JP5171031B2 - Reactor for catalytic gas phase oxidation and method for producing acrylic acid using the same - Google Patents
Reactor for catalytic gas phase oxidation and method for producing acrylic acid using the same Download PDFInfo
- Publication number
- JP5171031B2 JP5171031B2 JP2006356043A JP2006356043A JP5171031B2 JP 5171031 B2 JP5171031 B2 JP 5171031B2 JP 2006356043 A JP2006356043 A JP 2006356043A JP 2006356043 A JP2006356043 A JP 2006356043A JP 5171031 B2 JP5171031 B2 JP 5171031B2
- Authority
- JP
- Japan
- Prior art keywords
- gas
- reactor
- reaction
- reaction zone
- catalyst
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Devices And Processes Conducted In The Presence Of Fluids And Solid Particles (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Description
本発明は接触気相酸化を行うための固定床多管式熱交換型反応器に関し、詳しくは、1つの反応器を用いてプロピレンの接触気相酸化反応によりアクリル酸を効率よく製造するために使用される固定床多管式熱交換型反応器に関する。 The present invention relates to a fixed-bed multitubular heat exchange reactor for performing catalytic gas phase oxidation, and more particularly, to efficiently produce acrylic acid by catalytic vapor phase oxidation of propylene using one reactor. The present invention relates to a fixed-bed multitubular heat exchange reactor used.
プロピレンの二段接触気相酸化によりアクリル酸を製造することは広く工業的に行われている。この方法は、プロピレンをアクロレインに接触気相酸化する前段反応およびアクロレインをアクリル酸に接触気相酸化する後段反応とからなる。 The production of acrylic acid by two-stage catalytic gas phase oxidation of propylene is widely performed industrially. This method consists of a pre-stage reaction in which propylene is contacted by vapor phase oxidation with acrolein and a post-stage reaction in which acrolein is contacted with acrylic acid by vapor phase oxidation.
このような反応を行うにあたり、従来、2つの反応器を用いる方法と1つの反応器を用いる方法の大きく分けて2つの方法が提案されている。 In carrying out such a reaction, conventionally, two methods, roughly divided into a method using two reactors and a method using one reactor, have been proposed.
2つの反応器を用いる方法として、例えば、特許文献1や特許文献2では、前段反応に好適な前段触媒を充填した前段反応器および後段反応に好適な後段触媒を充填した後段反応器の2つの反応器を用い、前段反応器からの主としてアクロレインを含有する反応ガスと、リサイクルガス、酸素、あるいは窒素や水蒸気などの不活性ガスとを後段反応器に導入しアクロレインを更に酸化してアクリル酸を製造する方法が開示されている。
As a method using two reactors, for example, in Patent Document 1 and
一方、1つの反応器でプロピレンからアクリル酸を製造する方法として、例えば、特許文献3、特許文献4あるいは特許文献5には、シェル側を仕切り板で2つの反応帯に分割し、それぞれの反応帯のシェル側には独立して熱媒体を循環できるようにし、一方の反応帯の反応管には前段反応に適した前段触媒が充填され、もう一方の反応帯には後段反応に適した後段触媒が充填された1つの反応器を用いプロピレンからアクリル酸を製造する方法が開示されている。
On the other hand, as a method for producing acrylic acid from propylene in one reactor, for example, in
また、特許文献6には、それぞれのシェル内に熱媒体の流れを規制するため、邪魔板などを取り付けることにより、熱媒体による酸化反応による生成熱の除去効率を高かめる技術が開示されている。 Patent Document 6 discloses a technique for increasing the efficiency of removing generated heat due to an oxidation reaction by a heat medium by attaching a baffle plate or the like in order to regulate the flow of the heat medium in each shell. .
また、特許文献7には、シェル内に設置される仕切り板に関して、溶接などでもよいが、円筒状の取り付け板を介してシェル内壁に固定される技術が開示されている。 Patent Document 7 discloses a technique for fixing a partition plate installed in a shell to a shell inner wall through a cylindrical mounting plate, which may be welding.
しかしながら、前記した2つの反応器を用いる場合、反応器および配管等の設備にコストが掛かり、設置床面積も大きく、装置的にも大掛りなものになってしまう。さらに、前段反応器からの主としてアクロレインを含有するガスを後段反応器に導入するまでの配管などでのガス滞留時間が比較的長いため、アクロレインが自動酸化しやすく、それに伴う炭化物等が堆積しやすいという問題がある。さらには、その炭化物等により、触媒が汚染され、ひいては性能劣化および反応官の閉塞や圧力損失といった現象が比較的短い期間で起こり易い。 However, when the two reactors described above are used, the equipment such as the reactor and piping is expensive, the installation floor area is large, and the apparatus is large. Furthermore, since the gas residence time in the piping until the gas mainly containing acrolein from the former reactor is introduced into the latter reactor is relatively long, acrolein is likely to be auto-oxidized, and the carbides associated therewith are likely to accumulate. There is a problem. Further, the catalyst is contaminated by the carbides and the like, and as a result, performance degradation and phenomena such as blocking of a reaction agent and pressure loss are likely to occur in a relatively short period.
また、前記した1つの反応器を用いる場合、前段反応および後段反応の両方で消費されるに十分な酸素量をあらかじめ前段反応の原料ガス中に含めておく必要があるため、前段反応および後段反応でのガス組成をそれぞれ独自に最適化することができない。そのため、生産性向上のために原料プロピレン濃度を高めようとしても、後段反応に必要な酸素量を前段反応の原料ガスガス中に含めておく必要があり、前段反応では必要以上の酸素の存在下での反応となり触媒性能への影響が大きくなる。また、爆発範囲の関係からもプロピレンの高濃度化にも限界があるという問題がある。 In addition, when one reactor described above is used, it is necessary to previously include an oxygen amount sufficient to be consumed in both the first-stage reaction and the second-stage reaction in the source gas of the first-stage reaction. It is not possible to optimize the gas composition at each. Therefore, even if it is attempted to increase the raw material propylene concentration in order to improve productivity, it is necessary to include the amount of oxygen necessary for the second-stage reaction in the first-stage reaction raw material gas gas. The effect on the catalyst performance increases. In addition, there is a problem that there is a limit to increasing the concentration of propylene from the relationship of the explosion range.
かくして、本発明の目的は、上記のような従来技術の問題点を解決し、プロピレンからアクリル酸を製造するに際し、1つの反応器を用いかつ後段反応におけるガス組成の変更が可能な新しい反応器を提供することにある。 Thus, an object of the present invention is to solve the problems of the prior art as described above, and in the production of acrylic acid from propylene, a new reactor that can change the gas composition in the subsequent reaction using one reactor. Is to provide.
本発明者らは、プロピレンの接触酸化反応によりアクリル酸を製造するに際して、1つの反応器内に、2つの区画された熱交換型多管式反応帯と、当該2つの反応帯の間に外部からガス状物質を導入する機構を備えた空間部が設置された反応器を用いることにより、上記課題が達成できることを見出し、本発明を完成するに至った。 When producing acrylic acid by a catalytic oxidation reaction of propylene, the present inventors have two heat exchange type multi-tubular reaction zones in one reactor and an external space between the two reaction zones. The present inventors have found that the above problems can be achieved by using a reactor in which a space having a mechanism for introducing a gaseous substance from is installed, and the present invention has been completed.
