JPH10219407A - Ferritic stainless steel excellent in ductility, and its production - Google Patents

Ferritic stainless steel excellent in ductility, and its production

Info

Publication number
JPH10219407A
JPH10219407A JP3996197A JP3996197A JPH10219407A JP H10219407 A JPH10219407 A JP H10219407A JP 3996197 A JP3996197 A JP 3996197A JP 3996197 A JP3996197 A JP 3996197A JP H10219407 A JPH10219407 A JP H10219407A
Authority
JP
Japan
Prior art keywords
less
phase
equivalent
stainless steel
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3996197A
Other languages
Japanese (ja)
Other versions
JP3463500B2 (en
Inventor
Akihiro Matsuzaki
明博 松崎
Shigeaki Takagi
重彰 高城
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP03996197A priority Critical patent/JP3463500B2/en
Publication of JPH10219407A publication Critical patent/JPH10219407A/en
Application granted granted Critical
Publication of JP3463500B2 publication Critical patent/JP3463500B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Sheet Steel (AREA)

Abstract

PROBLEM TO BE SOLVED: To effectively utilize a transformation induced plasticity(TRIP) and to obtain a high ductility by specifying the composition of a stainless steel containing ferritic phase as a principal constituent structure and also specifying respective percentages of retained austenitic phase and martensitic phase. SOLUTION: This steel has a composition which consists of, by mass, <=0.10% C, <=1.0% Si, <=1.5% Mn, 16.0-25.0% Cr, 0.020-0.070% N, and the balance iron and contains, if necessary, <=1.0% Cu, <=3.0% Ni and/or <=1.0% Al, and <=1.0% Mo and in which Cr equivalent, represented by (Cr equivalent)=Cr%+Mo%+1.5 Si%, and Ni equivalent, represented by (Ni equivalent)=Ni%+30C%+30N %+0.5Mn%, are regulated to 17.5-24.5% and 2.0-6.0%, respectively. Further, this steel has a structure which contains 5-20% retained austenitic phase while having ferritic phase as a principal constitutent phase at room temp. and in which the amount of martensitic phase is limited to <=5%. By this method, the ferritic stainless steel having a characteristic of >= about 30% tensile fracture elongation can be obtained.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はフェライト系ステン
レス鋼およびその製造方法に係り、特に自動車、家電、
厨房、あるいは建材などに使用される延性が優れ、張り
出し成形などの成形加工に適したフェライト系ステンレ
ス鋼およびその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a ferritic stainless steel and a method for producing the same, particularly to automobiles, home appliances,
The present invention relates to a ferritic stainless steel having excellent ductility used in a kitchen or a building material and suitable for forming such as overhang forming and a method for producing the same.

【0002】[0002]

【従来の技術】自動車、家電、厨房、あるいは建材など
に使用されるステンレス鋼は張出成形などの加工性が良
いことが要求される。そのために多くの研究がなされ、
たとえば特開平3−2355号公報にみられるように鋼
の高純度化によってその目的を達することが提案され、
現実に使用されている。この技術はC、Nなどの侵入型
の元素を低減し、塑性変形時の転移の運動を容易にする
ことにより加工性を改善するものであるが、高度の脱
炭、脱窒を必要とするため製造コストが高いという欠点
がある。
2. Description of the Related Art Stainless steel used for automobiles, home appliances, kitchens, building materials, and the like is required to have good workability such as overhang forming. A lot of research has been done for that,
For example, as disclosed in Japanese Patent Application Laid-Open No. Hei 3-2355, it has been proposed to achieve the object by purifying steel,
Used in reality. This technology improves workability by reducing interstitial elements such as C and N and facilitating the movement of transition during plastic deformation, but requires a high degree of decarburization and denitrification. Therefore, there is a disadvantage that the manufacturing cost is high.

【0003】一方、SUS304に規定されるオーステ
ナイト系ステンレス鋼や残留オーステナイト相を含有す
る低合金鋼では、たとえば日本金属学会報第27巻第8
号(1998)第623頁以下に記載されているように
いわゆるTRIP(変態誘起塑性)現象を利用して延性
を向上することが行われている。これはオーステナイト
相を含む鋼に塑性加工を加えると、塑性歪みが加わった
部分ではオーステナイト相がマルテンサイ相に変態し硬
化するため、その後の加工においてその部分の変形が抑
制され、その結果、局所歪みが発生しがたくなり、一様
延びが大きくなり、ひいては破断伸びが向上する現象を
利用するものであるが、フェライト相を主たる構成組織
とするステンレス鋼においては、オーステナイト相とフ
ェライト相を共存させることが困難であるため実用化さ
れていなかった。
On the other hand, in austenitic stainless steel specified in SUS304 and low alloy steel containing a retained austenite phase, for example, Journal of the Japan Institute of Metals, Vol.
No. (1998), p. 623 et seq., So-called TRIP (Transformation Induced Plasticity) phenomenon is used to improve ductility. This is because, when plastic working is performed on steel containing an austenitic phase, the austenite phase transforms into a martensitic phase and hardens in the part where plastic strain is applied, so that deformation in that part is suppressed in subsequent processing, and as a result, local strain The use of the phenomenon that hardly occurs, the uniform elongation increases, and the elongation at break is improved.However, in a stainless steel having a ferrite phase as a main structural structure, an austenite phase and a ferrite phase coexist. It has not been put to practical use because it is difficult.

