel, and is selectively added. The content is preferably 0.03% or more. If the content exceeds 2.0%, it is an expensive element, so that an effect commensurate with the cost cannot be exhibited, so the upper limit was set to 2.0%. The preferable content when added is 0.03 to 1.0%.

B,Ca,Mg,REMは、いずれも鋼の熱間加工性を改善する元素であり、その目的で1種または2種以上添加される。B,Ca,Mg,REMいずれも過剰な添加は逆に熱間加工性および靭性を低下するためその含有量の上限を次のように定める。
BとCaについては0.0050%、Mgについては0.0030%、REMについては0.10%である。好ましい含有量はそれぞれBとCa:0.0005〜0.0030%、Mg:0.0001〜0.0015%、REM:0.005〜0.05%である。ここでREMはLaやCe等のランタノイド系希土類元素の含有量の総和とする。
B, Ca, Mg, and REM are all elements that improve the hot workability of steel, and one or more of them are added for that purpose. Any excess addition of B, Ca, Mg, and REM conversely decreases hot workability and toughness, so the upper limit of the content is determined as follows.
B and Ca are 0.0050%, Mg is 0.0030%, and REM is 0.10%. Preferred contents are B and Ca: 0.0005 to 0.0030%, Mg: 0.0001 to 0.0015%, and REM: 0.005 to 0.05%, respectively. Here, REM is the total content of lanthanoid rare earth elements such as La and Ce.

本発明の(4)は二相ステンレス鋼材の降伏強度を規定するものである。容器材料の薄肉化を図るためには強度が大きいことが好ましく、降伏強度400MPa以上を最低でも有することが好ましい。一方、700MPaを超えると靭性が劣化するようになることからその上限を700MPaとする。降伏強度は化学組成、溶体化熱処理条件、あるいは後述する本発明(5)に記載の400〜800Kでおこなう熱処理条件等により調整することができる。   (4) of this invention prescribes | regulates the yield strength of a duplex stainless steel material. In order to reduce the thickness of the container material, the strength is preferably high, and it is preferable to have a yield strength of 400 MPa or more. On the other hand, if it exceeds 700 MPa, the toughness will deteriorate, so the upper limit is set to 700 MPa. The yield strength can be adjusted by the chemical composition, solution heat treatment conditions, heat treatment conditions performed at 400 to 800 K described in the present invention (5) described later, and the like.

本発明の(5)は、本発明の二相ステンレス鋼製造方法に関するものであり、二相ステンレス鋼材の強度上昇および鋼中水素含有量低減のための熱処理条件について規定するものある。
この熱処理では二相ステンレス鋼の時効硬化を通じて鋼材の強度上昇を図るものであり、同時に鋼中水素量の低減を促進する目的で、400〜800Kの温度域で実施することが好ましい。この熱処理を加えることで鋼中水素含有量を2ppm以下、さらには1ppm以下に低減することが可能であり、水素量の低下に伴い真空特性はやや改善する。同時に降伏強度についても500MPa以上、さらには600MPa以上に高めることが可能となる。
(5) of the present invention relates to the method for producing a duplex stainless steel according to the present invention, and specifies heat treatment conditions for increasing the strength of the duplex stainless steel and reducing the hydrogen content in the steel.
This heat treatment is intended to increase the strength of the steel material through age hardening of the duplex stainless steel, and at the same time, it is preferably carried out in the temperature range of 400 to 800 K for the purpose of promoting the reduction of the amount of hydrogen in the steel. By applying this heat treatment, the hydrogen content in the steel can be reduced to 2 ppm or less, and further to 1 ppm or less, and the vacuum characteristics are slightly improved as the hydrogen content decreases. At the same time, the yield strength can be increased to 500 MPa or more, and further to 600 MPa or more.

上記温度域での熱処理時間は5分以上が好ましいが、一方で、過剰な時間の熱処理を付与して降伏強度が700MPaを越えるようになった場合には鋼材の靭性を損なうようになる。従って、熱処理時間の上限は鋼材の時効強化・脆化特性に応じてそれぞれ定めればよい。
また、真空容器として製造された後に400〜800Kの温度域で熱処理(ベーキング処理)を実施すれば水素量の低減と同時に容器表面に吸着した水を脱離することも可能となり、真空特性向上に対して非常に効果的である。
The heat treatment time in the above temperature range is preferably 5 minutes or more, but on the other hand, when the yield strength exceeds 700 MPa by applying heat treatment for an excessive time, the toughness of the steel material is impaired. Therefore, the upper limit of the heat treatment time may be determined according to the aging strengthening and embrittlement characteristics of the steel material.
In addition, if heat treatment (baking treatment) is performed in the temperature range of 400 to 800 K after being manufactured as a vacuum vessel, it is possible to desorb water adsorbed on the vessel surface at the same time as reducing the amount of hydrogen, thereby improving the vacuum characteristics. It is very effective against this.