ここで、区画された熱交換型多管式反応帯は、上下2枚の管板で区画されたシェル内に複数の反応管を有するもので、反応管内には触媒が充填され反応原料ガスを供給して接触気相酸化を行う一方、シェル側には熱媒体を循環させ反応熱が除去される。 Here, the partitioned heat exchange type multi-tubular reaction zone has a plurality of reaction tubes in a shell partitioned by two upper and lower tube plates. While supplying and carrying out catalytic vapor phase oxidation, a heat medium is circulated on the shell side to remove reaction heat.
すなわち、本発明は、接触気相酸化などに用いられる固定床多管式反応器であって下記の構成をもつ反応器ならびにこのような反応器を用いることを特徴とするアクリル酸の製造方法である。 That is, the present invention is a fixed-bed multitubular reactor used for catalytic gas phase oxidation and the like, and a reactor having the following configuration and a method for producing acrylic acid using such a reactor. is there.
(1)1つの反応器に、2つの区画された反応帯と、当該2つの反応帯の間に外部からガス状物質を導入する機構を備えた空間部を設置する。 (1) One reactor is provided with a space section having two partitioned reaction zones and a mechanism for introducing a gaseous substance from the outside between the two reaction zones.
(2)さらに前記空間部に第1反応帯出口ガスと外部からの追加ガスとを混合する機構を設置する。 (2) Further, a mechanism for mixing the first reaction zone outlet gas and the external additional gas is installed in the space.
(3)前記空間部に、反応ガスに対して実質的に不活性な物質を充填する。 (3) The space is filled with a substance that is substantially inert to the reaction gas.
(4)さらに、第2反応帯の入口部に反応ガス温度を調節するためのガス温調整部を設置する。 (4) Furthermore, a gas temperature adjusting unit for adjusting the reaction gas temperature is installed at the inlet of the second reaction zone.
(5)さらに、上記いずれかに記載の反応器を用いるプロピレンの接触気相酸化によるアクリル酸の製造方法である。 (5) A method for producing acrylic acid by catalytic gas phase oxidation of propylene using any of the reactors described above.
本発明においては、上記構成を採用することにより、従来の反応器の問題点を解決し、プロピレンからアクリル酸を製造するに際し、1つの反応器を用いかつ後段反応におけるガス組成の変更が可能であり、プロピレンの高濃度化に適した新しい反応器を提供することができた。 In the present invention, by adopting the above configuration, the problems of the conventional reactor can be solved, and when producing acrylic acid from propylene, it is possible to use one reactor and change the gas composition in the subsequent reaction. And a new reactor suitable for increasing the concentration of propylene could be provided.
また当該反応器を用いることによって、長期間の運転であっても炭化物が堆積しにくくなり、その結果、より効率の高いアクリル酸の製造方法を提供することができた。 Further, by using the reactor, it is difficult to deposit carbides even during a long-term operation, and as a result, a more efficient method for producing acrylic acid could be provided.
図3に本発明の反応器の一つの形態を示す。図3の反応器を用いたプロピレンの接触気相酸化によるアクリル酸の製造において以下説明する。 FIG. 3 shows one embodiment of the reactor of the present invention. The production of acrylic acid by catalytic gas phase oxidation of propylene using the reactor of FIG. 3 will be described below.
図3において、反応原料ガスは反応器の上方から供給されているが、反応原料ガスの流れ方向は特に限定されるものではなく状況に応じて適宜選択できる。 In FIG. 3, the reaction raw material gas is supplied from above the reactor, but the flow direction of the reaction raw material gas is not particularly limited and can be appropriately selected according to the situation.
反応器の上方から原料ガスが供給される場合、反応器内に、上部から順に、反応管内にプロピレンをアクロレインに変換するに好適な触媒(以下「前段触媒」と略記することもある)が充填された第1の反応帯、反応器外部からガス状物質を導入する機構を備えた空間部、反応管内にアクロレインをアクリル酸に変換するに好適な触媒(以下「後段触媒」と略記することもある)が充填された第2の反応帯が設置された反応器が用いられる。 When raw material gas is supplied from above the reactor, the reactor is filled with a catalyst suitable for converting propylene into acrolein (hereinafter sometimes abbreviated as “pre-stage catalyst”) in the reaction tube in order from the top. The first reaction zone, a space provided with a mechanism for introducing a gaseous substance from the outside of the reactor, and a catalyst suitable for converting acrolein into acrylic acid in the reaction tube (hereinafter abbreviated as “second-stage catalyst”) A reactor equipped with a second reaction zone filled with (is) is used.
プロピレンおよび分子状酸素を含有する原料ガスは、反応器上部から第1反応帯に供給されそこでアクロレインに変換され第1反応帯から出た反応ガスは空間部に流入する。ここで外部から別途供給された追加ガス(例えばリサイクルガスや空気など)と混合され第2反応帯に流入しここでアクリル酸に変換され反応器から流出する。 The raw material gas containing propylene and molecular oxygen is supplied from the upper part of the reactor to the first reaction zone, where it is converted into acrolein and the reaction gas exiting from the first reaction zone flows into the space. Here, it is mixed with an additional gas (for example, recycle gas or air) separately supplied from the outside and flows into the second reaction zone where it is converted into acrylic acid and flows out of the reactor.
ここで、前段触媒としては、プロピレンを含む原料ガスを気相酸化してアクロレインを製造するのに一般に用いられている酸化触媒を用いることができる。同様に、後段触媒についても特に制限はなく、二段接触気相酸化法により前段触媒によって得られる主としてアクロレインを含む反応ガスを気相酸化してアクリル酸を製造するのに一般に用いられている酸化触媒を用いることができる。 Here, as the pre-stage catalyst, an oxidation catalyst generally used for producing acrolein by gas-phase oxidation of a raw material gas containing propylene can be used. Similarly, the latter catalyst is not particularly limited, and is an oxidation generally used for producing acrylic acid by gas phase oxidation of a reaction gas mainly containing acrolein obtained by the former catalyst by the two-stage catalytic gas phase oxidation method. A catalyst can be used.
具体的には、前段触媒としては、例えば、下記一般式(I):
MoaBibFecX1dX2eX3fX4gOx (I)
(ここで、Moはモリブデン、Biはビスマス、Feは鉄、X1はコバルトおよびニッケルから選ばれる少なくとも1種の元素、X2はアルカリ金属、アルカリ土類金属およびタリウムから選ばれる少なくとも1種の元素、X3はタングステン、ケイ素、アルミニウム、ジルコニウムおよびチタンから選ばれる少なくとも1種の元素、X4はリン、テルル、アンチモン、スズ、セリウム、鉛、ニオブ、マンガン、砒素および亜鉛から選ばれる少なくとも1種の元素、Oは酸素を表し、またa、b、c、d、e、f、gおよびxはそれぞれMo、Bi、Fe、X1、X2、X3、X4およびOの原子比を表し、a=12のとき、b=0.1〜10、c=0.1〜20、d=2〜20、e=0.001〜10、f=0〜30、g=0〜4であり、xは各元素の酸化状態によって定まる数値である)で示される酸化物触媒を挙げることができる。
Specifically, as the pre-stage catalyst, for example, the following general formula (I):
Mo a Bi b Fe c X1 d X2 e X3 f X4 g O x (I)
(Where Mo is molybdenum, Bi is bismuth, Fe is iron, X1 is at least one element selected from cobalt and nickel, X2 is at least one element selected from alkali metals, alkaline earth metals and thallium, X3 is at least one element selected from tungsten, silicon, aluminum, zirconium and titanium, X4 is at least one element selected from phosphorus, tellurium, antimony, tin, cerium, lead, niobium, manganese, arsenic and zinc, O represents oxygen, and a, b, c, d, e, f, g and x represent atomic ratios of Mo, Bi, Fe, X1, X2, X3, X4 and O, respectively, when a = 12. , B = 0.1 to 10, c = 0.1 to 20, d = 2 to 20, e = 0.001 to 10, f = 0 to 30, g = 0 to 4, and x is each The oxide catalyst is a numerical value determined by the oxidation state of the element.