【0004】[0004]

【発明が解決しようとする課題】本発明はフェライト系
ステンレス鋼の延性の向上を従来のようなコストの高い
鋼の高純化によらず、比較的安価な手段を用いて行うこ
とを目的とし、特に塑性加工時においてTRIP効果を
極めて有効に利用できるフェライト相を主たる構成組織
とするステンレス鋼およびその製造方法を提供するもの
であり、引張破断伸びが30%以上の特性を有するフェ
ライト系ステンレス鋼およびその製造方法を提供するこ
とを目的とする。
SUMMARY OF THE INVENTION It is an object of the present invention to improve the ductility of ferritic stainless steel by using relatively inexpensive means, not by purifying expensive steel as in the prior art. In particular, the present invention provides a stainless steel having a ferrite phase as a main constituent structure capable of extremely effectively utilizing the TRIP effect at the time of plastic working and a method for producing the same, and a ferritic stainless steel having a tensile elongation at break of 30% or more. It is an object of the present invention to provide a manufacturing method thereof.

【0005】[0005]

【課題を解決するための手段】本発明者等はフェライト
相を主たる構成組織とするステンレス鋼において、オー
ステナイト相を5〜20%残留させ、かつ、マルテンサ
イト相を5%以下に制限すればTRIP現象を有効に利
用することができ、高い延性が得られることを見いだし
て本発明を完成したものである。具体的には、フェライ
ト相を主たる構成相とするフェライト系ステンレス鋼の
組成を、質量比でC:0.10%以下、Si:1.0%
以下、Mn:1.5%以下、Cr:16.0%以上、2
5.0%以下、N:0.020%以上、0.070%以
下、残部鉄および不可避的不純物からなり、かつ、Cr
当量:17.5%以上、24.5%以下、Ni当量:
2.0%以上、6.0%以下をそれぞれ満足するととも
に、鋼の組織を室温においてフェライト相を主たる構成
相としながら、残留オーステナイト相を5%以上、20
%以下含有するとともにマルテンサイト相を5%以下に
制限してなるものとするものである。ここに、 Cr当量=Cr%+Mo%+1.5Si%、 Ni当量=Ni%+30C%+30N%+0.5Mn% と定義される。
Means for Solving the Problems The inventors of the present invention have proposed that TRIP can be used in a stainless steel having a ferrite phase as a main constituent structure by limiting the austenite phase to 5 to 20% and the martensite phase to 5% or less. The present invention has been completed by finding that the phenomenon can be effectively used and high ductility can be obtained. Specifically, the composition of a ferritic stainless steel having a ferrite phase as a main constituent phase is expressed by mass ratio of C: 0.10% or less, Si: 1.0%
Hereinafter, Mn: 1.5% or less, Cr: 16.0% or more, 2
5.0% or less, N: 0.020% or more, 0.070% or less, the balance consisting of iron and unavoidable impurities, and Cr
Equivalent: 17.5% or more, 24.5% or less, Ni equivalent:
In addition to satisfying 2.0% or more and 6.0% or less, the retained austenite phase is 5% or more and 20% or less while the ferrite phase is the main constituent phase at room temperature.
% And less than 5% of the martensite phase. Here, Cr equivalent = Cr% + Mo% + 1.5Si%, Ni equivalent = Ni% + 30C% + 30N% + 0.5Mn% are defined.

【0006】また、本発明は前記鋼の組成において、さ
らにCu:1.0%以下、Ni:3.0%以下の1種ま
たは2種、あるいはAl:1.0%以下、Mo:1.0
%以下の1種または2種、あるいはこれらの双方を含有
させるものである。
In the present invention, the composition of the steel further includes one or more of Cu: 1.0% or less, Ni: 3.0% or less, Al: 1.0% or less, and Mo: 1.0% or less. 0
% Or less of one or two or both of them.

【0007】さらに本発明は上記フェライト系ステンレ
ス鋼の製造方法として、熱間圧延および冷間圧延を行っ
て得た冷延鋼板の最終焼鈍工程において、加熱温度をフ
ェライト相とオーステナイト相からなる2相域から高温
のフェライト相単相に変態完了する温度Tαと(Tα−
100)℃の間の温度範囲とし、かつ、その後の冷却速
度を800℃まで平均冷却速度、5℃/s以上とする焼
鈍方法を採用するものである。
Further, the present invention provides a method for producing a ferritic stainless steel as described above, wherein in a final annealing step of a cold-rolled steel sheet obtained by performing hot rolling and cold rolling, a heating temperature is set to a two-phase comprising a ferrite phase and an austenite phase. Temperature Tα and (Tα−
An annealing method is employed in which the temperature is in a temperature range of 100 ° C. and the subsequent cooling rate is 800 ° C., the average cooling rate is 5 ° C./s or more.

【0008】[0008]

【発明の実施の形態】まず本発明のフェライト系ステン
レス鋼の組成について説明する。 C:0.10%以下 Cはオーステナイト生成元素であり、しかも拡散係数な
らびにオーステナイト相への平衡分配係数が比較的大き
いために高温の2相域の状態でオーステナイト相へより
多く平衡分配され、オーステナイト相の確保ならびに安
定化に有効である。したがって、オーステナイト相の安
定生成のための必須添加元素であるが、0.10%を越
えて含有すると炭化物を多く析出し、耐食性を阻害する
ため上限を0.1%に制限する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS First, the composition of the ferritic stainless steel of the present invention will be described. C: 0.10% or less C is an austenite-forming element, and has a relatively large diffusion coefficient and equilibrium distribution coefficient to the austenite phase, so that it is more equilibrium-partitioned to the austenite phase in a high-temperature two-phase region, and It is effective for securing and stabilizing the phase. Therefore, although it is an essential additive element for stable generation of the austenite phase, if it exceeds 0.10%, a large amount of carbide is precipitated and the corrosion resistance is impaired, so the upper limit is limited to 0.1%.