本発明の鋼材は、真空容器として使用される鋼材であり、鋼板、型鋼、棒、線材、管などの形態とすることができるが、主として鋼板として製造される。(1)あるいはさらに(3)に記載の鋼組成を有する鋼を溶製し、連続鋳造により鋼片とするか又はインゴットに鋳造した後、圧延して鋼片とする。溶製、鋳造については、通常の二相ステンレス鋼の溶製、鋳造に準じて行うことができる。この鋼片を加熱後、熱間圧延して所要の形状の鋼材とする。熱間圧延に関する条件も特に限定されるものではなく、通常の二相ステンレス鋼の熱間圧延の加熱、圧延条件に準じて行えばよい。鋼材は溶体化熱処理を施した後、必要によりさらに脱水素および時効硬化のための熱処理を施した後、鋼材表面をショットブラスト、研磨、酸洗等の表面処理を施し、所要の表面性状とすることによって製造することができる。   The steel material of the present invention is a steel material used as a vacuum vessel, and can be in the form of a steel plate, mold steel, bar, wire, tube, etc., but is mainly manufactured as a steel plate. The steel having the steel composition described in (1) or (3) is melted and made into a steel slab by continuous casting or cast into an ingot and then rolled into a steel slab. Melting and casting can be performed in accordance with normal melting and casting of duplex stainless steel. After this steel slab is heated, it is hot-rolled to obtain a steel material having a required shape. The conditions relating to hot rolling are not particularly limited, and may be performed according to the heating and rolling conditions of normal duplex stainless steel hot rolling. After the solution heat treatment, the steel material is further subjected to heat treatment for dehydrogenation and age hardening as necessary, and then the surface of the steel material is subjected to surface treatment such as shot blasting, polishing, and pickling to obtain the required surface properties. Can be manufactured.

以下に実施例により、本発明をさらに具体的に説明する。表1に供試鋼の化学組成を示す。なお表1に記載されている成分以外はFeおよび不可避的不純物元素である。また表1に示した成分について含有量が記載されていない部分は不純物レベルであることを示す。また表中のREMはランタノイド系希土類元素を意味し、含有量はそれら元素の合計を示している。
鋼種番号Tの鋼片は実機溶製スラブより採取され、厚さが80mmの鋼片を熱間圧延素材とした。鋼種番号A〜Qの鋼は実験室の50kgの真空誘導炉により、Rの鋼は50kg大気溶解炉にて溶製され、厚さが約110mmの扁平鋼塊に鋳込まれ、次いで熱間鍛造により厚さが80mmの鋼片とした。また、鋼種番号T2の鋼片は上記実機溶製スラブで水素含有量が熱間圧延鋼材として酸洗後の段階で4ppmとなった部位に対応する。
The present invention will be described more specifically with reference to the following examples. Table 1 shows the chemical composition of the test steel. The components other than those listed in Table 1 are Fe and unavoidable impurity elements. Moreover, the part in which content is not described about the component shown in Table 1 shows that it is an impurity level. REM in the table means lanthanoid rare earth elements, and the content indicates the total of these elements.
The steel slab of steel type number T was collected from the actual smelting slab, and a steel slab having a thickness of 80 mm was used as a hot rolled material. Steel Nos. A to Q are melted in a laboratory 50 kg vacuum induction furnace, R steel is melted in a 50 kg atmospheric melting furnace, cast into a flat steel ingot with a thickness of about 110 mm, and then hot forged. Thus, a steel piece having a thickness of 80 mm was obtained. Moreover, the steel slab of the steel type number T2 corresponds to the site | part which became 4 ppm in the stage after pickling as a hot-rolled steel material by the above-mentioned actual machine melting slab.

Figure 2011168838
Figure 2011168838

熱間圧延は、鋼片を所定の温度に加熱した後、実験室の2段圧延機により圧下を繰り返し、850〜950℃で仕上げ圧延を実施した。板厚は、10〜40mmとした。溶体化熱処理は、950〜1050℃の所定の温度に設定した熱処理炉に鋼板を装入し、鋼板の板厚に応じた均熱時間を取った後に抽出し、その後水冷を実施した。   In the hot rolling, the steel slab was heated to a predetermined temperature, and then repeatedly rolled by a two-stage rolling mill in a laboratory, and finish rolling was performed at 850 to 950 ° C. The plate thickness was 10 to 40 mm. In the solution heat treatment, the steel plate was placed in a heat treatment furnace set at a predetermined temperature of 950 to 1050 ° C., extracted after taking a soaking time according to the plate thickness of the steel plate, and then water-cooled.

