JP2006142297A - Method and machine for packing catalyst - Google Patents

Method and machine for packing catalyst Download PDF

Info

Publication number
JP2006142297A
JP2006142297A JP2005334686A JP2005334686A JP2006142297A JP 2006142297 A JP2006142297 A JP 2006142297A JP 2005334686 A JP2005334686 A JP 2005334686A JP 2005334686 A JP2005334686 A JP 2005334686A JP 2006142297 A JP2006142297 A JP 2006142297A
Authority
JP
Japan
Prior art keywords
catalyst
reaction tube
filling
hopper
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005334686A
Other languages
Japanese (ja)
Inventor
Yasuhiko Mori
康彦 森
Akira Nishi
朗 西
Nobuhito Omoto
宣仁 大本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP2005334686A priority Critical patent/JP2006142297A/en
Publication of JP2006142297A publication Critical patent/JP2006142297A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for packing a catalyst, by which the catalyst can simultaneously be packed uniformly in a plurality of reaction tubes. <P>SOLUTION: This method is used for packing the granular catalyst from above in the plurality of reaction tubes of a fixed bed multitubular reactor so that the dispersion of the packing speeds when the catalyst is packed in reaction tubes is ≤±20%. In order to adjust the dispersion of the packing speeds to ≤±20%, for example, a catalyst conveying line is formed under each of a plurality of catalyst-charged hoppers, the catalyst dropped from any of hoppers is conveyed to an upper end opening of the corresponding reaction tube along the corresponding catalyst conveying line and the amount of the catalyst to be charged in each of hoppers is measured with ±5% precision when the catalyst is packed in each of reaction tubes from the upper end opening. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、触媒を用いる気相接触酸化反応等に適用される固定床多管式反応器へ触媒を充填する触媒充填方法および触媒充填機に関する。   The present invention relates to a catalyst filling method and a catalyst filling machine for filling a fixed bed multitubular reactor applied to a gas phase catalytic oxidation reaction using a catalyst.

一般に、塩素の製造においては、生成した塩素ガス中に含まれる塩化水素を、酸素を含むガスを用いて触媒の存在下で接触酸化することが行われる。この酸化反応は発熱反応であるため、例えば多数の反応管に粒状の触媒を充填した固定床多管式熱交換型反応器を用いて反応が行なわれる。   Generally, in the production of chlorine, hydrogen chloride contained in the produced chlorine gas is subjected to catalytic oxidation in the presence of a catalyst using a gas containing oxygen. Since this oxidation reaction is an exothermic reaction, the reaction is performed using, for example, a fixed bed multi-tube heat exchange reactor in which a large number of reaction tubes are filled with a granular catalyst.

このような固定床多管式反応器では、各反応管への触媒の充填過程で触媒同士でブリッジを形成せず、充填後に測定される圧力損失が小さくなるように、触媒の充填状態をできるだけ均一にする必要がある。   In such a fixed bed multitubular reactor, the catalyst filling state is as small as possible so that no bridge is formed between the catalysts in the filling process of the catalyst into each reaction tube, and the pressure loss measured after filling is reduced. It needs to be uniform.

そのため、特許文献1には、固定床多管式反応器において、1Lあたり30秒以上の充填時間で各反応管に固体粒状物である触媒を充填することが記載されている。しかしながら、触媒充填機等を用いて複数の反応管に同時に触媒を充填する場合、充填速度を規定するだけでは、多数の反応管における圧力損失Δpのばらつきを低減させることは困難である。   Therefore, Patent Document 1 describes that, in a fixed bed multitubular reactor, each reaction tube is filled with a catalyst that is a solid granular material in a filling time of 30 seconds or more per liter. However, when a plurality of reaction tubes are simultaneously filled with a catalyst using a catalyst filling machine or the like, it is difficult to reduce the variation in pressure loss Δp in a large number of reaction tubes only by defining the filling speed.

例えば、特許文献2には、小ホッパーに触媒を入れ、振動を与えながら触媒粒子を反応管内へ落下させるようにした触媒充填機が記載されている。この方法は簡便であるが、振動による触媒供給速度にムラが生じやすく、反応管毎の触媒充填速度に差が生じる。そのため、各反応管への触媒充填かさ密度にばらつきが生じ、結果として圧力損失Δpがばらつく要因にもなっていた。   For example, Patent Document 2 describes a catalyst filling machine in which a catalyst is put in a small hopper and catalyst particles are dropped into a reaction tube while applying vibration. Although this method is simple, unevenness in the catalyst supply rate due to vibration tends to occur, resulting in a difference in the catalyst filling rate for each reaction tube. As a result, the bulk density of the catalyst in each reaction tube varies, and as a result, the pressure loss Δp varies.

特開2002‐306953号公報JP 2002-306953 A 特公昭47‐11484号公報Japanese Examined Patent Publication No. 47-11484

本発明の課題は、複数の反応管に対して同時に均一な触媒充填を可能にした触媒充填方法および該方法に使用するのに適した触媒充填機を提供することである。   An object of the present invention is to provide a catalyst filling method capable of simultaneously and uniformly filling a plurality of reaction tubes, and a catalyst filling machine suitable for use in the method.