【0009】Si:1.0%以下 Siは脱酸剤として有効であるが、1.0%を越えると
鋼を脆化させるので上限を1.0%として脱酸に必要な
範囲において添加する。
Si: 1.0% or less Si is effective as a deoxidizing agent, but if it exceeds 1.0%, the steel becomes brittle. Therefore, the upper limit is set to 1.0% and added in a range necessary for deoxidizing. .

【0010】Mn:1.5%以下 Mnはオーステナイト生成元素であり、また、Sの無害
化のため有効であるが、過剰に添加すると鋼を脆化させ
るため、上限を1.5%として適宜添加する。
Mn: 1.5% or less Mn is an austenite-forming element and is effective for detoxifying S. However, if added excessively, it embrittles the steel. Added.

【0011】Cr:16%以上、25%以下 Crはフェライト生成元素であり、また不動態皮膜の構
成元素であり、耐食性の確保のためフェライト系ステン
レス鋼の必須添加元素である。これらの機能の発揮のた
めには、16.0%以上の添加が必要であるが、25.
0%を越えると鋼の脆化をもたらすので、上限を25.
0%に限定する。なお、後に示すようにCr当量を満足
することが必要である。
Cr: not less than 16% and not more than 25% Cr is a ferrite-forming element and a constituent element of a passive film, and is an essential addition element of ferritic stainless steel for ensuring corrosion resistance. In order to exhibit these functions, it is necessary to add 16.0% or more.
If it exceeds 0%, the steel will be embrittled.
Limited to 0%. Note that it is necessary to satisfy the Cr equivalent as described later.

【0012】N:0.020%以上、0.070%以下 Nはオーステナイト生成元素であり、しかも拡散係数な
らびにオーステナイト相への平衡分配係数が極めて大き
い元素なので、高温の2相域の状態でオーステナイト相
へより多く平衡分配され、オーステナイト相の確保なら
びに安定化に極めて有効である。したがって、0.02
0%以上添加する。しかし、過剰に添加すると窒化物を
多く析出し、かえって延性を劣化するので0.070%
以下の範囲でとする。
N: not less than 0.020% and not more than 0.070% N is an austenite-forming element and has an extremely large diffusion coefficient and an equilibrium distribution coefficient to the austenite phase. It is more equilibrium-divided into phases and is extremely effective in securing and stabilizing the austenite phase. Therefore, 0.02
Add 0% or more. However, if added excessively, a large amount of nitride precipitates, and the ductility is rather deteriorated.
Within the following range.

【0013】本発明に係る鋼の基本組成は、上記成分を
含有し、残部が鉄および不可避的不純物、たとえばP、
Sなどであるが、さらに以下に示す成分を選択的に加え
ることができる。 Cu:1.0%以下、Ni:3.0%以下 これらの元素はいずれもオーステナイト生成元素であ
り、オーステナイト相の確保に有効である。従って鋼の
合金コストをいたずらに上昇させない範囲で、適宜添加
するのがよい。具体的には、それぞれ1.0%以下、
3.0%以下の範囲で1種または2種を添加するのがよ
い。
The basic composition of the steel according to the present invention contains the above components, with the balance being iron and unavoidable impurities such as P,
S, and the following components can be selectively added. Cu: 1.0% or less, Ni: 3.0% or less Any of these elements is an austenite-forming element and is effective in securing an austenite phase. Therefore, it is preferable to add as appropriate as long as the alloy cost of the steel is not unnecessarily increased. Specifically, each is 1.0% or less,
It is preferable to add one or two kinds in a range of 3.0% or less.

【0014】Al:1.0%以下、Mo:1.0%以下 これらの元素はフェライト生成元素であり、フェライト
相の確保に有効である。また、Alは不働態皮膜の形成
元素でもあり、耐食性の向上に有効である。一方、Mo
は耐孔食性の向上に有効である。しかしながらこれらの
元素は過剰に添加すると鋼の脆化を惹き起こすので、い
ずれも上限を1.0%として1種又は2種を添加する。
なお、鋼の所要特性に応じ、上記フェライト生成元素と
前記オーステナイト生成元素を併用することもできる。
Al: 1.0% or less, Mo: 1.0% or less These elements are ferrite-forming elements and are effective in securing a ferrite phase. Al is also a passivation film forming element and is effective in improving corrosion resistance. On the other hand, Mo
Is effective for improving pitting corrosion resistance. However, if these elements are added excessively, they cause embrittlement of the steel. Therefore, the upper limit is set to 1.0%, and one or two elements are added.
The ferrite-forming element and the austenite-forming element can be used in combination depending on the required properties of the steel.