得られた熱間圧延鋼材(酸洗処理をおこなわずに)の水素量測定と真空特性の評価は、鋼材の表皮を0.5mm研削したのちに板厚3mmで3mmx14mmの大きさの水素量測定試料および板厚3mmで14mmx14mmの大きさの真空特性評価用試料を採取した。水素量は不活性ガス溶融熱伝導法により求め、その結果を表2に示した。真空特性用の試料は試料調整としては#600までの湿式研磨をほどこした後に、リン酸系電解研磨液にて0.1〜3A/cm2の電流密度で20〜30ミクロンの電解研磨をおこない、さらに常温35%硝酸中で30分浸漬した。   The measurement of hydrogen content and the evaluation of vacuum characteristics of the obtained hot-rolled steel (without pickling treatment) is performed by measuring the amount of hydrogen of 3 mm x 14 mm with a plate thickness of 3 mm after grinding the steel skin 0.5 mm. A sample and a sample for vacuum characteristic evaluation having a plate thickness of 3 mm and a size of 14 mm × 14 mm were collected. The amount of hydrogen was determined by an inert gas melting heat conduction method, and the results are shown in Table 2. The sample for vacuum characteristics was subjected to wet polishing up to # 600 as sample preparation, and then electropolished with a current density of 0.1 to 3 A / cm 2 with a phosphoric acid based electropolishing liquid at 20 to 30 microns, Furthermore, it was immersed in normal temperature 35% nitric acid for 30 minutes.

真空特性の評価には昇温脱離ガス分析計を用いた。試料ステージ上に上記試料を置き、ステージ昇温速度10℃/分で200℃まで昇温する過程で脱離する水および水素を定量した。常温における真空排気特性が昇温脱離ガス分析での100〜130℃で脱離するイオン電流強度に対応することが報告されている(非特許文献3参照)。この報告にもとづき、SUS304鋼についてのこの温度における水と水素のイオン電流強度の和に対する評価試料のイオン電流強度の相対比の数値を求めた。その結果を表2の真空特性−1に示した。この数値が2.0未満、好ましくは1.5未満が良好であると判断した。   A temperature-programmed desorption gas analyzer was used for evaluating the vacuum characteristics. The sample was placed on the sample stage, and water and hydrogen desorbed in the process of heating up to 200 ° C. at a stage heating rate of 10 ° C./min were quantified. It has been reported that the evacuation characteristics at room temperature correspond to the ionic current intensity desorbed at 100 to 130 ° C. in the temperature-programmed desorption gas analysis (see Non-Patent Document 3). Based on this report, the numerical value of the relative ratio of the ionic current intensity of the evaluation sample to the sum of the ionic current intensity of water and hydrogen at this temperature for SUS304 steel was determined. The results are shown in Vacuum characteristics-1 of Table 2. It was judged that this value was less than 2.0, preferably less than 1.5.

熱間圧延鋼材の引張試験は、板厚10mmの材料については平行部が8mm径の丸棒引張試験片にて、板厚20、30、40mmの材料については10mm径の丸棒引張試験片を圧延直角方向に採取した。なお板厚30、40mmの材料については板厚1/4部を中心として採取した。そのうち降伏強度の結果を表2に示した。
熱間圧延鋼材の衝撃靭性は2mmV機械加工ノッチを圧延方向に加工したJIS4号シャルピー試験片により破面が圧延方向に平行に伝播する向きに各2本採取した。なお10mmの材料では3/4サイズのシャルピー試験片にて、20mmの板厚の材料では板厚中央部のフルサイズシャルピー試験片にて、板厚30mm、40mmの材料は板厚1/4部を中心として採取したフルサイズシャルピー試験片にて評価した。試験温度は−20℃とし、最大エネルギー500J仕様の試験機にて衝撃試験を実施した。表2に各3本の衝撃値の平均値(J/cm)の結果を示した。
The hot-rolled steel tensile test is performed using a round bar tensile test piece with a parallel portion of 8 mm diameter for a material with a thickness of 10 mm, and a round bar tensile test piece with a diameter of 10 mm for a material with a thickness of 20, 30, or 40 mm. The sample was taken in the direction perpendicular to rolling. In addition, about the material of plate | board thickness 30 and 40mm, it extract | collected centering on plate | board thickness 1/4 part. The yield strength results are shown in Table 2.
The impact toughness of the hot-rolled steel was collected in two directions in which the fracture surface propagated in parallel to the rolling direction using a JIS No. 4 Charpy test piece in which a 2 mmV machined notch was machined in the rolling direction. The 10 mm material is a 3/4 size Charpy test piece, the 20 mm thickness material is a full size Charpy test piece at the center of the thickness, and the 30 mm thickness and 40 mm material is 1/4 thickness. Evaluation was performed using a full-size Charpy specimen collected from the center. The test temperature was −20 ° C., and an impact test was performed with a tester with a maximum energy of 500 J. Table 2 shows the result of the average value (J / cm 2 ) of the three impact values.

