JP2006170602A - 熱輸送装置 - Google Patents

熱輸送装置 Download PDF

Info

Publication number
JP2006170602A
JP2006170602A JP2005257114A JP2005257114A JP2006170602A JP 2006170602 A JP2006170602 A JP 2006170602A JP 2005257114 A JP2005257114 A JP 2005257114A JP 2005257114 A JP2005257114 A JP 2005257114A JP 2006170602 A JP2006170602 A JP 2006170602A
Authority
JP
Japan
Prior art keywords
wick
working fluid
container
heat transport
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005257114A
Other languages
English (en)
Inventor
Masataka Mochizuki
正孝 望月
Nuyen Tan
ニューエン タン
Eiji Takenaka
英二 竹中
Massoud Kaviany
カビアニー マスード
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Publication of JP2006170602A publication Critical patent/JP2006170602A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/04Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with tubes having a capillary structure
    • F28D15/046Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with tubes having a capillary structure characterised by the material or the construction of the capillary structure

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)

Abstract

【課題】 多孔構造のスタックもしくはコーンが設けられたウイックが、作動流体の封入されたコンテナの底部に設置された熱輸送装置の熱輸送特性を向上させる。
【解決手段】 加熱されて蒸発しかつ放熱して凝縮する凝縮性の作動流体を封入した密閉構造のコンテナ1内の底部に、全体が多孔構造をなしかつコンテナ1の底面に接触している基層7から上方に突出した凸部8を有するウイック5が配置されている熱輸送装置が、前記コンテナ1の内面に設けられた、液相の作動流体を前記ウイック5に向けて誘導する作動液誘導部9,11を備えている。
【選択図】 図1

Description

この発明は、凝縮性の流体である作動流体によって熱を輸送する熱輸送装置に関し、特に外部から熱が伝達される加熱部に対する液相作動流体の還流を、主として重力によっておこなうように構成した熱輸送装置に関するものである。
作動流体の潜熱の形で熱を輸送する熱輸送装置として、ヒートパイプが広く知られている。ヒートパイプは、気密状態に密閉されたコンテナの内部から空気などの非凝縮性のガスを排気した後、水や炭化水素などの凝縮性の流体をコンテナの内部に封入して構成されている。したがって、ヒートパイプの一部に外部から熱を伝達するとともに他の箇所を冷却すると、その熱で作動流体が蒸発し、冷却されて低温・低圧となっている箇所に向けて、その蒸気が流動する。そして、その蒸気が潜熱をコンテナの外部に放出して液化し、その結果生じた液相の作動流体が、外部から熱の伝達されるいわゆる加熱部に向けて還流する。
作動流体の蒸気は、上述したように、入熱と放熱とに起因してコンテナの内部に生じる圧力差で、放熱側に流動する。これに対して作動液を加熱部に還流させるための圧力を生じさせる必要があり、そのために一般的なヒートパイプは、毛細管圧を生じさせるように構成されている。すなわち、細い溝や多孔質体あるいはメッシュがウイックとしてコンテナの内部に配置されている。そのウイックに浸透している作動液が蒸発すると、ウイックの空隙を埋めている作動液のメニスカスが低下し、その結果、表面張力に起因する毛細管圧力が生じる。凝縮してウイックに浸透した作動液は、このようにして加熱部で生じる毛細管圧力によって加熱部側に吸引されて、蒸発の生じる加熱部に還流させられる。
また、従来、重力によって作動液を還流させる形式のヒートパイプが知られている。この種のヒートパイプは、サーモサイホンと称されることがあり、その構造は、上述したウイックを備えていないヒートパイプであり、重力の作用する箇所で使用され、重力の作用方向での下端部を加熱部とし、上端部から外部に放熱するように設置して使用される。したがって、サーモサイホンでは、外部から伝達された熱によって蒸発した作動流体が、外部への放熱によって温度および圧力の低い上端部に向けて流動し、その上端部で放熱して凝縮する。そして、その作動液は、重力によって、コンテナの下端部における加熱部に落下もしくは流下する。なお、加熱部の全体に作動液を分散させるために、サーモサイホンのコンテナの内部にウイックが設けられることもある。
また、サーモサイホンの特性を向上させるための技術が、非特許文献1に記載されている。
International Journal of Heat and Mass Transfer 44 (2001) 4287-4311
上述したようにヒートパイプは、作動流体が蒸発と凝縮とを繰り返して循環流動することにより、主に、その作動流体の潜熱として熱を輸送するから、継続して熱輸送をおこなうためには、加熱部に十分な量の作動液が存在していることが必要になる。したがってサーモサイホンでは、コンテナの下端部に作動液が溜まっている状態が必要である。そのいわゆる液溜め部が加熱部となる場合、液相作動流体のプール沸騰が生じて、作動流体が蒸気になる。また、その蒸気は、液溜め部から上方に向けて流れる。これに対して、コンテナの上部で生じた作動液が、液溜め部に向かって滴下もしくは流下するので、蒸気流と作動液流とが、互いに反対の向きに流れる対向流となる。このように従来の一般的なサーモサイホンでは、作動流体の蒸発を阻害する要因や作動流体蒸気の流動を阻害する要因が多く、熱輸送能力を増大させるために改善すべき点があった。
また、上記の非特許文献1に記載されているサーモサイホンでは、加熱部となるコンテナの下部内面に、厚さが周期的に変化する多孔質層がウイックとして設けられている。その多孔質層は、より具体的には、100μmオーダーの微粒子を焼結などの手段で結合させて構成されており、その基層は、前記微粒子を一層もしくは二層程度に並べて焼結させることにより構成され、これに対して厚さが周期的に増大している部分は、前記微粒子を十数層程度に積み上げて焼結することによりスタック(Stacks)(もしくはコーン(Cones))として構成されている。そのスタックは、上端部側で次第に細くなるテーパー状もしくはピラミッド状をなしている。
上記の基層およびスタックを一体に形成したウイックを底部に有するコンテナの内部には、脱気した状態で、適宜の凝縮性流体が作動流体として封入されている。したがって液相の作動流体は、毛細管作用によってウイックの全体に浸透しており、その状態でコンテナの底部に熱が伝達されると、その熱が、ウイックを介して作動流体に伝達され、その結果、作動流体が加熱されて蒸発する。作動流体蒸気は、コンテナの上部に向けて流動した後、コンテナに接触して熱を奪われ、その結果液化した作動流体がウイックに対して滴下し、あるいは流下する。そして、スタックの頂部に滴下した液相の作動流体は、その内部に浸透するとともに、スタックの表面側で生じる毛細管作用によってスタックの表面に液膜を形成する。
したがって凝縮して生じた作動流体の液滴が、スタックの頂部に降りかかるとともに、毛細管作用によって、基層側からスタックに向けて液相作動流体が汲み上げられる。また、コンテナの底部に伝達された熱が、基層およびスタックの底部側からスタックに伝達される。そのため、作動流体の蒸発は、主として、スタックの外周斜面のうち、基部に近い部分で生じる。そして、その蒸気は、各スタックの間の空間部分(すなわち谷部)を通って上昇流となる。
したがって、スタックにおける作動流体の蒸発は、スタックの基部の外周面に形成される作動液の薄膜から生じ、その蒸発箇所に対する作動液の供給は、多孔構造のスタックで生じる毛細管作用によっておこなわれるから、液切れ(choking of liquid flow)が生じることなく、効率よく作動流体を蒸発させることができる。また、作動流体蒸気は、スタックの間のいわゆる谷部を上昇するので、ウイックに対する作動液の還流と干渉することが少なく、その結果、作動流体の循環流動が円滑化され、サーモサイホンの熱輸送特性が向上する。
スタックをウイックに備えている上述したサーモサイホンでは、スタックの傾斜した外周面における下側の部分で作動流体の蒸発が主に生じるので、スタックの傾斜した外周面に、作動流体による薄い液膜を安定的に形成する必要がある。しかしながら、従来では、スタックに対する作動液の還流を、コンテナの上部に形成されている放熱部(凝縮部)からの自由落下やウイックで生じる毛細管作用に専ら頼るように構成されている。そのために、サーモサイホンが傾いていたり、その状態での熱流速が大きいなどの場合には、スタックに対する作動液の還流量が不足し、あるいはスタックの外周面に作動液の薄膜ができにくくなり、その結果、熱輸送性能が低下するなどの可能性があった。
この発明は、多孔構造のスタックもしくはコーンが設けられたウイックが、作動流体の封入されたコンテナの底部に設置された熱輸送装置の熱輸送特性を向上させることである。より具体的には、この発明の目的は、作動液をスタックもしくはコーンに対して集中的に還流させることである。
この発明の熱輸送装置は、加熱されて蒸発しかつ放熱して凝縮する凝縮性の作動流体を封入した密閉構造のコンテナを備えており、使用状態で下側になるコンテナの底部に、全体が多孔構造をなしかつコンテナの底面に接触している基層(Base Layer)から上方に突出したスタックもしくはコーン(これらを凸部と称する)を有するウイックが配置されている。また、コンテナは、液相の作動流体を前記凸部に向けて誘導する作動液誘導部を備えている。例えば、コンテナは、前記凸部の上方に位置する上面部を有しており、その上面部には、作動液を前記凸部に向けて誘導しかつ滴下させる、下向きに突出した突起部が設けられている。
前記凸部は、コンテナの底面の全体に分散している状態に設けてもよく、あるいはコンテナの底面のうち、入熱量が多い箇所に集中させて設けてもよい。また凸部の形状は、円柱状あるいは円錐状もしくは角錐状、ピラミッド状などの適宜の形状であってよい。
この凸部と前記基層とは、一体に形成することができ、例えば、100μmオーダーの微粒子を一層もしくは複数層に配置して結合させることにより多孔構造の基層を形成し、その基層の所定箇所に、前記微粒子を盛り上げて結合させることにより、前記凸部を形成することができる。その場合、凸部の高さは、1mmないし数mmである。
一方、前記突起部は、前記凸部の先端に対向させて設けることが好ましい。この突起部は、要は、上面部から下方向に突出していればよいが、好ましくは、作動液の滴下を容易にするために、先端部(下端部)が尖っているテーパー形状とし、あるいは針の形状とする。さらに、その先端部(下端部)は、前述した凸部の上端に接触していてもよい。
上述したように、この発明は、前記凸部に対する作動液の還流を促進することを目的の一つとしている。したがって、この発明の熱輸送装置は、前記凸部を設けてある所定の領域より外側の面、もしくは前記突起部を設けてある所定の領域より外側の面のいずれかが、凸部もしくは突起部に向けて下向きに傾斜していてもよい。その傾斜面が作動液誘導部となる。
この発明の熱輸送装置では、コンテナの底面を発熱部もしくは高温部に接触させることにより、その底面が加熱部となって動作する。すなわち、コンテナの底面側に設けられているウイックに熱が伝達され、そのウイックに浸透している作動液が蒸発する。作動液の蒸発は、主として、前記凸部の外周面の下側の部分(基層に近い部分)における液膜で生じ、したがって蒸気は、各凸部の間を上昇する。
一方、コンテナの上面側の部分が放熱部とされており、したがってコンテナの上面に接触した作動流体の蒸気が、その潜熱を放出して凝縮する。液化した作動流体の一部もしくは大半は、作動液誘導部によってウイックに向けて誘導される。例えば上面部に設けられている突起部によって下方に誘導され、突起部の先端部(下端部)から滴下される。
突起部は、ウイックにおける凸部の上側に配置されているので、突起部の先端部から滴下した作動液は、凸部の先端部に供給されることになる。そして、その作動液は、凸部に沿って流れ落ち、また凸部が多孔構造であることにより毛細管作用によって凸部およびウイックの全体に作動液が分散させられる。したがって、凸部に対する作動液の還流が充分に生じ、また蒸気流と作動液の還流とが対向流とならないので、作動流体による熱輸送が効率よくおこなわれ、熱輸送性能に優れた熱輸送装置を得ることができる。特に、凸部の周囲の面や前記突起部の周囲の面を、凸部もしくは突起部に向けた傾斜面とすれば、蒸気となって広く分散した作動流体を、凸部に向けて集中させることができるので、作動液の還流が促進され、その結果、熱輸送特性が向上する。
以下、本発明を実施した最良の形態について説明する。図1は、この発明に係る熱輸送装置の一例を示しており、この熱輸送装置は、断面が矩形の薄いコンテナ1を有している。このコンテナ1は、熱伝導性のよい銅などの金属によって構成され、面積の広い底板2と上板3とを高さの低い側板部4で連結した密閉構造である。その底板2の内面中央部に、多孔構造のウイック5が設けられている。
そのウイック5の構造を図2に拡大して示してあり、このウイック5は、微粒子6を結合して所定の形状に形成されている。その微粒子6は、後述する作動流体の濡れ性が良好であり、また作動流体と反応しない物質から構成されており、例えば粒径が100μmオーダー(一例として200μm程度)の銅粒子である。これらの微粒子6を、焼結などの手段で結合させることにより、ウイック5が形成されている。
また、ウイック5の厚さは一定でなく、上面側が凹凸になっている。具体的に説明すると、上記の微粒子6を一層もしくは複数層に並べて結合させることにより、ほぼ平坦な基層7が形成されている。その基層7が前記底板2の内面(図1での上面)に密着している。例えば焼結によって一体化されている。その基層7の所定箇所で、前記微粒子6が積み上げられかつ互いに結合されている。したがってこの部分でウイック5の厚さが厚くなっている。このように微粒子6を積み上げて高くした部分がこの発明における凸部8に相当する部分であって、スタックもしくはコーンと称することができる。なお、凸部8は、円柱状、円錐状、角錐状などの適宜の形状であってよく、円錐状とした場合には、一例として高さを1.8mm程度、基部の外径を0.8mm程度とすることができる。また、凸部8は、不規則の間隔で設けてもよく、あるいは一定間隔に設けてもよい。
図1に示す例では、上記のウイック5が、底板2の内面中央部にのみ設けられており、そのウイック5より外周側の面は、ウイック5に向けて下向きに傾斜した傾斜面11とされている。この傾斜面11は、底板2自体の厚さを変化させることにより形成してもよく、あるいは上面がそのような傾斜面となった板材をコンテナ1の内部に配置することにより形成してもよい。
一方、上板3の内面中央部、すなわち上記の凸部8の上側の部分には、凸部8に向けて突出した複数の突起部10が設けられている。この突起部10は、後述する作動液を、前記凸部8に向けて落下もしくは滴下させるためのものであって、上板3の内面(図1で下面)から垂下した状態に設けられている。この突起部10の形状は、下向きに尖ったテーパー形状、円柱形状などの適宜の形状であってよいが、先端部(下端部)が尖った形状であれば、作動液が落下しやすくなる。そして、この突起部10は、好ましくは、上述した凸部8に対向した位置に設けられている。
上記の突起部10を、底板2側の凸部8に対応させて設けると、突起部10を上板3の内面(下面)中央部に設けることになる。図1にはその状態を示してある。このような構成の場合、突起部10を設けてある所定の範囲より外側の面は、図1に示すように、突起部10を設けている領域に向けて下向きに傾斜する傾斜面9とすることが好ましい。この傾斜面9は、上板3の厚さを変化させることにより形成してもよく、あるいは下面がそのような傾斜面となった板材をコンテナ1の内部に配置することにより形成してもよい。
上記のウイック5を設けたコンテナ1の内部には、脱気した状態で作動流体12が封入されている。作動流体12は、蒸発と凝縮とを繰り返して循環流動することにより、その潜熱の形で熱を輸送する流体であり、水やペンタン、アルコールなどの凝縮性の流体が採用される。
上記の熱輸送装置は、底板2が加熱部(もしくは入熱部)とされ、また上板3が凝縮部(もしくは放熱部)とされる。例えば電子素子13の冷却に使用される場合には、底板2の下面中央部に電子素子13が熱伝達可能に接触させられる。また上板3の上面(外面)が強制空冷され、あるいはヒートシンク(図示せず)が取り付けられて積極的に放熱させられる。
作動流体12は、重力の作用によってコンテナ1の底部に移動しているが、コンテナ1の底部に上述した傾斜面11が形成されているので、作動液は、ウイック5に向けて流れ、ウイック5に浸透している。ウイック5は、その全体が微粒子6を焼結させた多孔構造であるから、その表面側で毛細管圧力が生じており、それに伴って前記凸部8の外周面には、作動液の薄い液膜が形成されている。
電子素子13で生じた熱は、底板2およびウイック5を介して作動液に伝達され、作動液が加熱されるので、前記凸部8の外周面、特にその基端部の外周面で作動流体12の蒸発が生じる。その場合、作動流体は薄い液膜の状態から蒸発するので、作動流体に対する熱の伝達および蒸発が効率よくおこなわれる。そして、作動流体の蒸気は、各凸部8の間に空間部分(いわゆる谷の部分)を通って上方に流動する。これに対して凸部8の外表面への作動液の拡散は、その頂部からの流下や毛細管作用によっておこなわれるので、蒸気流と作動液の液流とが直接、対向することがない。その結果、蒸気流に対する抵抗および還流する作動液の流動に対する抵抗が少なくなるため、熱輸送能力や熱輸送効率が向上する。
上板3に達した作動流体蒸気は、上板3が放熱部となっていることにより、上板3に熱を奪われて凝縮する。なお、その熱は、上板3から外部に放散される。このような作動流体12の凝縮は、前記突起部10を含む上板3の内面(下面)の全体で生じる。凝縮した作動流体12は、上板3の内面から直接落下し、あるいは上板3の内面に形成されている傾斜面9を伝って突起部10に向けて流れ、したがって上板3の内面側の作動液は、突起部10に集中させられる。さらに、突起部10が上板3の内面から垂下した状態に設けられているので、突起部10に到達した作動液は、突起部10を伝って流れ、ついには突起部10の先端部(下端部)から落下する。そして、その突起部10に対向して前記凸部8が設けられているので、突起部10から落下した作動液は、結局は、凸部8の頂部に供給される。したがって、上記の傾斜面9,11および突起部10がこの発明の作動液誘導部に相当している。
このように、凝縮した作動流体12は、上板3の内面に傾斜面9および突起部10の作用によって、凸部8に対して集中させられて還流させられる。特に、凸部8の上端部と突起部10の下端部とが互いに接近しているので、作動流体12の蒸発が生じる凸部8に、確実かつ迅速に作動液を還流させることができる。したがって、コンテナ1が傾いて設置されたり、その状態で入熱量が多くなったりしても、ウイック5やその凸部8における作動液の不足もしくは枯渇が生じることがなく、その結果、熱輸送量や熱輸送効率が向上する。
つぎにこの発明の他の具体例を説明する。図3および図4に示す熱輸送装置では、凝縮して生じた作動液をウイック5における凸部8に導くための作動液誘導部としての突起部10が、矩形断面の軸状に構成されている。そして、これらの突起部10は一定間隔をあけて複数列に配列されている。図3および図4に示す他の構成は、上述した図1および図2に示す構成と同様である。
図3および図4に示す構成であれば、所定の金属素材を切削加工することにより突起部10を作成できるので、製造加工が容易になる。
図5に示す熱輸送装置では、ウイック5より外周側の面が平坦面とされており、かつその平坦面にシート状ウイック14が、ウイック5に接触もしくは連通した状態に配置されている。このシート状ウイック14は、金属粒子などの微粒子を焼結させた多孔質シート材やメッシュによって構成されている。このシート状ウイック14は、凸部8を有する前記ウイック5に向けて作動液が還流するための流路を形成しており、したがって前記ウイック5よりも大きい空孔率であることが好ましい。さらに、上板3の内面は、前述した具体例とは異なり、平坦面とされており、前記ウイック5に対向する位置に、複数の突起部10が、下方に延びて設けられている。
したがって図5に示す熱輸送装置では、凝縮して生じた作動液が、突起部10に導かれてウイック5における凸部8に対して滴下するとともに、上板3からウイック5以外の箇所に滴下した作動液は、シート状ウイック14の毛細管作用によって、作動流体の蒸発が生じるウイック5もしくは凸部8に向けて積極的に移動する。したがって、そのシート状ウイック14がこの発明の作動液誘導部に相当している。
このように、図5に示す構成であっても、作動流体の蒸発の生じる凸部8に対して作動液を積極的に還流させることができるので、前述した各具体例の熱輸送装置と同様に、熱輸送量や熱輸送効率が向上する。
図5に示す例は、上板3側の傾斜面を無くして突起部10を設けた例であるが、これとは反対に図6に示す例は、上板3側の突起部10を無くして傾斜面9を設けた例である。なお、図6に示す例では、底板2の内面中央部に、凸部8を備えたウイック5が配置されているが、その外周側の面は、底板2の平坦面とされ、傾斜面や他のウイックは設けられていない。
図6に示す構成では、上板3に設けられている傾斜面9が、ウイック5に対向する箇所で最も低くなっている。したがって上板3に接触して凝縮した作動流体は、傾斜面9を伝ってその最も低い位置に移動し、ここからウイック5の凸部8に向けて滴下する。すなわち、傾斜面9がこの発明の作動液誘導部に相当しており、その傾斜面9によって作動流体の蒸発が生じる凸部8に対して、積極的に作動液を還流させることができるので、前述した各具体例の熱輸送装置と同様に、熱輸送量や熱輸送効率が向上する。
さらに、この発明では、針などの金属線やカーボン繊維あるいは合成繊維などの細線を、上述した突起部10に替えて設け、あるいは突起部10に加えて設けることができる。図7に示す例は、上板3の平坦な内面に、細線15を直接取り付けて垂下させることにより、その細線15を、作動液を誘導するための突起部としたものである。また、図8に示す例は、上板3の内面に形成されている突起部10の先端部に細線15を取り付けて垂下させた例である。なお、これら図7および図8に示すいずれの例であっても、細線15の先端部(下端部)は、ウイック5における凸部8の頂部に接近し、あるいは接触している。
図7あるいは図8に示すように構成した場合、上板3に接触して凝縮した作動流体は、細線15を伝って凸部8に導かれるので、作動流体の蒸発が生じる凸部8に対して作動液を積極的に還流させることができる。すなわち、その細線15がこの発明の作動液誘導部に相当している。
また、多孔質シートやメッシュシートは、その内部に互いに連通した空隙を備えているから、その空隙部分が作動液の流路を構成する。したがってこの種のシートを上板3の内面に設け、凝縮した作動流体を、ウイック5における凸部8に対して導くようにしてもよい。図9はその例を示しており、上板3の内面に多孔構造のシート材16が設けられ、そのシート材16には、前記凸部8に向けて突出した複数の突起部17が形成されている。その突起部17の先端部(下端部)は、ウイック5における凸部8の頂部に接近もしくは接触している。
したがって、上板3側で凝縮した作動流体は、シート材16に浸透するとともに、そのシート材16で生じる毛細管作用によって突起部17側に導かれ、さらにその突起部17の先端部から、ウイック5における凸部8に作動液が供給される。すなわち、突起部17を有するシート材16がこの発明の作動液誘導部に相当し、このシート材16により、作動流体の蒸発が生じる凸部8に対して作動液を積極的に還流させて、前述した各具体例の熱輸送装置と同様に、熱輸送量や熱輸送効率を向上させることができる。
なお、上述した各具体例では、底板2の内面中央部のみに、凸部8を有するウイック5を配置した例を示したが、この種のウイックは、底板の内面全体に配置してもよい。
さらに、凸部8を備えたウイック5を、演算素子などの被冷却体に対応させて設ける場合、図10あるいは図11に示すように構成することができる。図10に示す熱輸送装置は、前述した図3および図4に示す構成の一部を変更したものであって、底板2の内面中央部に、凹部18が形成されている。この凹部18の輪郭は、矩形あるいは円形など適宜の形状であってよい。この凹部18の底面は平坦であって、ここに前述した凸部8を有するウイック5が配置されている。なお、ウイック5は、凹部18の底面との間の熱抵抗を小さくするために、凹部18の底面に一体化させることが好ましく、例えばウイック5を凹部18の底面に焼結させることが好ましい。
そして、凹部18より外周側の面は、凹部18に向けて傾斜する傾斜面11となっている。
さらに、底板2の外側の下面中央部には、凹部18に対応させた台座部19が形成されている。この台座部19は、電子素子13などの被冷却体を熱伝達可能に接触もしくは固定させるための部分であって、前記凹部18とほぼ等しい輪郭を有し、底板2の下面中央部を僅か突出させて成形されている。なお、この台座部19のほぼ中心部から台座部19の所定の側面に向けた直線的に延びた溝20が形成されている。図10に示す他の構成は、前述した図3および図4に示す構成と同様であり、したがって図10に図3および図4と同一の符号を付してその説明を省略する。
したがって図10に示す構成の熱輸送装置では、台座部19に接触させられている電子素子13の熱がウイック5に伝達され、その凸部8の表面から作動流体が蒸発し、その潜熱として熱を輸送する。作動流体の蒸気は上板3に接触して潜熱を奪われることにより凝縮し、その作動液の一部は、直接底板2に向けて落下するとともに傾斜面11に誘導されて、凸部8を有するウイック5に向けて流れ、また他の作動液は、傾斜面9を伝って突起部10に流れ、その突起部10から凸部8を有するウイック5に向けて滴下する。このように、作動液が、ウイック5に集中するように誘導されるので、熱輸送量や熱輸送効率を向上させることができる。したがって図10に示す構成の熱輸送装置では、上板3側の傾斜面9および突起部10、ならびに底板2側の傾斜面11が、この発明の作動液誘導部となっている。
また、図11に示す熱輸送装置は、上述した図10に示す構成の一部を変更したものであって、上板3の内面を平坦面とすることにより、上記の突起部10や傾斜面9をなくしたものである。他の構成は、図10に示す構成と同様であり、したがって図11に図10と同一の符号を付してその説明を省略する。
図11に示す熱輸送装置では、電子素子13の熱で蒸発した作動流体12が上板3に接触して放熱することにより凝縮し、結局、作動流体12の潜熱の形で熱を輸送する。そして、作動液は、上板3の内面から直接落下し、あるいは側板4の内面を伝って底板2側に流れ、さらに底板2の内面に形成されている傾斜面11を介して、凹部18に向けて流れる。すなわち、作動液は、ウイック5を配置してある凹部18に集中的に還流するように誘導されるので、熱輸送量や熱輸送効率を向上させることができる。したがって図11に示す構成の熱輸送装置では、底板2側の傾斜面11が、この発明の作動液誘導部となっている。
なお、この発明における底板および上板は、上述した多様な構成とすることができ、この発明は、これらの底板および上板の各構成を適宜に組み合わせたものであってよい。
この発明に係る熱輸送装置の一例を模式的に示す断面図である。 そのウイックの凸部を拡大して示す模式図である。 この発明に係る熱輸送装置の他の例を模式的に示す断面図である。 図3におけるIV−IV線矢視図である。 この発明に係る熱輸送装置の更に他の例を模式的に示す断面図である。 この発明に係る熱輸送装置のまた更に他の例を模式的に示す断面図である。 突起部として細線を使用した例を示す部分図である。 突起部に加えて細線を使用した例を示す部分図である。 多孔構造のシート材を上板の内面に設けた例を示す部分図である。 この発明に係る熱輸送装置の更に他の例を模式的に示す断面図である。 この発明に係る熱輸送装置の更に他の例を模式的に示す断面図である。
符号の説明
1…コンテナ、 2…底板、 3…上板、 4…側板部、 5…ウイック、6…微粒子、 7…基層、 8…凸部、 9,11…傾斜面、 10,17…突起部、 12…作動流体、 13…電子素子、 14…シート状ウイック、 15…細線、 16…シート材、 18…凹部、 19…台座部、 20…溝。

Claims (10)

  1. 密閉構造のコンテナと、前記コンテナ内部に封入された加熱されて蒸発しかつ放熱して凝縮する凝縮性の作動流体と、前記コンテナの内部底面に配置された多孔構造基層と、前記基層から上方に突出した凸部を有するウイックと、前記コンテナの内部に設けられた液相の作動流体を前記ウイックに向けて誘導する作動液誘導部とを備えていることを特徴とする熱輸送装置。
  2. 前記コンテナの一部であって、前記凸部の上方に位置する上面部を更に備え、
    前記作動液誘導部は、液相の作動流体を前記凸部に向けて誘導しかつ滴下させる、前記上面部から下側に凸となった突起部を含むことを特徴とする請求項1に記載の熱輸送装置。
  3. 前記作動液誘導部が前記突起部の設けられている部分側で低くなるように前記コンテナの上面部に形成された傾斜面を含むことを特徴とする請求項2に記載の熱輸送装置。
  4. 前記突起部が前記上面部から前記凸部に向けて垂下された、先端の尖った複数のテーパー状の突起と軸状の複数の突起との少なくともいずれか一方を含むことを特徴とする請求項2に記載の熱輸送装置。
  5. 前記コンテナの一部であって、前記凸部の上方に位置する上面部を更に備え、
    前記作動液誘導部は、前記上面部の一部であって、液相の作動流体を前記凸部に向けて誘導するように下向きに傾斜した傾斜面を含むことを特徴とする請求項1に記載の熱輸送装置。
  6. 前記コンテナの一部であって、前記凸部の上方に位置する上面部を更に備え、
    前記作動液誘導部は、前記上面部から垂下された細線を含むことを特徴とする請求項1に記載の熱輸送装置。
  7. 前記作動液誘導部は、前記ウイック側で低くなるように前記コンテナの底部に形成された傾斜面を含むことを特徴とする請求項1に記載の熱輸送装置。
  8. 前記作動液誘導部が、前記ウイックの外周側に、該ウイックに連通した状態に設けられた、毛細管作用を生じる多孔構造体を含むことを特徴とする請求項1に記載の熱輸送装置。
  9. 前記基層が、微粒子を平板状に並べて結合させることにより多孔構造に構成され、かつ前記凸部が微粒子を盛り上げて結合させることにより多孔構造に構成されていることを特徴とする請求項1に記載の熱輸送装置。
  10. 前記ウイックが、前記コンテナの底部外面に熱伝達可能に接触させられる発熱体に対応する箇所に配置されていることを特徴とする請求項1に記載の熱輸送装置。
JP2005257114A 2004-12-17 2005-09-05 熱輸送装置 Pending JP2006170602A (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US11/013,342 US7246655B2 (en) 2004-12-17 2004-12-17 Heat transfer device

Publications (1)

Publication Number Publication Date
JP2006170602A true JP2006170602A (ja) 2006-06-29

Family

ID=36594240

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005257114A Pending JP2006170602A (ja) 2004-12-17 2005-09-05 熱輸送装置

Country Status (3)

Country Link
US (2) US7246655B2 (ja)
JP (1) JP2006170602A (ja)
CN (1) CN1789879A (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010236792A (ja) * 2009-03-31 2010-10-21 Toyota Industries Corp 沸騰冷却装置
JPWO2011145618A1 (ja) * 2010-05-19 2013-07-22 日本電気株式会社 沸騰冷却器
JP2013545956A (ja) * 2010-02-13 2013-12-26 マクアリスター テクノロジーズ エルエルシー 熱伝達装置、ならびに関連したシステムおよび方法
JP2020134116A (ja) * 2019-02-26 2020-08-31 株式会社東芝 冷却装置、その冷却装置を含む冷却システム、及び、その冷却システムを含むアッセンブリ
WO2022004616A1 (ja) * 2020-06-30 2022-01-06 古河電気工業株式会社 熱輸送デバイス
WO2022025255A1 (ja) * 2020-07-31 2022-02-03 日本電産株式会社 熱伝導部材
WO2023021953A1 (ja) * 2021-08-19 2023-02-23 株式会社村田製作所 熱拡散デバイス及び電子機器
JP7444704B2 (ja) 2020-06-04 2024-03-06 古河電気工業株式会社 伝熱部材および伝熱部材を有する冷却デバイス

Families Citing this family (74)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7983042B2 (en) * 2004-06-15 2011-07-19 Raytheon Company Thermal management system and method for thin membrane type antennas
US7353860B2 (en) * 2004-06-16 2008-04-08 Intel Corporation Heat dissipating device with enhanced boiling/condensation structure
US7713849B2 (en) * 2004-08-20 2010-05-11 Illuminex Corporation Metallic nanowire arrays and methods for making and using same
US20060196640A1 (en) * 2004-12-01 2006-09-07 Convergence Technologies Limited Vapor chamber with boiling-enhanced multi-wick structure
US7246655B2 (en) * 2004-12-17 2007-07-24 Fujikura Ltd. Heat transfer device
US20060278370A1 (en) * 2005-06-08 2006-12-14 Uwe Rockenfeller Heat spreader for cooling electronic components
CN100491888C (zh) * 2005-06-17 2009-05-27 富准精密工业(深圳)有限公司 环路式热交换装置
CN1936769A (zh) * 2005-09-23 2007-03-28 鸿富锦精密工业(深圳)有限公司 笔记型电脑
US20100200199A1 (en) * 2006-03-03 2010-08-12 Illuminex Corporation Heat Pipe with Nanostructured Wick
US20070246193A1 (en) * 2006-04-20 2007-10-25 Bhatti Mohinder S Orientation insensitive thermosiphon of v-configuration
US8482921B2 (en) 2006-10-23 2013-07-09 Teledyne Scientific & Imaging, Llc. Heat spreader with high heat flux and high thermal conductivity
US20080225489A1 (en) * 2006-10-23 2008-09-18 Teledyne Licensing, Llc Heat spreader with high heat flux and high thermal conductivity
US20080142195A1 (en) * 2006-12-14 2008-06-19 Hakan Erturk Active condensation enhancement for alternate working fluids
US8528628B2 (en) 2007-02-08 2013-09-10 Olantra Fund X L.L.C. Carbon-based apparatus for cooling of electronic devices
US20080202729A1 (en) * 2007-02-27 2008-08-28 Fujikura Ltd. Heat sink
WO2008109804A1 (en) * 2007-03-08 2008-09-12 Convergence Technologies Limited Vapor-augmented heat spreader device
US7942194B2 (en) * 2007-04-10 2011-05-17 Fujikura Ltd. Heat sink
US20110036538A1 (en) 2007-09-07 2011-02-17 International Business Machines Corporation Method and device for cooling a heat generating component
JP2009097757A (ja) * 2007-10-15 2009-05-07 Toshiba Corp ループヒートパイプおよび電子機器
US8356657B2 (en) 2007-12-19 2013-01-22 Teledyne Scientific & Imaging, Llc Heat pipe system
US8353334B2 (en) * 2007-12-19 2013-01-15 Teledyne Scientific & Imaging, Llc Nano tube lattice wick system
CN101726203B (zh) * 2008-10-16 2012-10-17 杨政修 高孔隙率毛细结构的制造法
US9163883B2 (en) 2009-03-06 2015-10-20 Kevlin Thermal Technologies, Inc. Flexible thermal ground plane and manufacturing the same
US8235096B1 (en) * 2009-04-07 2012-08-07 University Of Central Florida Research Foundation, Inc. Hydrophilic particle enhanced phase change-based heat exchange
US8434225B2 (en) 2009-04-07 2013-05-07 University Of Central Florida Research Foundation, Inc. Hydrophilic particle enhanced heat exchange and method of manufacture
NL2005208A (en) * 2009-09-28 2011-03-29 Asml Netherlands Bv Heat pipe, lithographic apparatus and device manufacturing method.
CN102042776A (zh) * 2009-10-16 2011-05-04 富准精密工业(深圳)有限公司 回路热管
CN102130080B (zh) * 2010-11-11 2012-12-12 华为技术有限公司 一种散热装置
TWI398616B (zh) * 2011-01-26 2013-06-11 Asia Vital Components Co Ltd Micro - temperature plate structure improvement
CN102623421B (zh) * 2011-01-26 2015-02-04 奇鋐科技股份有限公司 微均温板结构
US20120279687A1 (en) * 2011-05-05 2012-11-08 Celsia Technologies Taiwan, I Flat-type heat pipe and wick structure thereof
US20120313547A1 (en) * 2011-06-10 2012-12-13 Honeywell International Inc. Aircraft led landing or taxi lights with thermal management
US9476652B2 (en) * 2012-01-04 2016-10-25 Asia Vital Components Co., Ltd. Thin heat pipe structure having enlarged condensing section
US20130213612A1 (en) * 2012-02-22 2013-08-22 Chun-Ming Wu Heat pipe heat dissipation structure
US9506699B2 (en) * 2012-02-22 2016-11-29 Asia Vital Components Co., Ltd. Heat pipe structure
US20130213609A1 (en) * 2012-02-22 2013-08-22 Chun-Ming Wu Heat pipe structure
TWI582364B (zh) * 2012-04-16 2017-05-11 鴻準精密工業股份有限公司 熱管殼體的製造方法
US9500413B1 (en) 2012-06-14 2016-11-22 Google Inc. Thermosiphon systems with nested tubes
US9869519B2 (en) * 2012-07-12 2018-01-16 Google Inc. Thermosiphon systems for electronic devices
US8953320B2 (en) 2012-09-13 2015-02-10 Levi A. Campbell Coolant drip facilitating partial immersion-cooling of electronic components
CN103813695B (zh) * 2012-11-13 2016-08-17 台达电子工业股份有限公司 虹吸式散热装置
US9921004B2 (en) 2014-09-15 2018-03-20 Kelvin Thermal Technologies, Inc. Polymer-based microfabricated thermal ground plane
US20180320984A1 (en) * 2017-05-08 2018-11-08 Kelvin Thermal Technologies, Inc. Thermal management planes
US11988453B2 (en) 2014-09-17 2024-05-21 Kelvin Thermal Technologies, Inc. Thermal management planes
CN106794562B (zh) 2014-09-17 2019-07-23 科罗拉多州立大学董事会法人团体 启用微柱的热接地平面
US11598594B2 (en) 2014-09-17 2023-03-07 The Regents Of The University Of Colorado Micropillar-enabled thermal ground plane
CN104617061B (zh) * 2015-01-13 2017-10-03 哈尔滨工程大学 一种仿生芯片散热器
CN105115331B (zh) * 2015-10-01 2017-04-12 南陵县皖南野生葛研究所 一种平板热管及其应用方法
US20170146273A1 (en) * 2015-11-23 2017-05-25 L-3 Communications Corporation Evaporator Assembly
US10136557B2 (en) * 2015-12-04 2018-11-20 General Electric Company Thermal management systems and methods for heat generating electronics
US11236948B2 (en) * 2016-08-24 2022-02-01 Delta Electronics, Inc. Heat dissipation assembly
CN113784599A (zh) * 2016-08-24 2021-12-10 台达电子工业股份有限公司 散热组件
CN116936500A (zh) 2016-11-08 2023-10-24 开尔文热技术股份有限公司 用于在热接地平面中散布高热通量的方法和设备
US10782014B2 (en) 2016-11-11 2020-09-22 Habib Technologies LLC Plasmonic energy conversion device for vapor generation
JP6302116B1 (ja) 2017-04-12 2018-03-28 古河電気工業株式会社 ヒートパイプ
CN109413929B (zh) * 2017-08-16 2020-11-24 鹏鼎控股(深圳)股份有限公司 散热板及其制造方法
US10458718B2 (en) * 2017-11-29 2019-10-29 Asia Vital Components Co., Ltd. Airtight penetration structure for heat dissipation device
US10746479B2 (en) * 2018-02-09 2020-08-18 General Electric Company Additively manufactured structures for thermal and/or mechanical systems, and methods for manufacturing the structures
TWI645155B (zh) * 2018-02-27 2018-12-21 雙鴻科技股份有限公司 散熱裝置
FR3086742B1 (fr) * 2018-10-01 2020-10-30 Heurtey Petrochem S A Plaque pour un echangeur de chaleur a plaques
CN109742061B (zh) * 2019-01-14 2020-06-30 清华大学 柔性电子器件及其制造方法
TW202130960A (zh) * 2020-02-04 2021-08-16 建準電機工業股份有限公司 均溫板
CN113494862A (zh) * 2020-03-19 2021-10-12 亚浩电子五金塑胶(惠州)有限公司 热管
US20210389055A1 (en) * 2020-06-15 2021-12-16 Asia Vital Components Co., Ltd. Compound wick structure of vapor chamber
US20230292466A1 (en) 2020-06-19 2023-09-14 Kelvin Thermal Technologies, Inc. Folding Thermal Ground Plane
CN111747474A (zh) * 2020-08-05 2020-10-09 生态环境部南京环境科学研究所 一种垃圾渗滤液处理装置
US20220095485A1 (en) * 2020-09-18 2022-03-24 Arris Enterprises Llc Method and system for small scale structures to improve thermal efficiency
US12007173B2 (en) * 2020-12-30 2024-06-11 Razer (Asia-Pacific) Pte. Ltd. Vapor chamber having a reservoir
US20220243992A1 (en) * 2021-01-29 2022-08-04 Advanced Semiconductor Engineering, Inc. Heat transfer element, method for forming the same and semiconductor structure comprising the same
EP4053487A1 (en) * 2021-03-01 2022-09-07 ABB Schweiz AG Heat-transfer device
CN113137885A (zh) * 2021-03-22 2021-07-20 广东工业大学 一种高速回流散热式均热板
CN113295027B (zh) * 2021-06-01 2022-07-08 广东工业大学 一种自回流平板热管
CN114554679B (zh) * 2022-03-17 2024-02-09 西安易朴通讯技术有限公司 一种散热装置
CN114935272B (zh) * 2022-05-24 2023-08-04 中国电子科技集团公司第十研究所 一种基于增材制造的一体化成型均温板

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2043570A (en) * 1931-11-07 1936-06-09 William F Baird Method of and means for controlling low temperature refrigerants
JPS52110B2 (ja) 1973-05-11 1977-01-05
JPS5716315B2 (ja) 1973-11-14 1982-04-03
JPS57154863A (en) 1981-03-19 1982-09-24 Fujitsu Ltd Manufacture of resin sealing type electronic parts
US4838347A (en) * 1987-07-02 1989-06-13 American Telephone And Telegraph Company At&T Bell Laboratories Thermal conductor assembly
US5308920A (en) * 1992-07-31 1994-05-03 Itoh Research & Development Laboratory Co., Ltd. Heat radiating device
TW307837B (ja) 1995-05-30 1997-06-11 Fujikura Kk
JPH09184696A (ja) 1995-12-29 1997-07-15 Fujikura Ltd ヒートパイプ
US6064572A (en) * 1996-11-27 2000-05-16 Remsburg; Ralph Thermosyphon-powered jet-impingement cooling device
JP2000161879A (ja) 1998-11-20 2000-06-16 Fujikura Ltd 平板状ヒートパイプ
US6085831A (en) * 1999-03-03 2000-07-11 International Business Machines Corporation Direct chip-cooling through liquid vaporization heat exchange
JP2000356485A (ja) 1999-06-15 2000-12-26 Fujikura Ltd 平板状ヒートパイプ
US6550531B1 (en) * 2000-05-16 2003-04-22 Intel Corporation Vapor chamber active heat sink
US6474074B2 (en) 2000-11-30 2002-11-05 International Business Machines Corporation Apparatus for dense chip packaging using heat pipes and thermoelectric coolers
US20030136550A1 (en) * 2002-01-24 2003-07-24 Global Win Technology Heat sink adapted for dissipating heat from a semiconductor device
US6588498B1 (en) * 2002-07-18 2003-07-08 Delphi Technologies, Inc. Thermosiphon for electronics cooling with high performance boiling and condensing surfaces
TW551612U (en) * 2002-07-26 2003-09-01 Tai Sol Electronics Co Ltd Piercing type IC heat dissipating device
US6658861B1 (en) 2002-12-06 2003-12-09 Nanocoolers, Inc. Cooling of high power density devices by electrically conducting fluids
US6945317B2 (en) 2003-04-24 2005-09-20 Thermal Corp. Sintered grooved wick with particle web
US6938680B2 (en) * 2003-07-14 2005-09-06 Thermal Corp. Tower heat sink with sintered grooved wick
US6918431B2 (en) * 2003-08-22 2005-07-19 Delphi Technologies, Inc. Cooling assembly
US6901994B1 (en) * 2004-01-05 2005-06-07 Industrial Technology Research Institute Flat heat pipe provided with means to enhance heat transfer thereof
US7353860B2 (en) * 2004-06-16 2008-04-08 Intel Corporation Heat dissipating device with enhanced boiling/condensation structure
US6957692B1 (en) * 2004-08-31 2005-10-25 Inventec Corporation Heat-dissipating device
US7246655B2 (en) * 2004-12-17 2007-07-24 Fujikura Ltd. Heat transfer device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010236792A (ja) * 2009-03-31 2010-10-21 Toyota Industries Corp 沸騰冷却装置
JP2013545956A (ja) * 2010-02-13 2013-12-26 マクアリスター テクノロジーズ エルエルシー 熱伝達装置、ならびに関連したシステムおよび方法
JPWO2011145618A1 (ja) * 2010-05-19 2013-07-22 日本電気株式会社 沸騰冷却器
JP2020134116A (ja) * 2019-02-26 2020-08-31 株式会社東芝 冷却装置、その冷却装置を含む冷却システム、及び、その冷却システムを含むアッセンブリ
JP7444704B2 (ja) 2020-06-04 2024-03-06 古河電気工業株式会社 伝熱部材および伝熱部材を有する冷却デバイス
WO2022004616A1 (ja) * 2020-06-30 2022-01-06 古河電気工業株式会社 熱輸送デバイス
WO2022025255A1 (ja) * 2020-07-31 2022-02-03 日本電産株式会社 熱伝導部材
WO2023021953A1 (ja) * 2021-08-19 2023-02-23 株式会社村田製作所 熱拡散デバイス及び電子機器

Also Published As

Publication number Publication date
US7246655B2 (en) 2007-07-24
CN1789879A (zh) 2006-06-21
US7540319B2 (en) 2009-06-02
US20070235178A1 (en) 2007-10-11
US20060131002A1 (en) 2006-06-22

Similar Documents

Publication Publication Date Title
JP2006170602A (ja) 熱輸送装置
US6227287B1 (en) Cooling apparatus by boiling and cooling refrigerant
CN106341971B (zh) 冷却设备、功率模块以及用于制造冷却设备的方法
KR100581115B1 (ko) 판형 열전달 장치 및 그 제조 방법
US8550150B2 (en) Loop heat pipe
WO2018003957A1 (ja) ベーパーチャンバ
US10820454B2 (en) Vapor chamber heat spreaders with engineered vapor and liquid flow paths
JP6442594B1 (ja) 放熱モジュール
JP5789684B2 (ja) ベーパーチャンバー
US7431071B2 (en) Fluid circuit heat transfer device for plural heat sources
JP2005180871A (ja) ベーパーチャンバー
US20090314472A1 (en) Evaporator For Loop Heat Pipe System
JP5589666B2 (ja) 半導体装置
JP2010107153A (ja) 蒸発器およびこれを用いた循環型冷却装置
TW202032081A (zh) 冷卻裝置及使用冷卻裝置之冷卻系統
US7261142B2 (en) Heat pipe excellent in reflux characteristic
US20090008063A1 (en) System and Method for Passive Cooling Using a Non-Metallic Wick
JP5370074B2 (ja) ループ型ヒートパイプ及びこれを備えた電子機器
US20040075181A1 (en) Thermal transport apparatus and method for manufacturing the same
WO2009154323A1 (en) Evaporator for loop heat pipe system
JP2004020116A (ja) 平板型ヒートパイプ
JP3900702B2 (ja) 沸騰冷却装置
JP4648106B2 (ja) 冷却装置
JP2000049266A (ja) 沸騰冷却装置
JP6179099B2 (ja) 電子装置の冷却装置

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080821

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080826

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090106