【0015】Cr当量:17.5%以上、24.5%以
下 本発明では後に示すように適量のオーステナイト相を残
留させ、かつマルテンサイト相を極力形成させないよう
にしなければならないが、かかる組織にするには単に上
記のように組成範囲を限定するだけでは不十分である。
鋼の組成全体のバランスにより鋼を構成する相分率が決
定されることに留意しなければならない。特に、Cr当
量およびNi当量に留意しなければならない。Cr当量
は、 Cr当量=Cr%+Mo%+1.5Si% により規定されるが、この値が17.5%未満ではオー
ステナイト相が不安定になり、マルテンサイト相が生じ
やすくなり、本発明において必要な組織構成が得られな
くなる。一方、24.5%を越えると高温でのオーステ
ナイト相の確保が困難になる。したがってCr当量は1
7.5%以上、24.5%以下に限定される。
Cr equivalent: not less than 17.5% and not more than 24.5% In the present invention, it is necessary to leave an appropriate amount of austenite phase and not to form a martensite phase as much as possible as described later. To do so, it is not sufficient to simply limit the composition range as described above.
It should be noted that the balance of the overall steel composition determines the phase fraction that makes up the steel. In particular, attention must be paid to the Cr equivalent and the Ni equivalent. The Cr equivalent is defined by the following: Cr equivalent = Cr% + Mo% + 1.5Si% If this value is less than 17.5%, the austenite phase becomes unstable and the martensite phase is likely to be generated. The organizational structure cannot be obtained. On the other hand, if it exceeds 24.5%, it becomes difficult to secure an austenite phase at a high temperature. Therefore, the Cr equivalent is 1
It is limited to 7.5% or more and 24.5% or less.

【0016】Ni当量は Ni%+30C%+30N%+0.5Mn% により規定されるが、この値が2.0%未満では高温の
オーステナイト相の確保が困難であり、一方、6.0%
を越えるとオーステナイト相分率が過剰になり、いずれ
も本発明において必要な組織を得ることができなくな
る。したがってNi当量は2.0%以上、6.0%以下
とする。
The Ni equivalent is defined by Ni% + 30C% + 30N% + 0.5Mn%. If this value is less than 2.0%, it is difficult to secure a high-temperature austenite phase, while 6.0%
If the ratio exceeds the austenite phase fraction, the structure required in the present invention cannot be obtained in any case. Therefore, the Ni equivalent is 2.0% or more and 6.0% or less.

【0017】本発明においてはフェライト相を主たる構
成相としながらTRIP現象によって優れた延性を保有
させるが、そのためには鋼の組織中に5ないし20%の
オーステナイト相を残留させなければならない。オース
テナイト相が5%未満では、塑性変形の進行する部分で
の強度上昇効果が小さいため、塑性変形の際の局部伸び
を抑制することができず、TRIP現象の特徴である大
きな一様伸びを得ることができない。一方、残留オース
テナイト相が20%を越えて存在してもTRIP現象に
よる伸び上昇効果は飽和し、合金添加コストの上昇を招
くだけであるので、残留オーステナイト相の上限は20
%とする。
In the present invention, the ferrite phase is used as the main constituent phase, while maintaining excellent ductility due to the TRIP phenomenon. For that purpose, 5 to 20% of the austenite phase must remain in the structure of the steel. When the austenite phase is less than 5%, the effect of increasing the strength in the portion where plastic deformation progresses is small, so that local elongation during plastic deformation cannot be suppressed, and a large uniform elongation characteristic of the TRIP phenomenon is obtained. Can not do. On the other hand, even if the residual austenite phase exceeds 20%, the effect of increasing the elongation by the TRIP phenomenon is saturated and only increases the alloy addition cost, so the upper limit of the retained austenite phase is 20%.
%.

【0018】しかしながらオーステナイト相が上記のよ
うに5%以上、20%以下であっても、マルテンサイト
相が多量に存在するときには、もはやオーステナイト相
のマルテンサイト相への変態によるTRIP現象による
効果は期待できない。したがってマルテンサイト相は5
%以下に制限しなければならない。このことはオーステ
ナイトが残留する鋼組成においては特に注意すべきであ
り、製造上は次に示す熱処理条件の選択によって解決が
図られる。なお、マルテンサイト相は上記観点から特に
好ましくは、3%以下とするのがよい。
However, even when the austenite phase is 5% or more and 20% or less as described above, the effect of the TRIP phenomenon due to the transformation of the austenite phase to the martensite phase is expected when the martensite phase is present in a large amount. Can not. Therefore, the martensite phase is 5
%. This is particularly noticeable in steel compositions in which austenite remains, and can be solved in production by selecting the following heat treatment conditions. The martensite phase is particularly preferably 3% or less from the above viewpoint.

【0019】上記組成および組織にかかる条件を満たせ
ば、塑性加工の際、TRIP現象による一様伸びが得ら
れ、本発明の目的が達せられるが、かかる組織を得るた
めには以下に示す熱処理を施すのがよい。まず、冷延鋼
帯を最終焼鈍する際、フェライトおよびオーステナイト
の2相組織領域に加熱するのである。この2相領域にお
いては、高温であるほどNがオーステナイト相に多く分
配され、オーステナイト相が安定化し、TRIP現象に
よる延性向上効果が顕著に現れる。そこで加熱温度はフ
ェライトおよびオーステナイトの2相域から高温のフェ
ライト単相領域に変態完了する温度Tαを基準とし、こ
の温度から100℃以内に加熱することとする。すなわ
ち、加熱温度範囲は、 Tα以下、Tα−100℃以上 とする。なお、上記加熱温度は通常のフェライト系ステ
ンレス鋼の焼鈍が比較的低温のα単相領域(例えば85
0℃)で行われるのに比較すると高温側にある。
If the above conditions for the composition and structure are satisfied, uniform elongation due to the TRIP phenomenon can be obtained during plastic working and the object of the present invention can be achieved. It is better to apply. First, when the cold-rolled steel strip is finally annealed, it is heated to a two-phase structure region of ferrite and austenite. In this two-phase region, the higher the temperature, the more N is distributed to the austenite phase, the more the austenite phase is stabilized, and the effect of improving the ductility due to the TRIP phenomenon appears remarkably. Therefore, the heating temperature is based on the temperature Tα at which the transformation from the two-phase region of ferrite and austenite to the high-temperature ferrite single-phase region is completed, and the heating is performed within 100 ° C. from this temperature. That is, the heating temperature range is Tα or lower and Tα−100 ° C. or higher. The above heating temperature is set to the α single phase region (for example, 85 ° C.) where the annealing of ordinary ferritic stainless steel is relatively low.
0 ° C.), which is on the higher temperature side.