Figure 2011168838
Figure 2011168838

表2に示したように、本発明に係る熱間圧延鋼材ではいずれもSUS304鋼に比較して良好な真空特性を示すとともに、降伏強度が400MPaを越え、靭性も50J/cm2以上と高く、真空容器用材料として優れた特性を示していることがわかる。
一方、表2の比較例では真空特性が比較材のSUS304鋼よりも劣るか、強度もしくは靭性が不足していた。
As shown in Table 2, all of the hot-rolled steel materials according to the present invention exhibit good vacuum characteristics as compared with SUS304 steel, yield strength exceeds 400 MPa, and toughness is as high as 50 J / cm 2 or more. It can be seen that it exhibits excellent properties as a vacuum container material.
On the other hand, in the comparative examples of Table 2, the vacuum characteristics were inferior to that of the comparative material SUS304 steel, or the strength or toughness was insufficient.

熱間圧延酸洗鋼材は以下の方法により作成した。
ショットブラストの砥粒サイズを小、中、大と3種類を選び、熱間圧延鋼材の通板速度・通板回数により投射密度を変更して二相ステンレス熱間圧延鋼材の表層スケールの一部を除去した。次いで40〜60℃、10〜20%HNO、3〜8%HFの弗硝酸液に20分〜24時間浸漬し、スケールを完全に除去した。
The hot-rolled pickled steel material was prepared by the following method.
Select from three types of shot blasting abrasive grain size, small, medium and large, and change the projection density depending on the sheeting speed and number of sheeting of the hot rolled steel, and part of the surface scale of the duplex stainless steel hot rolled steel Was removed. Subsequently, it was immersed in a hydrofluoric acid solution of 40 to 60 ° C., 10 to 20% HNO 3 , and 3 to 8% HF for 20 minutes to 24 hours to completely remove the scale.

この熱間圧延酸洗鋼材より表面粗さと硬化層深さ評価用の試料を切り出し、JIS B0601に定められた表面あらさ測定による最大断面高さRtの定量化および100gfのビッカース硬度測定による表皮下硬化深さの定量化を実施した。表面粗さ測定の評価長さは、3.0mmとし、各3回の測定をおこないそのうちの最大値を採用した。表皮下硬化深さ測定は、狭い厚み範囲をより精度よく測定するために、図1に示すように試料を切断して傾斜面を形成し、傾斜切断面が上面となるように樹脂に埋め込んだ。その後、この傾斜切断面の硬度を鋼材表面に対応する位置から0.1mmピッチで20点測定した。即ち、鋼材表皮下1mmに対応する深さまでの硬度を測定した。この測定をそれぞれの測定点に対してn=3行い、その平均値により表皮下硬度分布を求めた。表皮下硬化深さとしては、内部の平均硬度に対してHvで50以上硬化している部分の表皮下厚さを求め、表3に示した。ここで、内部の平均硬度とは、表皮下深さ0.5〜1.0mm部分の硬度の平均値より求めたものである。   A sample for evaluation of surface roughness and hardened layer depth was cut out from this hot rolled pickled steel material, and the subcutaneous hardening was performed by quantifying the maximum section height Rt by measuring the surface roughness specified in JIS B0601 and measuring the Vickers hardness of 100 gf. Depth quantification was performed. The evaluation length of the surface roughness measurement was 3.0 mm, the measurement was performed three times, and the maximum value was adopted. In order to measure the subepidermal hardening depth more accurately, a sample is cut to form an inclined surface as shown in FIG. 1 and embedded in a resin so that the inclined cut surface becomes the upper surface in order to measure a narrow thickness range more accurately. . Thereafter, the hardness of the inclined cut surface was measured at 20 points at a pitch of 0.1 mm from the position corresponding to the steel material surface. That is, the hardness up to a depth corresponding to 1 mm of the steel surface was measured. This measurement was performed for each measurement point n = 3, and the epidermal hardness distribution was determined from the average value. The depth of epicutaneous cure was determined by determining the thickness of the epidermis of the portion cured at 50 or more Hv with respect to the internal average hardness. Here, the internal average hardness is determined from the average value of the hardness at the epidermal depth of 0.5 to 1.0 mm.

一部の熱間圧延酸洗鋼材に対して時効硬化と水素量低減のための熱処理(時効熱処理)を大気中で実施した。この時効熱処理により薄い酸化皮膜が生成した。   A part of hot-rolled pickled steel was heat-treated for age hardening and hydrogen reduction (aging heat treatment) in the air. A thin oxide film was formed by this aging heat treatment.

