JP2006178030A - 電気光学装置、その駆動方法、駆動装置および電子機器 - Google Patents

電気光学装置、その駆動方法、駆動装置および電子機器 Download PDF

Info

Publication number
JP2006178030A
JP2006178030A JP2004368859A JP2004368859A JP2006178030A JP 2006178030 A JP2006178030 A JP 2006178030A JP 2004368859 A JP2004368859 A JP 2004368859A JP 2004368859 A JP2004368859 A JP 2004368859A JP 2006178030 A JP2006178030 A JP 2006178030A
Authority
JP
Japan
Prior art keywords
data
data line
correction
signal
correction data
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004368859A
Other languages
English (en)
Inventor
Masuo Tsuji
満壽夫 辻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2004368859A priority Critical patent/JP2006178030A/ja
Publication of JP2006178030A publication Critical patent/JP2006178030A/ja
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Liquid Crystal (AREA)
  • Electroluminescent Light Sources (AREA)
  • Control Of El Displays (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Tests Of Electronic Circuits (AREA)

Abstract

【課題】 駆動装置の実装後の検査を可能として検査の結果の有効性を向上させる。
【解決手段】 データ線駆動回路200は、各々がデータ線103に接続されるm個の出力端子Toutと、各画素について指定された階調に応じてデータ信号X1ないしXnを生成する信号生成回路25と、各データ線103における電流のリークを検出するための検出用配線30とを具備し、検出モードまたは駆動モードにて動作する。検出モードにおいては、各出力端子Toutが順次に検出用配線30に接続され、この検出用配線30に流れる電流に応じた補正データDHが生成される。一方、駆動モードにおいては、検出モードにて生成された補正データに基づいて、信号生成回路25が各データ線103について生成するデータ信号Xjが補正される。
【選択図】 図4

Description

本発明は、OLED(Organic Light Emitting Diode)素子などの電気光学素子を備えた電気光学装置、この種の電気光学装置を駆動する方法および装置、ならびに電気光学装置を備えた電子機器に関する。
この種の電気光学装置は、複数の走査線と複数のデータ線との各交差に対応して基板上に配列された複数の画素を有し、各データ線に供給されるデータ信号に応じて画素の階調が制御される。この構成においては、何らかの欠陥に起因してデータ線に電流のリークが発生する場合がある。この場合には各画素に所期の階調を表示させることができず縦方向の表示ムラが発生する。このような問題を解決するために、データ線や走査線の欠陥の有無を検査するための技術が従来から提案されている。例えば特許文献1に開示された技術においては、検査用の端子を走査線やデータ線の端部に接触させたうえで所定の信号を供給することによって各画素を駆動し、これにより表示された画像に基づいて欠陥の有無が検査される。
特開平9−138422号公報(図1)
しかしながら、特許文献1に開示された技術においては、データ線や走査線に信号を供給するための駆動装置(例えばICチップ)が実装される前に欠陥の有無が検査されるため、この検査を実施してからICチップが実装されるまでに発生した欠陥を検出することはできない。本発明は、このような事情に鑑みてなされたものであり、駆動装置の実装後の検査を可能として検査の結果の有効性を向上させることを解決課題とする。
この課題を解決するために、本発明に係る駆動装置(例えば図1におけるデータ線駆動回路200)は、複数のデータ線の各々に画素が接続された電気光学装置を駆動する装置であって、各々がデータ線に接続される複数の出力端子と、各画素について指定された階調に応じたデータ信号をデータ線ごとに生成する信号生成回路と、信号生成回路が生成したデータ信号を出力端子に供給する駆動モードと複数の出力端子の各々を順次に検出用配線に接続する検出モードとを切り替える切替手段(例えば実施形態におけるスイッチ群27および切替部29)と、検出モードにおいて検出用配線に流れる電流に応じた補正データをデータ線ごとに取得し、この補正データに基づいて、信号生成回路が当該データ線について生成するデータ信号を補正する補正手段とを具備することを特徴とする。
この構成によれば、駆動装置の動作モードとして検出モードが選定されるから、この駆動装置を電気光学装置に実装した後の段階においても各データ線における電流のリークを検出することができる。すなわち、駆動装置が実装される工程やその直前にて発生した欠陥も検出される。したがって、検査の結果の有効性を向上させることができる。さらに、この検出モードにおける検出の結果に基づいてデータ信号が補正されるから、各データ線にて電流のリークが発生している場合であっても、このリークを補償して良好な表示品位が実現される。なお、本発明において、検出モードにおける検出の結果に応じた補正データは記憶手段(例えば不揮発性のメモリ)に記憶される。この記憶手段は、駆動装置の内部および外部の何れに配置されていてもよい。
検出モードにおいては、検出用配線に対して所定の電圧が印加される。この電圧(実施形態における検査用電圧Ve)は、検査装置など外部の機器から印加されるものであってもよいが、駆動装置に供給される電源に応じた電圧を利用してもよい。例えば、電源電位が供給される電源端子を具備し、信号生成回路が、電源端子に供給された電源電位に基づいてデータ信号を生成する構成のもとでは、検出モードにおいて、電源端子に供給された電源電位に応じた電位が検出用配線および出力端子を介してデータ線に供給されるようにしてもよい。この構成によれば、検出モードにおいてデータ線に印加される電圧の発生源を駆動装置の電源と別個に用意する必要がないから、検査に要するコストを低減することができる。この構成の具体例は第2実施形態(図11)として後述される。
なお、この構成のもとで検出モードが選択されているときに信号駆動回路がデータ信号の生成を実行するとすれば、この生成に連動するように電源が変動して正確なリーク電流の検出が妨げられるという問題が生じ得る。そこで、本発明の望ましい態様においては、検出モードにおいて信号生成回路によるデータ信号の生成を停止させる手段(例えば図11に示されるスイッチング素子257)がさらに設けられる。この態様によれば、検出モードにおける電源電位の変動を防止することができるから、この電源電位を利用した検査の精度を向上させることができる。
本発明において、補正手段は、信号生成回路が実際に生成したデータ信号(データ線に出力される直前のデータ信号)を補正データに基づいて補正してもよいし、信号生成回路が画像データに基づいてデータ信号を生成する構成においては、この画像データを補正データに基づいて補正してもよい。
また、本発明の望ましい態様においては、データ信号を生成するための要素と動作モードを切り替えるための要素とが共用される。例えば、パルス信号を順次にシフトして出力するシフトレジスタを具備し、信号生成回路が、シフトレジスタから出力される各パルス信号によってサンプリングされた画像データに基づいてデータ信号を生成する構成においては、切替手段が、検出モードにおいて、シフトレジスタから出力されるパルス信号に対応した出力端子を順次に検出用配線に接続する。この構成によれば、駆動装置の回路規模が低減されるという利点がある。もっとも、本発明においては、動作モードを切り替えるための要素とデータ信号を生成するための要素とが別個に配設された構成も採用される。
本発明に係る電気光学装置は、複数の走査線と複数のデータ線との各交差に対応して配置された複数の画素と、各データ線を介して画素にデータ信号を出力する駆動装置とを具備し、駆動装置は、各々がデータ線に接続される複数の出力端子と、各画素について指定された階調に応じたデータ信号をデータ線ごとに生成する信号生成回路と、信号生成回路が生成したデータ信号を出力端子に供給する駆動モードと複数の出力端子の各々を順次に検出用配線に接続する検出モードとを切り替える切替手段と、検出モードにおいて検出用配線に流れる電流に応じた補正データをデータ線ごとに取得し、この補正データに基づいて、信号生成回路が当該データ線について生成するデータ信号を補正する補正手段とを具備することを特徴とする。この構成によっても、本発明の駆動装置と同様の理由によって検査の信頼性を向上させることができる。
本発明に係る電気光学装置の望ましい態様においては、データ線ごとに補正データを記憶する記憶手段が設けられ、補正手段は、各データ線に対応する補正データを記憶手段から取得する。
この態様において、記憶手段は、複数の階調の各々について、当該階調に対応したデータ信号が駆動モードにて供給されたときの各データ線の電位が検出用配線に供給された場合に検出モードにて当該検出用配線から検出される電流に応じた補正データを各階調と対応付けて記憶し、補正手段は、記憶手段に記憶された複数の補正データのうち各画素について指定される階調に応じた補正データを取得し、この取得した補正データに基づいてデータ信号を補正する。各データ線にて電流がリークする程度は、そのデータ線に印加される電圧に応じて変動するところ、本態様によれば、階調に応じた補正データに基づいてデータ信号が補正されるから、何れの階調が指定された場合であっても適切な補正を実行して良好な表示品位を維持することができる。なお、この態様の具体例は第3実施形態として後述される。
別の態様において、当該電気光学装置またはその周囲の温度を測定する温度測定手段(例えば図16に示される温度センサ55)を具備し、記憶手段は、複数の温度の各々のもとで検出モードにて検出用配線から検出される電流に応じた補正データを各温度と対応付けて記憶し、補正手段は、記憶手段に記憶された複数の補正データのうち温度測定手段による測定の結果に応じた補正データを取得し、この取得した補正データに基づいてデータ信号を補正する。各データ線にて電流がリークする程度は、そのデータ線の温度に応じて変動するところ、本態様によれば、温度に応じて選択された補正データに基づいてデータ信号が補正されるから、電気光学装置が使用される環境の温度に拘わらず適切な補正を実現して良好な表示品位が維持される。なお、この態様の具体例は第4実施形態として後述される。
本発明に係る電気光学装置は各種の電子機器に利用される。このような電子機器としては、例えば、パーソナルコンピュータや携帯電話機がある。本発明に係る電気光学装置は、典型的には画像を表示する表示装置として使用されるが、このほかにも例えば光書込み型の画像形成装置(例えばプリンタ)におけるラインヘッドとしても使用され得る。
本発明に係る駆動方法は、複数の走査線と複数のデータ線との各交差に対応して配列された複数の画素と、各データ線を介して画素にデータ信号を供給する駆動装置とを具備し、駆動回路が、各々がデータ線に接続される複数の出力端子と、各画素について指定された階調に応じたデータ信号を生成する信号生成回路と、検出用配線とを有する電気光学装置の駆動方法であって、検出モードにおいては、複数の出力端子の各々を順次に検出用配線に接続し、このときに検出用配線から検出される電流に応じた補正データをデータ線ごとに生成して記憶手段に書き込み、駆動モードにおいては、記憶手段に記憶された各データ線の補正データに基づいて、信号生成回路が当該データ線について生成するデータ信号を補正し、この補正後のデータ信号を各出力端子に供給することを特徴としている。この駆動方法によっても、本発明の駆動装置と同様の理由により、検査の信頼性を向上させるとともにリーク電流に起因した表示品位の低下を抑制することができる。
本発明の望ましい態様(第3実施形態)において、検出モードにおいては、複数の階調の各々について、当該階調に応じたデータ信号が駆動モードにて供給されたときの各データ線の電位を検出用配線に供給し、このときに当該検出用配線に流れる電流に応じた補正データをデータ線ごとに各階調と対応付けて記憶手段に書き込み、駆動モードにおいては、記憶手段に記憶された複数の補正データのうち各画素について指定される階調に応じた補正データを取得し、この取得した補正データに基づいてデータ信号を補正する。この態様によれば、何れの階調が指定された場合であっても適切な補正を実行して良好な表示品位を維持することができる。
さらに他の態様(第4実施形態)において、当該電気光学装置またはその周囲の温度を測定する一方、検出モードにおいては、複数の温度の各々のもとで検出用配線に流れる電流に応じた補正データをデータ線ごとに各温度と対応付けて記憶手段に書き込み、駆動モードにおいては、記憶手段に記憶された複数の補正データのうち測定した温度に応じた補正データを取得し、この取得した補正データに基づいてデータ信号を補正する。この態様によれば、電気光学装置が使用される環境の温度に拘わらず適切な補正を実現して良好な表示品位が維持される。
<A:第1実施形態>
図1は、本発明の第1実施形態に係る電気光学装置の構成を示すブロック図である。同図においては、電気光学装置1を検査するための検査装置60が併せて図示されている。図1に示されるように、電気光学装置1は、電気光学パネルAAと走査線駆動回路100とデータ線駆動回路200とを備える。電気光学パネルAAには画素領域Aが形成される。この画素領域Aには、X方向(行方向)に延在するm本の走査線101と、各走査線101に対をなしてX方向に延在するm本の発光制御線102とが形成される(mは自然数)。また、画素領域Aには、X方向と直交するY方向(列方向)に延在するn本のデータ線103が形成される(nは自然数)。そして、走査線101および発光制御線102の対とデータ線103との各交差に対応して画素回路400が配置される。したがって、これらの画素回路400は、画素領域A内においてX方向およびY方向にわたってマトリクス状に配列する。各画素回路400は電流駆動型の自発光素子たるOLED素子420を含む。
走査線駆動回路100およびデータ線駆動回路200は、電気光学パネルAAにCOG(Chip On Glass)技術によって実装されたICチップである。このうち走査線駆動回路100は、m本の走査線101の各々を順次に選択する回路である。より具体的には、走査線駆動回路100は、水平走査期間ごとに順番にアクティブレベル(Hレベル)となる走査信号Ya1、Ya2、…、Yamを各走査線101に対して出力するとともに、これらの論理レベルを反転した発光制御信号Yb1、Yb2、…、Ybmを各発光制御線102に出力する。走査信号Yai(iは1≦i≦mを満たす整数)がアクティブレベルになると第i行が選択されたことを意味する。
一方、データ線駆動回路200は、走査線駆動回路100が選択した走査線101に接続された各画素回路400に対してデータ信号X1、X2、…、Xnを供給する。データ信号Xj(jは1≦j≦nを満たす整数)は第j列目の画素回路400の輝度(階調)を指定する電流信号である。なお、走査線駆動回路100やデータ線駆動回路200が電気光学パネルAAの外部(例えば電気光学パネルAAに実装された配線基板上)に実装された構成としてもよい。
次に、図2を参照して画素回路400の構成を説明する。同図においては、第i行目に属する第j列目のひとつの画素回路400のみが図示されているが、その他の画素回路400も同様の構成である。本実施形態における画素回路400は、データ信号Xjの電流値に応じてOLED素子420の輝度(階調)が制御される電流駆動型(いわゆる電流プログラミング方式)の回路である。
図2に示されるように、画素回路400は、4個のトランジスタ(例えば薄膜トランジスタ)Tr1ないしTr4と、キャパシタCと、OLED素子420とを有する。トランジスタTr1の導電型はpチャネル型であり、トランジスタTr2ないしTr4の導電型はnチャネル型である。このうちトランジスタTr1のソース電極は電源の高位側電位(以下「電源電位」という)Vddが供給される電源線に接続され、そのドレイン電極は、トランジスタTr2のソース電極と、トランジスタTr3のドレイン電極と、トランジスタTr4のドレイン電極とに接続される。
キャパシタCは、一端がトランジスタTr1のソース電極に接続されるとともに、他端がトランジスタTr1のゲート電極とトランジスタTr2のドレイン電極とに接続される。トランジスタTr3は、そのゲート電極がトランジスタTr2のゲート電極とともに走査線101に接続され、そのソース電極はデータ線103に接続される。一方、トランジスタTr4のゲート電極は発光制御線102に接続され、そのソース電極はOLED素子420の陽極に接続される。OLED素子420の陰極は電源の低位側電位(以下「接地電位」という)Gndが供給される接地線に接続される。
各垂直走査期間のうち第i番目の水平走査期間にて走査信号Yaiがアクティブレベルになると、トランジスタTr2がオン状態となってトランジスタTr1がダイオード接続されるとともにトランジスタTr3もオン状態となる。したがって、データ信号Xjに応じた電流が、電源線→トランジスタTr1→トランジスタTr3→データ線103という経路で流れ、このときにトランジスタTr1のゲート電極の電位に応じた電荷がキャパシタCに蓄積される。
次いで、第i番目の水平走査期間が終了して走査信号Yaiが非アクティブレベル(Lレベル)になると、トランジスタTr2およびTr3はともにオフ状態となる。このとき、トランジスタTr1のゲート・ソース間の電圧はその直前の水平走査期間における電圧に保持される。そして、発光制御信号Ybiがアクティブレベルに遷移すると、トランジスタTr4がオン状態となり、トランジスタTr1のソース・ドレイン間にはそのゲート電圧に応じた電流(すなわちデータ信号Xjに応じた電流)が電源線から流れ込み、この電流の供給によってOLED素子420が発光する。
ところで、以上に説明した電気光学装置1においては、各データ線103において電流がリークする可能性がある。このリークの原因のひとつとして、データ線103に接続された何らかの回路の不具合が考えられる。例えば、図3には、各画素回路400を静電気から保護するための回路(以下「静電保護回路」という)がデータ線103やデータ線駆動回路200の出力端子Toutに接続された構成が例示されている。データ線103に接続された静電保護回路351および出力端子Toutに接続された静電保護回路352の各々は、陰極が電源線に接続されたダイオードD1と、陽極が接地線に接続されたダイオードD2とを直列に接続した構成となっている。ダイオードD1の陽極とダイオードD2の陰極とはデータ線103または出力端子Toutに対して共通に接続される。
この種の静電保護回路35に欠陥があると、データ線103や出力端子ToutからダイオードD1およびD2を介して電流(逆方向の電流)がリークする場合がある。なお、実際には、静電保護回路351および352の各々におけるダイオードD1およびD2はMOS型のトランジスタによっても構成される。この場合には、トランジスタがオフ状態にあるときのリーク電流やドレイン電極に流れるリーク電流がデータ線103における電流のリークとなり得る。また、データ線103におけるリークの原因としては、この他にも、データ線103に接続された各種のトランジスタにおけるリークやデータ線103と交差するように形成された各電源線におけるリークが考えられる。
このようにデータ線103において電流がリークすると、所期の電流値のデータ信号Xjを画素回路400に供給することができないため、各画素回路400のOLED素子420を所期の階調にて発光させることができず、画素領域AにY方向の表示ムラが発生するという問題がある。そこで、本実施形態におけるデータ線駆動回路200は、データ信号Xjを各データ線103から画素回路400に供給して画素領域Aに画像を表示させる電気光学装置1の本来的な動作モード(以下「駆動モード」という)のほか、各データ線103における電流のリークを検出するための動作モード(以下「検出モード」という)にて動作するようになっている。駆動モードにおいては、検出モードにて検出されたリーク電流に応じてデータ信号Xjが補正される。
図4は、データ線駆動回路200の具体的な構成を示すブロック図である。同図に示されるように、データ線駆動回路200は、外部の制御装置(例えば電気光学装置1が搭載される電子機器のCPU)から各種の信号が入力される複数の入力端子Tinと、電源電位Vddおよび接地電位Gndがそれぞれ電源回路(図示略)から供給される電源端子Tp1およびTp2と、データ線103の総本数に相当するn個の出力端子Toutと、電気光学装置1の検査に利用される接続端子Td1ないしTd3とを有する。図1や図4に示されるように、各出力端子Toutは、これに対応するデータ線103に接続される。また、検出モードにおいては、図1に示されるように、データ線駆動回路200の接続端子Td1ないしTd3に検査装置60が接続される(検査装置60の具体的な構成については後述する)。
図4に示されるシフトレジスタ21は、データ線103の総本数に相当するnビットのシフトレジスタであり、各水平走査期間の最初に入力端子Tinを介して供給されるスタートパルスDXをドットクロックCLに同期して順次にシフトすることによりサンプリング信号S1、S2、…、Snとして出力する。これらのサンプリング信号S1、S2、…、Snは、シフトレジスタ21の後段に配置されたサンプリング回路22と、データ線駆動回路200の動作モードを切り替えるための切替部29とに対して並列に供給される。
メモリMは、接続端子Td2を介して入力される補正データDHを記憶する手段(例えば不揮発性のメモリ)である。補正データDHは、データ信号Xjを補正するためのデータであり、検査装置60によって検出された各データ線103におけるリーク電流の大小に応じて生成される。一方、入力端子Tinには画像データDが入力される。この画像データDは、各画素回路400の階調を指定する8ビットのデジタルデータである。図4に示される補正回路51は、入力端子Tinから供給される画像データDを、メモリMに記憶された補正データDHに基づいて補正して新たな画像データDnewを生成する手段である。補正回路51から出力された画像データDnewはサンプリング回路22に供給される。なお、メモリMや補正回路51の具体的な構成については後述する。
図4に示されるサンプリング回路22は、サンプリング信号Sjがアクティブレベルに遷移するタイミングにて第j列目の画素回路400の階調を指定する画像データDnewjをサンプリングして出力する。ラッチ回路23は、ある水平走査期間にてサンプリング回路22がサンプリングした1行分の画素回路400の画像データDnew(Dnew1ないしDnewn)を、次の水平走査期間の始点にて入力端子Tinから入力されるラッチパルスLPによって一斉にラッチする。信号生成回路25は、ラッチ回路23から出力された画像データDnewに基づいてデータ信号X1、X2、…、Xnを生成する回路であり、ひとつの電圧生成回路251と、データ線103の総本数に相当するn個の処理ユニット253とを有する。
図5は、信号生成回路25の具体的な構成を示す回路図である。なお、同図においては第j段目の処理ユニット253の構成のみが詳細に図示されているが、その他の処理ユニット253の構成も同様である。電圧生成回路251は、データ信号X1ないしXnの電流値の基準となる電圧Vrefを生成するための回路であり、図5に示されるように、pチャネル型のトランジスタTa1およびTa2と、nチャネル型のトランジスタTa3およびTa4とを有する。このうちトランジスタTa1のドレイン電極はそのゲート電極に接続(すなわちダイオード接続)される。トランジスタTa1とトランジスタTa2とは各々のゲート電極が接続されてカレントミラー回路を構成する。トランジスタTa1およびTa2の各々のソース電極は、電源端子Tp1から電源電位Vddが供給される電源線に接続される。
トランジスタTa3のドレイン電極はトランジスタTa1のドレイン電極に接続される。また、トランジスタTa3のソース電極は、電源端子Tp2から接地電位Gndが供給される接地線に接続される。このトランジスタTa3のゲート電極には入力端子Tinから制御信号Vcが印加される。一方、トランジスタTa4は、ドレイン電極がトランジスタTa2のドレイン電極に接続されるとともにソース電極が接地線に接続される。また、トランジスタTa4のゲート電極は、そのドレイン電極とともにゲート線255に接続される。以上の構成において、トランジスタTa1とトランジスタTa2とはカレントミラー回路を構成しているから、制御信号Vcの電圧値に応じた電流Irefが電源線からトランジスタTa1およびTa3を経由して接地線に流れると、トランジスタTa2およびTa4にもこれに等しい電流Irefが流れる。このときゲート線255は電流Irefに応じた電圧Vrefとなる。すなわち、図5の構成においては、制御信号Vcを調整することによってゲート線255の電圧Vrefを任意に制御することができる。
一方、各処理ユニット253は、画像データDnewに応じたデータ信号Xjを生成するD/A変換器であり、画像データDnewのビット数に相当する8個のトランジスタTb(Tb1ないしTb8)と、各々のドレイン電極がトランジスタTbのソース電極に接続された8個のトランジスタTc(Tc1ないしTc8)とを有する。ひとつの処理ユニット253に属するトランジスタTb1ないしTb8のドレイン電極は端子aに対して共通に接続される。また、トランジスタTb1ないしTb8の各々のゲート電極には、ラッチ回路23から出力された画像データDnewの各ビットが供給される。一方、トランジスタTc1ないしTc8の各々は、そのゲート電極がゲート線255に対して共通に接続され、ソース電極が接地線に接続される。トランジスタTc1ないしTc8の特性(特に利得係数)は、各々のゲート電極に共通の電圧Vrefが印加されたときに各トランジスタTcに流れる電流I1ないしI8の比が「I1:I2:I3:I4:I5:I6:I7:I8=1:2:4:8:16:32:64:128」となるように選定されている。すなわち、これらのトランジスタTc1ないしTc8は、各々が別個の重み値にて重み付けされた複数の電流(I1ないしI8)を生成する電流源として機能する。
以上の構成において、8個のトランジスタTb1ないしTb8のうち画像データDnewに応じたトランジスタTbが選択的にオン状態とされる。このとき、端子aが出力端子Toutを介してデータ線103に接続されているとすれば、オン状態となったトランジスタTbに対応した1以上のトランジスタTcに電流I(I1ないしI8のなかから選択された1以上の電流)が流れ、これらの電流を加算した信号がデータ信号Xjとして端子aおよび第j列目のデータ線103に流れる。
図4および図5に示されるように、信号生成回路25の後段にはスイッチ群27が配置される。このスイッチ群27は、データ線103の総本数に相当するn個のスイッチング素子271を含む。各スイッチング素子271は、出力端子Tout(さらにはデータ線103)に接続された端子cを有する。また、各スイッチング素子271は、その前段の処理ユニット253に接続された端子aのほかに端子bを有する。総てのスイッチング素子271の端子bは検出用配線30に接続される。この検出用配線30は、各データ線103における電流のリークを検出するための配線であり、その端部には接続端子(以下では特に「検出端子」という)Td1が形成されている。
一方、図4に示される切替部29には接続端子Td3からモード選択信号Smodが供給される。このモード選択信号Smodは、データ線駆動回路200の動作モードを駆動モードおよび検出モードの何れかに選定するための信号である。この切替部29は、モード選択信号Smodによって駆動モードが指定されているときにはシフトレジスタ21とスイッチ群27との電気的な接続を遮断する。一方、モード選択信号Smodによって検出モードが指定されている場合、切替部29は、シフトレジスタ21から出力されるサンプリング信号S1ないしSnを通過させてスイッチ群27のスイッチング素子271に供給する。すなわち、検出モードにおいては、シフトレジスタ21から出力されたサンプリング信号Sjが、スイッチ群27を構成する第j番目のスイッチング素子271に供給される。
各スイッチング素子271は、切替部29から供給されるサンプリング信号Sjに応じて端子aおよび端子bの何れかを選択的に端子cに接続する手段である。図6に示されるように、スイッチング素子271はトランスミッションゲートG1とトランスミッションゲートG2とを備える。この構成において、サンプリング信号Sjが非アクティブレベルであればトランスミッションゲートG1がオン状態となって端子aが端子cに接続される一方、サンプリング信号Sjがアクティブレベルを維持する期間においてはトランスミッションゲートG2がオン状態となって端子bが端子cに接続される。なお、スイッチング素子271の構成は図6に示したものに限られない。例えば、ゲート電極にモード選択信号Smodが供給されるトランジスタによってスイッチング素子271を構成してもよい。
以上の構成のもと、駆動モードにおいては、切替部29からの出力は常に非アクティブレベルとなるから、スイッチング素子271の端子aは端子cに接続される。したがって、各処理ユニット253から出力されたデータ信号Xjは、第j番目のスイッチング素子271の端子aおよび端子cとその後段の出力端子Toutとを介して第j列目のデータ線103に出力される。一方、検出モードにおいては、各スイッチング素子271に切替部29から供給されるサンプリング信号S1ないしSnが順番にアクティブレベルとなるから、n個のスイッチング素子271の端子cは第1番目から第n番目に向かって順番に端子bに接続される。すなわち、検出モードにおいては、n本のデータ線103の各々が第1列目から第n列目に向かって順番に検出用配線30に接続されることになる。このように、切替部29およびスイッチ群27は、データ線駆動回路200の動作モードを切り替える手段(本発明における切替手段)として機能する。
次に、図7を参照して、検出モードにてデータ線103のリークを検出する検査装置60の構成を説明する。同図に示されるように、検査装置60は、接続端子Tg1ないしTg3を有する。電気光学装置1を検査するとき、図1に示されるように、接続端子Tg1はデータ線駆動回路200の検出端子Td1に接続され、接続端子Tg2はデータ線駆動回路200の接続端子Td2に接続され、接続端子Tg3はデータ線駆動回路200の接続端子Td3に接続される。
図7に示されるように、検査装置60は、制御部61とリーク電流検出部62と電圧印加部63と補正データ生成部64とを有する。このうち制御部61は、モード選択信号Smodを生成して接続端子Tg3に出力する手段である。さらに詳述すると、制御部61は、操作子(図示略)への操作によって検出モードへの移行が指示されるとモード選択信号SmodをHレベルに遷移させる一方、駆動モードへの移行が指示されるとモード選択信号SmodをLレベルに遷移させる。
リーク電流検出部62は、データ線103における電流のリークを検出するための手段である。本実施形態におけるリーク電流検出部62は、接続端子Tg1と電圧印加部63との間に介挿された抵抗素子を有する。一方、電圧印加部63は、接続端子Tg1に対して所定の電圧(以下「検査用電圧」という)Veを印加するための手段である。検出モードにおいては各データ線103が順番(点順次)に検出用配線30に接続されるから、データ線駆動回路200の検出端子Td1と検査装置60の接続端子Tg1とが接続された状態においては、電圧印加部63によって生成された検査用電圧Veが検出用配線30を介して1本のデータ線103に印加される。何れかのデータ線103にて電流のリークが発生している場合には、この検査用電圧Veの印加によって、データ線103から検出端子Td1および接続端子Tg1を介してリーク電流検出部62の抵抗素子に電流が流れる。本実施形態においてはn本のデータ線103の各々が順番(点順次)に検出用配線30に接続されるから、リーク電流検出部62においては、n本のデータ線103の各々にて発生するリーク電流が順番に検出される。なお、検査用電圧Veは、例えば、画素回路400にデータ信号Xjを供給するときのデータ線103の電圧として設計上において想定される電圧値に設定される。あるいは、実際にデータ信号Xjが供給されたときのデータ線103の電圧値を測定し、これを検査用電圧Veとして選定してもよい。すなわち、例えば、何れかの走査線101(表示に寄与しないダミーの走査線であってもよい)に供給される走査信号Yiをリークの検査前にアクティブレベルとしたうえで特定の階調に対応する電流値のデータ信号Xjをデータ線103に試験的に供給し、このときのデータ線103の電圧値を測定する。そして、検査用電圧Veの電圧値をこの測定した電圧値に設定するのである。ただし、本発明において検査用電圧Veの設定の方法は任意である。例えば、後述する第3および第4実施形態のように、各画素回路400が表示すべき各階調や電気光学装置1が使用される環境の温度に応じて検査用電圧Veが選定される構成としてもよい。
一方、補正データ生成部64は、リーク電流検出部62にて検出されたリーク電流に応じてデータ線103ごとに補正データDHを生成する手段である。この補正データDHは、データ線駆動回路200の補正回路51が画像データDを補正するためのデータであり、各データ線103における電流のリークが補償されるように各々の数値が選定される。より具体的には、補正データ生成部64は、各データ線103にて大きいリーク電流が検出されるほど大きい数値の補正データDHを生成する。データ線103に電流のリークが発生していない場合、補正データDHが示す数値はゼロとなる。この補正データ生成部64によって生成された補正データDHは接続端子Tg2からデータ線駆動回路200の接続端子Td2に供給されてメモリMに格納される。図8は、メモリMによる記憶の内容を示す図である。同図に示されるように、メモリMは、n本の各データ線103の各々を識別する番号(例えば列番号)と各データ線103について生成された補正データDH1ないしDHnとが対応付けられたテーブルTBLaを記憶する。
次に、図9は、補正回路51の構成をメモリMとともに示すブロック図である。同図に示されるように、補正回路51はアドレスカウンタ501と加算器502とを有する。このうちアドレスカウンタ501には、ドットクロックCLとスタートパルスDXとが入力端子Tinから供給される。アドレスカウンタ501は、ドットクロックCLの立ち上がりを計数するとともにスタートパルスDXの立ち上がりのタイミングにて計数値ADをリセットするカウンタである(図10参照)。このアドレスカウンタ501による計数値ADはアドレスを指定する数値としてメモリMに供給される。メモリMは、テーブルTBLaに含まれる補正データDH1ないしDHnのうち計数値ADによって指定されるものを加算器502に出力する。したがって、各水平走査期間においては、図10に示されるように、第1列目のデータ線103に対応する補正データDH1から第n列目のデータ線103に対応する補正データDHnの各々がドットクロックCLに同期してこの順番に加算器502に供給される。
一方、図10に示されるように、加算器502には各画素の画像データD(D1、D2、…、Dn)がドットクロックCLに同期して入力される。加算器502は、この画像データD1ないしDnとメモリMから読み出された補正データDH1ないしDHnとをそれぞれ加算し、この加算値を画像データDnew1(=D1+DH1)、Dnew2(=D2+DH2)、…、Dnewn(Dn+DHn)としてサンプリング回路22に出力する。以上の構成によって生成された画像データDnewは、各データ線103における電流のリークを補償する数値となる。したがって、この画像データDnewに基づいて信号生成回路25が生成したデータ信号Xjは、第j列目のデータ線103におけるリークを経て画素回路400に入力される段階で画像データDjに応じた電流値となる。
次に、電気光学装置1を作動させる手順について説明する。
まず、接続端子Tg1ないし接続端子Tg3がデータ線駆動回路200の検出端子Td1ないしTd3にそれぞれ接触するように検査装置60が配置される。次いで、制御部61から出力されるモード選択信号Smodが、駆動モードを示すLレベルから検出モードを示すHレベルに遷移される。こうしてモード選択信号SmodがHレベルに遷移すると、n本のデータ線103の各々がドットクロックCLに同期して順番に検出用配線30に接続される。このとき、電圧印加部63によって接続端子Tg1に検査用電圧Veが印加される。この検査用電圧Veは、検出用配線30と各スイッチング素子271とを介してn本のデータ線103の各々に順番に印加される。そして、補正データ生成部64は、このときのリーク電流検出部62における抵抗素子の両端の電圧に応じてリーク電流の大きさを測定し、この測定の結果に応じた補正データDHを生成する。この補正データDHは接続端子Tg2と接続端子Td2とを介してデータ線駆動回路200に供給されてデータ線103ごとにメモリMに書き込まれる。一方、駆動モードにおいては、データ線駆動回路200に入力された画像データDがメモリMの補正データDHに基づいて補正され、この補正後の画像データDnewに応じたデータ信号Xjが信号生成回路25の各処理ユニット253によって生成されて各データ線103に出力される。
以上に説明したように、本実施形態においては、データ線駆動回路200の動作モードとして検出モードが選定されるから、データ線駆動回路200を電気光学パネルAAに実装した後の段階においても各データ線103における電流のリークが検出される。すなわち、電気光学パネルAAが完成した直後に発生した欠陥だけでなくその完成からデータ線駆動回路200が実装されるまでに発生した欠陥も検出することができる。したがって、検査の結果の有効性を向上させることができる。さらに、本実施形態においては、検出モードにおける検出の結果に基づいてデータ信号Xjが補正されるから、各データ線103にて発生する電流のリークを補償して良好な表示品位が実現される。
また、本実施形態においては、各出力端子Toutを選択的に検出用配線30に接続するための各スイッチング素子271がシフトレジスタ21からの出力信号(サンプリング信号S1ないしSn)によって制御されるから、各スイッチング素子271を制御するための信号が独立に生成される構成と比較してデータ線駆動回路200の回路規模を縮小することができる。
<B:第2実施形態>
次に、本発明の第2実施形態に係る電気光学装置1の構成を説明する。第1実施形態においては、各データ線103に対して検査装置60の電圧印加部63から検査用電圧Veを印加する構成を例示した。これに対し、本実施形態に係る電気光学装置1においては、電源端子Tp1からデータ線駆動回路200に供給される電源電位Vddに応じた電圧が検出モードにおいて各データ線103に印加される構成となっている。なお、本実施形態のうち第1実施形態と同様の要素については共通の符号を付してその説明を適宜に省略する。
図11は、本実施形態における信号生成回路25およびスイッチ群27の構成を示す回路図である。同図に示されるように、信号生成回路25を構成する電圧生成回路251および各処理ユニット253の構成は第1実施形態と同様である。一方、電圧生成回路251を構成するトランジスタTa3のゲート電極はスイッチング素子257に接続される。スイッチング素子257の動作はモード選択信号Smodに応じて制御される。さらに詳述すると、スイッチング素子257は、モード選択信号Smodによって駆動モードが指定されているときにはトランジスタTa3のゲート電極を制御信号Vcの入力端子Tinに接続し、検出モードが指定されているときにはトランジスタTa3のゲート電極を接地線に接続する。
また、電圧生成回路251の後段にはスイッチング素子258が設けられる。スイッチング素子257および258は、例えば図6に示したスイッチング素子271と同様の構成である。スイッチング素子258の動作はスイッチング素子257と同様にモード選択信号Smodに応じて制御される。すなわち、スイッチング素子258は、モード選択信号Smodによって駆動モードが指定されているときにはゲート線255をトランジスタTa4のドレイン電極に接続し、検出モードが指定されているときにはゲート線255を接地線に接続する。
以上の構成において、駆動モードにおいては電圧生成回路251に制御信号Vcが供給されるとともにゲート線255が電圧生成回路251に接続されるから、各処理ユニット253は画像データDnewに応じたデータ信号Xjを生成する。一方、検出モードにおいては電圧生成回路251への制御信号Vcの供給が停止されてトランジスタTa3はオフ状態となり、さらにゲート線255の電圧は各トランジスタTc(Tc1ないしTc8)をオフ状態とするレベルに低下するから、電圧生成回路251が電圧Vrefを生成する動作や各処理ユニット253がデータ信号Xjを生成する動作は停止する。このように、スイッチング素子257および258は、検出モードにおいて信号生成回路25の動作を停止させるための手段として機能する。
また、図11に示されるように、本実施形態においては、各データ線103における電流のリークを検出するためのリーク電流検出部38とその検出の結果に応じて補正データDHを生成する補正データ生成部39とがデータ線駆動回路200に設置されている。同図に示されるように、リーク電流検出部38は、電源端子Tp1から電源電位Vddが供給される電源線と、各スイッチング素子271の端子bに接続された検出用配線30との間に介挿される。リーク電流検出部38は、第1実施形態のリーク電流検出部62と同様に抵抗素子を有する。一方、補正データ生成部39は、第1実施形態の補正データ生成部64と同様の手順にて補正データDHを生成してメモリMに出力する。
この構成において、モード選択信号Smodによって検出モードへの移行が指示されると、n本のデータ線103の各々が順番に電源線に接続される。したがって、これらのデータ線103には順次に電源電位Vddが供給される。そして、このときの各データ線103におけるリーク電流に応じて補正データDH(DH1、DH2、…、DHn)が生成されてメモリMに格納される。以後の手順は第1実施形態と同様である。なお、ここでは電源電位Vddがデータ線103に供給される構成を例示したが、これ以外の電位がデータ線103に供給される構成としてもよい。例えば、電源端子Tp1から供給される電源電位Vddを変圧した電位を検出用配線30から各データ線103に印加する構成も採用される。
以上に説明したように、本実施形態においては、データ線駆動回路200にて利用される電源電位Vddがリーク電流の測定のために共用されるようになっている。このような構成において、検出モードが選択されているときに信号生成回路25が駆動モードと同様に動作してこれに応じた電流が電源線に流れるとすれば、検出モードにて検出用配線30に流れる電流は、実際にデータ線103に発生しているリーク電流とは相違することになる。したがって、この場合にはデータ線103に発生しているリーク電流を正確に測定することができない。これに対し、本実施形態においては、検出モードが選択されているときに信号生成回路25の動作が停止するから、検出用配線30に流れる電流が信号生成回路25の動作の影響を受けることは回避される。このように、本実施形態によれば、データ線103におけるリークに起因した電流以外の電流の影響を排除することができるから、各データ線103におけるリークの有無やその電流の大きさを高い精度にて特定することができる。また、検出モードが選択されているときに信号生成回路25の動作は停止するから、検出モードにおいては、電源端子Tp1に供給される電源電位Vddの変動(特に信号生成回路25における電力の消費に伴なう電源電位Vddの低下)は防止される。すなわち、検出モードにおいて各データ線103に所期の電源電位Vddを精度よく供給することができるから、検出モードにおいても信号生成回路25を動作させる構成(この構成においては信号生成回路25の動作に起因して電源電位Vddが変動する)と比較して、各データ線103におけるリークの有無やその電流の大きさを高い精度にて特定することができる。
なお、本実施形態においては、リーク電流検出部38がデータ線駆動回路200の内部に配置された構成を例示したが、図12に示されるように、このリーク電流検出部38をデータ線駆動回路200に搭載せず、第1実施形態に示したように検査装置60のリーク電流検出部62によってデータ線103における電流のリークを検出する構成としてもよい。
また、本実施形態においては、スイッチング素子271の端子cが択一的に端子aまたは端子bに接続される構成を例示したが、図13に示されるように、出力端子Toutが動作モードに拘わらず処理ユニット253に接続され、かつ、検出モードが選択された場合に限って出力端子Toutがスイッチング素子271を介して検出用配線30に接続される構成としてもよい。ただし、このようにデータ船103が常に処理ユニット253に接続された構成においては、検出モードにおいてもトランジスタTb(Tb1ないしTb8)やトランジスタTc(Tc1ないしTc8)に電流が流れる可能性がある。したがって、トランジスタTa3のゲート電極をスイッチング素子257によって接地線に接続したとしても、これらの電流(すなわちデータ線130におけるリーク電流以外の電流)が検出用配線30に流れ、これがデータ線103におけるリーク電流の測定の精度を低下させる原因となりかねない。しかしながら、本実施形態のように、検出モードにおいてゲート線255がスイッチング素子258を介して接地線に接続される構成によれば、各トランジスタTcを確実にオフ状態に維持することができるから、処理ユニット253に流れる電流を確実に停止させ、データ線103におけるリークの有無やその電流の大きさを高い精度にて特定することができる。なお、各トランジスタTcがpチャネル型のトランジスタである構成においては、検出モードが選択されたときにゲート線255を電源電位Vddが印加される電源線に接続する構成とすればよい。
<C:第3実施形態>
次に、本発明の第3実施形態について説明する。第1および第2実施形態においては、各データ線103ごとにひとつの補正データDHがメモリMに格納される構成を例示した。しかしながら、データ線103において電流がリークする程度はそのデータ線103に印加される電圧に応じて変動する。一方、駆動モードにおける各データ線103の電圧は、そのデータ線103の電流値(すなわち各画素の階調)に応じて変化する。したがって、第1および第2実施形態のようにデータ線103ごとにひとつの補正データDHに基づいてデータ信号Xjが補正される構成においては、各画素の階調に応じてデータ線103の電圧が変動したときにそのデータ線103における電流のリークを完全には補償しきれない場合が生じ得る。そこで、本実施形態においては、複数の階調の各々についてデータ線103ごとに補正データDHが生成され、このうち駆動モードにおいて実際に指定された階調に応じた補正データDHに基づいてデータ信号Xjが補正されるようになっている。なお、本実施形態のうち第1実施形態と同様の要素については共通の符号を付してその説明を適宜に省略する。また、以下では第1実施形態を基礎とした構成を例示するが、第2実施形態に対しても同様の構成が採用される。
図14は、本実施形態におけるデータ線駆動回路200のうち補正回路52の構成を示すブロック図である。同図に示されるように、この補正回路52は、図9に示した第1実施形態の要素のほかに階調判定部504と補間部505とを有する。このうち階調判定部504には入力端子Tinから入力された画像データDが供給される。この階調判定部504は、画像データDによって指定される階調が、最低の階調「0」から最高の階調「63」までの範囲を区分した複数の範囲(以下「階調範囲」という)の何れに含まれるかを判定する手段である。各階調範囲は予め定められた複数の階調(以下「代表階調」という)を境界として区分される。すなわち、第1の階調範囲は、最低の階調である代表階調「0」から中間調である代表階調「32」までの範囲であり、第2の階調範囲は、代表階調「32」から最高の階調「63」までの範囲である。一方、補間部505は、実際に画像データDによって指定された階調に対応する補正データDHnewを補正データDHの補間によって算定する手段である(詳細は後述する)。
本実施形態の検出モードにおいては、検査装置60の電圧印加部63から検出用配線30に印加される電圧が代表階調に応じて変動する。すなわち、検査用電圧Veのレベルを代表階調の各々に対応するレベルとして3回にわたるリーク電流の検出が実施され、その各回においてデータ線103ごとに補正データDHが生成される。さらに詳述すると、本実施形態における検出モードにおいて、電圧印加部63は、代表階調「0」に対応したデータ信号Xjが供給されるときのデータ線103の電圧Ve1を検査用電圧Veとして検出用配線30から各データ線103に印加し、このときのリーク電流検出部62における検出の結果に応じて補正データ生成部64がデータ線103ごとに補正データDH[L](DH[L]1、DH[L]2、…、DH[L]n)を生成する。次いで、代表階調「32」に対応したデータ信号Xjが供給されるときのデータ線103の電圧Ve2が検査用電圧Veとして各データ線103に印加され、このときのリーク電流に応じた補正データDH[M](DH[M]1、DH[M]2、…、DH[M]n)が補正データ生成部64によって生成される。さらに、代表階調「63」に対応したデータ信号Xjが供給されるときのデータ線103の電圧Ve3が各データ線103に印加され、このときのリーク電流に応じた補正データDH[H](DH[H]1、DH[H]2、…、DH[H]n)が生成される。なお、電圧Ve1ないしVe3は、例えばリーク電流の検出に先立って電気光学装置1に各代表階調を表示させ、このときの各データ線103の電圧を測定することによって求められる。
以上の手順によって各代表階調の各々についてデータ線103ごとに生成された補正データDHは補正データ生成部64からデータ線駆動回路200に出力されたうえでメモリMに格納される。図15は、このテーブルTBLbの内容を示す図である。同図に示されるように、テーブルTBLbにおいては、複数の代表階調の各々とその代表階調について生成されたデータ線103ごとの補正データDHとが対応付けられる。
以上の構成において、階調判定部504は、画像データDによって指定される階調Gが第1の階調範囲(0≦G<32)と第2の階調範囲(32≦G≦64)の何れに含まれるのかを判定してその結果をメモリMに出力する。メモリMは、アドレスカウンタ501によって指定されるデータ線103(ここでは第j列目のデータ線103とする)に対応した3種類の補正データDH[L]j、DH[M]j、およびDH[H]jのうち階調判定部504による判定の結果に応じて2つの補正データDHを選択して補間部505に出力する。例えば、画像データDによって指定される階調が第1の階調範囲に含まれると判定された場合には、代表階調「0」に対応する補正データDH[L]jと代表階調「32」に対応する補正データDH[M]jとが選択されてメモリMから補間部505に出力される。また、画像データDによって指定される階調が第2の階調範囲に含まれると判定された場合には、代表階調「32」に対応する補正データDH[M]jと代表階調「63」に対応する補正データDH[H]jが選択されて補間部505に出力される。
一方、補間部505は、メモリMから供給される2つの補正データDHに基づいて画像データDに応じた新たな補正データDHnewを生成する。本実施形態における補間部505は、メモリMから読み出された2つの補正データDHを補間することによって、各代表階調の間の階調Gに対応した補正データDHnewを生成する。ただし、画像データDによって指定される階調Gが代表階調である場合には、その代表階調に対応する補正データDHをそのまま(すなわち補間を実施することなく)補正データDHnewとして出力する。そして、加算器502は、この補間部505から出力された補正データDHnewと画像データDとを加算して新たな画像データDnewを生成する。以後の動作は第1実施形態と同様である。
以上のように、本実施形態においては、各画素の階調に応じた補正データDHnewに基づいて画像データDを補正することにより、その階調に応じたデータ線103のリーク電流の変動を補償することができるから、画像データDによって指定される階調の如何に拘わらずリーク電流の影響を低減して良好な表示品位が実現される。
<D:第4実施形態>
次に、本発明の第4実施形態について説明する。第3実施形態においては、複数の代表階調に対応した補正データDHをデータ線103ごとにメモリMに格納することにより、階調に応じたデータ線103の電圧の変動を補償する構成を例示した。しかしながら、データ線103において電流がリークする程度は電気光学装置1が使用される環境の温度によっても変動する。そこで、本実施形態においては、第3実施形態の構成に加えて、複数の温度の各々について補正データDHが生成され、これらのうち電気光学装置1やその周囲の温度に応じた補正データDHに基づいてデータ信号Xjが補正されるようになっている。なお、本実施形態のうち第1実施形態ないし第3実施形態と同様の要素については共通の符号を付してその説明を適宜に省略する。また、以下では第3実施形態を基礎とした構成を例示するが、第1および第2実施形態に対しても同様の構成が採用される。
図16は、本実施形態におけるデータ線駆動回路200のうち補正回路53の構成を示すブロック図である。同図に示されるように、この補正回路53は、図14に示した第3実施形態の要素のほかに温度判定部507を有する。この温度判定部507には温度センサ55が接続される。温度センサ55は、電気光学装置1(特にデータ線103に近い部位)やその周辺の温度(以下ではこれらを総称して「使用温度」という)を測定してその結果を示す信号Stを出力する手段である。この信号Stは温度判定部507および補間部505に出力される。
温度判定部507は、温度センサ55によって検出された温度が、予め定められた複数の範囲(以下「温度範囲」という)のうちの何れに属するかを判定する手段である。各温度範囲は予め定められた複数の温度(以下「代表温度」という)を境界として区分される。すなわち、第1の温度範囲は、代表温度TLからこれよりも高い代表温度TMまでの範囲であり、第2の温度範囲は、代表温度TMからこれよりも高い代表温度THまでの範囲である。温度判定部507は、信号Stによって示される温度Tが第1の温度範囲と第2の温度範囲との何れに含まれるのかを判定してその結果をメモリMに出力する。
本実施形態の検出モードにおいては、3種類の代表温度の各々のもとでリーク電流の検出が実施され、その各回において第3実施形態と同様の手順によって代表階調ごとの補正データDHが生成される。ここで生成された補正データDHはデータ線駆動回路200のメモリMに格納される。図17は、本実施形態におけるメモリMの記憶内容を示す図である。同図に示されるように、メモリMは、各々が異なる代表温度に対応した3つのテーブルTBLc(TBLc1ないしTBLc3)を記憶する。すなわち、テーブルTBLc1は、電気光学装置1が代表温度TLの環境に設置された状態において第3実施形態のテーブルTBLbと同様にして生成されたテーブルである。同様に、図17に示されるテーブルTBLc2は代表温度TMのもとで生成され、テーブルTBLc3は代表温度THのもとで生成されたものである。
さらに、本実施形態におけるメモリMは、温度判定部507および階調判定部504の各々による判定の結果とアドレスカウンタ501から出力される計数値ADとに基づいて4種類の補正データDHを選択して補間部505に出力する。すなわち、第1に、温度判定部507による判定の結果に応じてテーブルTBLc1ないしTBLc3のなかから2つのテーブルTBLcが選択される。例えば、温度センサ55によって検出された温度Tが第1の温度範囲(TL≦T<TM)に含まれる場合にはテーブルTBLc1とテーブルTBLc2とが選択される一方、温度Tが第2の温度範囲(TM≦T≦TH)に含まれる場合にはテーブルTBLc2とテーブルTBLc3とが選択される。第2に、ここで選択したテーブルTBLcの各々について、第3実施形態と同様の手順によって、階調判定部504による判定の結果と計数値ADとに応じた2つの補正データDH(したがって合計4つの補正データDH)が選択されて補間部505に出力される。
一方、補間部505は、メモリMから供給される4つの補正データDHに基づいて新たな補正データDHnewを生成する。すなわち、各テーブルTBLcから検索された2つの補正データDHを補間することによって各代表階調の間の階調Gに対応した補正データDH’をテーブルTBLcごとに生成するとともに、各テーブルTBLcに対応する2つの補正データDH’を補間することによって各代表温度の間の温度T(すなわち温度センサ55によって測定された使用温度)に対応した補正データDHnewを生成する。そして、加算器502は、この補間部505から出力された補正データDHnewと画像データDとを加算することによって新たな画像データDnewを生成する。以後の動作は第1実施形態と同様である。
以上のように、本実施形態においては、電気光学装置1の使用温度に応じた補正データDHnewに基づいて画像データDを補正することにより、その使用温度に応じたデータ線103のリーク電流の変動を補償することができるから、使用温度に拘わらずリーク電流の影響を低減して良好な表示品位が実現される。
<E:変形例>
各実施形態に対しては種々の変形が加えられる。具体的な変形の態様を挙げれば以下の通りである。なお、以下の各態様を適宜に組み合わせた構成も採用される。
(1)各実施形態においてはデータ線駆動回路200にメモリMが内蔵された構成を例示したが、このメモリMがデータ線駆動回路200の外部に配置された構成も採用される。また、メモリMは、EEPROMなどの書き換え可能なメモリであってもよいしROMなどの書き換え不能なメモリであってもよい。書き換え不能なメモリを採用した場合には、電気光学装置1の出荷前においてリーク電流の検出が実施されてその結果に応じた補正データDHがメモリMに格納されることになる。一方、書き換え可能なメモリを採用した場合には、電気光学装置1の出荷前に限らず、通常の使用状態においても適宜なタイミング(例えば電気光学装置1の電源が投入されたタイミング)においてリーク電流の検出が実施されてその結果に応じた補正データDHをメモリMに書き込むことができる。したがって、電気光学装置1の特性が経年変化した場合であっても(第4実施形態においては電気光学装置1の使用温度が変化した場合であっても)、その変化後の特性に適応したリークの補償が実現される。
(2)各実施形態においては、補正データDH(あるいは補正データDHnew)に基づいて画像データDが補正される構成を例示したが、この構成に代えて、信号生成回路25によって生成されたデータ信号X1ないしXnが補正データDHに基づいて補正される構成も採用される。例えば、各データ線103ごとの補正データDHに応じた電流を生成する回路(D/A変換器)を各処理ユニット253の後段に配置し、この回路が生成した電流とその前段の処理ユニット253から出力されるデータ信号Xjとを加算したうえで各データ線103に出力する構成としてもよい。この構成においても、各実施形態と同様に、各データ線103に供給されるデータ信号Xjは、そのデータ線103における電流のリークを補償し得る電流値に補正されることになる。このように、本発明においては、最終的にデータ線103に供給されるデータ信号Xjが補正データDHに応じて補正されたものとなっていれば足り、補正データDHに基づく補正が実行されるタイミングの如何は不問である。
(3)各実施形態においては、シフトレジスタ21から出力されるサンプリング信号S1ないしSnによってスイッチング素子271が制御される構成を例示したが、データ信号Xjを生成するための要素(例えばシフトレジスタ21)とは別個の要素によってスイッチング素子271が制御される構成も採用される。例えば、出力端子Toutの総数に相当するn系統のモード選択信号Smodをデータ線駆動回路200に供給し、その各々によって各スイッチング素子271の開閉を制御してもよい。
(4)第3実施形態においては画像データDによって指定され得る階調の範囲を2つの階調範囲に区分した場合(すなわち代表階調が3種類である場合)を例示したが、この階調範囲の総数は任意である。例えば、画像データDによって指定され得る総ての階調についてデータ線103ごとの補正データDHを生成してもよい。この場合には、補間部505による補正データDHの補間は不要である。同様に、第4実施形態における温度範囲の総数も任意に変更される。例えば、温度センサ55によって測定され得る総ての温度についてデータ線103ごとの補正データDHを生成する構成としてもよい。また、第4実施形態においては、階調および温度の双方に応じたリーク電流の変動を補償する構成を例示したが、温度に応じたリーク電流の変動のみを補償する構成も採用される。
(5)各実施形態においては、OLED素子420を駆動するためのスイッチング素子(図2におけるトランジスタTr1ないしTr4)を備えたアクティブマトリクス方式の電気光学装置を例示したが、画素回路400がこれらのスイッチング素子を持たないパッシブマトリクス方式の電気光学装置にも本発明は適用される。
(6)各実施形態においては電流駆動型の自発光素子たるOLED素子420を利用した電気光学装置1を例示したが、これ以外の電流駆動型の電気光学素子や電圧駆動型の電気光学素子を利用した電気光学装置にも本発明は適用される。例えば、液晶表示装置、無機EL素子を利用した表示装置、電界放出ディスプレイ(FED:Field Emission Display)、表面導電型電子放出ディスプレイ(SED:Surface-conduction Electron-emitter Display)、弾道電子放出ディスプレイ(BSD:Ballistic electron Surface emitting Display)、発光ダイオードを利用した表示装置、あるいは光書込み型のプリンタや電子複写機の書き込みヘッドといった各種の電気光学装置にも本発明は適用される。
<F:応用例>
次に、本発明に係る電気光学装置を適用した電子機器について説明する。図18は、実施形態に係る電気光学装置1を表示装置として採用したモバイル型のパーソナルコンピュータの構成を示す斜視図である。パーソナルコンピュータ2000は、表示装置としての電気光学装置1と本体部2010とを備える。本体部2010には、電源スイッチ2001およびキーボード2002が設けられている。この電気光学装置1はOLED素子420を用いるので、視野角が広く見易い画面を表示できる。
図19に、実施形態に係る電気光学装置1を適用した携帯電話機の構成を示す。携帯電話機3000は、複数の操作ボタン3001およびスクロールボタン3002、ならびに表示装置としての電気光学装置1を備える。スクロールボタン3002を操作することによって、電気光学装置1に表示される画面がスクロールされる。
図20に、実施形態に係る電気光学装置1を適用した情報携帯端末(PDA:Personal Digital Assistants)の構成を示す。情報携帯端末4000は、複数の操作ボタン4001および電源スイッチ4002、ならびに表示装置としての電気光学装置1を備える。電源スイッチ4002を操作すると、住所録やスケジュール帳といった各種の情報が電気光学装置1に表示される。
なお、本発明に係る電気光学装置が適用される電子機器としては、図18から図20に示したもののほか、デジタルスチルカメラ、テレビ、ビデオカメラ、カーナビゲーション装置、ページャ、電子手帳、電子ペーパー、電卓、ワードプロセッサ、ワークステーション、テレビ電話、POS端末、プリンタ、スキャナ、複写機、ビデオプレーヤ、タッチパネルを備えた機器等などが挙げられる。
本発明の第1実施形態に係る電気光学装置の構成を示すブロック図である。 ひとつの画素回路の構成を示す回路図である。 データ線において電流がリークする原因のひとつを説明するための図である。 データ線駆動回路の構成を示すブロック図である。 データ線駆動回路における信号処理回路の構成を示す回路図である。 データ線駆動回路における各スイッチング素子の構成を示す回路図である。 検査装置の構成を示すブロック図である。 メモリに保持されたテーブルの内容を示す図である。 データ線駆動回路における補正回路の構成を示すブロック図である。 補正回路の動作を説明するためのタイミングチャートである。 本発明の第2実施形態に係る信号処理回路の構成を示す回路図である。 第2実施形態の他の態様に係る信号処理回路の構成を示す回路図である。 第2実施形態の他の態様に係る信号処理回路の構成を示す回路図である。 本発明の第3実施形態に係る補正回路の構成を示すブロック図である。 メモリに保持されたテーブルの内容を示す図である。 本発明の第4実施形態に係る補正回路の構成を示すブロック図である。 メモリに保持されたテーブルの内容を示す図である。 本発明を適用したパーソナルコンピュータの構成を示す斜視図である。 本発明を適用した携帯電話機の構成を示す斜視図である。 本発明を適用した携帯型情報端末の構成を示す斜視図である。
符号の説明
1…電気光学装置、AA…電気光学パネル、A…画素領域、100…走査線駆動回路、101…走査線、102…発光制御線、103…データ線、200…データ線駆動回路、21…シフトレジスタ、22…サンプリング回路、23…ラッチ回路、25…信号生成回路、251…電圧生成回路、253…処理ユニット、27…スイッチ群、271…スイッチング素子、29…切替部、30…検出用配線、400…画素回路、420…OLED素子、51,52,53…補正回路、501…アドレスカウンタ、502…加算器、504…階調判定部、505…補間部、507…温度判定部、55…温度センサ、60…検査装置、61…制御部、38,62…リーク電流検出部、63…電圧印加部、39,64…補正データ生成部、Tin…入力端子、Tp1,Tp2…電源端子、Tout…出力端子、Td1…検出端子、Td2,Td3…接続端子、Tg1,Tg2,Tg3…接続端子、M…メモリ、Smod…モード選択信号、Ve…検査用電圧。

Claims (13)

  1. 複数のデータ線の各々に画素が接続された電気光学装置を駆動する装置であって、
    各々がデータ線に接続される複数の出力端子と、
    各画素について指定された階調に応じたデータ信号をデータ線ごとに生成する信号生成回路と、
    前記信号生成回路が生成したデータ信号を前記出力端子に供給する駆動モードと前記複数の出力端子の各々を順次に検出用配線に接続する検出モードとを切り替える切替手段と、
    前記検出モードにおいて前記検出用配線に流れる電流に応じた補正データをデータ線ごとに取得し、この補正データに基づいて、前記信号生成回路が当該データ線について生成するデータ信号を補正する補正手段と
    を具備する駆動装置。
  2. 前記データ線ごとに補正データを記憶する記憶手段を具備し、
    前記補正手段は、補正データを前記記憶手段から取得する
    請求項1に記載の駆動装置。
  3. 前記信号生成回路は、各画素の階調を指定する画像データに基づいてデータ信号を生成し、
    前記補正手段は、前記補正データに基づいて画像データを補正する
    請求項1に記載の駆動装置。
  4. 前記補正手段は、前記信号生成回路から出力されたデータ信号を補正データに基づいて補正する
    請求項1に記載の駆動装置。
  5. パルス信号を順次にシフトして出力するシフトレジスタを具備し、
    前記信号生成回路は、前記シフトレジスタから出力される各パルス信号によってサンプリングされた画像データに基づいてデータ信号を生成し、
    前記切替手段は、前記検出モードにおいて、前記シフトレジスタから出力されるパルス信号に対応した出力端子を順次に前記検出用配線に接続する
    請求項1に記載の駆動装置。
  6. 複数の走査線と複数のデータ線との各交差に対応して配置された複数の画素と、
    前記各データ線を介して画素にデータ信号を出力する駆動装置とを具備し、
    前記駆動装置は、
    各々がデータ線に接続される複数の出力端子と、
    各画素について指定された階調に応じたデータ信号をデータ線ごとに生成する信号生成回路と、
    前記信号生成回路が生成したデータ信号を前記出力端子に供給する駆動モードと前記複数の出力端子の各々を順次に検出用配線に接続する検出モードとを切り替える切替手段と、
    前記検出モードにおいて前記検出用配線に流れる電流に応じた補正データをデータ線ごとに取得し、この補正データに基づいて、前記信号生成回路が当該データ線について生成するデータ信号を補正する補正手段と
    を具備する電気光学装置。
  7. 前記データ線ごとに補正データを記憶する記憶手段を具備し、
    前記補正手段は、各データ線に対応する補正データを前記記憶手段から取得する
    請求項6に記載の電気光学装置。
  8. 前記記憶手段は、複数の階調の各々について、当該階調に対応したデータ信号が前記駆動モードにて供給されたときの各データ線の電位が前記検出用配線に供給された場合に前記検出モードにて当該検出用配線から検出される電流に応じた補正データを前記各階調と対応付けて記憶し、
    前記補正手段は、前記記憶手段に記憶された複数の補正データのうち各画素について指定される階調に応じた補正データを取得し、この取得した補正データに基づいてデータ信号を補正する
    請求項7に記載の電気光学装置。
  9. 当該電気光学装置またはその周囲の温度を測定する温度測定手段を具備し、
    前記記憶手段は、複数の温度の各々のもとで前記検出モードにて前記検出用配線から検出される電流に応じた補正データを前記各温度と対応付けて記憶し、
    前記補正手段は、前記記憶手段に記憶された複数の補正データのうち前記温度測定手段による測定の結果に応じた補正データを取得し、この取得した補正データに基づいてデータ信号を補正する
    請求項7または請求項8に記載の電気光学装置。
  10. 請求項6から請求項9の何れか1項に記載の電気光学装置を具備する電子機器。
  11. 複数の走査線と複数のデータ線との各交差に対応して配列された複数の画素と、前記各データ線を介して画素にデータ信号を供給する駆動装置とを具備し、前記駆動回路が、各々がデータ線に接続される複数の出力端子と、各画素について指定された階調に応じたデータ信号を生成する信号生成回路と、検出用配線とを有する電気光学装置の駆動方法であって、
    検出モードにおいては、
    前記複数の出力端子の各々を順次に前記検出用配線に接続し、
    このときに検出用配線から検出される電流に応じた補正データをデータ線ごとに生成して記憶手段に書き込み、
    駆動モードにおいては、
    前記記憶手段に記憶された各データ線の補正データに基づいて、前記信号生成回路が当該データ線について生成するデータ信号を補正し、
    この補正後のデータ信号を前記各出力端子に供給する
    電気光学装置の駆動方法。
  12. 前記検出モードにおいては、
    複数の階調の各々について、当該階調に応じたデータ信号が前記駆動モードにて供給されたときの各データ線の電位を前記検出用配線に供給し、このときに当該検出用配線に流れる電流に応じた補正データをデータ線ごとに前記各階調と対応付けて前記記憶手段に書き込み、
    前記駆動モードにおいては、
    前記記憶手段に記憶された複数の補正データのうち各画素について指定される階調に応じた補正データを取得し、この取得した補正データに基づいてデータ信号を補正する
    請求項11に記載の電気光学装置の駆動方法。
  13. 当該電気光学装置またはその周囲の温度を測定する一方、
    前記検出モードにおいては、
    複数の温度の各々のもとで前記検出用配線に流れる電流に応じた補正データをデータ線ごとに前記各温度と対応付けて前記記憶手段に書き込み、
    前記駆動モードにおいては、
    前記記憶手段に記憶された複数の補正データのうち測定した温度に応じた補正データを取得し、この取得した補正データに基づいてデータ信号を補正する
    請求項11または請求項12に記載の電気光学装置の駆動方法。
JP2004368859A 2004-12-21 2004-12-21 電気光学装置、その駆動方法、駆動装置および電子機器 Withdrawn JP2006178030A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004368859A JP2006178030A (ja) 2004-12-21 2004-12-21 電気光学装置、その駆動方法、駆動装置および電子機器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004368859A JP2006178030A (ja) 2004-12-21 2004-12-21 電気光学装置、その駆動方法、駆動装置および電子機器

Publications (1)

Publication Number Publication Date
JP2006178030A true JP2006178030A (ja) 2006-07-06

Family

ID=36732212

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004368859A Withdrawn JP2006178030A (ja) 2004-12-21 2004-12-21 電気光学装置、その駆動方法、駆動装置および電子機器

Country Status (1)

Country Link
JP (1) JP2006178030A (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007072025A (ja) * 2005-09-06 2007-03-22 Fuji Electric Holdings Co Ltd 有機el表示装置の駆動装置
JP2009069370A (ja) * 2007-09-12 2009-04-02 Futaba Corp 表示パネルの駆動回路および表示装置
CN101676987A (zh) * 2008-09-19 2010-03-24 精工爱普生株式会社 电光装置、其驱动方法及电子设备
JPWO2008105224A1 (ja) * 2007-02-28 2010-06-03 京セラ株式会社 画像表示装置、および画像表示装置の駆動方法
JP2012014137A (ja) * 2010-06-30 2012-01-19 Samsung Mobile Display Co Ltd 有機電界発光表示装置及びその駆動方法
JP2012042913A (ja) * 2010-08-20 2012-03-01 Samsung Electro-Mechanics Co Ltd 有機発光ダイオード駆動装置

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06324348A (ja) * 1993-05-12 1994-11-25 Seiko Instr Inc 光弁装置
JPH0915645A (ja) * 1995-06-26 1997-01-17 Casio Comput Co Ltd アクティブマトリクス液晶表示素子
JPH10214065A (ja) * 1997-01-29 1998-08-11 Seiko Epson Corp アクティブマトリクス基板の検査方法,アクティブマトリクス基板,液晶装置および電子機器
JPH11167129A (ja) * 1997-09-25 1999-06-22 Samsung Electron Co Ltd 静電気保護回路を有する液晶表示装置及びこの回路を利用した表示検査方法
JP2000352706A (ja) * 1999-06-14 2000-12-19 Mitsubishi Electric Corp 液晶表示装置
JP2003157048A (ja) * 2001-11-19 2003-05-30 Matsushita Electric Ind Co Ltd アクティブマトリックス型表示装置
JP2003330419A (ja) * 2002-05-15 2003-11-19 Semiconductor Energy Lab Co Ltd 表示装置
JP2004109823A (ja) * 2002-09-20 2004-04-08 Seiko Epson Corp リーク検査装置及びリーク検査方法
JP2004145197A (ja) * 2002-10-28 2004-05-20 Mitsubishi Electric Corp 表示装置および表示パネル
JP2004151166A (ja) * 2002-10-29 2004-05-27 Canon Inc エレクトロルミネセンスパネル及び画素電流テスト方法
JP2004325886A (ja) * 2003-04-25 2004-11-18 Seiko Epson Corp 電気光学装置、電気光学装置の駆動方法および電子機器
JP2005345546A (ja) * 2004-05-31 2005-12-15 Sony Corp 表示装置及び検査方法

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06324348A (ja) * 1993-05-12 1994-11-25 Seiko Instr Inc 光弁装置
JPH0915645A (ja) * 1995-06-26 1997-01-17 Casio Comput Co Ltd アクティブマトリクス液晶表示素子
JPH10214065A (ja) * 1997-01-29 1998-08-11 Seiko Epson Corp アクティブマトリクス基板の検査方法,アクティブマトリクス基板,液晶装置および電子機器
JPH11167129A (ja) * 1997-09-25 1999-06-22 Samsung Electron Co Ltd 静電気保護回路を有する液晶表示装置及びこの回路を利用した表示検査方法
JP2000352706A (ja) * 1999-06-14 2000-12-19 Mitsubishi Electric Corp 液晶表示装置
JP2003157048A (ja) * 2001-11-19 2003-05-30 Matsushita Electric Ind Co Ltd アクティブマトリックス型表示装置
JP2003330419A (ja) * 2002-05-15 2003-11-19 Semiconductor Energy Lab Co Ltd 表示装置
JP2004109823A (ja) * 2002-09-20 2004-04-08 Seiko Epson Corp リーク検査装置及びリーク検査方法
JP2004145197A (ja) * 2002-10-28 2004-05-20 Mitsubishi Electric Corp 表示装置および表示パネル
JP2004151166A (ja) * 2002-10-29 2004-05-27 Canon Inc エレクトロルミネセンスパネル及び画素電流テスト方法
JP2004325886A (ja) * 2003-04-25 2004-11-18 Seiko Epson Corp 電気光学装置、電気光学装置の駆動方法および電子機器
JP2005345546A (ja) * 2004-05-31 2005-12-15 Sony Corp 表示装置及び検査方法

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007072025A (ja) * 2005-09-06 2007-03-22 Fuji Electric Holdings Co Ltd 有機el表示装置の駆動装置
JPWO2008105224A1 (ja) * 2007-02-28 2010-06-03 京セラ株式会社 画像表示装置、および画像表示装置の駆動方法
JP5017357B2 (ja) * 2007-02-28 2012-09-05 エルジー ディスプレイ カンパニー リミテッド 画像表示装置、および画像表示装置の駆動方法
JP2009069370A (ja) * 2007-09-12 2009-04-02 Futaba Corp 表示パネルの駆動回路および表示装置
CN101676987A (zh) * 2008-09-19 2010-03-24 精工爱普生株式会社 电光装置、其驱动方法及电子设备
JP2010072393A (ja) * 2008-09-19 2010-04-02 Seiko Epson Corp 電気光学装置、その駆動方法、および電子機器
JP2012014137A (ja) * 2010-06-30 2012-01-19 Samsung Mobile Display Co Ltd 有機電界発光表示装置及びその駆動方法
US9396685B2 (en) 2010-06-30 2016-07-19 Samsung Display Co., Ltd. Organic light emitting display device and method for driving thereof that reduces power consumption in a standby mode
JP2012042913A (ja) * 2010-08-20 2012-03-01 Samsung Electro-Mechanics Co Ltd 有機発光ダイオード駆動装置
US8471788B2 (en) 2010-08-20 2013-06-25 Samsung Electro-Mechanics Co., Ltd. Organic light emitting diode driver

Similar Documents

Publication Publication Date Title
JP4940760B2 (ja) 駆動トランジスタの特性測定方法、電気光学装置、および電子機器
US8072396B2 (en) Unit circuit, electro-optical device, and electronic apparatus
JP4882536B2 (ja) 電子回路及び電子機器
JP4033149B2 (ja) 電気光学装置、その駆動回路及び駆動方法、並びに電子機器
US8199074B2 (en) System and method for reducing mura defects
CN101261803B (zh) 有机el显示装置
US20090237390A1 (en) Display device
KR100692456B1 (ko) 구동 회로, 전기 광학 장치와 전기 광학 장치의 구동 방법및 전자 기기
JP2009063607A (ja) 電気光学装置、電気光学装置の制御方法および電子機器
TWI410923B (zh) 光電裝置、其驅動方法及電子機器
JP2006251602A (ja) 駆動回路、電気光学装置、及び電子機器
JP2007206139A (ja) 単位回路の駆動方法、発光装置およびその駆動方法、データ線駆動回路、および電子機器
JP2008165159A (ja) 電気光学装置、その駆動方法、及び電子機器
JP2009042486A (ja) エレクトロルミネッセンス表示装置
JP2005338157A (ja) 電流供給回路、電流供給装置、電圧供給回路、電圧供給装置、電気光学装置、及び電子機器
JP2007256733A (ja) 電気光学装置、その駆動方法、及び電子機器
JP2006178030A (ja) 電気光学装置、その駆動方法、駆動装置および電子機器
JP4826698B2 (ja) 電気光学装置、その駆動回路及び駆動方法、並びに電子機器
US20230368732A1 (en) Display device, operating method of display device and pixel characteristic detection method
JP2009198761A (ja) 発光装置、電子機器、およびリファレンス電圧設定方法
JP2006178029A (ja) 電気光学装置、その検査方法、駆動装置および電子機器
JP2007187779A (ja) 電子回路、電子装置、その駆動方法および電子機器
JP2012123399A (ja) 電子回路の駆動方法
JP5103737B2 (ja) 電子回路、電子装置および電子機器
JP2007011101A (ja) 電気光学装置および電子機器

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20070403

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071206

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110412

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20110610