【0020】上記の条件により2相域に加熱された鋼板
はその後冷却されるが、その際冷却速度を大きく取るこ
とが重要である。すなわち、一旦高温の2相域において
N等のオーステナイト安定化元素の多く分配した相が形
成されても、その後温度が低下するとオーステナイト相
中のこれら元素の含有量(分配比)が低下し、そのため
オーステナイト相の安定度が低下し、最終的に残留オー
ステナイト相分率の低下あるいはマルテンサイト相の過
剰な生成をもたらす。このような悪影響は、冷却速度が
5℃/sより小さいと顕著になる。従って、2相域から
の冷却速度は5℃/s以上とする。なお、この場合にお
いて鋼板の温度が800℃より低下した温度範囲におい
ては、もはや冷却速度の影響は現れないので、冷却速度
の制御範囲は上記加熱温度から800℃までの範囲とす
る。
The steel sheet heated to the two-phase region under the above conditions is then cooled, and it is important to increase the cooling rate. That is, even if a phase in which many austenite-stabilizing elements such as N are once formed in the two-phase region at a high temperature, if the temperature subsequently decreases, the content (partition ratio) of these elements in the austenite phase decreases. The stability of the austenite phase is reduced, eventually leading to a reduction in the residual austenite phase fraction or excessive formation of the martensite phase. Such adverse effects become remarkable when the cooling rate is lower than 5 ° C./s. Therefore, the cooling rate from the two-phase region is set to 5 ° C./s or more. In this case, in the temperature range where the temperature of the steel sheet is lower than 800 ° C., the influence of the cooling rate no longer appears. Therefore, the control range of the cooling rate is set to the range from the heating temperature to 800 ° C.

【0021】[0021]

【実施例】以下、本発明の実施例を比較例とともに示
す。表1に示す組成を有する鋼を溶製し、スラブとした
後熱間圧延、冷間圧延を行って板厚0.7mmのフェラ
イト系ステンレス鋼板を製造した。鋼AないしEは本発
明に規定する組成範囲を満足する鋼であるが、Fないし
Jは本発明の範囲を逸脱する鋼である。すなわち、鋼F
はCr含有量およびCr当量が低すぎ、鋼GはCrおよ
びCr当量が高すぎる鋼である。鋼HはN含有量が高す
ぎ、一方、鋼IはN含有量が低すぎる鋼である。鋼Jは
Niを多く含有し、そのためNi当量が高すぎる鋼であ
る。
EXAMPLES Examples of the present invention will be described below together with comparative examples. A steel having the composition shown in Table 1 was melted and made into a slab, and then hot-rolled and cold-rolled to produce a 0.7 mm-thick ferritic stainless steel sheet. Steels A to E are steels satisfying the composition range defined in the present invention, while F to J are steels outside the scope of the present invention. That is, steel F
Is too low in Cr content and Cr equivalent, and steel G is too high in Cr and Cr equivalent. Steel H is a steel with too high N content, while steel I is a steel with too low N content. Steel J contains a large amount of Ni, and is therefore a steel having a too high Ni equivalent.

【0022】これらの成分を有するフェライト系冷延鋼
板に対して、表2に示す条件で焼鈍を行ない、焼鈍後の
鋼板にの残留オーステナイト量、マルテンサイト量の測
定、および引張破断試験による引張破断伸びの測定を行
った。引張破断試験は鋼板からJIS Z 2201−
13B引張試験片(板状引張試験片:板厚0.7mm、
標点間距離50mm、平行部幅12.5mm)を切りだ
し、JIS Z 2241に準拠して室温で引張試験を
実施したものである。得られた測定結果は、焼鈍条件と
併せて表2に示す。
The ferritic cold-rolled steel sheet having these components was annealed under the conditions shown in Table 2, the amount of retained austenite and the amount of martensite in the annealed steel sheet were measured, and the tensile fracture in the tensile fracture test was performed. The elongation was measured. Tensile rupture test was performed from steel sheet according to JIS Z 2201-
13B tensile test piece (plate-like tensile test piece: sheet thickness 0.7 mm,
(Distance between reference points 50 mm, parallel part width 12.5 mm) was cut out, and a tensile test was performed at room temperature in accordance with JIS Z 2241. Table 2 shows the obtained measurement results together with the annealing conditions.

