JP2012236161A - Fixed-bed multitubular reactor and production method for the fixed-bed multitubular reactor - Google Patents

Fixed-bed multitubular reactor and production method for the fixed-bed multitubular reactor Download PDF

Info

Publication number
JP2012236161A
JP2012236161A JP2011107555A JP2011107555A JP2012236161A JP 2012236161 A JP2012236161 A JP 2012236161A JP 2011107555 A JP2011107555 A JP 2011107555A JP 2011107555 A JP2011107555 A JP 2011107555A JP 2012236161 A JP2012236161 A JP 2012236161A
Authority
JP
Japan
Prior art keywords
heat medium
fixed
multitubular reactor
reaction tube
bed multitubular
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011107555A
Other languages
Japanese (ja)
Other versions
JP5899654B2 (en
Inventor
Koichi Tanimoto
浩一 谷元
Daisuke Yasuda
大介 安田
Shigeo Tanaka
茂穂 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP2011107555A priority Critical patent/JP5899654B2/en
Publication of JP2012236161A publication Critical patent/JP2012236161A/en
Application granted granted Critical
Publication of JP5899654B2 publication Critical patent/JP5899654B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Devices And Processes Conducted In The Presence Of Fluids And Solid Particles (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a fixed-bed multitubular reactor which adequately lowers temperature difference in the reactor by intending to improve installation efficiency, reduce cost and improve production efficiency, and to provide a production method for the fixed-bed multitubular reactor.SOLUTION: The fixed-bed multitubular reactor 1 includes a shell part 10 in which a heating medium is fluidized; segmental circle type baffles 20a, 20b, 20c which are arranged in the shell part 10 and can change the fluidity direction of the heating medium; and a plurality of reaction tubes 30 which are inserted in a plurality of penetration holes 23 formed along the thickness direction of the segmental circle type baffles 20a, 20b, 20c, respectively, wherein a blocking material 31, which is packed according to fluidization of the heating medium, is arranged in a clearance C between the reaction tube 30 and the inner peripheral surface of the penetration hole 23.

Description

本発明は、固体状の触媒を用いた気相接触酸化反応が行われる固定床多管式反応器及び固定床多管式反応器の製造方法に関する。   The present invention relates to a fixed bed multitubular reactor in which a gas phase catalytic oxidation reaction using a solid catalyst is performed, and a method for producing a fixed bed multitubular reactor.

固体状の触媒を用いた気相接触酸化反応においては、固定床多管式反応器が広く使用されている。固定床多管式反応器は、流動する熱媒体を収容する円筒状のシェル部と、シェル部の内部に設置された多数本の反応管と、シェル部の内部に設けられ、熱媒体が水平(径方向)に移動した後に上方(軸方向)に移動するように熱媒体の流動を規制する邪魔板と、を備え、発熱反応によって生じた反応熱を、反応管の外側を流動する熱媒体によって除去するようになっている。   In the gas phase catalytic oxidation reaction using a solid catalyst, a fixed bed multitubular reactor is widely used. The fixed-bed multi-tubular reactor is provided with a cylindrical shell portion that accommodates a flowing heat medium, a large number of reaction tubes installed inside the shell portion, and a heat medium horizontally disposed inside the shell portion. A baffle plate that regulates the flow of the heat medium so as to move upward (axial direction) after moving in the (radial direction), and the heat medium that flows reaction heat generated by the exothermic reaction outside the reaction tube Is to be removed.

ところで、固定床多管式反応器を使用して発熱反応を行う際には、熱媒体の偏流や、局所的な反応の進行等により、反応器の内部で大きな温度差が生じる場合がある。反応器の内部で大きな温度差が生じると、反応管ごとの反応量や、触媒劣化速度等に大きな差が生じるため、目的の収率を得るための運転条件や、触媒を交換する時期等の決定が困難となる。さらに、局所的な高温帯が発生すると、暴走反応を起こし、触媒が急速に失活して交換を余儀なくされたり、反応管が損傷して修繕が必要になったりすることがあり、設備コストが増加する。   By the way, when an exothermic reaction is performed using a fixed-bed multitubular reactor, a large temperature difference may occur inside the reactor due to a drift of a heat medium, a progress of a local reaction, or the like. If a large temperature difference occurs inside the reactor, there will be a large difference in the reaction amount for each reaction tube, the catalyst deterioration rate, etc. It becomes difficult to make a decision. In addition, if a local high temperature zone is generated, a runaway reaction may occur and the catalyst may be quickly deactivated and replaced, or the reaction tube may be damaged and repairs may be required, resulting in a reduction in equipment costs. To increase.

そこで、例えば下記の特許文献1〜3では、反応器の内部での温度差を小さくする方法が提案されている。
具体的に、特許文献1には、シェル部の内部において、反応管よりも外側に反応管と平行に整流棒群を設ける構成が記載されている。
特許文献2には、反応管より大きい複数の孔を邪魔板に形成し、孔のそれぞれに反応管を遊挿して、反応管の外周部と邪魔板の孔の内周面との間のクリアランスを熱媒体の流路とする構成が記載されている。
Thus, for example, Patent Documents 1 to 3 below propose a method for reducing the temperature difference inside the reactor.
Specifically, Patent Document 1 describes a configuration in which a rectifying rod group is provided in parallel with the reaction tube outside the reaction tube inside the shell portion.
In Patent Document 2, a plurality of holes larger than the reaction tube are formed in the baffle plate, the reaction tube is inserted into each of the holes, and a clearance between the outer peripheral portion of the reaction tube and the inner peripheral surface of the hole of the baffle plate is disclosed. Is described as a flow path for the heat medium.

特開2005−296921号公報JP 2005-296721 A 特開平2−213696号公報JP-A-2-213696 特開昭58−123094号公報JP 58-123094 A

しかしながら、上述した特許文献1の構成では、反応器内に設置する反応管の本数が減少し、反応に関与しない空間が増大するため、反応器の内部空間を充分に利用しているとはいえなかった。そのため、反応器の規模に対して反応生成物の量が少なく、設備効率が低いという問題があった。
また、特許文献2の構成では、邪魔板に反応管径より大きい径の孔を形成するため、反応管の本数と太さが制限される傾向にあった。また、反応管と邪魔板とのクリアランスを熱媒体流路として活用すると、邪魔板に沿って(反応器の径方向に沿って)流動する熱媒体の流量が低下する。その結果、特に反応器の外周側での熱媒体による加熱および除熱能力の低下が生じ、反応器の外周側と内周側とで過大な温度差が発生する可能性がある。
However, in the configuration of Patent Document 1 described above, the number of reaction tubes installed in the reactor is reduced, and the space not involved in the reaction is increased. Therefore, it can be said that the internal space of the reactor is fully utilized. There wasn't. Therefore, there is a problem that the amount of reaction products is small with respect to the scale of the reactor, and the equipment efficiency is low.
Moreover, in the structure of patent document 2, since the hole larger than the diameter of a reaction tube was formed in a baffle plate, there existed a tendency for the number and thickness of a reaction tube to be restrict | limited. Further, when the clearance between the reaction tube and the baffle plate is utilized as a heat medium flow path, the flow rate of the heat medium flowing along the baffle plate (along the radial direction of the reactor) is reduced. As a result, there is a possibility that heating and heat removal capability will be reduced particularly by the heat medium on the outer peripheral side of the reactor, and an excessive temperature difference may occur between the outer peripheral side and the inner peripheral side of the reactor.

そこで、上述したクリアランスを閉塞する方法として、例えば特許文献3に示されるように、所要個数の透孔を穿設した管板の透孔と、透孔に挿入したパイプと、の管板内側面における接合間隙を、溶加材にて、または溶加材なしに溶接し、閉塞する方法が知られている。
しかしながら、特許文献3の方法では、特に反応管が多数本密集して存在する場合には、後から纏めて溶接することは不可能であるため、反応管を1本ずつ溶接しながら挿入していく必要がある。そのため、全クリアランスを閉塞するには多大な労力を要する。その結果、製造コストの増加、及び製造効率の低下に繋がるという問題がある。また、溶接による全クリアランスの閉塞を行うと、反応器を反応条件まで昇温することにより生じる、邪魔板、および、反応管の熱膨張により、反応器が破損する恐れがある。
Therefore, as a method of closing the above-described clearance, for example, as shown in Patent Document 3, a tube plate inner surface of a tube plate having a required number of through holes and a pipe inserted into the through holes is provided. There is known a method in which the joint gap is closed by welding with or without a filler material.
However, in the method of Patent Document 3, especially when a large number of reaction tubes exist in a dense manner, it is impossible to weld them together later, so the reaction tubes are inserted while welding one by one. We have to go. Therefore, a great deal of labor is required to close the entire clearance. As a result, there is a problem that the manufacturing cost increases and the manufacturing efficiency decreases. Further, if the entire clearance is closed by welding, the reactor may be damaged due to the baffle plate and the thermal expansion of the reaction tube that are caused by raising the temperature of the reactor to the reaction conditions.