熱間圧延酸洗鋼材および時効熱処理鋼材の水素量測定および真空特性評価は、酸洗処理を行わない上述の熱間圧延鋼材と同様の方法で実施した。ただし、真空特性評価用の試料はまず#150ベルト式研磨により鋼材表面の凹凸を除去したのちに厚さが3mmで14mmx14mmの試料を採取し、#600までの湿式研磨、電解研磨、硝酸浸漬を同様におこなって表皮下硬化層を一部含む昇温脱離ガス分析用試料とした。
また、引張試験、衝撃試験を酸洗処理を行わない上述の熱間圧延鋼材と同様に実施した。
The hydrogen amount measurement and vacuum property evaluation of the hot rolled pickled steel and the aging heat treated steel were performed in the same manner as the above hot rolled steel without the pickling treatment. However, samples for vacuum characteristics evaluation are first removed by unevenness on the steel surface by # 150 belt type polishing, and then a sample of 3 mm thickness and 14 mm x 14 mm is collected, and wet polishing, electrolytic polishing, and nitric acid immersion up to # 600 are performed. In the same manner, a sample for thermal desorption gas analysis partially including the epidermal hardened layer was obtained.
Moreover, the tension test and the impact test were implemented similarly to the above-mentioned hot-rolled steel material which does not perform a pickling process.

熱間圧延酸洗鋼材の評価結果を表3の水素量、真空特性−2、降伏強度、衝撃特性に示した。
表3の試験No.15の比較例ではショットブラストを小砥粒で短時間しか実施しなかったために酸洗に長時間を要した。その結果、水素量は0.0004mass%となり、真空特性が低下していた。試験No.16の比較例では中砥粒のショットブラストを長時間実施しスケールをほぼ完全に除去し、酸洗は短時間で終了した。このため硬化層は0.25mmと大きくなり、真空特性は低下していた。試験No.17〜20の比較例では大砥粒のショットブラストと酸洗を実施した。硬化層は0.20mmと大きくなった。このため試験No.18〜20の比較例では真空特性は芳しくなかった。試験No.17の比較例では、長時間の時効熱処理を実施したため降伏強度が過度に増加し、同時に脆化した。これらに対して本発明例の熱間圧延酸洗鋼材ではいずれも良好な真空特性、降伏強度、衝撃特性を示した。
The evaluation results of the hot-rolled pickled steel materials are shown in Table 3, hydrogen amount, vacuum characteristics-2, yield strength, and impact characteristics.
Test No. in Table 3 In Comparative Example 15, shot blasting was performed only for a short time with small abrasive grains, so that a long time was required for pickling. As a result, the amount of hydrogen was 0.0004 mass%, and the vacuum characteristics were deteriorated. Test No. In Comparative Example 16, shot blasting of the medium abrasive grains was performed for a long time, the scale was almost completely removed, and the pickling was completed in a short time. For this reason, the hardened layer became as large as 0.25 mm, and the vacuum characteristics were lowered. Test No. In Comparative Examples 17 to 20, large abrasive grains were shot blasted and pickled. The cured layer was as large as 0.20 mm. Therefore, test no. In Comparative Examples 18-20, the vacuum characteristics were not good. Test No. In Comparative Example 17, since the aging heat treatment was performed for a long time, the yield strength increased excessively and at the same time became brittle. On the other hand, the hot-rolled pickled steel materials of the examples of the present invention all showed good vacuum characteristics, yield strength, and impact characteristics.

以上の実施例からわかるように、本発明により真空特性が良好な二相ステンレス鋼材が得られることが明確となった。   As can be seen from the above examples, it has become clear that the present invention can provide a duplex stainless steel material with good vacuum characteristics.

Figure 2011168838
Figure 2011168838

本発明により、強度が高くNi含有量の少ない経済的な真空容器用二相ステンレス鋼材を提供することが可能となり、大型の真空容器におけるコストダウンを提供できるなど産業上寄与するところは極めて大である。   According to the present invention, it is possible to provide an economical duplex stainless steel material for vacuum vessels with high strength and low Ni content, and the industrial contribution such as providing cost reduction in large vacuum vessels is extremely large. is there.

Claims (5)

質量%で、C:0.06%以下,Si:0.05〜1.5%,Mn:0.5〜10.0%,P:0.05%以下,S:0.010%以下,Ni:0.1〜5.0%,Cr:18.0〜25.0%,N:0.05〜0.30%,Al:0.001〜0.05%以下を含有し、かつ鋼中全水素含有量が3ppm以下であり、残部がFeおよび不可避的不純物よりなることを特徴とする真空容器用二相ステンレス鋼材。   In mass%, C: 0.06% or less, Si: 0.05 to 1.5%, Mn: 0.5 to 10.0%, P: 0.05% or less, S: 0.010% or less, Ni: 0.1 to 5.0%, Cr: 18.0 to 25.0%, N: 0.05 to 0.30%, Al: 0.001 to 0.05% or less, and steel A duplex stainless steel material for vacuum vessels, wherein the total hydrogen content is 3 ppm or less, and the balance consists of Fe and inevitable impurities. 表面粗度の最大断面高さRtが40μm以下かつ表皮下硬化層深さが0.15mm以下である請求項1に記載の真空容器用二相ステンレス鋼材。   The duplex stainless steel material for a vacuum vessel according to claim 1, wherein the maximum cross-sectional height Rt of the surface roughness is 40 µm or less and the depth of the epidermal hardened layer is 0.15 mm or less. さらに、質量%で、Mo:4.0%以下,Cu:3.0%以下、Ti:0.05%以下、Nb:0.20%以下、V:0.5%以下、W:1.0%以下、Co:2.0%以下、B:0.0050%以下、Ca:0.0050%以下、Mg:0.0030%以下、REM:0.10%以下のうちの1種または2種以上を含有することを特徴とする請求項1又は2に記載の真空容器用二相ステンレス鋼材。   Further, by mass%, Mo: 4.0% or less, Cu: 3.0% or less, Ti: 0.05% or less, Nb: 0.20% or less, V: 0.5% or less, W: 1. One or two of 0% or less, Co: 2.0% or less, B: 0.0050% or less, Ca: 0.0050% or less, Mg: 0.0030% or less, REM: 0.10% or less The duplex stainless steel material for a vacuum vessel according to claim 1 or 2, characterized in that it contains seeds or more. 降伏強度が400以上700MPa以下である請求項1〜3のいずれか1項に記載の真空容器用二相ステンレス鋼材。   The duplex stainless steel material for a vacuum vessel according to any one of claims 1 to 3, wherein the yield strength is 400 to 700 MPa. 400〜800Kの温度域で熱処理工程を施す工程を含むことを特徴とする請求項1〜4のいずれか1項に記載の真空容器用二相ステンレス鋼材の製造方法。   The method for producing a duplex stainless steel material for a vacuum vessel according to any one of claims 1 to 4, further comprising a step of performing a heat treatment step in a temperature range of 400 to 800K.
JP2010033822A 2010-02-18 2010-02-18 Duplex stainless steel material for vacuum vessel and manufacturing method thereof Active JP5398574B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2010033822A JP5398574B2 (en) 2010-02-18 2010-02-18 Duplex stainless steel material for vacuum vessel and manufacturing method thereof
KR1020127021315A KR101445952B1 (en) 2010-02-18 2011-02-15 Duplex stainless steel material for vacuum vessels, and process for manufacturing same
CN201180010220.7A CN102770572B (en) 2010-02-18 2011-02-15 Duplex stainless steel material for vacuum vessels, and process for manufacturing same
PCT/JP2011/053601 WO2011102499A1 (en) 2010-02-18 2011-02-15 Duplex stainless steel material for vacuum vessels, and process for manufacturing same
TW100105234A TWI431126B (en) 2010-02-18 2011-02-17 Duplex stainless steel for vacuum containers and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010033822A JP5398574B2 (en) 2010-02-18 2010-02-18 Duplex stainless steel material for vacuum vessel and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2011168838A true JP2011168838A (en) 2011-09-01
JP5398574B2 JP5398574B2 (en) 2014-01-29

Family

ID=44483083

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010033822A Active JP5398574B2 (en) 2010-02-18 2010-02-18 Duplex stainless steel material for vacuum vessel and manufacturing method thereof

Country Status (5)

Country Link
JP (1) JP5398574B2 (en)
KR (1) KR101445952B1 (en)
CN (1) CN102770572B (en)
TW (1) TWI431126B (en)
WO (1) WO2011102499A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013209688A (en) * 2012-03-30 2013-10-10 Nippon Steel & Sumikin Stainless Steel Corp Clad steel sheet having duplex stainless steel as mating material, and method for producing the same
WO2016152622A1 (en) * 2015-03-26 2016-09-29 新日鐵住金ステンレス株式会社 Ferrite-austenite stainless steel sheet with excellent sheared end face corrosion resistance
JP2020152941A (en) * 2019-03-18 2020-09-24 日本製鉄株式会社 Two-phase stainless steel, and method for manufacturing the same
CN112899585A (en) * 2021-01-18 2021-06-04 燕山大学 Plasticized and reinforced economical duplex stainless steel and preparation method thereof
WO2022004526A1 (en) 2020-06-30 2022-01-06 日本製鉄株式会社 Two-phase stainless steel pipe and welded fitting

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2669397B1 (en) 2011-01-27 2020-07-29 NIPPON STEEL Stainless Steel Corporation Alloying element-saving hot rolled duplex stainless steel material and production method for same
BR112014005028B1 (en) * 2011-09-06 2020-01-07 Nippon Steel Corporation DUPLEX STAINLESS STEEL
WO2013058274A1 (en) * 2011-10-21 2013-04-25 新日鐵住金ステンレス株式会社 Duplex stainless steel, duplex stainless steel slab, and duplex stainless steel material
IN2014DN10355A (en) * 2012-06-22 2015-08-07 Nippon Steel & Sumitomo Metal Corp
CN103014559B (en) * 2012-12-26 2015-04-29 振石集团东方特钢股份有限公司 Nickel-saving type double-phase stainless steel and preparation process thereof
FI126798B (en) * 2013-07-05 2017-05-31 Outokumpu Oy Delayed fracture resistant stainless steel and method for its production
CN103667987A (en) * 2013-11-08 2014-03-26 张超 Alloy steel material for building pump truck and preparation method thereof
CN103741070B (en) * 2014-01-23 2015-11-18 江苏银环精密钢管有限公司 A kind of ethylene oxide reactor two-phase stainless steel seamless steel tube
CN107385360B (en) * 2017-07-06 2019-03-05 钢铁研究总院 A kind of two phase stainless steel reinforcing bar and preparation method thereof
KR102415777B1 (en) * 2018-03-30 2022-07-01 닛테츠 스테인레스 가부시키가이샤 Two-phase stainless steel clad steel sheet and its manufacturing method
CN109457193A (en) * 2018-11-16 2019-03-12 襄阳五二五泵业有限公司 A kind of wear-resisting two phase stainless steel
CN109440014B (en) * 2019-01-14 2021-02-19 东北大学 Low-chromium low-nickel duplex stainless steel and preparation method thereof
CN109972060B (en) * 2019-05-07 2020-10-09 四川维珍高新材料有限公司 Low-nickel high-strength duplex stainless steel material and preparation method thereof
CN112011747A (en) * 2019-05-28 2020-12-01 宝山钢铁股份有限公司 High-nitrogen steel and slab continuous casting process thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05247594A (en) * 1992-03-03 1993-09-24 Sumitomo Metal Ind Ltd Dual phase stainless steel excellent in weatherability
JP2005298932A (en) * 2004-04-14 2005-10-27 Nippon Steel & Sumikin Stainless Steel Corp Metastable austenitic stainless steel wire used for high strength steel wire for spring excellent in rigidity
JP2006183129A (en) * 2004-01-29 2006-07-13 Jfe Steel Kk Austenitic-ferritic stainless steel having excellent formability

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61157626A (en) * 1984-12-29 1986-07-17 Nippon Kokan Kk <Nkk> Manufacture of ferritic-austenitic two-phase stainless steel
JP4031992B2 (en) * 2001-04-27 2008-01-09 リサーチ インスティチュート オブ インダストリアル サイエンス アンド テクノロジー High manganese duplex stainless steel with excellent hot workability and method for producing the same
EP2562285B1 (en) * 2004-01-29 2017-05-03 JFE Steel Corporation Austenitic-ferritic stainless steel
JP5072285B2 (en) * 2006-08-08 2012-11-14 新日鐵住金ステンレス株式会社 Duplex stainless steel
KR20150024952A (en) * 2008-03-26 2015-03-09 닛폰 스틸 앤드 스미킨 스테인레스 스틸 코포레이션 Low-alloy duplex stainless steel wherein weld heat-affected zones have good corrosion resistance and toughness

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05247594A (en) * 1992-03-03 1993-09-24 Sumitomo Metal Ind Ltd Dual phase stainless steel excellent in weatherability
JP2006183129A (en) * 2004-01-29 2006-07-13 Jfe Steel Kk Austenitic-ferritic stainless steel having excellent formability
JP2005298932A (en) * 2004-04-14 2005-10-27 Nippon Steel & Sumikin Stainless Steel Corp Metastable austenitic stainless steel wire used for high strength steel wire for spring excellent in rigidity

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013209688A (en) * 2012-03-30 2013-10-10 Nippon Steel & Sumikin Stainless Steel Corp Clad steel sheet having duplex stainless steel as mating material, and method for producing the same
WO2016152622A1 (en) * 2015-03-26 2016-09-29 新日鐵住金ステンレス株式会社 Ferrite-austenite stainless steel sheet with excellent sheared end face corrosion resistance
KR20170115092A (en) * 2015-03-26 2017-10-16 닛폰 스틸 앤드 스미킨 스테인레스 스틸 코포레이션 A ferrite-austenitic stainless steel sheet having excellent shear cross-section corrosion resistance
JPWO2016152622A1 (en) * 2015-03-26 2017-12-07 新日鐵住金ステンレス株式会社 Ferritic / austenitic stainless steel sheet with excellent corrosion resistance on the shear end face
EP3276028A4 (en) * 2015-03-26 2018-08-08 Nippon Steel & Sumikin Stainless Steel Corporation Ferrite-austenite stainless steel sheet with excellent sheared end face corrosion resistance
KR101973309B1 (en) 2015-03-26 2019-04-26 닛폰 스틸 앤드 스미킨 스테인레스 스틸 코포레이션 A ferrite-austenitic stainless steel sheet having excellent shear cross-section corrosion resistance
JP2020152941A (en) * 2019-03-18 2020-09-24 日本製鉄株式会社 Two-phase stainless steel, and method for manufacturing the same
JP7269470B2 (en) 2019-03-18 2023-05-09 日本製鉄株式会社 Duplex stainless steel and manufacturing method thereof
WO2022004526A1 (en) 2020-06-30 2022-01-06 日本製鉄株式会社 Two-phase stainless steel pipe and welded fitting
CN112899585A (en) * 2021-01-18 2021-06-04 燕山大学 Plasticized and reinforced economical duplex stainless steel and preparation method thereof
CN112899585B (en) * 2021-01-18 2022-03-22 燕山大学 Plasticized and reinforced economical duplex stainless steel and preparation method thereof

Also Published As

Publication number Publication date
TW201139701A (en) 2011-11-16
CN102770572B (en) 2014-08-20
KR20120112794A (en) 2012-10-11
WO2011102499A1 (en) 2011-08-25
TWI431126B (en) 2014-03-21
KR101445952B1 (en) 2014-09-29
JP5398574B2 (en) 2014-01-29
CN102770572A (en) 2012-11-07

Similar Documents

Publication Publication Date Title
JP5398574B2 (en) Duplex stainless steel material for vacuum vessel and manufacturing method thereof
EP2474639A1 (en) High-strength hot-dip galvanized steel sheet and process for producing same
EP3112491A1 (en) Rolled material for high strength spring, and wire for high strength spring
JP2009503246A (en) Austenitic stainless steel strip with bright surface finish and excellent mechanical properties
WO2015111403A1 (en) Material for cold-rolled stainless steel sheet and method for producing same
WO2012102330A1 (en) Alloying element-saving hot rolled duplex stainless steel material, clad steel sheet having duplex stainless steel as mating material therefor, and production method for same
JP6137434B1 (en) Austenitic stainless steel
EP3677700B1 (en) High-mn steel and production method therefor
JP6376218B2 (en) Austenitic stainless steel sheet that is difficult to diffuse and bond
JP5907320B1 (en) Material for stainless cold-rolled steel sheet and manufacturing method thereof
JP2007138260A (en) Spring steel wire rod having superior pickling characteristics
WO2020213179A1 (en) Steel sheet and method for manufacturing same, and molded article
JP6852805B2 (en) Nickel-containing steel for low temperature
JP6326265B2 (en) Austenitic stainless steel excellent in hot workability and hydrogen embrittlement resistance and its production method
JP5251633B2 (en) High strength steel material with excellent delayed fracture resistance, high strength bolt and manufacturing method thereof
JP6750747B2 (en) High Mn steel and manufacturing method thereof
JPWO2019082326A1 (en) Nickel-containing steel for low temperature
JP2011214058A (en) High-strength stainless steel wire, and method for producing the same
JP4687554B2 (en) Steel plate for quenched member, quenched member and method for producing the same
WO2019082322A1 (en) Nickel-containing steel for low-temperature use
WO2019082325A1 (en) Nickel-containing steel for use at low temperatures
JP7176637B2 (en) MARTENSITE STAINLESS STEEL PIPE AND METHOD FOR MANUFACTURING MARTENSITE STAINLESS STEEL PIPE
JP2004360022A (en) HIGH-STRENGTH Al-PLATED WIRE OR BOLT EXCELLENT IN DELAYED FRACTURE RESISTANCE AND METHOD FOR PRODUCING THE SAME
JP2006291252A (en) Material steel plate with excellent fatigue characteristic for quenched-and-tempered steel tube, and steel tube
EP3141627A1 (en) Soft-nitriding steel sheet, method for manufacturing same, and soft-nitrided steel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121012

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20130522

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20130611

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130709

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130821

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130924

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131022

R150 Certificate of patent or registration of utility model

Ref document number: 5398574

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250