本発明者らは、上記課題を解決すべく鋭意検討を重ねた結果、各反応管への充填速度のばらつきを小さくすることにより、各反応管への触媒充填かさ密度のばらつきが低減し、複数の反応管に対して同時に均一な触媒充填が可能になるという新たな事実を見出し、本発明を完成するに至った。   As a result of intensive investigations to solve the above problems, the present inventors have reduced the variation in the filling speed of each reaction tube, thereby reducing the variation in the bulk density of the catalyst packed in each reaction tube. The present inventors have found a new fact that a uniform catalyst can be charged simultaneously into the reaction tubes and have completed the present invention.

すなわち、本発明の触媒充填方法は、固定床多管式反応器が備える多数の反応管に、その上方から粒状の触媒を充填するにあたり、各反応管への充填速度のばらつきが±20%以下になるように触媒を充填することを特徴とする。   That is, in the catalyst filling method of the present invention, when filling a large number of reaction tubes provided in a fixed bed multitubular reactor with a granular catalyst from above, variation in the filling rate of each reaction tube is ± 20% or less. It is characterized by filling a catalyst so that it becomes.

充填速度のばらつきを上記範囲にするための具体例としては、触媒が投入された複数のホッパーの下に各ホッパー毎に触媒搬送列を形成し、各ホッパーから落下した触媒を各触媒搬送列に沿って反応管の上端開口に搬送し、該上端開口から触媒を反応管内に充填するにあたり、前記各ホッパーへの触媒投入量を±5%以内の精度で計量する触媒充填方法が挙げられる。   As a specific example for making the variation in the filling speed within the above range, a catalyst transport row is formed for each hopper under a plurality of hoppers into which the catalyst is charged, and the catalyst dropped from each hopper is placed in each catalyst transport row. And a catalyst filling method in which the amount of catalyst charged into each hopper is measured with an accuracy within ± 5% when the catalyst is fed into the upper end opening of the reaction tube and charged into the reaction tube from the upper end opening.

本発明の触媒充填方法を適用するのに好適な触媒充填機は、複数の反応管に上方から粒子状の触媒を同時に充填するものであって、前記複数の反応管に対応して、触媒が投入される複数のホッパーが設けられ、該ホッパーの下に各ホッパー毎に触媒搬送列が形成されており、各ホッパーから落下した触媒を、それぞれの触媒搬送列を通って各反応管の上方に搬送し充填するようにしたことを特徴とする。   A catalyst filling machine suitable for applying the catalyst filling method of the present invention is a method of simultaneously filling a plurality of reaction tubes with particulate catalyst from above, and a catalyst corresponding to the plurality of reaction tubes. A plurality of hoppers to be charged are provided, and a catalyst transport row is formed for each hopper under the hopper, and the catalyst dropped from each hopper passes through each catalyst transport row and above each reaction tube. It is characterized by being conveyed and filled.

前記触媒搬送列は、ホッパーから流下する触媒を載せて前記反応管に搬送供給するコンベアと、該コンベアの上面に各反応管ごとに搬送路を仕切るために設置された複数の仕切り壁とを備えているのがよい。   The catalyst transport row includes a conveyor that carries the catalyst flowing down from the hopper and transports it to the reaction tube, and a plurality of partition walls that are installed on the upper surface of the conveyor to partition the transport path for each reaction tube. It is good to have.

本発明によれば、各反応管への充填速度のばらつきを所定値以下に設定することにより、各反応管への触媒充填かさ密度のばらつきが低減し、複数の反応管に対して同時に均一な触媒充填が可能になるので、各反応管間での圧力損失のばらつきが小さくなり、圧力損失を均一にすることができる。   According to the present invention, by setting the variation in the filling speed of each reaction tube to a predetermined value or less, the variation in the bulk density of the catalyst in each reaction tube is reduced, and the reaction tube is uniformly distributed to a plurality of reaction tubes at the same time. Since the catalyst can be charged, the variation in the pressure loss between the reaction tubes is reduced, and the pressure loss can be made uniform.

図1、図2は本発明の触媒充填方法に使用するのに好適な触媒充填機の一例を示している。この触媒充填機は、台車などの図示しない位置変更機構に保持されて、反応管2が並ぶ方向に位置変更自在に構成されている。   1 and 2 show an example of a catalyst filling machine suitable for use in the catalyst filling method of the present invention. This catalyst filling machine is held by a position changing mechanism (not shown) such as a carriage, and is configured so that the position can be changed in the direction in which the reaction tubes 2 are arranged.

図1、図2に示すように、この触媒充填機は、粒子状の触媒を貯留する互いに独立した複数のホッパー1a,1b…1xと、各ホッパー1a,1b…1xから流下する触媒を載せて反応管2にその上方側から搬送供給するベルトコンベア3とを備えている(図2に触媒搬送方向を矢印Aで示す)。ベルトコンベア3の上面には、搬送幅方向に並ぶ複数の反応管2に対応した幅に仕切り、各反応管ごとに搬送路を形成するための複数の仕切り壁6が設置されている。これによって各反応管2ごとに触媒搬送列が形成される。   As shown in FIG. 1 and FIG. 2, this catalyst filling machine carries a plurality of independent hoppers 1a, 1b,... 1x that store particulate catalysts, and a catalyst that flows down from each hopper 1a, 1b,. A belt conveyor 3 is provided that is fed to the reaction tube 2 from above (the direction of catalyst transportation is indicated by an arrow A in FIG. 2). On the upper surface of the belt conveyor 3, a plurality of partition walls 6 for partitioning into a width corresponding to the plurality of reaction tubes 2 arranged in the transport width direction and forming a transport path for each reaction tube are installed. As a result, a catalyst transport row is formed for each reaction tube 2.

ベルトコンベア3の搬送終端部からの触媒を各反応管2に案内するために、触媒搬送列ごとにシュート8が設けられ、このシュート8の下端にホース9が接続されている。そして、各反応管2の上端には充填ホッパ10が挿入され、ホース9の下端が該ホッパ10内に臨んでいる。1台の触媒充填機が有するホッパー1a,1b…1xおよびこれに対応する前記触媒搬送列の個数は1〜50個、さらには5〜30個であるのが好ましい。   In order to guide the catalyst from the conveyance end portion of the belt conveyor 3 to each reaction tube 2, a chute 8 is provided for each catalyst conveyance row, and a hose 9 is connected to the lower end of the chute 8. A charging hopper 10 is inserted into the upper end of each reaction tube 2, and the lower end of the hose 9 faces the hopper 10. It is preferable that the number of hoppers 1a, 1b... 1x included in one catalyst filling machine and the corresponding catalyst transport rows is 1 to 50, more preferably 5 to 30.

複数のホッパー1a,1b…1xからそれぞれ触媒搬送列を通って複数の反応管2に触媒を供給し、この供給が終わると位置変更機構の作動により触媒充填機の位置を変更させて、別の複数の反応管2に触媒を供給し、この繰り返しで多数の反応管2に各別に触媒を供給するようになっている。   A catalyst is supplied to the plurality of reaction tubes 2 from the plurality of hoppers 1a, 1b,... 1x through the catalyst transport rows, and when this supply is completed, the position of the catalyst filling machine is changed by the operation of the position changing mechanism. A catalyst is supplied to a plurality of reaction tubes 2, and the catalyst is supplied to each of a plurality of reaction tubes 2 by repeating this process.

複数のホッパー1a,1b…1xはそれぞれ独立して形成され、それらを並設している。すなわち、各ホッパー1a,1b…1xは、後壁11と側壁12と前壁13とか構成され、後壁11は、前壁13との間隔が下方に向かって順次小さくなるように傾斜している。後壁11の傾斜角度は、触媒の安息角度よりも大きい(急)角度である。一方、側壁12と前壁13とは略垂直である。
後壁11と側壁12とは、例えば1枚の金属板を折り曲げて形成され、側壁12と前壁13とは溶接により一体に接合されている。金属板を折り曲げて形成されているので、後壁11と側壁12との境界部に溶接などの継ぎ目がなく、しかも境界部内面が曲面状になる。そのため、ホッパー1a,1b…1x内から触媒が円滑に落下し、触媒搬送の層高さTを一定にすることができる。
The plurality of hoppers 1a, 1b... 1x are formed independently, and are arranged in parallel. That is, each of the hoppers 1a, 1b... 1x includes a rear wall 11, a side wall 12, and a front wall 13, and the rear wall 11 is inclined so that the distance from the front wall 13 is gradually decreased downward. . The inclination angle of the rear wall 11 is larger (steep) than the repose angle of the catalyst. On the other hand, the side wall 12 and the front wall 13 are substantially vertical.
The rear wall 11 and the side wall 12 are formed, for example, by bending a single metal plate, and the side wall 12 and the front wall 13 are integrally joined by welding. Since the metal plate is formed by bending, there is no seam such as welding at the boundary between the rear wall 11 and the side wall 12, and the inner surface of the boundary is curved. Therefore, the catalyst falls smoothly from within the hoppers 1a, 1b... 1x, and the layer height T of the catalyst transport can be made constant.

また、各ホッパー1a,1b…1xの下部にはダンパー14が設けられ、該ダンパー14を開いて(図1、図2に示す状態)、触媒の搬送を行い、搬送が終了すると、ダンパー14を閉じるようになっている(図1に一点鎖線で示す)。ダンパー14の開閉機構は、例えば図2のように圧縮空気等により開閉駆動する開閉板であってもよく、あるいは上下にスライドするスライド板であってもよい。   Further, a damper 14 is provided below each hopper 1a, 1b,... 1x. The damper 14 is opened (as shown in FIGS. 1 and 2), the catalyst is transported, and when the transport is finished, the damper 14 is It is designed to be closed (indicated by a dashed line in FIG. 1). The opening / closing mechanism of the damper 14 may be, for example, an opening / closing plate that is driven to open / close by compressed air as shown in FIG. 2, or a sliding plate that slides up and down.

このダンパー14は次のように操作する。(1) ダンパー14を閉にした状態で、各ホッパー1a,1b…1xに所定量(例えば1本の反応管分)の触媒を供給し、(2) ベルトコンベア3を駆動し(この駆動は前記(1)の前に開始してもよい)、 (3)ダンパー14を開いて反応管2に触媒を供給する。   The damper 14 is operated as follows. (1) With the damper 14 closed, a predetermined amount (for example, one reaction tube) of catalyst is supplied to each hopper 1a, 1b... 1x, and (2) the belt conveyor 3 is driven (this drive is (3) The damper 14 is opened and the catalyst is supplied to the reaction tube 2.

ホッパー1a,1b…1xごとの触媒搬送列には、層厚さ設定板7(層厚さ設定部)が設けられている。この層厚さ設定板7の高さ調整を行なうことにより搬送触媒の層厚さTを自在に設定することができる。層厚さTは反応管2に合った寸法に調節可能にされる。層厚さ設定板7の高さ調整は、任意の手段にて行なうことができ、例えば層厚さ設定板7に縦に長い長孔を設け、この長孔を挿通するボルトを図示しない支持材に螺合させることにより、層厚さ設定板7を高さ調整自在に支持させることができる。   A layer thickness setting plate 7 (layer thickness setting section) is provided in the catalyst transport row for each hopper 1a, 1b,. By adjusting the height of the layer thickness setting plate 7, the layer thickness T of the transport catalyst can be freely set. The layer thickness T can be adjusted to a size suitable for the reaction tube 2. The height of the layer thickness setting plate 7 can be adjusted by any means. For example, a long long hole is provided in the layer thickness setting plate 7 and a bolt for inserting the long hole is not shown. Thus, the layer thickness setting plate 7 can be supported so as to be adjustable in height.

ホッパー1a,1b…1xから流下してベルトコンベア3に載った触媒は、ベルトコンベア3の搬送に伴って、その上端側を層厚さ設定板7の下端部に受け止められて、層厚さTに設定される。   The catalyst flowed down from the hoppers 1a, 1b... 1x and placed on the belt conveyor 3 is received by the lower end portion of the layer thickness setting plate 7 at the upper end side as the belt conveyor 3 is conveyed. Set to

触媒の充填速度は、搬送触媒の層厚さTと、ベルトコンベア3の速度に比例する。搬送触媒の層厚さTは反応管2の内径とほぼ同じに設定し、各反応管2に対応する一対の仕切り壁6の間隔も同様に反応管2の内径とほぼ同じに設定する。そして、前記ベルトコンベア3の搬送速度は一定に設定する。触媒の充填速度は、通常、2〜50g/秒、好ましくは5〜20g/秒である。   The filling speed of the catalyst is proportional to the layer thickness T of the transport catalyst and the speed of the belt conveyor 3. The layer thickness T of the transport catalyst is set to be approximately the same as the inner diameter of the reaction tube 2, and the distance between the pair of partition walls 6 corresponding to each reaction tube 2 is also set to be approximately the same as the inner diameter of the reaction tube 2. The conveying speed of the belt conveyor 3 is set to be constant. The catalyst filling rate is usually 2 to 50 g / sec, preferably 5 to 20 g / sec.

以上の構造により、ホッパー1a,1b…1xから触媒が流下してベルトコンベア3に載り、ベルトコンベア3の駆動に伴って、搬送触媒が仕切り壁6の作用で各反応管2に対応した送り幅に設定されるとともに、層厚さ設定板7により所定の層厚さTに設定され、その状態で反応管2に供給される。   With the above structure, the catalyst flows down from the hoppers 1 a, 1 b... 1 x and is placed on the belt conveyor 3, and as the belt conveyor 3 is driven, the transport catalyst corresponds to each reaction tube 2 by the action of the partition wall 6. Is set to a predetermined layer thickness T by the layer thickness setting plate 7 and is supplied to the reaction tube 2 in this state.

その結果、反応管2の断面積内に納まる大きさの触媒で、かつ、単位時間当たりの投入量が所定量以下であれば、一度に多数の触媒を投入してもブリッジが発生しない。すなわち、上記のように、搬送触媒を仕切り壁6の作用で各反応管2に対応した送り幅に設定するとともに、層厚さ設定板7により所定の層厚さTに設定し、ベルトコンベア3の搬送速度を適切な速度に設定することで、一度に多数の触媒をベルトコンベア3で反応管2に供給しても、反応管2内でのブリッジの発生を回避できる。   As a result, if the catalyst has a size that fits within the cross-sectional area of the reaction tube 2 and the input amount per unit time is equal to or less than a predetermined amount, no bridge is generated even if a large number of catalysts are input at a time. That is, as described above, the transport catalyst is set to a feed width corresponding to each reaction tube 2 by the action of the partition wall 6, and is set to a predetermined layer thickness T by the layer thickness setting plate 7. Therefore, even if a large number of catalysts are supplied to the reaction tube 2 by the belt conveyor 3 at a time, the occurrence of bridges in the reaction tube 2 can be avoided.

上記のように、ベルトコンベア3の搬送速度を一定にすると、反応管2への供給量にむらがなくなって、よりブリッジが生じにくくなる。そして、各ホッパー1a,1b…1xへの触媒投入量を同じにし、全ての反応管2に対して同一の搬送速度で触媒を供給すると、各反応管2への充填速度のばらつきを±20%以下にすることができる。その結果、全ての反応管2内における触媒の充填状態が均一になり、反応流体の流通抵抗(圧力損失)が全ての反応管2でほぼ均一になる。なお、触媒搬送列ごとに設けられる複数のホッパー1a,1b…1xは、同一形状で同じ容量を有するのが好ましい。各反応管2への充填速度のばらつきは±20%以下、好ましくは±15%以下、より好ましくは±5%以下、さらに好ましくは±2%以下である。   As described above, if the conveyance speed of the belt conveyor 3 is constant, the amount supplied to the reaction tube 2 is not uneven, and bridges are less likely to occur. When the same amount of catalyst is supplied to each hopper 1a, 1b... 1x and the catalyst is supplied to all the reaction tubes 2 at the same conveying speed, the variation in the filling rate to each reaction tube 2 is ± 20%. It can be: As a result, the packed state of the catalyst in all the reaction tubes 2 becomes uniform, and the flow resistance (pressure loss) of the reaction fluid becomes almost uniform in all the reaction tubes 2. The plurality of hoppers 1a, 1b,... 1x provided for each catalyst transport row preferably have the same shape and the same capacity. The variation in the filling rate of each reaction tube 2 is ± 20% or less, preferably ± 15% or less, more preferably ± 5% or less, and further preferably ± 2% or less.

前記した構造の触媒充填機では、特に、各ホッパー1a,1b…1xへの触媒投入量が均一になるように計量することが充填速度のばらつきを低減するうえで重要である。具体的には、前記各ホッパー1a,1b…1xへの触媒投入量が±5%以内、好ましくは1%以内の精度で計量されるのが好ましい。触媒投入量が±5%を超えると、充填速度のばらつきが大きくなり、充填速度のばらつきが±10%を超えるようになり、各反応管2への充填状態を均一にすることが困難になる。   In the catalyst filling machine having the above-described structure, it is particularly important to measure the amount of catalyst charged into each hopper 1a, 1b,. Specifically, it is preferable that the amount of catalyst charged into each of the hoppers 1a, 1b... 1x is measured with an accuracy within ± 5%, preferably within 1%. If the amount of catalyst input exceeds ± 5%, the variation in the filling rate increases, the variation in the filling rate exceeds ± 10%, and it becomes difficult to make the filling state into each reaction tube 2 uniform. .

この実施形態における固定床多管式反応器は、上記のようにして粒状の固体触媒が充填された多数の反応管2に、所定の原料化合物を通過させながら、気相接触反応により原料化合物を酸化させ、目的化合物を得る。
このような反応に供される原料化合物には、例えば気相酸化法により塩素を得るための塩化水素および酸素、気相酸化法によりアクロレイン、さらにアクリル酸を得るためのプロピレンおよび酸素、気相酸化法によりメタクロレイン、さらにメタクリル酸を得るためのイソブチレンおよび酸素などが挙げられる。
The fixed bed multitubular reactor according to this embodiment is configured to supply a raw material compound by a gas phase catalytic reaction while passing a predetermined raw material compound through a number of reaction tubes 2 filled with a granular solid catalyst as described above. Oxidation gives the target compound.
The raw material compounds subjected to such a reaction include, for example, hydrogen chloride and oxygen for obtaining chlorine by a gas phase oxidation method, acrolein by a gas phase oxidation method, and propylene and oxygen for obtaining acrylic acid, gas phase oxidation Examples of the method include methacrolein, and isobutylene and oxygen for obtaining methacrylic acid.

使用する反応管はコイル状であってもよいが、通常は直線状の直管が使用される。該直管は、通常、垂直方向に配置され、原料化合物を垂直方向に通過させる縦型である。   The reaction tube used may be coiled, but a straight straight tube is usually used. The straight pipe is usually a vertical type that is arranged in the vertical direction and allows the raw material compound to pass in the vertical direction.

反応管内に充填される触媒としては、例えば塩化水素および酸素から塩素を得る気相酸化法では、酸化ルテニウムを主成分とし
、ルチル型酸化チタンに担持させた酸化触媒が挙げられ、さらにプロピレンおよび酸素からアクロレイン、さらにアクリル酸を得るための気相酸化法や、イソブチレンおよび酸素からメタクロレイン、さらにメタクリル酸を得るための気相酸化法の場合には、それぞれ所定の酸化触媒が使用される。
As the catalyst filled in the reaction tube, for example, in the gas phase oxidation method for obtaining chlorine from hydrogen chloride and oxygen, an oxidation catalyst mainly composed of ruthenium oxide and supported on rutile titanium oxide can be cited, and further propylene and oxygen In the case of the gas phase oxidation method for obtaining acrolein and further acrylic acid from gas, and the gas phase oxidation method for obtaining methacrolein and further methacrylic acid from isobutylene and oxygen, a predetermined oxidation catalyst is used.

触媒は、反応に対して不活性な不活性充填材で希釈して用いてもよい。また、触媒を複数の触媒層に分けて反応管内に充填してもよく、その場合には触媒層同士の間に不活性充填材層を介在させてもよい。   The catalyst may be diluted with an inert filler that is inert to the reaction. Further, the catalyst may be divided into a plurality of catalyst layers and filled in the reaction tube. In that case, an inert filler layer may be interposed between the catalyst layers.