そこで、本発明は、上述の事情に鑑みてなされたものであり、設備効率の向上、低コスト化、及び製造効率の向上を図った上で、反応器内の温度差を充分に小さくできる固定床多管式反応器及び固定床多管式反応器の製造方法を提供するものである。   Therefore, the present invention has been made in view of the above-mentioned circumstances, and is intended to improve the equipment efficiency, reduce the cost, and improve the production efficiency, and can fix the temperature difference in the reactor sufficiently small. The present invention provides a method for producing a bed multitubular reactor and a fixed bed multitubular reactor.

本発明の固定床多管式反応器は、内部に熱媒体が流動するシェル部と、前記シェル部の内部に設置され、前記熱媒体の流動方向を変更可能な邪魔板と、前記邪魔板の厚さ方向に沿って形成された複数の貫通孔内にそれぞれ遊挿された複数の反応管と、を有する固定床多管式反応器であって、前記反応管と前記貫通孔の内周面との間のクリアランスには、前記熱媒体の流動に応じて充填される閉塞材が設けられている。
また、本発明の固定床多管式反応器においては、前記閉塞材は、前記熱媒体に混入された処理物質であって微粒子からなることが好ましい。
また、本発明の固定床多管式反応器においては、前記閉塞材は、前記熱媒体に混入された処理物質であって前記邪魔板及び前記反応管のうち、少なくとも一方と反応可能な処理物質によって、前記少なくとも一方の表面に堆積されたスケールからなることが好ましい。
また、本発明の固定床多管式反応器においては、前記邪魔板及び前記反応管の少なくとも一方は、暴露処理が施されていることが好ましい。
また、本発明の固定床多管式反応器は、前記邪魔板は、前記反応管の延在方向に沿って複数設置されていることが好ましい。
また、本発明の固定床多管式反応器においては、メタクロレインを分子状酸素により気相接触酸化してメタクリル酸を製造する際に好適に用いられる。
The fixed bed multitubular reactor of the present invention includes a shell part in which a heat medium flows, a baffle plate installed in the shell part and capable of changing a flow direction of the heat medium, and the baffle plate A fixed-bed multitubular reactor having a plurality of reaction tubes loosely inserted in a plurality of through-holes formed along the thickness direction, the inner peripheral surface of the reaction tube and the through-holes Is provided with a plugging material filled in accordance with the flow of the heat medium.
In the fixed bed multitubular reactor of the present invention, it is preferable that the plugging material is a processing substance mixed in the heat medium and is made of fine particles.
Further, in the fixed bed multitubular reactor according to the present invention, the plugging material is a processing substance mixed in the heat medium, and is capable of reacting with at least one of the baffle plate and the reaction tube. Preferably, the scale is deposited on the at least one surface.
In the fixed-bed multitubular reactor according to the present invention, it is preferable that at least one of the baffle plate and the reaction tube is subjected to an exposure treatment.
In the fixed bed multitubular reactor of the present invention, it is preferable that a plurality of the baffle plates are installed along the extending direction of the reaction tube.
Further, the fixed bed multitubular reactor of the present invention is suitably used when producing methacrylic acid by vapor-phase catalytic oxidation of methacrolein with molecular oxygen.

本発明の固定床多管式反応器の製造方法は、内部に熱媒体が流動するシェル部と、前記シェル部の内部に設置され、前記熱媒体の流動方向を変更可能な邪魔板と、前記邪魔板の厚さ方向に沿って形成された複数の貫通孔内にそれぞれ挿入された複数の反応管と、を有する固定床多管式反応器の製造方法であって、前記反応管と前記貫通孔の内周面との間のクリアランス内に、前記熱媒体の流動に応じて閉塞材を充填する閉塞処理工程を有している。
また、本発明の固定床多管式反応器の製造方法においては、前記閉塞処理工程では、微粒子が混入された前記熱媒体を前記シェル部内に流動させることで、前記クリアランス内に前記微粒子を充填することが好ましい。
また、本発明の固定床多管式反応器の製造方法においては、前記閉塞処理工程では、記邪魔板及び前記反応管のうち、少なくとも一方と反応可能な処理物質が混入された前記熱媒体を、前記シェル部内に流動させることで、前記少なくとも一方の表面にスケールを堆積することが好ましい。
また、本発明の固定床多管式反応器の製造方法においては、前記閉塞処理工程に先立って、前記邪魔板及び前記反応管のうち、少なくとも一方に暴露処理を施す暴露処理工程を有していることが好ましい。
The method for producing a fixed-bed multitubular reactor according to the present invention includes a shell part in which a heat medium flows, a baffle plate installed in the shell part and capable of changing a flow direction of the heat medium, And a plurality of reaction tubes inserted into a plurality of through-holes formed along the thickness direction of the baffle plate, respectively. A clogging treatment step is provided in which a clogging material is filled in accordance with the flow of the heat medium in the clearance between the hole and the inner peripheral surface.
In the method for producing a fixed bed multitubular reactor according to the present invention, in the clogging treatment step, the heat medium mixed with fine particles is caused to flow into the shell portion, whereby the fine particles are filled in the clearance. It is preferable to do.
In the method for producing a fixed-bed multitubular reactor according to the present invention, in the blockage treatment step, the heat medium mixed with a treatment substance capable of reacting with at least one of the baffle plate and the reaction tube is used. Preferably, the scale is deposited on the at least one surface by flowing in the shell portion.
Further, in the method for producing a fixed-bed multitubular reactor according to the present invention, prior to the clogging treatment step, there is an exposure treatment step in which at least one of the baffle plate and the reaction tube is subjected to an exposure treatment. Preferably it is.

本発明の固定床多管式反応器は、設備効率の向上、低コスト化、及び製造効率の向上を図った上で、反応器内の温度差を充分に小さくできる。   The fixed bed multitubular reactor of the present invention can sufficiently reduce the temperature difference in the reactor while improving the equipment efficiency, reducing the cost, and improving the production efficiency.

本発明の実施形態における固定床多管式反応器を示す縦断面図である。It is a longitudinal section showing a fixed bed multi-tubular reactor in an embodiment of the present invention. 図1のI’−I’断面図である。It is I'-I 'sectional drawing of FIG. 図1に相当する断面図であって、実施例、及び比較例に用いた熱電対の設置位置を示した図である。It is sectional drawing equivalent to FIG. 1, Comprising: It is the figure which showed the installation position of the thermocouple used for the Example and the comparative example. 固定床多管式反応器の平面図であって、実施例、及び比較例に用いた熱電対の設置位置を示した図である。It is a top view of a fixed bed multitubular reactor, Comprising: It is the figure which showed the installation position of the thermocouple used for the Example and the comparative example.

次に、本実施形態を図面に基づいて説明する。図1は、本実施形態の固定床多管式反応器(以下、反応器という)の縦断面図である。
図1に示すように、本実施形態の反応器1は、円筒状のシェル部10と、シェル部10に設置された複数(例えば、3枚)の欠円型邪魔板(邪魔板)20a,20b,20cと、シェル部10の内部に設置された多数本の反応管30と、を備えている。
また、反応器1は、全反応管30の下端を固定するとともにシェル部10の床部になる下側固定板40と、全反応管30の上端を固定するとともにシェル部10の天井部になる上側固定板50と、下側固定板40の下方に設けられた原料導入部60と、上側固定板50の上方に設けられた反応生成物排出部70と、下側固定板40よりも上方に設置され、シェル部10に熱媒体を導入する熱媒体導入管80と、上側固定板50よりも下方かつ熱媒体導入管80よりも上方に設置され、シェル部10から熱媒体を排出する熱媒体排出管90と、を備えている。
Next, the present embodiment will be described with reference to the drawings. FIG. 1 is a longitudinal sectional view of a fixed-bed multitubular reactor (hereinafter referred to as a reactor) of this embodiment.
As shown in FIG. 1, the reactor 1 of the present embodiment includes a cylindrical shell portion 10 and a plurality of (for example, three) missing circular baffle plates (baffle plates) 20 a installed in the shell portion 10. 20b, 20c, and a plurality of reaction tubes 30 installed inside the shell portion 10.
In addition, the reactor 1 fixes the lower ends of all the reaction tubes 30 and the lower fixing plate 40 which becomes the floor portion of the shell portion 10, and fixes the upper ends of all the reaction tubes 30 and becomes the ceiling portion of the shell portion 10. Above the upper fixing plate 50, the raw material introduction portion 60 provided below the lower fixing plate 40, the reaction product discharge portion 70 provided above the upper fixing plate 50, and above the lower fixing plate 40. A heat medium introduction pipe 80 installed to introduce a heat medium into the shell portion 10, and a heat medium that is disposed below the upper fixing plate 50 and above the heat medium introduction pipe 80 and discharges the heat medium from the shell portion 10. And a discharge pipe 90.