【0023】[0023]

【表1】 [Table 1]

【0024】[0024]

【表2】 [Table 2]

【0025】これらの結果から本発明に規定する組成お
よび組織条件(残留オーステナイト量およびマルテンサ
イト量)を満足するものが、高い引張破断伸び、すなわ
ち高い延性を示し、一方、組成条件、焼鈍条件等を満足
しない理由により組織条件が満たされなかった鋼は、い
ずれも引張破断伸びが低い。なお、表2に示す試験番号
13(鋼J)はNiが高いものであり、残留オーステナ
イト量、マルテンサイト量など組織条件は満たしてお
り、引張破断伸びも高いが、高価であるため、本発明の
適用範囲から除外されるものである。
From these results, those satisfying the composition and microstructure conditions (the amount of retained austenite and the amount of martensite) specified in the present invention show high tensile elongation at break, that is, high ductility. All of the steels that did not satisfy the structural conditions because of the failure to satisfy the above have low tensile elongation at break. Test No. 13 (Steel J) shown in Table 2 has a high Ni content, satisfies the structural conditions such as the amount of retained austenite and the amount of martensite, and has a high tensile elongation at break. Are excluded from the applicable scope.

【0026】[0026]

【発明の効果】本発明によりフェライト系ステンレス鋼
でありながら、引張試験破断伸びに代表される延性が極
めて高いステンレス鋼を製造することができ、自動車、
家電、厨房、建材などをステンレス鋼により冷間で製造
することが極めて容易になった。
Industrial Applicability According to the present invention, it is possible to produce a stainless steel having extremely high ductility represented by a tensile elongation at break in a tensile test, while being a ferritic stainless steel.
Home appliances, kitchens, building materials, etc., have become extremely easy to produce cold with stainless steel.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 鋼組成が、質量比でC:0.10%以
下、Si:1.0%以下、Mn:1.5%以下、Cr:
16.0%以上、25.0%以下、N:0.020%以
上、0.070%以下、を含有し、残部が鉄および不可
避的不純物からなり、かつCr当量:17.5%以上、
24.5%以下、Ni当量:2.0%以上、6.0%以
下をそれぞれ満足するとともに、 室温における組織が、 フェライト相を主構成相とし、かつ、残留オーステナイ
ト相を5%以上、20%以下含有するとともに、マルテ
ンサイト相を5%以下に制限してなることを特徴とする
延性に優れたフェライト系ステンレス鋼。ここに、 Cr当量=Cr%+Mo%+1.5Si%、 Ni当量=Ni%+30C%+30N%+0.5Mn%
1. A steel composition having a mass ratio of C: 0.10% or less, Si: 1.0% or less, Mn: 1.5% or less, Cr:
16.0% or more and 25.0% or less, N: 0.020% or more and 0.070% or less, the balance being iron and unavoidable impurities, and Cr equivalent: 17.5% or more;
24.5% or less, Ni equivalent: 2.0% or more and 6.0% or less, respectively, and the structure at room temperature has a ferrite phase as a main constituent phase and a residual austenite phase of 5% or more and 20% or less. % Or less, and the martensitic phase is limited to 5% or less. Here, Cr equivalent = Cr% + Mo% + 1.5Si%, Ni equivalent = Ni% + 30C% + 30N% + 0.5Mn%
【請求項2】 鋼組成が、質量比でC :0.10%以
下、Si:1.0%以下、Mn:1.5%以下、Cr:
16.0%以上、25.0%以下、N:0.020%以
上、0.070%以下、および、Cu:1.0%以下、
Ni:3.0%以下、の1種又は2種を含有し、残部が
鉄および不可避的不純物からなり、かつCr当量:1
7.5%以上、24.5%以下、Ni当量:2.0%以
上、6.0%以下をそれぞれ満足することを特徴とする
請求項1記載の延性に優れたフェライト系ステンレス
鋼。
2. The steel composition has a mass ratio of C: 0.10% or less, Si: 1.0% or less, Mn: 1.5% or less, and Cr:
16.0% or more, 25.0% or less, N: 0.020% or more, 0.070% or less, and Cu: 1.0% or less,
Ni: contains 3.0% or less of one or two kinds, the balance being iron and unavoidable impurities, and Cr equivalent: 1
2. The ferritic stainless steel having excellent ductility according to claim 1, wherein the ferrite stainless steel has a content of 7.5% or more and 24.5% or less, and a Ni equivalent of 2.0% or more and 6.0% or less.
【請求項3】 鋼組成が、質量比でC :0.10%以
下、Si:1.0%以下、Mn:1.5%以下、Cr:
16.0%以上、25.0%以下、N:0.020%以
上、0.070%以下、および、Al:1.0%以下、
Mo:1.0%以下、の1種又は2種を含有し、残部が
鉄および不可避的不純物からなり、かつCr当量:1
7.5%以上、24.5%以下、Ni当量:2.0%以
上、6.0%以下をそれぞれ満足することを特徴とする
請求項1記載の延性に優れたフェライト系ステンレス
鋼。
3. A steel composition having a mass ratio of C: 0.10% or less, Si: 1.0% or less, Mn: 1.5% or less, and Cr:
16.0% or more, 25.0% or less, N: 0.020% or more, 0.070% or less, and Al: 1.0% or less,
Mo: 1.0% or less, containing one or two kinds, the balance being iron and unavoidable impurities, and Cr equivalent: 1
2. The ferritic stainless steel having excellent ductility according to claim 1, wherein the ferrite stainless steel has a content of 7.5% or more and 24.5% or less, and a Ni equivalent of 2.0% or more and 6.0% or less.
【請求項4】 鋼組成が、質量比でC :0.10%以
下、Si:1.0%以下、Mn:1.5%以下、Cr:
16.0%以上、25.0%以下、N:0.020%以
上、0.070%以下、およびCu:1.0%以下、N
i:3.0%以下、の1種または2種ならびにAl:
1.0%以下、Mo:1.0%以下、の1種又は2種を
含有し、残部が鉄および不可避的不純物からなり、かつ
Cr当量:17.5%以上、24.5%以下、Ni当
量:2.0%以上、6.0%以下をそれぞれ満足するこ
とを特徴とする請求項1記載の延性に優れたフェライト
系ステンレス鋼。
4. A steel composition having a mass ratio of C: 0.10% or less, Si: 1.0% or less, Mn: 1.5% or less, and Cr:
16.0% or more, 25.0% or less, N: 0.020% or more, 0.070% or less, and Cu: 1.0% or less, N
i: 3.0% or less, one or two of Al and Al:
1.0% or less, Mo: 1.0% or less, containing one or two kinds, the balance consisting of iron and unavoidable impurities, and Cr equivalent: 17.5% or more and 24.5% or less; The ferritic stainless steel excellent in ductility according to claim 1, wherein the Ni equivalent: 2.0% or more and 6.0% or less are respectively satisfied.
【請求項5】 熱間圧延および冷間圧延を行って得た冷
延板に対する最終焼鈍工程において、フェライト相とオ
ーステナイト相からなる2相域から高温のフェライト相
単相に変態完了する温度Tαと(Tα−100)℃の間
の温度範囲に加熱し、その後800℃までの平均冷却速
度を5℃/s以上として冷却することを特徴とする請求
項1ないし4のいずれかに記載の延性に優れたフェライ
ト系ステンレス鋼の製造方法。
5. In a final annealing step for a cold rolled sheet obtained by performing hot rolling and cold rolling, a temperature Tα at which transformation from a two-phase region consisting of a ferrite phase and an austenite phase to a high-temperature ferrite single phase is completed. The ductility according to any one of claims 1 to 4, wherein the material is heated to a temperature range of (Tα-100) ° C, and then cooled at an average cooling rate up to 800 ° C of 5 ° C / s or more. Excellent method for producing ferritic stainless steel.
JP03996197A 1997-02-07 1997-02-07 Ferritic stainless steel excellent in ductility and method for producing the same Expired - Fee Related JP3463500B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03996197A JP3463500B2 (en) 1997-02-07 1997-02-07 Ferritic stainless steel excellent in ductility and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03996197A JP3463500B2 (en) 1997-02-07 1997-02-07 Ferritic stainless steel excellent in ductility and method for producing the same