触媒の形状は、球形粒状、円柱形ペレット状、リング形状、あるいは成形後に粉砕分級した顆粒状などの形状が挙げられ、特に制限されるものではない。触媒の大きさは、通常、径が10mm以下であるのが好ましく、触媒径が10mmを超えると、活性が低下するおそれがある。また、触媒径が過度に小さくなると、反応管内の圧力損失が大きくなるため、通常は触媒径が0.1mm以上であるのがよい。   Examples of the shape of the catalyst include a spherical particle shape, a cylindrical pellet shape, a ring shape, and a granular shape obtained by pulverization and classification after molding, and are not particularly limited. In general, the catalyst preferably has a diameter of 10 mm or less, and if the catalyst diameter exceeds 10 mm, the activity may decrease. In addition, when the catalyst diameter is excessively small, the pressure loss in the reaction tube increases, and therefore the catalyst diameter is usually preferably 0.1 mm or more.

本発明で使用される、触媒が充填される各反応管は、通常、内径が約15〜50mmの範囲から選ばれる実質的に同一形状の金属管である。ここで「実質的に同一形状」とは、反応管の外径、肉厚および長さが設計誤差の範囲にあることを意味する。なお、設計誤差は通常±2.5%以内、好ましくは±0.5%以内が許容される。なお、反応管の内径は触媒径の4倍以上となるように、反応管の内径と触媒径とを決定するのが好ましいが、特に制限されるものではない。   Each reaction tube filled with a catalyst used in the present invention is usually a metal tube having substantially the same shape and having an inner diameter selected from a range of about 15 to 50 mm. Here, “substantially the same shape” means that the outer diameter, wall thickness, and length of the reaction tube are within the range of the design error. The design error is usually within ± 2.5%, preferably within ± 0.5%. Although it is preferable to determine the inner diameter of the reaction tube and the catalyst diameter so that the inner diameter of the reaction tube is four times or more the catalyst diameter, it is not particularly limited.

本発明で使用される反応管は内面が平滑であることが必要であり、具体的には表面粗さが小さいことが必要である。これにより、各反応管での触媒充填密度を高くすることができる。このような反応管としては、例えば継ぎ目のないシームレス管が挙げられる。   The reaction tube used in the present invention needs to have a smooth inner surface, and specifically needs to have a small surface roughness. Thereby, the catalyst packing density in each reaction tube can be made high. An example of such a reaction tube is a seamless seamless tube.

本発明の固定床多管式反応器は、通常、熱交換型反応器として使用される。この熱交換型反応器では、触媒が充填された反応管の外側にジャケット(シェル)部を有し、反応で生成した反応熱をジャケット(シェル)の熱媒体によって除去する。具体的には、ディスク・アンド・ドーナツ型の多管式反応器、欠円バッフル型の多管式反応器などが好適に使用される。熱媒体としては、例えば溶融塩、スチーム、有機化合物、溶融金属などが挙げられ、特に溶融塩、スチームを使用するのが熱安定性や取り扱い性のうえから好ましい。   The fixed bed multitubular reactor of the present invention is usually used as a heat exchange reactor. This heat exchange type reactor has a jacket (shell) part outside the reaction tube filled with the catalyst, and the reaction heat generated by the reaction is removed by the heat medium of the jacket (shell). Specifically, a disk-and-doughnut-type multitubular reactor, a non-circular baffle-type multitubular reactor, and the like are preferably used. Examples of the heat medium include a molten salt, steam, an organic compound, and a molten metal. In particular, it is preferable to use a molten salt and steam from the viewpoint of thermal stability and handleability.

以下、試験例を挙げて本発明を詳細に説明するが、本発明は以下の試験例に限定されるものではない。   Hereinafter, the present invention will be described in detail with reference to test examples, but the present invention is not limited to the following test examples.

[試験例]
反応管(ニッケル・シームレス管、内径21mm、長さ5m)へ触媒を充填するにあたり、触媒充填速度を変えたときの充填高さとかさ密度(以下、BDという)とを調べた。使用した触媒は、酸化チタンに酸化ルテニウムを担持させたもので、直径1.5mm、長さ3mmの円柱形粒状物である。
触媒の充填は図1、図2に示すような触媒充填機を用いて行い、触媒充填速度は一定量(850.0g)の触媒の充填時間を変えて調節した。試験結果を表1に示す。

Figure 2006142297

また、表1に示す充填速度とBDとの関係を図3に示した。表1および図3から、選択した充填速度9.55g/秒を標準としたとき、充填速度のばらつきが少なくとも±20%以内であると、充填高さやBDのばらつきに大きな変化がないのに対して、これを外れると充填高さやBDの標準に対して大きくばらつくことがわかる(すなわち、充填速度が14.3g/秒(+50%)および4.79g/秒(−50%)ではBDがそれぞれ−1%および+1%変化している)。 [Test example]
When filling the reaction tube (nickel seamless tube, inner diameter 21 mm, length 5 m) with the catalyst, the filling height and bulk density (hereinafter referred to as BD) when the catalyst filling speed was changed were examined. The catalyst used is a columnar granular material having a diameter of 1.5 mm and a length of 3 mm, in which ruthenium oxide is supported on titanium oxide.
The catalyst filling was performed using a catalyst filling machine as shown in FIGS. 1 and 2, and the catalyst filling rate was adjusted by changing the filling time of a fixed amount (850.0 g) of catalyst. The test results are shown in Table 1.
Figure 2006142297

Moreover, the relationship between the filling speed shown in Table 1 and BD is shown in FIG. From Table 1 and FIG. 3, when the selected filling rate is 9.55 g / second as a standard, if the variation in filling rate is at least ± 20%, the variation in filling height and BD does not change greatly. If it deviates from this, it can be seen that there is a large variation with respect to the standard of filling height and BD (that is, BD is different at filling speeds of 14.3 g / sec (+ 50%) and 4.79 g / sec (−50%) -1% and + 1%).

本発明に係る触媒充填機の一実施形態を示す概略斜視図である。It is a schematic perspective view which shows one Embodiment of the catalyst filling machine which concerns on this invention. 図1に示す触媒充填機の動作を示す概略説明図である。It is a schematic explanatory drawing which shows operation | movement of the catalyst filling machine shown in FIG. 触媒の充填速度とBD(かさ密度)との関係を示すグラフである。It is a graph which shows the relationship between the filling rate of a catalyst, and BD (bulk density).

符号の説明Explanation of symbols

1a,1b…1x:ホッパー、2:反応管、3:ベルトコンベア、6:仕切り壁、7:層厚さ設定板、8:シュート、9:ホース、10:充填ホッパー、14:ダンパー
1a, 1b ... 1x: hopper, 2: reaction tube, 3: belt conveyor, 6: partition wall, 7: layer thickness setting plate, 8: chute, 9: hose, 10: filling hopper, 14: damper

Claims (4)

固定床多管式反応器が備える多数の反応管に、その上方から粒状の触媒を充填するにあたり、各反応管への充填速度のばらつきが±20%以下になるように触媒を充填することを特徴とする触媒充填方法。   When filling a large number of reaction tubes in a fixed bed multitubular reactor with a granular catalyst from above, it is necessary to fill the catalyst so that the variation in the filling rate of each reaction tube is ± 20% or less. A feature of the catalyst filling method. 触媒が投入された複数のホッパーの下に各ホッパー毎に触媒搬送列を形成し、各ホッパーから落下した触媒を各触媒搬送列に沿って反応管の上端開口に搬送し、該上端開口から触媒を反応管内に充填する触媒充填方法であり、前記各ホッパーへの触媒投入量が±5%以内の精度で計量されていることを特徴とする請求項1に記載の触媒充填方法。   A catalyst transport row is formed for each hopper under a plurality of hoppers into which the catalyst is charged, and the catalyst dropped from each hopper is transported along the catalyst transport row to the upper end opening of the reaction tube, and the catalyst is passed through the upper end opening. 2. The catalyst filling method according to claim 1, wherein the amount of catalyst charged into each hopper is measured with an accuracy within ± 5%. 複数の反応管に上方から粒子状の触媒を同時に充填する触媒充填機であって、前記複数の反応管に対応して、触媒が投入される複数のホッパーが設けられ、該ホッパーの下に各ホッパー毎に触媒搬送列が形成されており、各ホッパーから落下した触媒を、それぞれの触媒搬送列を通って各反応管の上方に搬送し充填するようにしたことを特徴とする触媒充填機。   A catalyst filling machine for simultaneously filling a plurality of reaction tubes with particulate catalyst from above, and corresponding to the plurality of reaction tubes, a plurality of hoppers into which a catalyst is charged are provided, and each of the hoppers is provided with a plurality of hoppers. A catalyst filling machine, wherein a catalyst transport row is formed for each hopper, and a catalyst dropped from each hopper is transported and filled above each reaction tube through each catalyst transport row. 前記触媒搬送列が、各ホッパーから流下する触媒を載せて前記反応管に搬送供給するコンベアと、該コンベアの上面に各反応管ごとに搬送路を仕切るために設置された複数の仕切り壁とを備えたことを特徴とする請求項3に記載の触媒充填機。

The catalyst transport row includes a conveyor that carries the catalyst flowing down from each hopper and transports it to the reaction tube, and a plurality of partition walls that are installed on the upper surface of the conveyor to partition the transport path for each reaction tube. The catalyst filling machine according to claim 3, wherein the catalyst filling machine is provided.

JP2005334686A 2005-11-18 2005-11-18 Method and machine for packing catalyst Pending JP2006142297A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005334686A JP2006142297A (en) 2005-11-18 2005-11-18 Method and machine for packing catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005334686A JP2006142297A (en) 2005-11-18 2005-11-18 Method and machine for packing catalyst

Publications (1)

Publication Number Publication Date
JP2006142297A true JP2006142297A (en) 2006-06-08

Family

ID=36622569

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005334686A Pending JP2006142297A (en) 2005-11-18 2005-11-18 Method and machine for packing catalyst

Country Status (1)