また後段触媒としては、例えば、下記一般式(II):
MohViWjY1kY2lY3mY4nOy (II)
(ここで、Moはモリブデン、Vはバナジウム、Wはタングステン、Y1はアンチモン、ビスマス、クロム、ニオブ、リン、鉛、亜鉛およびスズから選ばれる少なくとも1種の元素、Y2は銅および鉄から選ばれる少なくとも1種の元素、Y3はアルカリ金属、アルカリ土類金属およびタリウムから選ばれる少なくとも1種の元素、Y4はケイ素、アルミニウム、チタン、ジルコニウム、イットリウム、ロジウムおよびセリウムから選ばれる少なくとも1種の元素、Oは酸素を表し、またh、i、j、k、l、m、nおよびyはそれぞれMo、V、W、Y1、Y2、Y3、Y4およびOの原子比を表し、h=12のとき、i=2〜14、j=0〜12、k=0〜5、l=0.01〜6、m=0〜5、n=0〜10であり、yは各元素の酸化状態によって定まる数値である)で示される酸化触媒を挙げることができる。
Moreover, as a back | latter stage catalyst, the following general formula (II):
Mo h V i W j Y1 k Y2 l Y3 m Y4 n O y (II)
(Where Mo is molybdenum, V is vanadium, W is tungsten, Y1 is at least one element selected from antimony, bismuth, chromium, niobium, phosphorus, lead, zinc and tin, and Y2 is selected from copper and iron. At least one element, Y3 is at least one element selected from alkali metals, alkaline earth metals and thallium; Y4 is at least one element selected from silicon, aluminum, titanium, zirconium, yttrium, rhodium and cerium; O represents oxygen, and h, i, j, k, l, m, n, and y represent the atomic ratios of Mo, V, W, Y1, Y2, Y3, Y4, and O, respectively, when h = 12. I = 2 to 14, j = 0 to 12, k = 0 to 5, l = 0.01 to 6, m = 0 to 5, n = 0 to 10, and y depends on the oxidation state of each element. And an oxidation catalyst represented by the formula (1).
その形状についても特に制限はなく、球状、円柱状、リング状、など公知の形状のものが使用される。 There is no restriction | limiting in particular also about the shape, A thing of well-known shapes, such as spherical shape, cylinder shape, and ring shape, is used.
なお、第1反応帯および第2反応帯に充填される触媒は、それぞれ単一な触媒である必要はなく、例えば第1反応帯において、活性の異なる複数種の前段触媒を用い、これらを活性の異なる順に充填したり、触媒の一部を不活性担体などで希釈したりしてもよい。第2反応帯についても同様である。 The catalyst charged in the first reaction zone and the second reaction zone need not be a single catalyst. For example, in the first reaction zone, a plurality of types of pre-stage catalysts having different activities are used and activated. The catalyst may be filled in a different order, or a part of the catalyst may be diluted with an inert carrier. The same applies to the second reaction zone.
第1反応帯の好適な温度は、通常、300〜380℃であり、また第2反応帯の好適な温度は、通常、250〜350℃である。又、第1反応帯及び第2反応帯における熱媒体の入口温度と出口温度の差は、10℃以下、好ましくは5℃以下とするのが良い。なお、本発明における第1反応帯の温度および第2反応帯の温度とは、それぞれの反応帯における熱媒体入口温度に実質的に相当するものであり、熱媒体入口温度は、上記の範囲内で設定された第1反応帯および第2反応帯のそれぞれの設定温度に応じて決定される。 A suitable temperature in the first reaction zone is usually from 300 to 380 ° C, and a suitable temperature in the second reaction zone is usually from 250 to 350 ° C. The difference between the inlet temperature and the outlet temperature of the heat medium in the first reaction zone and the second reaction zone is 10 ° C. or less, preferably 5 ° C. or less. In the present invention, the temperature in the first reaction zone and the temperature in the second reaction zone substantially correspond to the heat medium inlet temperature in each reaction zone, and the heat medium inlet temperature is within the above range. It is determined according to the set temperature of each of the first reaction zone and the second reaction zone set in (1).
この様に各反応帯の温度を制御するには、それぞれの反応帯のシェルに反応器の外部に取り付けた熱媒体循環装置により温度制御された熱媒体を別々に循環させればよく、熱媒体の循環方向は特に限定されるものではない。例えば、それぞれの熱媒体の循環方向として、図3では第1の反応帯、第2の反応帯共に下方から上方に循環されているが、その逆方向、あるいは第1反応帯では上方から下方、第2反応帯では下方から上方、あるいはその逆の循環方向となるようにするなど適宜選択することができる。 In this way, in order to control the temperature of each reaction zone, the heat medium whose temperature is controlled by the heat medium circulation device attached to the outside of the reactor may be separately circulated to the shell of each reaction zone. The direction of circulation is not particularly limited. For example, as the circulation direction of each heat medium, in FIG. 3, both the first reaction zone and the second reaction zone are circulated from below to above, but in the opposite direction, or in the first reaction zone, from above to below, In the second reaction zone, it can be appropriately selected such that the circulation direction is from below to above or vice versa.
この時、それぞれのシェル内に熱媒体の流れを規制するため、例えば、特開2001−137689号公報に記載のような邪魔板などを取り付けることにより、熱媒体による酸化反応による生成熱の除去効率が高まり好ましくなる。 At this time, in order to regulate the flow of the heat medium in each shell, for example, a baffle plate or the like as described in JP-A-2001-137789 is attached, thereby removing the heat generated by the oxidation reaction by the heat medium. Is preferable.
さらに、それぞれの反応帯のシェル内に仕切り板を設置し、各反応帯自体を2つ以上に区切り、別々に熱媒体を循環させ、それぞれ別個に温度制御することもできる。その場合、仕切り板は反応管に溶接などにより直接固定されてもよいが、仕切り板や反応管に熱的な歪みが生じるのを防止するために、実質的に独立して熱媒体を循環できる範囲において、仕切り板と反応管との間に適当な隙間を設けるのがよい。 Furthermore, a partition plate can be installed in the shell of each reaction zone, each reaction zone itself can be divided into two or more, a heat medium can be circulated separately, and the temperature can be controlled separately. In that case, the partition plate may be directly fixed to the reaction tube by welding or the like, but in order to prevent thermal distortion in the partition plate or the reaction tube, the heat medium can be circulated substantially independently. In the range, an appropriate gap may be provided between the partition plate and the reaction tube.
具体的には、仕切り板と反応管との間隔を0.2〜5mm程度とするのが好ましい。また、仕切り板は反応器の内壁に溶接などにより直接固定されてもよいが、特公平7−73674号公報記載のように、円筒状の取り付け板を介して内壁に固定してもよい。 Specifically, the interval between the partition plate and the reaction tube is preferably about 0.2 to 5 mm. The partition plate may be directly fixed to the inner wall of the reactor by welding or the like, but may be fixed to the inner wall via a cylindrical mounting plate as described in Japanese Patent Publication No. 7-73684.