シェル部10は、内部に熱媒体が流動するものであり、本実施形態においては、軸方向を鉛直方向に一致させた状態で設置されている。なお、シェル部10内を流動する熱媒体としては特に限定はなく、通常、硝酸カリウム及び亜硝酸ナトリウムを含む塩溶融物(いわゆるナイター)や、ビフェニルとジフェニルエーテルとの3:7混合物(例えば、ダウケミカル社製ダウサム)等の有機熱媒体を使用することができる。   The shell portion 10 has a heat medium flowing therein. In the present embodiment, the shell portion 10 is installed in a state in which the axial direction coincides with the vertical direction. In addition, there is no limitation in particular as a heat medium which flows in the shell part 10, Usually, the salt melt (what is called nighter) containing potassium nitrate and sodium nitrite, or 3: 7 mixture (For example, Dow Chemical) of biphenyl and diphenyl ether. An organic heat medium such as Dowsome manufactured by the company can be used.

図2は図1のI−I’線に沿う断面図である。
図2に示すように、欠円型邪魔板20a,20b,20cは、シェル部10の内径より直径が小さい円板の一部が欠けた形状のものであり、例えば炭素鋼、ステンレス鋼等により構成されている。本実施形態における欠円型邪魔板20a,20b,20cは、円板の一部が直線的に切除されたように欠けている。なお、本明細書では、円板の一部が直線的に切除されたように欠けて形成された欠円型邪魔板20a,20b,20cの直線状の端部21のことを、「直線状端部21」という。
2 is a cross-sectional view taken along the line II ′ of FIG.
As shown in FIG. 2, the missing circular baffle plates 20 a, 20 b, and 20 c have a shape in which a part of a disk having a diameter smaller than the inner diameter of the shell portion 10 is cut off. For example, carbon steel, stainless steel, or the like is used. It is configured. The missing circular baffle plates 20a, 20b, and 20c in the present embodiment are missing as if a part of the circular plate was cut linearly. In the present specification, the straight end portions 21 of the cut-out baffle plates 20a, 20b, and 20c that are formed by cutting off a part of the disc in a straight line are referred to as “linear”. It is referred to as “end 21”.

また、欠円型邪魔板20a,20b,20cは、厚さ方向(軸方向)が鉛直方向に一致するとともに、面方向が水平方向に沿って設置されている。よって、シェル部10の内壁10aと、欠円型邪魔板20a,20b,20cの直線状端部21との間にはクリアランスBが形成されている。   Further, the oval baffles 20a, 20b, and 20c are installed such that the thickness direction (axial direction) coincides with the vertical direction and the surface direction extends along the horizontal direction. Therefore, a clearance B is formed between the inner wall 10a of the shell portion 10 and the linear end portions 21 of the missing circular baffle plates 20a, 20b, and 20c.

本実施形態では、上段の欠円型邪魔板20a、及び下段の欠円型邪魔板20cについては、シェル部10の内部にて、クリアランスBが熱媒体導入管80、及び熱媒体排出管90側と反対側に配置されるように、直線状端部21が配置されている。一方、中段の欠円型邪魔板20bについては、シェル部10の内部にて、クリアランスBが熱媒体導入管80、及び熱媒体排出管90側に配置されるように、直線状端部21が配置されている。すなわち、中段の欠円型邪魔板20bは、上段、及び下段の欠円型邪魔板20a,20cに対して反対向きに配置されている。また、欠円型邪魔板20a,20b,20cは、シェル部10の軸方向に沿って等間隔に配置されている。なお、欠円型邪魔板20a,20b,20cは、シェル部10に取り付けられたサポートリングやサポートビーム(図示せず)によって固定されている。   In the present embodiment, with respect to the upper notch baffle plate 20a and the lower notch baffle plate 20c, the clearance B is within the shell portion 10 and the heat medium introduction pipe 80 and the heat medium discharge pipe 90 side. The linear end portion 21 is disposed so as to be disposed on the opposite side of the line. On the other hand, with respect to the middle rounded baffle plate 20b, the linear end portion 21 is arranged so that the clearance B is disposed on the heat medium introduction pipe 80 and the heat medium discharge pipe 90 side inside the shell portion 10. Has been placed. In other words, the middle-stage missing circular baffle plate 20b is disposed in the opposite direction to the upper and lower missing circular baffle plates 20a, 20c. Further, the missing circular baffle plates 20 a, 20 b, and 20 c are arranged at equal intervals along the axial direction of the shell portion 10. Note that the oval baffles 20a, 20b, and 20c are fixed by a support ring or a support beam (not shown) attached to the shell portion 10.

上述したように欠円型邪魔板20a,20b,20cを配置することにより、シェル部10の内部は、下側固定板40と下段の欠円型邪魔板20cの間の第1室11、下段の欠円型邪魔板20cと中段の欠円型邪魔板20bの間の第2室12、中段の欠円型邪魔板20bと上段の欠円型邪魔板20aの間の第3室13、及び上段の欠円型邪魔板20aと上側固定板50との間の第4室14に分割される。   As described above, by arranging the missing circular baffle plates 20a, 20b, and 20c, the inside of the shell portion 10 has the first chamber 11 between the lower fixed plate 40 and the lower cutout baffle plate 20c, the lower stage. A second chamber 12 between the non-circular baffle plate 20c and the middle-circular baffle plate 20b, a third chamber 13 between the middle circular baffle plate 20b and the upper partial baffle plate 20a, and The upper chamber is divided into a fourth chamber 14 between the upper circular plate baffle plate 20a and the upper fixed plate 50.

そして、第1室11と第2室12とは、主に、下段の欠円型邪魔板20cの直線状端部21と、シェル部10の内壁10aと、の間に生じるクリアランスBにより連通状態にされている。
また、第2室12と第3室13とは、主に、中段の欠円型邪魔板20bの直線状端部21と、シェル部10の内壁10aと、の間に生じるクリアランスBにより連通状態にされている。
また、第3室13と第4室14とは、主に、上段の欠円型邪魔板20aの直線状端部21と、シェル部10の内壁10aと、の間に生じるクリアランスBにより連通状態にされている。
したがって、熱媒体導入管80からシェル部10に導入された殆どの熱媒体は、第1室11、第2室12、第3室13、及び第4室14を経てシェル部10内を蛇行しながら上昇し、熱媒体排出管90から排出されるようになっている。
The first chamber 11 and the second chamber 12 are in communication with each other mainly by a clearance B generated between the linear end portion 21 of the lower circular baffle plate 20 c and the inner wall 10 a of the shell portion 10. Has been.
Further, the second chamber 12 and the third chamber 13 are in communication with each other mainly by a clearance B generated between the linear end portion 21 of the middle notched baffle plate 20 b and the inner wall 10 a of the shell portion 10. Has been.
The third chamber 13 and the fourth chamber 14 are in communication with each other mainly by a clearance B generated between the linear end portion 21 of the upper circular baffle plate 20a and the inner wall 10a of the shell portion 10. Has been.
Therefore, most of the heat medium introduced into the shell portion 10 from the heat medium introduction pipe 80 meanders through the shell portion 10 through the first chamber 11, the second chamber 12, the third chamber 13, and the fourth chamber 14. However, it rises and is discharged from the heat medium discharge pipe 90.

また、欠円型邪魔板20a,20b,20cには、反応管30を遊挿するための複数の貫通孔23が、面方向に沿って間隔を空けて形成されている。なお、貫通孔23の内径は、反応管30の外径よりも大きく形成されている。   A plurality of through holes 23 for loosely inserting the reaction tubes 30 are formed in the cutout baffle plates 20a, 20b, and 20c at intervals along the surface direction. Note that the inner diameter of the through hole 23 is larger than the outer diameter of the reaction tube 30.

各反応管30は、シェル部10の内部にて軸方向を鉛直方向に一致させた状態で配置された円筒状のものであり、例えば炭素鋼、ステンレス鋼等により構成されている。具体的に、各反応管30は、各欠円型邪魔板20a,20b,20cに形成された複数の貫通孔23のうち、軸方向からみて重なる貫通孔23内にそれぞれ遊挿されるとともに、その上下端が上述した上側固定板50と下側固定板40とにそれぞれ固定されている。したがって、反応管30と、欠円型邪魔板20a,20b,20cの貫通孔23の内周面と、の間にはクリアランスCが形成される。また、各反応管30は、下端開口部が原料導入部60内に開放される一方、上端開口部が反応生成物排出部70内に開放されている。   Each reaction tube 30 has a cylindrical shape arranged in a state where the axial direction coincides with the vertical direction inside the shell portion 10, and is made of, for example, carbon steel, stainless steel, or the like. Specifically, each reaction tube 30 is loosely inserted into a through hole 23 that overlaps when viewed from the axial direction among the plurality of through holes 23 formed in each of the oval baffles 20a, 20b, and 20c. Upper and lower ends are respectively fixed to the upper fixing plate 50 and the lower fixing plate 40 described above. Therefore, a clearance C is formed between the reaction tube 30 and the inner peripheral surface of the through hole 23 of the oval baffle plates 20a, 20b, and 20c. Each reaction tube 30 has a lower end opening in the raw material introduction part 60, and an upper end opening in the reaction product discharge part 70.