Country Link
JP (1) JP2006142297A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009082865A (en) * 2007-10-02 2009-04-23 Sumitomo Chemical Co Ltd Method for packing catalyst for unsaturated aldehyde production or catalyst for unsaturated carboxylic acid production
JP2009262123A (en) * 2008-03-31 2009-11-12 Mitsubishi Chemicals Corp Plate type catalyst layer reactor, method for filling up catalyst in plate type catalyst layer reactor, and method for manufacturing reaction product using plate type catalyst layer reactor
JP2011072992A (en) * 2009-10-01 2011-04-14 IFP Energies Nouvelles Device and method for packing catalyst particle into annular zone of insertion pipe
JP2012101189A (en) * 2010-11-11 2012-05-31 Sumitomo Chemical Co Ltd Catalyst filling machine and method of filling catalyst using the same
JP2013081898A (en) * 2011-10-07 2013-05-09 Nippon Shokubai Co Ltd Granular substance-filling device
JP2016501807A (en) * 2012-10-17 2016-01-21 イエフペ エネルジ ヌヴェルIfp Energies Nouvelles Steam reforming exchanger-a system using a removable helical element that densely charges the bayonet tube for the reactor
JP2020090331A (en) * 2018-12-03 2020-06-11 川崎重工業株式会社 Fuel feeding system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11333282A (en) * 1998-05-29 1999-12-07 Sumitomo Chem Co Ltd Catalyst filling machine
JP2002306953A (en) * 2001-01-25 2002-10-22 Nippon Shokubai Co Ltd Fixed bed multitubular reactor and its usage

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11333282A (en) * 1998-05-29 1999-12-07 Sumitomo Chem Co Ltd Catalyst filling machine
JP2002306953A (en) * 2001-01-25 2002-10-22 Nippon Shokubai Co Ltd Fixed bed multitubular reactor and its usage

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009082865A (en) * 2007-10-02 2009-04-23 Sumitomo Chemical Co Ltd Method for packing catalyst for unsaturated aldehyde production or catalyst for unsaturated carboxylic acid production
JP2009262123A (en) * 2008-03-31 2009-11-12 Mitsubishi Chemicals Corp Plate type catalyst layer reactor, method for filling up catalyst in plate type catalyst layer reactor, and method for manufacturing reaction product using plate type catalyst layer reactor
JP2011072992A (en) * 2009-10-01 2011-04-14 IFP Energies Nouvelles Device and method for packing catalyst particle into annular zone of insertion pipe
JP2012101189A (en) * 2010-11-11 2012-05-31 Sumitomo Chemical Co Ltd Catalyst filling machine and method of filling catalyst using the same
KR101800464B1 (en) 2010-11-11 2017-11-22 스미또모 가가꾸 가부시키가이샤 Catalyst packing apparatus and method for packing catalyst by using the same
JP2013081898A (en) * 2011-10-07 2013-05-09 Nippon Shokubai Co Ltd Granular substance-filling device
JP2016501807A (en) * 2012-10-17 2016-01-21 イエフペ エネルジ ヌヴェルIfp Energies Nouvelles Steam reforming exchanger-a system using a removable helical element that densely charges the bayonet tube for the reactor
JP2020090331A (en) * 2018-12-03 2020-06-11 川崎重工業株式会社 Fuel feeding system
JP7294799B2 (en) 2018-12-03 2023-06-20 川崎重工業株式会社 fuel supply system

Similar Documents

Publication Publication Date Title
JP2006142297A (en) Method and machine for packing catalyst
CN100378050C (en) Method for vapor phase catalytic oxidation
JP5150709B2 (en) Catalyst filling machine and catalyst filling method using the same
JP3722621B2 (en) Catalyst filling machine
JP6322637B2 (en) Steam reforming reactor-gas system having a removable tube that supplies a gas for dense loading of a bayonet tube for the exchanger
JP2006142288A (en) Fixed bed multitubular reactor
KR20170093913A (en) Method for packing catalyst into fluidized bed reactor, and process for producing nitrile compound
JP4295462B2 (en) Gas phase catalytic oxidation method
JP7352692B2 (en) Method for producing unsaturated nitrile
JP5326218B2 (en) Catalyst filling method
JP2005325044A (en) Method for conducting pilot test of multitubular reactor
WO2010061690A1 (en) Reaction method using heat-exchange type reactor, and method for charging fillers in plate reactor
JP2010149105A (en) Reaction method using heat-exchange type reactor
JP5618800B2 (en) FIXED BED MULTITUBE REACTOR AND METHOD FOR PRODUCING UNSATURATED ALDEHYDE AND / OR UNSATURATED CARBOXYLIC ACID USING THE FIXED BED MULTITUBE REACTOR
JP2010132584A (en) Method for operating vapor-phase oxidation reaction by using multitubular heat exchanger-type reactor
JP4194359B2 (en) Gas phase catalytic oxidation method
JP7287312B2 (en) Method for filling granular material into multitubular reactor
JP5500775B2 (en) Fixed bed reactor
JP6422764B2 (en) Catalyst filling method
JP5593600B2 (en) Plate-type catalyst layer reactor, method for filling catalyst in the plate-type catalyst layer reactor, and method for producing reaction products using the plate-type catalyst layer reactor
JP4779309B2 (en) Catalyst mixer and catalyst mixing method
JP5272998B2 (en) Packing method in plate reactor
JP2005213179A (en) Catalyst layer and method for forming the same, fixed bed tubular reactor, method for producing methacrolein or methacrylic acid
WO2005021480A1 (en) Method for producing methacrylic acid
JP2012236161A (en) Fixed-bed multitubular reactor and production method for the fixed-bed multitubular reactor

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20061121

Free format text: JAPANESE INTERMEDIATE CODE: A621

A131 Notification of reasons for refusal

Effective date: 20091104

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20100413

Free format text: JAPANESE INTERMEDIATE CODE: A02