Publications (2)

Publication Number Publication Date
JPH10219407A true JPH10219407A (en) 1998-08-18
JP3463500B2 JP3463500B2 (en) 2003-11-05

Family

ID=12567565

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03996197A Expired - Fee Related JP3463500B2 (en) 1997-02-07 1997-02-07 Ferritic stainless steel excellent in ductility and method for producing the same

Country Status (1)

Country Link
JP (1) JP3463500B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006169622A (en) * 2004-01-29 2006-06-29 Jfe Steel Kk Austenitic-ferritic stainless steel with excellent formability
JP2006183129A (en) * 2004-01-29 2006-07-13 Jfe Steel Kk Austenitic-ferritic stainless steel having excellent formability
JP2006200035A (en) * 2004-03-16 2006-08-03 Jfe Steel Kk Ferritic-austenitic stainless steel having excellent punch stretch formability and resistance to crevice corrosion
JP2006233308A (en) * 2005-02-28 2006-09-07 Jfe Steel Kk Austenitic-ferritic stainless steel having excellent grain boundary corrosion resistance
WO2009017258A1 (en) 2007-08-02 2009-02-05 Nippon Steel & Sumikin Stainless Steel Corporation Ferritic-austenitic stainless steel excellent in corrosion resistance and workability and process for manufacturing the same
WO2009093652A1 (en) * 2008-01-22 2009-07-30 Nippon Steel & Sumikin Stainless Steel Corporation Ferrite-austenite stainless steel sheet for structural members excellent in workability and impact absorption characteristics and process for the production of the sheet
WO2009099010A1 (en) 2008-02-05 2009-08-13 Nippon Steel & Sumikin Stainless Steel Corporation Ferrite-austenite stainless steel sheet excellent in ridging resistance and workability and process for manufacturing the same
JP2009242933A (en) * 2008-03-12 2009-10-22 Nippon Steel & Sumikin Stainless Steel Corp Ferritic stainless steel having excellent corrosion resistance in urea water
EP2562285A1 (en) * 2004-01-29 2013-02-27 JFE Steel Corporation Austenitic-ferritic stainless steel
JP5900717B1 (en) * 2014-12-11 2016-04-06 Jfeスチール株式会社 Stainless steel sheet and manufacturing method thereof
WO2016092713A1 (en) * 2014-12-11 2016-06-16 Jfeスチール株式会社 Stainless steel and production method therefor
CN107075630A (en) * 2014-09-17 2017-08-18 新日铁住金不锈钢株式会社 Brake disc martensitic stainless steel and its manufacture method