なお、反応管30の断面形状は特に限定されず、楕円形状、多角形状や、それ以外の形状であってもよい。また、反応管30の本数は特に制限はなく、反応生成物の必要量に応じて適宜選択される。上限については、反応器1を作製する際の加工機械によっても異なり、通常、数千本から数万本である。また、各反応管30間のピッチは、製作可能な範囲で任意の距離をとることが可能である。
また、反応管30の内径と長さには特に制限はないが、通常、内径が10〜50mm、長さが300〜10000mmの範囲である。
In addition, the cross-sectional shape of the reaction tube 30 is not particularly limited, and may be an elliptical shape, a polygonal shape, or other shapes. Further, the number of reaction tubes 30 is not particularly limited and is appropriately selected according to the required amount of reaction products. About an upper limit, it changes also with the processing machines at the time of producing the reactor 1, and it is usually thousands to tens of thousands. Moreover, the pitch between each reaction tube 30 can take arbitrary distances in the range which can be manufactured.
Moreover, there is no restriction | limiting in particular in the internal diameter and length of the reaction tube 30, Usually, an internal diameter is 10-50 mm and length is the range of 300-10000 mm.

反応管30内には触媒が充填されている。触媒としては、反応を目的通りに進行させる触媒であれば特に限定はされない。例えば、エステル化反応、エステル交換反応、付加反応、または水和反応等の固体触媒等を利用できるが、反応発熱による反応系の温度変化が大きく、熱媒体による除熱が重要となる気相接触酸化反応触媒が好適に利用される。なお、触媒の形状としては特に限定されず、球状、円柱状、リング状、星形状等が挙げられる。触媒の大きさは特に限定されないが、触媒径が過度に大きくなると活性が低下する傾向にあり、触媒径が過度に小さくなると、反応管内の圧力損失が大きくなる。このようなことから、通常、触媒径は0.1〜10mmの範囲にされる。
また、触媒は無担体であってもよく、担体に触媒を担持した担持触媒であってもよい。担体としては、例えば、シリカ、アルミナ、シリカ・アルミナ、シリコンカーバイト等の不活性担体が挙げられる。また、担体の形状としては、球状、円柱状、リング状、星形状等が挙げられる。
The reaction tube 30 is filled with a catalyst. The catalyst is not particularly limited as long as the catalyst allows the reaction to proceed as intended. For example, a solid catalyst such as esterification reaction, transesterification reaction, addition reaction, or hydration reaction can be used, but the temperature change of the reaction system due to reaction exotherm is large, and gas phase contact where heat removal by a heat medium is important An oxidation reaction catalyst is preferably used. The shape of the catalyst is not particularly limited, and examples thereof include a spherical shape, a cylindrical shape, a ring shape, and a star shape. The size of the catalyst is not particularly limited, but the activity tends to decrease when the catalyst diameter becomes excessively large, and the pressure loss in the reaction tube increases when the catalyst diameter becomes excessively small. For this reason, the catalyst diameter is usually in the range of 0.1 to 10 mm.
Further, the catalyst may be carrier-free or a supported catalyst in which a catalyst is supported on a carrier. Examples of the carrier include inert carriers such as silica, alumina, silica / alumina, and silicon carbide. Examples of the shape of the carrier include a spherical shape, a cylindrical shape, a ring shape, and a star shape.

また、触媒を反応管30に充填する際には、触媒を、シリカ、アルミナ、シリカ−アルミナ、シリコンカーバイト、チタニア、マグネシア、セラミックボールやステンレス鋼等の不活性充填材で希釈してもよい。不活性充填材の形状としては、球形粒状、円柱形ペレット状、リング形状、星型状、鞍型状などが挙げられる。
また、触媒を複数の触媒層に分けて反応管30内に充填してもよく、その場合には触媒層同士の間に不活性充填材層を介在させてもよい。
Further, when the catalyst is filled in the reaction tube 30, the catalyst may be diluted with an inert filler such as silica, alumina, silica-alumina, silicon carbide, titania, magnesia, ceramic balls, and stainless steel. . Examples of the shape of the inert filler include a spherical granular shape, a cylindrical pellet shape, a ring shape, a star shape, and a saddle shape.
Further, the catalyst may be divided into a plurality of catalyst layers and filled in the reaction tube 30. In that case, an inert filler layer may be interposed between the catalyst layers.

反応管30に触媒を充填する際には、触媒を反応管30ごと、または充填回ごとに管理目標量を計量し、計量した触媒を上端開口部から反応管に充填する。ここで、管理目標量は体積でも質量でもよいが、精度が高くなるという点で、質量が好ましい。管理目標量が体積の場合には反応管30の容積から、質量の場合には反応管30の容積と別途予備的に測定される触媒充填密度とから、管理目標量を求めることができる。
また、触媒を計量する際には、反応管30に充填する触媒量と管理目標量との差が、触媒量の平均値の±10%以内にすることが好ましく、±5%以内にすることがより好ましい。反応管30に充填する触媒量と管理目標量との差が、この範囲でない場合には、反応管30の触媒負荷が不均一となる場合がある。また、計量した触媒を反応管30に全て充填し終わる前に、反応管30が満たされる場合には、反応管30内での触媒のブリッジ等による充填ミスが考えられるので、その反応管30については触媒の再充填を行う必要がある。
When filling the catalyst into the reaction tube 30, the control target amount of the catalyst is measured for each reaction tube 30 or each filling time, and the measured catalyst is charged into the reaction tube from the upper end opening. Here, the management target amount may be volume or mass, but mass is preferable in terms of high accuracy. The management target amount can be obtained from the volume of the reaction tube 30 when the management target amount is volume, and from the volume of the reaction tube 30 and the catalyst packing density separately measured in advance when the management target amount is volume.
Further, when measuring the catalyst, the difference between the catalyst amount charged in the reaction tube 30 and the control target amount is preferably within ± 10% of the average value of the catalyst amount, and within ± 5%. Is more preferable. If the difference between the amount of catalyst filled in the reaction tube 30 and the management target amount is not within this range, the catalyst load on the reaction tube 30 may become uneven. Further, when the reaction tube 30 is filled before the metered catalyst is completely filled in the reaction tube 30, a filling error due to a catalyst bridge or the like in the reaction tube 30 can be considered. Needs to be refilled with catalyst.

ここで、反応管30と、欠円型邪魔板20a,20b,20cの貫通孔23の内周面と、の間のクリアランスCには、閉塞材31が充填されている。閉塞材31は、砂やステンレス鋼、炭素鋼、銅等の微粒子からなり、反応管30と貫通孔23との間のクリアランスC内を閉塞している。なお、閉塞材31の材料としては、反応管30と貫通孔23との間のクリアランスCを閉塞し、かつ、反応温度において閉塞状態が保たれていれば微粒子物質の種類、及び混入方法は特に制限されない。
また、反応管30と貫通孔23との間のクリアランスCは、反応器1の組み立てが可能な範囲で任意の値を設定できるが、反応器1の径方向へのナイターの流動を主流とする目的から、0.5mm以下に設定することが好ましい。
Here, a closing material 31 is filled in the clearance C between the reaction tube 30 and the inner peripheral surface of the through hole 23 of the oval baffle plates 20a, 20b, and 20c. The closing material 31 is made of fine particles such as sand, stainless steel, carbon steel, and copper, and closes the clearance C between the reaction tube 30 and the through hole 23. In addition, as the material of the plugging material 31, the kind of the fine particle substance and the mixing method are particularly limited as long as the clearance C between the reaction tube 30 and the through hole 23 is plugged and the plugged state is maintained at the reaction temperature. Not limited.
In addition, the clearance C between the reaction tube 30 and the through hole 23 can be set to an arbitrary value within a range in which the reactor 1 can be assembled, but the mainstream is the flow of the nighter in the radial direction of the reactor 1. For the purpose, it is preferably set to 0.5 mm or less.

本実施形態の閉塞材31は、反応器1の組み立て後に行われる処理によって上述したクリアランスCに充填される(閉塞処理工程)。具体的に、上述した微粒子を混入した熱媒体を、熱媒体導入管80からシェル部10の内部に導入する。すると、熱媒体は、欠円型邪魔板20cの下面に沿って第1室11内を水平方向(面方向)に流動し、シェル部10の内壁10aと、欠円型邪魔板20cの直線状端部21との間のクリアランスBを通って、第2室12内に導入される。そして、熱媒体は、欠円型邪魔板20cの上面に沿って、第2室12内を第1室11内での流動方向とは逆方向に沿って流動する。
その後、熱媒体は欠円型邪魔板20b,20aにより流動方向が順に折り返され、シェル部10内を蛇行しながら流動することで、第2室12、第3室13、及び第4室14を経由して、熱媒体排出管90から排出される。
The plugging material 31 of this embodiment is filled in the clearance C described above by a process performed after the assembly of the reactor 1 (blocking process step). Specifically, the heat medium mixed with the above-described fine particles is introduced into the shell portion 10 from the heat medium introduction pipe 80. Then, the heat medium flows in the horizontal direction (plane direction) in the first chamber 11 along the lower surface of the missing circular baffle plate 20c, and the linear shape of the inner wall 10a of the shell portion 10 and the missing circular baffle plate 20c. It is introduced into the second chamber 12 through the clearance B between the end portion 21. The heat medium flows in the second chamber 12 along the direction opposite to the flow direction in the first chamber 11 along the upper surface of the oval baffle plate 20c.
After that, the flow direction of the heat medium is sequentially turned back by the oval baffles 20b, 20a, and the heat medium flows while meandering in the shell portion 10, thereby allowing the second chamber 12, the third chamber 13, and the fourth chamber 14 to pass through. Via, it is discharged from the heat medium discharge pipe 90.

この場合、シェル部10内を流動する熱媒体のうち、殆どの熱媒体は、上述したようにクリアランスBを通過するが、一部の熱媒体は反応管30と欠円型邪魔板20a,20b,20cの貫通孔23の内周面との間のクリアランスCを通過する。すると、熱媒体に混入された微粒子が、クリアランスC内で充填されていき、最終的にはクリアランスCが微粒子によって閉塞される。
以上により、クリアランスC内に閉塞材31が形成され、本実施形態の反応器1が完成する。
In this case, most of the heat medium flowing in the shell portion 10 passes through the clearance B as described above, but some of the heat medium is part of the reaction tube 30 and the circular baffle plates 20a and 20b. , 20c passes through the clearance C between the inner peripheral surface of the through hole 23. Then, the fine particles mixed in the heat medium are filled in the clearance C, and finally the clearance C is closed by the fine particles.
As described above, the closing material 31 is formed in the clearance C, and the reactor 1 of the present embodiment is completed.

各クリアランスC内に閉塞材31が充填された時点で熱媒体への微粒子の混入を停止して、熱媒体のみを流動させる。そして、シェル部10の反応管30の外側に熱媒体のみを流動させた状態で、原料導入部60から原料を導入する。原料導入部60から導入された原料は、反応管30の下端開口部から反応管30内に導入され、反応管30内を軸方向(鉛直方向)に沿って流動する。そして、原料は反応管30内に充填された触媒にて反応した後、反応生成物となって反応管30の上端開口部から反応生成物排出部70から排出される。反応生成物排出部70に排出された反応生成物は、反応生成物排出部70を介して反応器1から次の工程に供給される。
この場合、熱媒体によって反応管30への熱の供給、または反応管30内にて発生した反応熱の除去を行う。なお、閉塞処理工程の時点で原料を導入しても構わない。
When the closing material 31 is filled in each clearance C, mixing of the fine particles into the heat medium is stopped, and only the heat medium is caused to flow. Then, the raw material is introduced from the raw material introduction unit 60 in a state where only the heat medium is allowed to flow outside the reaction tube 30 of the shell portion 10. The raw material introduced from the raw material introduction part 60 is introduced into the reaction tube 30 from the lower end opening of the reaction tube 30 and flows in the reaction tube 30 along the axial direction (vertical direction). The raw material reacts with the catalyst filled in the reaction tube 30 and then becomes a reaction product and is discharged from the reaction product discharge unit 70 through the upper end opening of the reaction tube 30. The reaction product discharged to the reaction product discharge unit 70 is supplied from the reactor 1 to the next step via the reaction product discharge unit 70.
In this case, heat is supplied to the reaction tube 30 by the heat medium or reaction heat generated in the reaction tube 30 is removed. In addition, you may introduce a raw material at the time of a closure process process.

本実施形態の反応器1は、酸化反応、還元反応、脱水反応、中和反応、置換反応に好ましく用いられ、特に好ましくは、酸化発熱反応に用いられる。そこで、以下の説明では、酸化発熱反応のうち、メタクロレインを分子状酸素により気相接触酸化してメタクリル酸を製造する際の具体例について説明する。
まず、反応器1を用いたメタクリル酸の製造では、反応管30の内部にメタクリル酸製造用触媒の触媒層をあらかじめ形成しておく。なお触媒層は1層であってもよいし、2層以上であってもよい。
The reactor 1 of this embodiment is preferably used for an oxidation reaction, a reduction reaction, a dehydration reaction, a neutralization reaction, and a substitution reaction, and particularly preferably used for an oxidation exothermic reaction. Therefore, in the following description, a specific example of methacrylic acid produced by vapor phase catalytic oxidation of methacrolein with molecular oxygen in the oxidation exothermic reaction will be described.
First, in the production of methacrylic acid using the reactor 1, a catalyst layer of a catalyst for producing methacrylic acid is previously formed in the reaction tube 30. The catalyst layer may be one layer or two or more layers.

触媒層を構成するメタクリル酸製造用触媒としては、組成が下記式(1)で表される複合酸化物が好ましい。
MoCu・・・(1)
なお、式(1)中、Mo、P、Cu、VおよびOは、それぞれモリブデン、リン、銅、バナジウムおよび酸素であり、Xは鉄、コバルト、ニッケル、亜鉛、マグネシウム、カルシウム、ストロンチウム、バリウム、チタン、クロム、タングステン、マンガン、銀、ホウ素、ケイ素、スズ、鉛、ヒ素、アンチモン、ビスマス、ニオブ、タンタル、ジルコニウム、インジウム、イオウ、セレン、テルル、ランタンおよびセリウムからなる群から選ばれる少なくとも1種の元素であり、Yはカリウム、ルビジウム、セシウムおよびタリウムからなる群より選ばれた少なくとも1種の元素である。a、b、c、d、e、f及びgは、各元素の原子比率を表し、a=12のとき、b=0.5〜3、c=0.01〜3、d=0.01〜2、e=0〜3、f=0.01〜3であり、gは上述した各元素の原子価を満足するのに必要な酸素の原子比率である。
また、触媒層には、メタクリル酸製造用触媒の他に他の添加成分が混合されていてもよい。他の添加成分としては、上述した不活性充填材担体が挙げられる。また、触媒前駆体には、水溶性セルロース等の有機物が含まれていてもよい。
As the catalyst for producing methacrylic acid constituting the catalyst layer, a composite oxide whose composition is represented by the following formula (1) is preferable.
Mo a P b Cu c V d X e Y f O g (1)
In the formula (1), Mo, P, Cu, V and O are molybdenum, phosphorus, copper, vanadium and oxygen, respectively, X is iron, cobalt, nickel, zinc, magnesium, calcium, strontium, barium, At least one selected from the group consisting of titanium, chromium, tungsten, manganese, silver, boron, silicon, tin, lead, arsenic, antimony, bismuth, niobium, tantalum, zirconium, indium, sulfur, selenium, tellurium, lanthanum and cerium Y is at least one element selected from the group consisting of potassium, rubidium, cesium and thallium. a, b, c, d, e, f and g represent the atomic ratio of each element, and when a = 12, b = 0.5-3, c = 0.01-3, d = 0.01. ˜2, e = 0˜3, f = 0.01-3, and g is an atomic ratio of oxygen necessary to satisfy the valence of each element described above.
In addition to the methacrylic acid production catalyst, other additive components may be mixed in the catalyst layer. Examples of other additive components include the above-described inert filler carrier. The catalyst precursor may contain an organic substance such as water-soluble cellulose.

触媒層形成後、熱媒体導入管80からシェル部10の内部に熱媒体を導入し、欠円型邪魔板20a,20b,20cによって段状に分割された第1室11、第2室12、第3室13、第4室14を流動させ、熱媒体排出管90から排出させる。
それとともに、少なくともメタクロレインと分子状酸素とを含む原料ガスを、原料導入部60を介して反応管30に導入し、触媒層にてメタクロレインと分子状酸素とを反応させることで、メタクリル酸を製造できる。反応によって生じた反応熱は反応管30の外側を流動する熱媒体によって除熱する。
反応管30から流出した反応生成物は、反応生成物排出部70を介して反応器1から次の工程に送られる。
After the formation of the catalyst layer, the heat medium is introduced into the shell portion 10 from the heat medium introduction pipe 80, and the first chamber 11, the second chamber 12, and the second chamber 12, which are divided into steps by the oval baffles 20a, 20b, 20c, The third chamber 13 and the fourth chamber 14 are caused to flow and discharged from the heat medium discharge pipe 90.
At the same time, a raw material gas containing at least methacrolein and molecular oxygen is introduced into the reaction tube 30 through the raw material introduction unit 60, and methacrolein and molecular oxygen are reacted in the catalyst layer, thereby allowing methacrylic acid to react. Can be manufactured. The heat of reaction generated by the reaction is removed by a heat medium flowing outside the reaction tube 30.
The reaction product flowing out from the reaction tube 30 is sent to the next step from the reactor 1 via the reaction product discharge unit 70.

原料ガスに含まれるメタクロレインの濃度は適宜選択できるが、1〜20容量%が好ましく、3〜10容量%がより好ましい。
原料ガスは、メタクロレインに空気を混合し、空気に含まれる分子状酸素を利用することが経済的である点で好ましいが、メタクロレインに、純酸素を混合した空気を混合しても構わない。この場合、原料ガス中の酸素量は、メタクロレインに対して0.3〜4倍モルが好ましく、0.4〜2.5倍モルがより好ましい。
また、原料ガスは、窒素、炭酸ガス等の不活性ガスで希釈されていることが好ましい。
The concentration of methacrolein contained in the source gas can be appropriately selected, but is preferably 1 to 20% by volume, more preferably 3 to 10% by volume.
The raw material gas is preferable in that it is economical to mix air with methacrolein and to use molecular oxygen contained in the air. However, air mixed with pure oxygen may be mixed with methacrolein. . In this case, the amount of oxygen in the raw material gas is preferably 0.3 to 4 times mol and more preferably 0.4 to 2.5 times mol with respect to methacrolein.
The source gas is preferably diluted with an inert gas such as nitrogen or carbon dioxide.

気相接触酸化における反応圧力は、常圧(0MPaG(ゲージ圧))から数気圧(例えば0.3MPa)の範囲内が好ましい。
反応温度は、230〜450℃が好ましく、250〜400℃がより好ましい。
原料ガスの流量は特に限定されないが、通常、原料ガスをメタクリル製造用触媒との接触時間が1.5〜15秒となる流量が好ましく、該接触時間が2〜5秒となる流量がより好ましい。
The reaction pressure in the gas phase catalytic oxidation is preferably within the range of normal pressure (0 MPaG (gauge pressure)) to several atmospheric pressures (eg, 0.3 MPa).
The reaction temperature is preferably 230 to 450 ° C, more preferably 250 to 400 ° C.
The flow rate of the raw material gas is not particularly limited. Usually, a flow rate at which the contact time of the raw material gas with the catalyst for methacryl production is 1.5 to 15 seconds is preferable, and a flow rate at which the contact time is 2 to 5 seconds is more preferable. .

このように、本実施形態では、反応管30と欠円型邪魔板20a,20b,20cの貫通孔23との間のクリアランスCを、熱媒体の流動に応じて充填される閉塞材31により閉塞する構成とした。
この構成によれば、熱媒体が欠円型邪魔板20a,20b,20cに沿って水平方向に流動するとともに、第1室11から第4室14に至るまでシェル部10内を蛇行しながら流動することになる。そのため、熱媒体の流動状態を制御することが可能になり、シェル部10内の全域に亘って均一に熱媒体を行渡らせることができる。これにより、熱媒体が有する除熱能力を充分に利用できるため、反応器1内における局所的な発熱を抑えることができ、反応器1の内部における温度差を充分に小さくできる。この場合、特にシェル部10の内壁10a付近での局所的な発熱を抑制して、シェル部10内における水平方向での温度差を充分に小さくできる。
したがって、反応器1の暴走反応や、触媒の急速な失活、反応管30及び欠円型邪魔板20a,20b,20cの熱膨張による反応管30の破損等の発生を抑制することが可能になるので、設備コストを低減できる。
As described above, in this embodiment, the clearance C between the reaction tube 30 and the through holes 23 of the oval baffles 20a, 20b, and 20c is closed by the closing material 31 that is filled in accordance with the flow of the heat medium. It was set as the structure to do.
According to this configuration, the heat medium flows in the horizontal direction along the non-circular baffles 20a, 20b, and 20c and flows while meandering in the shell portion 10 from the first chamber 11 to the fourth chamber 14. Will do. Therefore, the flow state of the heat medium can be controlled, and the heat medium can be uniformly distributed over the entire area in the shell portion 10. Thereby, since the heat removal capability of the heat medium can be sufficiently utilized, local heat generation in the reactor 1 can be suppressed, and the temperature difference in the reactor 1 can be sufficiently reduced. In this case, local heat generation in the vicinity of the inner wall 10a of the shell portion 10 can be suppressed, and the temperature difference in the horizontal direction in the shell portion 10 can be sufficiently reduced.
Therefore, it is possible to suppress the occurrence of runaway reaction in the reactor 1, rapid deactivation of the catalyst, breakage of the reaction tube 30 due to thermal expansion of the reaction tube 30 and the circular baffle plates 20a, 20b, and 20c. Therefore, the equipment cost can be reduced.

この場合、上述した特許文献1のように、シェル部10の内部に反応には寄与しない整流棒群を設ける必要はないので、反応器1の内部空間を充分に利用でき、また、特許文献2のように、反応管30と欠円型邪魔板20a,20b,20cとの間のクリアランスCに熱媒体を通過させないので、反応管30の本数と太さは制限されない。その結果、反応器1全域を効率的に反応に活用することができるので、設備効率の低下を抑制して、高収率での目的生産物の取得を達成できる。   In this case, unlike Patent Document 1 described above, there is no need to provide a rectifying rod group that does not contribute to the reaction inside the shell portion 10, so that the internal space of the reactor 1 can be fully utilized. As described above, since the heat medium does not pass through the clearance C between the reaction tube 30 and the oval baffles 20a, 20b, and 20c, the number and thickness of the reaction tubes 30 are not limited. As a result, since the entire region of the reactor 1 can be efficiently utilized for the reaction, a reduction in facility efficiency can be suppressed and acquisition of the target product in a high yield can be achieved.

特に、本実施形態では、微粒子を混入した熱媒体を反応器1内に流動させることで、反応管30と欠円型邪魔板20a、20b,20cとの間の全クリアランスCを簡単に、かつ一括して閉塞できる。これにより、上述した特許文献3のように、反応管30と欠円型邪魔板20a、20b,20cとの間のクリアランスCを、溶接等により1本ずつ閉塞する場合に比べて、低コスト化、及び製造効率の向上を図ることができる。
また、本実施形態によれば、欠円型邪魔板20a,20b,20cを鉛直方向に沿って複数配置することで、反応器1内の全域に熱媒体をより一層効率的に行渡らせることができる。
In particular, in the present embodiment, the total clearance C between the reaction tube 30 and the non-circular baffle plates 20a, 20b, and 20c can be easily achieved by flowing a heat medium mixed with fine particles into the reactor 1. Can be blocked at once. As a result, as in Patent Document 3 described above, the clearance C between the reaction tube 30 and the non-circular baffle plates 20a, 20b, and 20c can be reduced in cost compared to the case where the clearance C is closed one by one by welding or the like. And improvement of manufacturing efficiency can be aimed at.
In addition, according to the present embodiment, the heat medium can be more efficiently distributed over the entire region in the reactor 1 by arranging a plurality of the oval baffles 20a, 20b, and 20c along the vertical direction. Can do.

なお、本発明の技術範囲は上記実施の形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲において種々の変更を加えることが可能である。
例えば、欠円型邪魔板20a,20b,20cの設置枚数や、各欠円型邪魔板20a,20b,20cの間隔等は、適宜設計変更が可能である。但し、欠円型邪魔板の枚数が偶数である場合、熱媒体排出管90のシェル部10における取り付け位置は、熱媒体導入管80に対して180°の位置とする。
さらに、上述した実施形態では、シェル部や邪魔板を平面視円形状に形成したが、これに限らず、平面視矩形状等、適宜設計変更が可能である。
The technical scope of the present invention is not limited to the above embodiment, and various modifications can be made without departing from the spirit of the present invention.
For example, the number of the oval baffles 20a, 20b, and 20c installed, the interval between the oval baffles 20a, 20b, and 20c can be appropriately changed. However, when the number of the missing circular baffle plates is an even number, the attachment position of the heat medium discharge pipe 90 in the shell portion 10 is a position of 180 ° with respect to the heat medium introduction pipe 80.
Furthermore, in the above-described embodiment, the shell portion and the baffle plate are formed in a circular shape in a plan view. However, the design is not limited thereto, and the design can be appropriately changed such as a rectangular shape in a plan view.

また、上述した実施形態では、熱媒体を下方から上方に向けて流動させる場合について説明したが、これとは逆に、熱媒体を上方から下方に向けて流動させてもよい。また、反応管30の内部での原料ガスの流動方向は上方から下方に向けて流動させてもよい。
また、欠円型邪魔板は、円板の一部が曲線的に切除されたように欠けていてもよいし、円板の一部が楔形に切除されたように欠けていてもよい。
In the above-described embodiment, the case where the heat medium is made to flow from below to above has been described, but conversely, the heat medium may be made to flow from above to below. Further, the flow direction of the raw material gas in the reaction tube 30 may flow from the upper side to the lower side.
Further, the missing circular baffle plate may be missing such that a part of the disk is cut out in a curved manner, or may be missing so that a part of the disk is cut out in a wedge shape.

また、上述した実施形態では、閉塞処理工程において、微粒子を混入した熱媒体をシェル部10内に流動させることで、クリアランスCを微粒子で充填する場合について説明したが、これに限らず、熱媒体の流動に応じてクリアランスC内に閉塞材31が形成される構成であれば構わない。このような構成について以下に説明する。   In the above-described embodiment, the case where the clearance C is filled with the fine particles by flowing the heat medium mixed with the fine particles into the shell portion 10 in the closing process is described. However, the present invention is not limited to this. Any structure may be used as long as the closing material 31 is formed in the clearance C according to the flow. Such a configuration will be described below.

例えば、まず反応管30及び欠円型邪魔板20a,20b,20cのうち、少なくとも一方と反応することにより、少なくとも一方(以下、反応部材という)に酸化物等のスケール(閉塞材)を形成する処理物質を熱媒体に混入する。そして、反応器1の組み立て後に上述した条件と同様の条件でシェル部10内に、処理物質が混入された熱媒体を流動させる。これにより、熱媒体に混入された処理物質と、反応部材と、が反応(酸化反応)することにより、反応部材の表面にスケールが形成される。これにより、クリアランスC内を閉塞することができる。
なお、処理物質としては、例えば、塩化ナトリウム、塩化カルシウム等を含む水溶液や、水蒸気、アンモニア、塩素などのガスが挙げられる。但し、反応部材と反応し、その反応表面にスケールを形成することにより、クリアランスCを閉塞し、かつ、反応温度において、閉塞状態が保たれれば、処理物質の種類及び処理方法は特に制限されない。
For example, first, a scale (blocking material) such as an oxide is formed on at least one (hereinafter referred to as a reaction member) by reacting with at least one of the reaction tube 30 and the oval baffles 20a, 20b, and 20c. The processing substance is mixed in the heat medium. Then, after assembling the reactor 1, the heat medium mixed with the processing substance is caused to flow in the shell portion 10 under the same conditions as described above. Thereby, a scale is formed on the surface of the reaction member by a reaction (oxidation reaction) between the processing substance mixed in the heat medium and the reaction member. Thereby, the clearance C can be closed.
Examples of the treatment substance include an aqueous solution containing sodium chloride and calcium chloride, and a gas such as water vapor, ammonia, and chlorine. However, if the clearance is closed by reacting with the reaction member and forming a scale on the reaction surface, and the closed state is maintained at the reaction temperature, the type of treatment substance and the treatment method are not particularly limited. .

また、閉塞処理工程に先立って、反応器1の組み立て前の反応部材に対して、処理物質により表面を暴露処理した後(暴露処理工程)、反応器1を作成し、上述した方法と同様の方法により反応部材の表面にスケールを形成しても構わない。   Prior to the clogging treatment step, the reaction member before the assembly of the reactor 1 is exposed to the surface with the treatment substance (exposure treatment step), and then the reactor 1 is prepared and the same method as described above. A scale may be formed on the surface of the reaction member by a method.

以下、本発明に係る実施例及び比較例を示すが、本発明はこれらに限定されるものではない。
(実施例)
直径6m、高さ6mの反応器1に、直径30mmの反応管30を20,000本有する固定床多管式反応器において、反応器組み立て前の段階において、全反応管30に対して、塩化ナトリウムを35質量%含む水溶液で大気圧下、室温にて、10時間、表面の含浸処理を行った。処理後の反応管30は反応器1の組み立て時までの数日間、大気圧下、室温にて保管した。
このように、暴露処理が施された反応管30を用いて組み立てられた反応器1において、温度280℃の硝酸カリウム、及び亜硝酸ナトリウムを含む塩溶融物を熱媒体として流動させ、定常状態となった時点で、熱媒体流入温度と反応器1内に設置された各熱電対での測定温度の温度差(以後、ΔTと表記)を算出した(表1参照)。なお、熱電対の設置箇所について、鉛直方向は、図3の記号A−Fにより示され、水平方向は、図4の番号(1)−(5)により示される。この時、メタクリル酸の収率は78.3%であった。
EXAMPLES Examples and comparative examples according to the present invention are shown below, but the present invention is not limited to these.
(Example)
In a fixed-bed multitubular reactor having 20,000 reactor tubes 30 with a diameter of 30 mm in the reactor 1 having a diameter of 6 m and a height of 6 m, all the reaction tubes 30 are chlorinated before the reactor is assembled. The surface was impregnated with an aqueous solution containing 35% by mass of sodium under atmospheric pressure at room temperature for 10 hours. The treated reaction tube 30 was stored at room temperature under atmospheric pressure for several days until the reactor 1 was assembled.
In this way, in the reactor 1 assembled using the reaction tube 30 subjected to the exposure treatment, a salt melt containing potassium nitrate and sodium nitrite at a temperature of 280 ° C. is flowed as a heat medium to be in a steady state. At that time, the temperature difference (hereinafter referred to as ΔT) between the heat medium inflow temperature and the measured temperature at each thermocouple installed in the reactor 1 was calculated (see Table 1). In addition, about the installation location of a thermocouple, a vertical direction is shown by the symbol AF of FIG. 3, and a horizontal direction is shown by the numbers (1)-(5) of FIG. At this time, the yield of methacrylic acid was 78.3%.

Figure 2012236161
Figure 2012236161

(比較例)
実施例と同型の反応器を、塩化ナトリウムによるクリアランスCの閉塞処理を行わずに作成した。
この反応器1に、実施例1と同条件で熱媒体を流動させ、定常状態となった時のΔTを表2に示す。この時、メタクリル酸の収率は77.7%であった。
(Comparative example)
A reactor of the same type as that of the example was prepared without performing the clogging of the clearance C with sodium chloride.
Table 2 shows ΔT when the heat medium was caused to flow into the reactor 1 under the same conditions as in Example 1 to reach a steady state. At this time, the yield of methacrylic acid was 77.7%.

Figure 2012236161
Figure 2012236161

1 反応器
10 シェル部
20a,20b,20c 欠円型邪魔板(邪魔板)
30 反応管
31 閉塞材
1 Reactor 10 Shell part 20a, 20b, 20c Missing circular baffle plate (baffle plate)
30 reaction tube 31 plugging material

Claims (10)

内部に熱媒体が流動するシェル部と、
前記シェル部の内部に設置され、前記熱媒体の流動方向を変更可能な邪魔板と、
前記邪魔板の厚さ方向に沿って形成された複数の貫通孔内にそれぞれ遊挿された複数の反応管と、を有する固定床多管式反応器であって、
前記反応管と前記貫通孔の内周面との間のクリアランスには、前記熱媒体の流動に応じて充填される閉塞材が設けられている固定床多管式反応器。
A shell part in which a heat medium flows;
A baffle plate installed inside the shell portion and capable of changing a flow direction of the heat medium;
A fixed-bed multitubular reactor having a plurality of reaction tubes loosely inserted into a plurality of through holes formed along the thickness direction of the baffle plate,
A fixed-bed multitubular reactor in which a clearance between the reaction tube and the inner peripheral surface of the through-hole is provided with a plugging material filled in accordance with the flow of the heat medium.
前記閉塞材は、前記熱媒体に混入された処理物質であって微粒子からなる請求項1記載の固定床多管式反応器。   The fixed bed multitubular reactor according to claim 1, wherein the plugging material is a processing substance mixed in the heat medium and is made of fine particles. 前記閉塞材は、前記熱媒体に混入された処理物質であって前記邪魔板及び前記反応管のうち、少なくとも一方と反応可能な処理物質によって、前記少なくとも一方の表面に堆積されたスケールからなる請求項1記載の固定床多管式反応器。   The plugging material comprises a scale deposited on the surface of at least one of the processing substances mixed in the heat medium and capable of reacting with at least one of the baffle plate and the reaction tube. Item 3. The fixed-bed multitubular reactor according to Item 1. 前記邪魔板及び前記反応管の少なくとも一方は、暴露処理が施されている請求項3記載の固定床多管式反応器。   The fixed-bed multitubular reactor according to claim 3, wherein at least one of the baffle plate and the reaction tube is subjected to an exposure treatment. 前記邪魔板は、前記反応管の延在方向に沿って複数設置されている請求項1から請求項4の何れか1項に記載の固定床多管式反応器。   The fixed-bed multitubular reactor according to any one of claims 1 to 4, wherein a plurality of the baffle plates are installed along the extending direction of the reaction tube. メタクロレインを分子状酸素により気相接触酸化してメタクリル酸を製造する際に用いられる請求項1から請求項5の何れか1項に記載の固定床多管式反応器。   The fixed bed multitubular reactor according to any one of claims 1 to 5, which is used in producing methacrylic acid by vapor-phase catalytic oxidation of methacrolein with molecular oxygen. 内部に熱媒体が流動するシェル部と、
前記シェル部の内部に設置され、前記熱媒体の流動方向を変更可能な邪魔板と、
前記邪魔板の厚さ方向に沿って形成された複数の貫通孔内にそれぞれ挿入された複数の反応管と、を有する固定床多管式反応器の製造方法であって、
前記反応管と前記貫通孔の内周面との間のクリアランス内に、前記熱媒体の流動に応じて閉塞材を充填する閉塞処理工程を有している固定床多管式反応器の製造方法。
A shell part in which a heat medium flows;
A baffle plate installed inside the shell portion and capable of changing a flow direction of the heat medium;
A plurality of reaction tubes respectively inserted into a plurality of through holes formed along the thickness direction of the baffle plate, and a method for producing a fixed-bed multitubular reactor,
A method for producing a fixed-bed multitubular reactor having a closing process step of filling a closing material in accordance with the flow of the heat medium in a clearance between the reaction tube and the inner peripheral surface of the through-hole. .
前記閉塞処理工程では、微粒子が混入された前記熱媒体を前記シェル部内に流動させることで、前記クリアランス内に前記微粒子を充填する請求項7記載の固定床多管式反応器の製造方法。   The method for producing a fixed-bed multitubular reactor according to claim 7, wherein in the clogging treatment step, the clearance is filled with the fine particles by flowing the heat medium mixed with the fine particles into the shell portion. 前記閉塞処理工程では、前記邪魔板及び前記反応管のうち、少なくとも一方と反応可能な処理物質が混入された前記熱媒体を、前記シェル部内に流動させることで、前記少なくとも一方の表面にスケールを堆積する請求項7記載の固定床多管式反応器の製造方法。   In the clogging treatment step, the heat medium mixed with a treatment substance capable of reacting with at least one of the baffle plate and the reaction tube is caused to flow into the shell portion, whereby a scale is formed on the at least one surface. The method for producing a fixed-bed multitubular reactor according to claim 7, which is deposited. 前記閉塞処理工程に先立って、前記邪魔板及び前記反応管のうち、少なくとも一方に暴露処理を施す暴露処理工程を有している請求項9記載の固定床多管式反応器の製造方法。   The method for producing a fixed-bed multitubular reactor according to claim 9, further comprising an exposure process step of performing an exposure process on at least one of the baffle plate and the reaction tube prior to the blocking process step.
JP2011107555A 2011-05-12 2011-05-12 Method for producing fixed-bed multitubular reactor Active JP5899654B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011107555A JP5899654B2 (en) 2011-05-12 2011-05-12 Method for producing fixed-bed multitubular reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011107555A JP5899654B2 (en) 2011-05-12 2011-05-12 Method for producing fixed-bed multitubular reactor

Publications (2)

Publication Number Publication Date
JP2012236161A true JP2012236161A (en) 2012-12-06
JP5899654B2 JP5899654B2 (en) 2016-04-06

Family

ID=47459570

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011107555A Active JP5899654B2 (en) 2011-05-12 2011-05-12 Method for producing fixed-bed multitubular reactor

Country Status (1)

Country Link
JP (1) JP5899654B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109701455A (en) * 2019-02-25 2019-05-03 南京国昌化工科技有限公司 A kind of double water cooling horizontal reactors of isothermal uniform flow

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60185097A (en) * 1984-03-02 1985-09-20 Ekika Gas Taaminaru Kk Method to stop leakage for pipeline
JP2001038196A (en) * 1999-08-04 2001-02-13 Nippon Shokubai Co Ltd Exchanging method of catalyst
JP2006192430A (en) * 2005-01-14 2006-07-27 Man Dwe Gmbh Muilti-tublular reactor for exothermic or endothermic gaseous reaction
JP2009256238A (en) * 2008-04-16 2009-11-05 Nippon Kayaku Co Ltd Method for starting gas phase-solid phase contact reaction
JP2010274345A (en) * 2009-05-27 2010-12-09 Toshiba Plant Systems & Services Corp Tool for extracting pipe and method for extracting the pipe
JP2012512124A (en) * 2008-12-16 2012-05-31 ビーエーエスエフ ソシエタス・ヨーロピア Reactor and process for preparing phosgene

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60185097A (en) * 1984-03-02 1985-09-20 Ekika Gas Taaminaru Kk Method to stop leakage for pipeline
JP2001038196A (en) * 1999-08-04 2001-02-13 Nippon Shokubai Co Ltd Exchanging method of catalyst
JP2006192430A (en) * 2005-01-14 2006-07-27 Man Dwe Gmbh Muilti-tublular reactor for exothermic or endothermic gaseous reaction
JP2009256238A (en) * 2008-04-16 2009-11-05 Nippon Kayaku Co Ltd Method for starting gas phase-solid phase contact reaction
JP2012512124A (en) * 2008-12-16 2012-05-31 ビーエーエスエフ ソシエタス・ヨーロピア Reactor and process for preparing phosgene
JP2010274345A (en) * 2009-05-27 2010-12-09 Toshiba Plant Systems & Services Corp Tool for extracting pipe and method for extracting the pipe

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109701455A (en) * 2019-02-25 2019-05-03 南京国昌化工科技有限公司 A kind of double water cooling horizontal reactors of isothermal uniform flow
CN109701455B (en) * 2019-02-25 2024-05-03 南京国昌化工科技有限公司 Isothermal and constant-flow-speed double-water-cooling horizontal reactor

Also Published As

Publication number Publication date
JP5899654B2 (en) 2016-04-06

Similar Documents

Publication Publication Date Title
KR101184235B1 (en) Multitubular reaction apparatus for contact gas-phase reaction
JP4212888B2 (en) Plate type catalytic reactor
JP2018140993A (en) Method for production of unsaturated aldehyde and/or unsaturated carboxylic acid
JPH0892154A (en) Catalytic oxidizing method for acrolein into acrylic acid invapor phase
KR20140001899A (en) Method for long-term operation of a heterogeneously catalyzed partial gas phase oxidation of propene to obtain acrolein
AU2002357503A1 (en) Method for vapor phase catalytic oxidation
RU2621715C2 (en) Method of obtaining an unsaturated aldehyde and/or unsaturated carboxylic acid
JP5899654B2 (en) Method for producing fixed-bed multitubular reactor
JPWO2020203266A1 (en) Manufacturing method of unsaturated aldehyde
JP5130562B2 (en) Method for producing methacrolein and / or methacrylic acid
JP4295462B2 (en) Gas phase catalytic oxidation method
EP3067113B1 (en) Packing element for reaction tube
JP5691152B2 (en) Method for producing reaction product using plate reactor
JP2010149105A (en) Reaction method using heat-exchange type reactor
JP2011245394A (en) Fixed bed multitubular reactor
JP5500775B2 (en) Fixed bed reactor
JP5614062B2 (en) Start-up method for gas phase catalytic oxidation reaction and method for producing (meth) acrylic acid using the same
JP5171031B2 (en) Reactor for catalytic gas phase oxidation and method for producing acrylic acid using the same
JP6752035B2 (en) How to restart
JP2010241700A (en) Method for producing acrylic acid
JP2015527186A (en) Reactor for carrying out an exothermic reaction in the gas phase
JP2020044485A (en) Reaction method and reactor
JP5479803B2 (en) Method for producing (meth) acrolein or (meth) acrylic acid
US7304179B2 (en) Method for producing methacrylic acid
WO2021157425A1 (en) Method for producing (meth)acrolein and method for producing (meth)acrylic acid

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140430

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150323

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150507

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150703

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20150703

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150728

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150924

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160209

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160222

R151 Written notification of patent or utility model registration

Ref document number: 5899654

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250