第1反応帯と第2反応帯との間の空間部に反応器外部から追加するガス状物質としては、第2反応帯において所望のガス組成に調整できれば特に限定されるものではないが、例えば、空気、酸素、窒素、スチーム、廃ガス(リサイクルガス)およびそれらの混合ガスなどが挙げられる。 The gaseous substance added from the outside of the reactor to the space between the first reaction zone and the second reaction zone is not particularly limited as long as it can be adjusted to a desired gas composition in the second reaction zone. , Air, oxygen, nitrogen, steam, waste gas (recycle gas), and a mixed gas thereof.
本発明によれば、空間部に第1反応帯出口ガスと追加ガス状物質とを効率よく混合するための機構を設置すれば、空間部の容量をより小さくすることもでき反応器を小型化できるため好ましい。混合機構としては、特に限定されるものではないが、例えば、下記の機構などが挙げられる。
(ア)追加ガス状物質の噴出し口を多数設けて接触面積を高めて混合する方法(図5(b))。
(イ)追加ガス状物質を反応器に対し斜め方向に導入し、渦状の流れにより混合する方法(図5(c))。例えば、当該追加ガス状物質を、反応器に対し水平斜め方向に導入してもよい。
(ウ)第1反応帯と第2反応帯との間の空間部に括れを持たせ、そこでガス状物質を追加し、その下に設けた分散板を取り付けることで混合する方法(図6)。
According to the present invention, if a mechanism for efficiently mixing the first reaction zone outlet gas and the additional gaseous substance is installed in the space, the capacity of the space can be further reduced and the reactor can be downsized. This is preferable because it is possible. Although it does not specifically limit as a mixing mechanism, For example, the following mechanism etc. are mentioned.
(A) A method in which a large number of outlets for additional gaseous substances are provided to increase the contact area and mix (FIG. 5B).
(A) A method in which an additional gaseous substance is introduced into the reactor in an oblique direction and mixed by a vortex flow (FIG. 5C). For example, the additional gaseous substance may be introduced in a horizontal oblique direction with respect to the reactor.
(C) A method of mixing by attaching a constriction to the space between the first reaction zone and the second reaction zone, adding a gaseous substance there, and attaching a dispersion plate provided thereunder (FIG. 6) .
また、本発明においては、空間部分に反応ガスに実質的に不活性な物質を充填することもできる。 In the present invention, the space can be filled with a substance that is substantially inert to the reaction gas.
充填する反応ガスに実質的に不活性な物質としては特に制限はなく、α−アルミナ、アランダム、ムライト、カーボランダム、ステンレススチール、炭化ケイ素、ステアタイト、陶器、磁器、鉄および各種セラミックなどが挙げられる。その形状についても、不活性物質自体による圧力損失の大幅な上昇がなければ特に制限はなく、ラシヒリング状、球状、円柱状、リング状、などの粒状のほかに、塊状、棒状、板状、金網状なども挙げることができる。 There are no particular restrictions on the substance that is substantially inert to the reaction gas to be filled, and examples include α-alumina, alundum, mullite, carborundum, stainless steel, silicon carbide, steatite, ceramics, porcelain, iron, and various ceramics. Can be mentioned. The shape is not particularly limited as long as there is no significant increase in pressure loss due to the inert substance itself. In addition to granular shapes such as Raschig rings, spheres, cylinders, rings, etc., lumps, rods, plates, gold A net-like shape can also be mentioned.
第1反応帯出口ガスは比較的高温であり、主成分として含まれるアクロレインは自動酸化などの後反応を起こし易い。このような不活性な物質を空間部に充填することにより、空間部でのガス滞留時間を短くすることで、アクロレインの自動酸化防止に効果的である。好ましくは、空間部におけるガス滞留時間が6秒以内になるように不活性物質の充填量を設定するのがよい。 The first reaction zone outlet gas has a relatively high temperature, and acrolein contained as a main component tends to cause a post-reaction such as auto-oxidation. Filling the space with such an inert substance shortens the gas residence time in the space, which is effective in preventing acrolein autooxidation. Preferably, the filling amount of the inert substance is set so that the gas residence time in the space is within 6 seconds.
このような不活性物質を充填しておくことにより、第1反応帯に充填された触媒層より飛散するモリブデン成分や第1反応での副生成物であるテレフタル酸などの高沸点物質やアクロレインの自動酸化に伴う炭化物による、第2の反応帯に充填された触媒の汚染ひいてはその性能劣化、および、空間部の閉塞や圧力損失の上昇などをより低減させることもできる。 By filling with such an inert substance, molybdenum components scattered from the catalyst layer filled in the first reaction zone, high-boiling substances such as terephthalic acid which is a by-product in the first reaction, and acrolein Contamination of the catalyst charged in the second reaction zone due to carbides accompanying auto-oxidation, as well as performance degradation, and blockage of the space and increase in pressure loss can be further reduced.
また、本発明においては、第1反応帯出口ガスおよび追加ガス状物質の混合ガスを第2反応帯における反応に好適な温度範囲までに冷却あるいは加熱するために、空間部と第2の反応帯との間にガス温調節部を設けることが好ましい。 In the present invention, in order to cool or heat the mixed gas of the first reaction zone outlet gas and the additional gaseous substance to a temperature range suitable for the reaction in the second reaction zone, the space portion and the second reaction zone are used. It is preferable to provide a gas temperature adjusting unit between the two.
このガス温調節部により短時間かつ十分に第1反応帯出口ガスを冷却でき、アクロレインの自動酸化などの後反応が抑制可能となる。 By this gas temperature control unit, the first reaction zone outlet gas can be sufficiently cooled in a short time, and post-reactions such as acrolein auto-oxidation can be suppressed.
一方、外部からのガスの追加などにより第2反応帯への入口ガスが冷却されすぎた場合には、第2反応帯で十分な触媒活性が得られない。このガス温調節部により短時間かつ十分に第2反応に必要な温度まで加熱できる。 On the other hand, if the inlet gas to the second reaction zone is excessively cooled due to the addition of gas from the outside, sufficient catalytic activity cannot be obtained in the second reaction zone. This gas temperature control unit can be heated to the temperature necessary for the second reaction sufficiently in a short time.
ガス温調節部の構造は特に制限はなく、例えば、空間部にフィンチューブを蛇行させる、あるいは反応ガスが流通する複数の管と熱媒が流通するシェル部とを備える等の構造が挙げられるが、好ましくは後者であり、その場合、反応ガス流通管には何も充填せず空筒としても良いが、熱媒と反応ガスとの熱交換を容易にするには、反応ガス流通管内に反応には実質的に不活性な物質を充填するのが好ましい。 The structure of the gas temperature control unit is not particularly limited, and examples thereof include a structure in which a fin tube meanders in the space, or a plurality of tubes through which a reaction gas flows and a shell through which a heat medium flows. In this case, the reaction gas flow pipe is not filled with anything and may be empty, but in order to facilitate heat exchange between the heat medium and the reaction gas, the reaction gas flow pipe is reacted. Is preferably filled with a substantially inert substance.
充填する不活性物質としては特に制限はなく、α−アルミナ、アランダム、ムライト、カーボランダム、ステンレススチール、炭化ケイ素、ステアタイト、陶器、磁器、鉄および各種セラミックなどが挙げられる。その形状についても、不活性物質自体による圧力損失の大幅な上昇がなければ特に制限はなく、ラシヒリング状、球状、円柱状、リング状、などの粒状のほかに、塊状、棒状、板状、金網状なども挙げることができる。 There is no restriction | limiting in particular as an inert substance with which it fills, (alpha)-alumina, alundum, mullite, carborundum, stainless steel, silicon carbide, a steatite, earthenware, porcelain, iron, various ceramics, etc. are mentioned. The shape is not particularly limited as long as there is no significant increase in pressure loss due to the inert substance itself. In addition to granular shapes such as Raschig rings, spheres, cylinders, rings, etc., lumps, rods, plates, gold A net-like shape can also be mentioned.
ガス温調節部における温度の制御は、各反応帯とは独立して熱媒を循環させることや、第1の反応帯あるいは第2反応帯の熱媒を循環させることも可能である。 The temperature control in the gas temperature control unit can be performed by circulating the heat medium independently of each reaction zone, or by circulating the heat medium in the first reaction zone or the second reaction zone.
反応実施時において、第1反応帯出口ガスの冷却、および/または、第2反応帯での反応ガス温度制御のための予熱層として使用する際には、ガス温調節部には独立して熱媒循環させるか、あるいは、第2反応帯に入る前の熱媒または第2反応帯から出た熱媒をガス温調節部に循環させることでガス温調節部の温度制御が可能である。 When the reaction is performed, when the gas is used as a preheating layer for cooling the outlet gas of the first reaction zone and / or controlling the temperature of the reaction gas in the second reaction zone, It is possible to control the temperature of the gas temperature adjusting unit by circulating the medium or circulating the heating medium before entering the second reaction zone or the heating medium that has come out of the second reaction zone to the gas temperature adjusting unit.
一方、本発明による空間部でのガスの滞留時間短縮、追加ガス導入でのガス濃度調節を行うことで、高負荷条件の下で長期間に渡るプロピレンの酸化によるアクリル酸の製造において、アクロレインの自動酸化やテレフタル酸等の高沸点物質による炭化物の生成を従来に比べ大幅に改善できる。しかし、長期間に渡る製造において、第1反応帯出口ガスを冷却することで第2反応帯入口部の触媒、あるいは、空間部やガス温調節部に不活性物質を充填した場合は、充填された不活性物質上で炭化物は少なからず生成され、閉塞や圧力損失の上昇の原因となりうる。 On the other hand, by reducing the residence time of gas in the space according to the present invention and adjusting the gas concentration by introducing additional gas, in the production of acrylic acid by propylene oxidation over a long period under high load conditions, acrolein The generation of carbides by high-boiling substances such as auto-oxidation and terephthalic acid can be greatly improved. However, in the production over a long period of time, if the first reaction zone outlet gas is cooled to fill the catalyst at the second reaction zone inlet, or the space or gas temperature control portion with an inert substance, the gas is charged. On the other hand, not a few carbides are generated on the inert material, which can cause clogging and increased pressure loss.
このような第2反応帯入口部の触媒や不活性物質上に生成した炭化物については、定期的に、好ましくは1回以上/年の頻度で第2反応帯入口部の触媒や不活性物質を交換するか、あるいは高温下で酸素含有ガスを流通させるエアレーションにより燃焼除去することができる。 For the carbide generated on the catalyst and inert substance at the inlet of the second reaction zone, the catalyst and inert substance at the inlet of the second reaction zone are preferably added periodically, preferably at a frequency of once / year. It can be replaced or burned off by aeration with an oxygen-containing gas flowing at high temperatures.
このようなエアレーションの実施に際しては、通常、後段触媒は高温で酸素含有ガスと接触することにより触媒性能の劣化を引き起こすため、第2反応帯は、350℃以下、好ましくは330℃以下、さらに好ましくは320℃以下に保つのがよく、第1反応帯および/またはガス温調節部のみ320℃以上の高温にして実施する。実施に際しては、上記同様にガス温調節部に独立した熱媒循環させるか、あるいは、比較的高温である第1反応帯に入る前の熱媒または第1反応帯から出た熱媒を循環させることもできる。 In carrying out such aeration, the second stage reaction zone is usually 350 ° C. or less, preferably 330 ° C. or less, more preferably because the latter catalyst causes deterioration of the catalyst performance by contacting the oxygen-containing gas at a high temperature. Is preferably maintained at 320 ° C. or lower, and only the first reaction zone and / or the gas temperature controller is set at a high temperature of 320 ° C. or higher. In carrying out the operation, the heat medium is circulated independently in the gas temperature control unit as described above, or the heat medium before entering the first reaction zone or the heat medium that has exited from the first reaction zone is circulated at a relatively high temperature. You can also.
以下に、実施例を挙げて本発明を具体的に説明するが、本発明はこれにより何ら限定されるものではない。なお、以下では、便宜上、「質量部」を単に「部」、と記すことがある。
<実施例1>
[前段触媒1の調製]
蒸留水1000部を加熱攪拌しつつモリブデン酸アンモニウム385.2部およびパラタングステン酸アンモニウム39.3部を溶解した(A液)。別に140部の蒸留水に硝酸コバルト264.6部を溶解させ(B液)、また80部の蒸留水に硝酸第二鉄80.8部を溶解させ(C液)、さらに100部の蒸留水に硝酸(60%)20容量部を加えて酸性とした溶液に硝酸ビスマス105.8部を溶解させた(D液)。A液にこの3種の硝酸塩溶液(B、C、D液)を滴下した。引き続き、水酸化カリウム0.469部を30部の蒸留水に溶解した液を加えた。このようにして得られた懸濁液を加熱、攪拌、蒸発せしめた後、外径8mm、内径3mm、長さ7mmに成型し、空気流通下460℃で8時間焼成して触媒を調製した。この触媒の酸素を除く金属組成は原子比で次のとおりであった。
Mo12Bi1.2Fe1.1Co5.0K0.05W0.8
〔前段触媒2の調製〕
外径6mm、内径2mm、長さ6mmに成形した以外は、前段触媒1と同様に調製した。
[後段触媒1の調製]
蒸留水2000部を加熱攪拌しながら、この中にパラモリブデン酸アンモニウム365.4部、メタバナジン酸アンモニウム100.9部およびパラタングステン酸アンモニウム55.9部を溶解した。別に、蒸留水400部を加熱攪拌しながら、この中に硝酸銅83.3部を溶解した。得られた2つの液を混合した後、湯浴上の磁製蒸発器に入れ、これにα−アルミナからなる平均粒径が8mmの球状担体1000容量部を加え、攪拌しながら蒸発乾固して担体に付着させた後、空気雰囲気下400℃で6時間焼成して触媒を調製した。この触媒の酸素を除く金属組成は原子比で次のとおりであった。
Mo12V5W1.2Cu2
〔後段触媒2の調製〕
平均粒径5mmの球状担体を用いた以外は後段触媒1と同様に調製した。
[反応器および酸化反応]
上から順に第1反応帯(長さ3000mm、内径25mmのSUS製反応管24本)、空間部(長さ1500mmで第2反応帯上管板より1300mm上方に、反応器に対して垂直方向にガス導入管を設置)、第2反応帯(長さ3000mm、内径25mmのSUS製反応管24本)を備える内径400mmの反応器を用いた。(図3および図5(a)参照)
第1反応帯にはガス入口側より前段触媒1を長さ800mm、前段触媒2を長さ2200mmとなるように充填し、第2反応帯にはガス入口側から後段触媒1を長さ700mm、後段触媒2を長さ2300mmとなるように充填した。
Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited thereto. Hereinafter, for convenience, “parts by mass” may be simply referred to as “parts”.
<Example 1>
[Preparation of catalyst 1]
While heating and stirring 1000 parts of distilled water, 385.2 parts of ammonium molybdate and 39.3 parts of ammonium paratungstate were dissolved (solution A). Separately, 264.6 parts of cobalt nitrate was dissolved in 140 parts of distilled water (Liquid B), and 80.8 parts of ferric nitrate was dissolved in 80 parts of distilled water (Liquid C), and further 100 parts of distilled water. 105.8 parts of bismuth nitrate was dissolved in a solution made acidic by adding 20 parts by volume of nitric acid (60%) to the solution (D solution). The three types of nitrate solutions (B, C, and D solutions) were added dropwise to the A solution. Subsequently, a solution prepared by dissolving 0.469 parts of potassium hydroxide in 30 parts of distilled water was added. The suspension thus obtained was heated, stirred and evaporated, and then molded into an outer diameter of 8 mm, an inner diameter of 3 mm, and a length of 7 mm, and calcined at 460 ° C. for 8 hours under air flow to prepare a catalyst. The metal composition excluding oxygen of this catalyst was as follows in terms of atomic ratio.
Mo 12 Bi 1.2 Fe 1.1 Co 5.0 K 0.05 W 0.8
[Preparation of pre-stage catalyst 2]
The catalyst was prepared in the same manner as the pre-catalyst 1 except that the outer diameter was 6 mm, the inner diameter was 2 mm, and the length was 6 mm.
[Preparation of latter catalyst 1]
While heating and stirring 2000 parts of distilled water, 365.4 parts of ammonium paramolybdate, 100.9 parts of ammonium metavanadate and 55.9 parts of ammonium paratungstate were dissolved therein. Separately, 83.3 parts of copper nitrate was dissolved in 400 parts of distilled water while heating and stirring. After mixing the obtained two liquids, put them in a magnetic evaporator on a hot water bath, add 1000 parts by volume of a spherical carrier made of α-alumina with an average particle diameter of 8 mm, and evaporate to dryness while stirring. Then, the catalyst was prepared by calcining at 400 ° C. for 6 hours in an air atmosphere. The metal composition excluding oxygen of this catalyst was as follows in terms of atomic ratio.
Mo 12 V 5 W 1.2 Cu 2
[Preparation of latter stage catalyst 2]
It was prepared in the same manner as the latter catalyst 1 except that a spherical carrier having an average particle diameter of 5 mm was used.
[Reactor and oxidation reaction]
In order from the top, the first reaction zone (24 SUS reaction tubes with a length of 3000 mm and an inner diameter of 25 mm), the space (1500 mm above the second reaction zone upper tube plate with a length of 1500 mm), perpendicular to the reactor A reactor having a 400 mm inner diameter provided with a second reaction zone (24 SUS reaction tubes having a length of 3000 mm and an inner diameter of 25 mm) was used. (See FIG. 3 and FIG. 5 (a))
The first reaction zone is filled with the front catalyst 1 from the gas inlet side to a length of 800 mm and the
熱媒は、第1反応帯、ガス温調節部、第2反応帯とも下方から上方に向けて流した。下記組成の原料ガスを反応器の上方から導入し下記の条件で酸化反応を行った。
<原料ガス組成>
プロピレン12容量%、酸素15容量%、水蒸気9容量%および窒素等の不活性ガス64容量%。
<風量>
上記組成のガスを47.7m3/Hrで供給。
<追加ガス>
空間部に、空気を13.6m3/Hrで供給。
<触媒層温度>
第1反応帯温度(第1反応帯の熱媒体入口温度):320℃
第2反応帯温度(第2反応帯の熱媒体入口温度):265℃
<性能評価>
反応開始後、48時間と4000時間後のプロピレン転化率およびアクリル酸収率および4000時間後の初期からの圧損上昇を表1に示す。
The heat medium was allowed to flow from below to above in the first reaction zone, the gas temperature control unit, and the second reaction zone. A raw material gas having the following composition was introduced from above the reactor to carry out an oxidation reaction under the following conditions.
<Raw gas composition>
12% by volume of propylene, 15% by volume of oxygen, 9% by volume of water vapor, and 64% by volume of inert gas such as nitrogen.
<Air volume>
A gas having the above composition was supplied at 47.7 m 3 / Hr.
<Additional gas>
Air is supplied to the space at 13.6 m 3 / Hr.
<Catalyst layer temperature>
First reaction zone temperature (heat medium inlet temperature in the first reaction zone): 320 ° C.
Second reaction zone temperature (heat medium inlet temperature in the second reaction zone): 265 ° C
<Performance evaluation>
Table 1 shows the propylene conversion rate and acrylic acid yield after 48 hours and 4000 hours after the start of the reaction, and the pressure loss increase from the initial stage after 4000 hours.
また、4000時間後の状態を確認したところ、第2反応帯の触媒の入口から30mmにかけて炭化物の析出が認められた。
<エアレーション>
酸素12容量%、水蒸気50容量%および窒素等の不活性ガス38容量%の混合ガスを21.2m3/Hrで供給。第1反応帯温度350℃、第2反応帯温度320℃で24Hr流通。
上記条件にて、エアレーションを実施したところ、触媒層温度の急激な上昇もなく炭化物の除去が確認され、圧力損失も反応開始時に戻っていた。処理後の性能評価について表1に示す。
<実施例2>
追加ガス導入管を反応器に対して接線方向にした以外は、実施例1と同じ条件で反応を行った。結果を表1に示す。(図3および図5(c)参照)
4000時間後の状態を確認したところ、第2反応帯の触媒の入口から10mmにかけて炭化物の析出が認められた。その後、実施例1と同じ条件でエアレーションを実施したところ、触媒層温度の急激な上昇もなく炭化物の除去が確認され、圧力損失も反応開始時に戻っていた。処理後の性能評価について表1に示す。
<実施例3>
〔反応器および酸化反応〕
上から順に第1反応帯(長さ3000mm、内径25mmのSUS製反応管24本)、空間部(長さ1500mmでガス温調節部より1300mm上方に、反応器に対して接線方向にガス導入管を設置)、ガス温調節部(長さ500mm、内径25mmの管24本)、第2反応帯(長さ3000mm、内径25mmのSUS製反応管24本)を備える内径400mmの反応器を用いた。
Further, when the state after 4000 hours was confirmed, precipitation of carbide was observed from the entrance of the catalyst in the second reaction zone to 30 mm.
<Aeration>
A mixed gas of 12 volume% oxygen, 50 volume% water vapor and 38 volume% inert gas such as nitrogen was supplied at 21.2 m 3 / Hr. Flowed for 24 hours at a first reaction zone temperature of 350 ° C and a second reaction zone temperature of 320 ° C.
When aeration was carried out under the above conditions, the removal of carbide was confirmed without a rapid increase in the catalyst layer temperature, and the pressure loss also returned at the start of the reaction. Table 1 shows the performance evaluation after the treatment.
<Example 2>
The reaction was carried out under the same conditions as in Example 1 except that the additional gas introduction tube was tangential to the reactor. The results are shown in Table 1. (See FIG. 3 and FIG. 5 (c))
When the state after 4000 hours was confirmed, precipitation of carbide was observed from the inlet of the catalyst in the second reaction zone to 10 mm. Thereafter, aeration was carried out under the same conditions as in Example 1. As a result, the removal of carbide was confirmed without a rapid increase in the catalyst layer temperature, and the pressure loss also returned at the start of the reaction. Table 1 shows the performance evaluation after the treatment.
<Example 3>
[Reactor and oxidation reaction]
In order from the top, the first reaction zone (24 SUS reaction tubes with a length of 3000 mm and an inner diameter of 25 mm), a space (a length of 1500 mm, 1300 mm above the gas temperature control unit, a gas introduction tube tangential to the reactor A reactor having a 400 mm inner diameter and equipped with a gas temperature control unit (24 tubes having a length of 500 mm and an inner diameter of 25 mm) and a second reaction zone (24 reaction tubes made of SUS having a length of 3000 mm and an inner diameter of 25 mm). .
第1反応帯にはガス入口側より前段触媒1を長さ700mm、前段触媒2を長さ2300mmとなるように充填し、第2反応帯にはガス入口側から後段触媒1を長さ800mm、後段触媒2を長さ2200mmとなるように充填した。
The first reaction zone is filled with the front catalyst 1 from the gas inlet side to a length of 700 mm and the
ガス温調節部には、不活性物質として、外径6mm、長さ7mmのSUS製ラシヒリングを長さ500mmとなるよう充填した。また、熱媒は、第1反応帯、第2反応帯とも下方から上方に向けて流した。ガス温調節部の熱媒体入口温度を260℃とした。反応条件は実施例1と同じ条件で行った。結果を表1に示す。 The gas temperature control unit was filled with an SUS Raschig ring having an outer diameter of 6 mm and a length of 7 mm as an inert substance so as to have a length of 500 mm. The heat medium was allowed to flow from the bottom to the top in both the first reaction zone and the second reaction zone. The heat medium inlet temperature of the gas temperature control unit was 260 ° C. The reaction conditions were the same as in Example 1. The results are shown in Table 1.
4000時間後の状態を確認したところ、ガス温調部に充填した不活性物質上に炭化物の析出が認められたが、触媒層に炭化物が認められなかった。その後、ガス温調節部の熱媒体温度を340℃にした以外は、実施例1と同じ条件でエアレーションを実施したところ、触媒層温度の急激な上昇もなく炭化物の除去が確認され、圧力損失も反応開始時に戻っていた。処理後の性能評価について表1に示す。
<実施例4>
空間部に不活性物質として、直径40mmのセラミックボールを空間部でのガス滞留時間が6秒となるよう充填した以外は、実施例3と同じ条件で反応を行った。(図4および図5(c)参照)結果を表1に示す。
When the state after 4000 hours was confirmed, precipitation of carbide was observed on the inert substance filled in the gas temperature control part, but no carbide was observed in the catalyst layer. Thereafter, aeration was performed under the same conditions as in Example 1 except that the temperature of the heat medium in the gas temperature control unit was changed to 340 ° C. As a result, the removal of carbide was confirmed without a rapid increase in the catalyst layer temperature, and the pressure loss was also reduced. It was back at the start of the reaction. Table 1 shows the performance evaluation after the treatment.
<Example 4>
The reaction was performed under the same conditions as in Example 3 except that the space part was filled with ceramic balls having a diameter of 40 mm as an inert substance so that the gas residence time in the space part was 6 seconds. The results are shown in Table 1. (Refer to FIG. 4 and FIG. 5C)
4000時間後の状態を確認したところ、空間部に充填した不活性物質表面にわずかに炭化物が認められたが、ガス温調部に充填した不活性物質および触媒層に炭化物は認められなかった。その後、実施例1と同じ条件でエアレーションを実施したところ、触媒層温度の急激な上昇もなく炭化物の除去が確認され、圧力損失も反応開始時に戻っていた。処理後の性能評価について表1に示す。
<比較例1>
従来の2つの反応器を用い、実施例1と同様の触媒を用いて反応を行った。
[反応器および酸化反応]
第1反応器(長さ3000mm、内径25mmのSUS製反応管24本)、第1反応器出口部にガス温調節部(長さ500mm、内径25mmの管24本)、第2反応器(長さ3000mm、内径25mmのSUS製反応管24本)を備える内径400mmの反応器を用いた。各反応器を内径200mm、長さ6000mmのSUS製パイプで連結した。さらに、第1反応器出口部に、追加ガス用の配管を連結した。(図1参照)
第1反応器にはガス入口側より前段触媒1を長さ800mm、前段触媒2を長さ2200mmとなるように充填し、第2反応器にはガス入口側から後段触媒1を長さ700mm、後段触媒2を長さ2300mmとなるように充填した。
When the state after 4000 hours was confirmed, a slight amount of carbide was observed on the surface of the inert substance filled in the space, but no carbide was observed in the inert substance and catalyst layer filled in the gas temperature control part. Thereafter, aeration was carried out under the same conditions as in Example 1. As a result, the removal of carbide was confirmed without a rapid increase in the catalyst layer temperature, and the pressure loss also returned at the start of the reaction. Table 1 shows the performance evaluation after the treatment.
<Comparative Example 1>
The reaction was carried out using the same catalyst as in Example 1 using two conventional reactors.
[Reactor and oxidation reaction]
First reactor (24 SUS reaction tubes with a length of 3000 mm and an inner diameter of 25 mm), gas temperature control unit (24 tubes with a length of 500 mm and an inner diameter of 25 mm) at the outlet of the first reactor, and a second reactor (long A reactor having an inner diameter of 400 mm provided with 24 SUS reaction tubes having a thickness of 3000 mm and an inner diameter of 25 mm was used. Each reactor was connected with a SUS pipe having an inner diameter of 200 mm and a length of 6000 mm. Further, an additional gas pipe was connected to the first reactor outlet. (See Figure 1)
The first reactor is filled with the front catalyst 1 from the gas inlet side to a length of 800 mm and the
第1反応器出口部のガス温調節部には、外径6mm、長さ7mmのSUS製ラシヒリングを長さ500mmとなるよう充填した。熱媒は、第1反応帯、第2反応帯とも下方から上方に向けて流した。下記組成の原料ガスを反応器の上方から導入し下記の条件で酸化反応を行った。
<原料ガス組成>
プロピレン12容量%、酸素15容量%、水蒸気9容量%および窒素等の不活性ガス64容量%。
<風量>
上記組成のガスを47.7m3/Hrで供給。
<追加ガス>
空気を13.6m3/Hrで供給。
<触媒層温度>
第1反応器温度(第1反応帯の熱媒体入口温度):320℃
ガス温調節部温度(ガス温調節部の熱媒体入口温度):260℃
第2反応器温度(第2反応帯の熱媒体入口温度):265℃
結果を表1に示す。
The gas temperature control unit at the outlet of the first reactor was filled with a SUS Raschig ring having an outer diameter of 6 mm and a length of 7 mm to a length of 500 mm. The heat medium was allowed to flow from below to above in both the first reaction zone and the second reaction zone. A raw material gas having the following composition was introduced from above the reactor to carry out an oxidation reaction under the following conditions.
<Raw gas composition>
12% by volume of propylene, 15% by volume of oxygen, 9% by volume of water vapor, and 64% by volume of inert gas such as nitrogen.
<Air volume>
A gas having the above composition was supplied at 47.7 m 3 / Hr.
<Additional gas>
Air is supplied at 13.6 m 3 / Hr.
<Catalyst layer temperature>
First reactor temperature (heat medium inlet temperature in the first reaction zone): 320 ° C.
Gas temperature control part temperature (heat medium inlet temperature of gas temperature control part): 260 ° C
Second reactor temperature (heat medium inlet temperature in second reaction zone): 265 ° C.
The results are shown in Table 1.
また、4000時間後の状態を確認したところ、反応器の連結パイプおよび不活性物質上に炭化物の析出が認められ、さらに第2反応帯の触媒の入口から200mmまで炭化物が認められた。
<エアレーション>
酸素12容量%、水蒸気50容量%および窒素等の不活性ガス38容量%の混合ガスを21.2m3/Hrで供給。第1反応帯温度350℃、第2反応帯温度320℃での条件にて、エアレーションを実施したところ、触媒層温度の急激な上昇(暴走)が認められたため中断した。その後、反応を再開したところ、触媒が失活しており反応継続は不可能であった。
Further, when the state after 4000 hours was confirmed, precipitation of carbide was observed on the connecting pipe of the reactor and the inert material, and further, carbide was recognized from the inlet of the catalyst in the second reaction zone to 200 mm.
<Aeration>
A mixed gas of 12 volume% oxygen, 50 volume% water vapor and 38 volume% inert gas such as nitrogen was supplied at 21.2 m 3 / Hr. When aeration was carried out under conditions of a first reaction zone temperature of 350 ° C. and a second reaction zone temperature of 320 ° C., a sudden increase (runaway) of the catalyst layer temperature was observed, which was interrupted. Thereafter, when the reaction was resumed, the catalyst was deactivated and the reaction could not be continued.
1 反応管
2 上管板
3 中管板
4 下管板
5 熱媒分散板(邪魔板)
6 空間部に充填した不活性物質
7 ガス温調節部に充填した不活性物質
8 ガス噴出口
1
6 Inert substance filled in space 7 Inert substance filled in gas
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006356043A JP5171031B2 (en) | 2006-07-19 | 2006-12-28 | Reactor for catalytic gas phase oxidation and method for producing acrylic acid using the same |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006197462 | 2006-07-19 | ||
JP2006197462 | 2006-07-19 | ||
JP2006356043A JP5171031B2 (en) | 2006-07-19 | 2006-12-28 | Reactor for catalytic gas phase oxidation and method for producing acrylic acid using the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2008043937A JP2008043937A (en) | 2008-02-28 |
JP5171031B2 true JP5171031B2 (en) | 2013-03-27 |
Family
ID=39178179
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006356043A Expired - Fee Related JP5171031B2 (en) | 2006-07-19 | 2006-12-28 | Reactor for catalytic gas phase oxidation and method for producing acrylic acid using the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5171031B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9440903B2 (en) * | 2012-09-24 | 2016-09-13 | Arkema Inc. | Shell and tube oxidation reactor with improved resistance to fouling |
EP3175919A4 (en) | 2014-08-01 | 2018-03-21 | Nippon Shokubai Co., Ltd. | Method for recovering inert substance, method for manufacturing acrylic acid using inert substance recovered by said method |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3461782D1 (en) * | 1983-02-22 | 1987-02-05 | Halcon Sd Group Inc | Conversion of propane to acrylic acid |
JPS60168530A (en) * | 1984-02-10 | 1985-09-02 | Mitsubishi Heavy Ind Ltd | Reactor |
US4899003A (en) * | 1985-07-11 | 1990-02-06 | Union Carbide Chemicals And Plastics Company Inc. | Process for oxydehydrogenation of ethane to ethylene |
JP3948798B2 (en) * | 1997-10-27 | 2007-07-25 | 株式会社日本触媒 | Acrylic acid production method |
DE10117678A1 (en) * | 2001-04-09 | 2002-10-10 | Basf Ag | Method and device for the two-stage production of acrylic acid |
JP4163021B2 (en) * | 2002-02-14 | 2008-10-08 | 三菱化学株式会社 | Vapor phase catalytic oxidation method using multi-tube heat exchanger type reactor |
JP2004099534A (en) * | 2002-09-10 | 2004-04-02 | Toagosei Co Ltd | Apparatus and method for producing acrylic acid |
DE10258153A1 (en) * | 2002-12-12 | 2004-06-24 | Basf Ag | Preparation of chlorine by gas-phase oxidation of hydrogen chloride by a gas stream having molecular oxygen in presence of a fixed-bed catalyst is carried out in reactor having bundle of parallel catalyst tubes and deflector plate |
DE10258180A1 (en) * | 2002-12-12 | 2004-06-24 | Basf Ag | Preparation of chlorine involves oxidation of hydrogen chloride and gas stream comprising molecular oxygen in presence of fixed-bed catalyst is carried out in reactor having annular and disk-shaped deflection plates between catalyst tubes |
JP4813758B2 (en) * | 2003-02-27 | 2011-11-09 | 株式会社日本触媒 | Composite oxide catalyst and method for producing acrylic acid using the same |
JP2005120079A (en) * | 2003-09-25 | 2005-05-12 | Nippon Shokubai Co Ltd | Method for producing acrylic acid |
US7553986B2 (en) * | 2003-12-23 | 2009-06-30 | Rohm And Haas Company | Process for the selective (amm)oxidation of lower molecular weight alkanes and alkenes |
DE102004018267B4 (en) * | 2004-04-15 | 2007-05-03 | Man Dwe Gmbh | Reactor arrangement for carrying out catalytic gas phase reactions |
-
2006
- 2006-12-28 JP JP2006356043A patent/JP5171031B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2008043937A (en) | 2008-02-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3948798B2 (en) | Acrylic acid production method | |
JP3646027B2 (en) | Reactor for catalytic gas phase oxidation and method for producing (meth) acrylic acid using the same | |
JP3631406B2 (en) | Multitubular reactor for catalytic gas phase oxidation reactions. | |
RU2440188C2 (en) | Method for heterogeneous catalytic gas-phase partial oxidation of at least one initial organic compound | |
US7897813B2 (en) | Reactor for gas phase catalytic oxidation and a process for producing acrylic acid using it | |
JP2003001094A (en) | Solid particle-packed reactor and gas-phase catalytic oxidation method using the same | |
JPH0813778B2 (en) | Method for producing methacrylic acid | |
JP3732080B2 (en) | Catalytic gas phase oxidation reactor | |
WO2009017074A1 (en) | Process for producing acrylic acid by two-stage catalytic vapor-phase oxidation | |
JP2001137688A (en) | Multi-tube reactor | |
JP5130562B2 (en) | Method for producing methacrolein and / or methacrylic acid | |
JP5171031B2 (en) | Reactor for catalytic gas phase oxidation and method for producing acrylic acid using the same | |
JP5232584B2 (en) | Acrylic acid production method | |
JP2003171340A (en) | Method for producing acrylic acid | |
JP4295462B2 (en) | Gas phase catalytic oxidation method | |
JP2005330205A (en) | Method for producing (meth)acrolein or (meth)acrylic acid | |
JP2003252820A (en) | Method for producing (meth)acrolein or (meth)acrylic acid | |
JPH07107016B2 (en) | Method for producing acrylic acid | |
JP4163895B2 (en) | Method for producing (meth) acrolein and (meth) acrylic acid | |
JP2003261501A (en) | Method for vapor-phase catalytic oxidation | |
JP2010241700A (en) | Method for producing acrylic acid | |
JP5107084B2 (en) | Method for producing methacrylic acid | |
JP4028392B2 (en) | Gas phase catalytic oxidation method | |
JP4553440B2 (en) | Method for producing methacrylic acid | |
JP5433321B2 (en) | Method for producing (meth) acrylic acid |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20090806 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100812 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20110928 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20111101 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20111226 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20120925 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20121016 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20121204 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20121225 |
|
LAPS | Cancellation because of no payment of annual fees |