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2562285A1 (en) * 2004-01-29 2013-02-27 JFE Steel Corporation Austenitic-ferritic stainless steel
JP2006183129A (en) * 2004-01-29 2006-07-13 Jfe Steel Kk Austenitic-ferritic stainless steel having excellent formability
JP2006169622A (en) * 2004-01-29 2006-06-29 Jfe Steel Kk Austenitic-ferritic stainless steel with excellent formability
US8562758B2 (en) 2004-01-29 2013-10-22 Jfe Steel Corporation Austenitic-ferritic stainless steel
JP2006200035A (en) * 2004-03-16 2006-08-03 Jfe Steel Kk Ferritic-austenitic stainless steel having excellent punch stretch formability and resistance to crevice corrosion
JP2006233308A (en) * 2005-02-28 2006-09-07 Jfe Steel Kk Austenitic-ferritic stainless steel having excellent grain boundary corrosion resistance
WO2009017258A1 (en) 2007-08-02 2009-02-05 Nippon Steel & Sumikin Stainless Steel Corporation Ferritic-austenitic stainless steel excellent in corrosion resistance and workability and process for manufacturing the same
EP3434802A1 (en) 2007-08-02 2019-01-30 Nippon Steel & Sumikin Stainless Steel Corporation Ferritic-austenitic stainless steel excellent in corrosion resistance and workability and method of production of same
JP2009197326A (en) * 2008-01-22 2009-09-03 Nippon Steel & Sumikin Stainless Steel Corp Ferrite-austenite stainless steel sheet for structural member excellent in workability and impact-absorbing property, and method for production thereof
US8303733B2 (en) 2008-01-22 2012-11-06 Nippon Steel & Sumikin Stainless Steel Corporation Ferrite-austenite stainless steel sheet for structural component excellent in workability and impact-absorbing property and method for producing the same
WO2009093652A1 (en) * 2008-01-22 2009-07-30 Nippon Steel & Sumikin Stainless Steel Corporation Ferrite-austenite stainless steel sheet for structural members excellent in workability and impact absorption characteristics and process for the production of the sheet
US8226780B2 (en) 2008-02-05 2012-07-24 Nippon Steel Ferrite-austenite stainless steel sheet excellent in ridging resistance and workability and process for manufacturing the same
WO2009099010A1 (en) 2008-02-05 2009-08-13 Nippon Steel & Sumikin Stainless Steel Corporation Ferrite-austenite stainless steel sheet excellent in ridging resistance and workability and process for manufacturing the same
JP2009242933A (en) * 2008-03-12 2009-10-22 Nippon Steel & Sumikin Stainless Steel Corp Ferritic stainless steel having excellent corrosion resistance in urea water
CN107075630A (en) * 2014-09-17 2017-08-18 新日铁住金不锈钢株式会社 Brake disc martensitic stainless steel and its manufacture method
JP5900717B1 (en) * 2014-12-11 2016-04-06 Jfeスチール株式会社 Stainless steel sheet and manufacturing method thereof
WO2016092713A1 (en) * 2014-12-11 2016-06-16 Jfeスチール株式会社 Stainless steel and production method therefor
US10626486B2 (en) 2014-12-11 2020-04-21 Jfe Steel Corporation Stainless steel and production method therefor

Also Published As

Publication number Publication date
JP3463500B2 (en) 2003-11-05

Similar Documents

Publication Publication Date Title
JP2019527771A (en) 1500MPa high strength steel product for automobile and its manufacturing method
TW200946694A (en) Ferritic stainless steel with excellent heat resistance and toughness
JP3877590B2 (en) Highly elastic metastable austenitic stainless steel sheet and its manufacturing method
JP3463500B2 (en) Ferritic stainless steel excellent in ductility and method for producing the same
JP5376927B2 (en) Manufacturing method of high proportional limit steel plate with excellent bending workability
JPH08199235A (en) Production of niobium-containing ferritic steel sheet
JPH0635619B2 (en) Manufacturing method of high strength steel sheet with good ductility
JPH0885820A (en) Heat treatment for stainless steel with high nitrogen content
JP2004300452A (en) Method for producing high strength cold-rolled steel sheet having excellent impact property and shape-fixability
JP5453747B2 (en) Stainless cold-rolled steel sheet excellent in punching processability and manufacturing method thereof
JP6093063B1 (en) High-strength stainless steel material excellent in workability and its manufacturing method
JP3470660B2 (en) Chromium stainless steel material for spring and multi-layered structure for spring and method for producing the same
JP5484135B2 (en) Austenite + martensite duplex stainless steel sheet and method for producing the same
JP4606113B2 (en) Austenitic stainless steel with high proportional limit stress and manufacturing method
JP2962038B2 (en) High tensile strength steel sheet and its manufacturing method
JP3422864B2 (en) Stainless steel with excellent workability and method for producing the same
JP6279118B1 (en) High-strength duplex stainless steel with excellent corrosion resistance and bending workability
JP6146401B2 (en) Ferritic stainless steel sheet
JP3290598B2 (en) Ferritic stainless steel sheet excellent in formability and ridging resistance and method for producing the same
JP2019501286A (en) Lean duplex stainless steel with improved corrosion resistance and workability and method for producing the same
JP2002167653A (en) Stainless steel having excellent workability and weldability
JP2004250766A (en) METHOD OF PRODUCING Ni-CONTAINING STEEL HAVING EXCELLENT STRENGTH/LOW TEMPERATURE TOUGHNESS
JP2004083972A (en) Ferritic stainless steel cold rolled, annealed material having excellent secondary workability, and production method therefor
JP3144228B2 (en) Method for producing high-chromium cold-rolled steel strip excellent in ridging resistance and workability and method for producing hot-rolled steel strip for the material
JPH07233449A (en) Ferritic stainless steel sheet and its production

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 4

Free format text: PAYMENT UNTIL: 20070822

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080822

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 5

Free format text: PAYMENT UNTIL: 20080822

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090822

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees