JP4553440B2 - Method for producing methacrylic acid - Google Patents

Method for producing methacrylic acid Download PDF

Info

Publication number
JP4553440B2
JP4553440B2 JP2000066898A JP2000066898A JP4553440B2 JP 4553440 B2 JP4553440 B2 JP 4553440B2 JP 2000066898 A JP2000066898 A JP 2000066898A JP 2000066898 A JP2000066898 A JP 2000066898A JP 4553440 B2 JP4553440 B2 JP 4553440B2
Authority
JP
Japan
Prior art keywords
gas
cooling
methacrylic acid
methacrolein
outlet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000066898A
Other languages
Japanese (ja)
Other versions
JP2001253846A (en
Inventor
朗 小川
英泰 竹沢
修平 大塚
智道 日野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Chemical Corp
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp, Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Chemical Corp
Priority to JP2000066898A priority Critical patent/JP4553440B2/en
Publication of JP2001253846A publication Critical patent/JP2001253846A/en
Application granted granted Critical
Publication of JP4553440B2 publication Critical patent/JP4553440B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Description

【0001】
【発明の属する技術分野】
本発明はメタクロレインの気相酸化により高収率で安定にメタクリル酸を製造する方法に関する。
【0002】
【従来の技術】
リン−モリブデン系多元金属酸化触媒を用いて、メタクロレインの気相酸化によりメタクリル酸を製造する場合、用いる触媒を熱交換型多管式反応器に充填し、原料であるメタクロレインを分子状酸素と共に導入し接触気相酸化反応を行わせることは公知である。
【0003】
リン−モリブデン系多元金属酸化触媒を用いた、メタクロレインの気相酸化の反応温度は一般的に200〜400℃である。また、この反応においてメタクロレインの100%の反応率は得られないため、未反応のメタクロレインは回収され反応器へ循環供給される。従って反応器の触媒層出口ガス中には、未反応のメタクロレインが含まれており、メタクロレインは容易に後酸化されるためそれによる収率低下が問題となっている。
【0004】
この解決策として特開昭64−29339号公報には、酸化反応器から出てくる300〜340℃の熱い反応ガスを、熱交換器を用いて220〜260℃、特に230〜250℃に冷却することにより、メタクロレイン含有反応ガスの後酸化を防止することが記載されており、その時の熱交換器としては、管状熱交換器を使用でき、熱交換比表面積が好ましくは200m2/m3と記載されている。
【0005】
このように、メタクロレインの後酸化を防止するためには反応器の触媒層出口ガスをいかに早く急冷するかが重要である。しかしながら220〜260℃の温度領域は、反応ガス(反応器の触媒層出口ガス)の露点領域であり、露点以下に冷却すると反応ガスの凝縮が生じ、熱交換器や配管の汚れ、あるいは閉塞による圧力損失の増大と、それに伴うエアーコンプレッサー等の所用動力の上昇によるエネルギーの浪費となる。場合によっては熱交換器閉塞により連続運転不能となる。
【0006】
一方、特公平7−119187号公報には不純物であるアセトニルアセトン生成を抑制する方法として、反応管の延長部分に冷却ゾーンを設けて反応後のガス(触媒層出口ガス)を急冷する方法が記載されている。しかし、この公報にはメタクリル酸収率向上に関する記載はなく、実際、本発明者の検討では、メタクロレインの後酸化を防止しメタクリル酸の収率を向上させると言う点では、満足できないものであった。
【0007】
【発明が解決しようとする課題】
本発明は、従来の問題を解決するためになされたものであり、メタクロレインの気相酸化によりメタクリル酸を製造する過程で、メタクロレインの後酸化を防止し、高収率なメタクリル酸を安定に製造する方法を提供することを目的とする。
【0008】
【問題を解決するための手段】
本発明者は、鋭意研究を重ねた結果、メタクロレインの後酸化を防止する条件として、急冷に要する時間、急冷が必要な反応器の触媒層出口ガス温度と急冷後のガス温度、急冷に用いる熱交換器の満たすべき条件を見出し、本発明に至ったものである。
【0009】
即ち、リン−モリブデン系多元金属酸化物触媒を充填した熱交換型多管式反応器に少なくともメタクロレインと分子状酸素とを含む原料ガスを導入して、メタクロレインを気相接触酸化するメタクリル酸の製造方法において、前記反応器の触媒層出口ガスを下記式(I)を満たす冷却装置に導き、出口ガスの温度が300℃を越えた場合に、出口ガスが触媒層を出てから3.0秒以内の時間内に300℃以下にガスを急冷することを特徴とするメタクリル酸の製造方法に関する。
【0010】
40≦S/V≦100 [m2/m3] (I)
但し、Vは、冷却装置内で出口ガスが冷却される空間(以下、冷却空間という)の容積を表し、Sは冷却空間中の冷却伝熱面積を表す。
【0011】
このとき、前記冷却装置内において出口ガスが冷却される温度は、前記出口ガスの露点以上、300℃以下であることが好ましい。
【0012】
前記冷却装置として、フィン付きの管型熱交換器が好ましく、また、前記冷却伝熱面積Sとして、冷却空間中、冷媒により強制的に冷却されている金属表面積を用いることができる。
【0013】
【発明の実施の形態】
本発明においてメタクロレインの気相酸化反応に使用される触媒としては、リンおよびモリブデンを主成分として含有する1種または2種以上の酸化物触媒であれば、特に限定されないが、例えば、リン−モリブデン系ヘテロポリ酸あるいはその金属塩が好ましく、下記一般式で表させるものが特に好ましい。
【0014】
Moabcdefx
ここで、式中、Moはモリブデンを表し、 Pはリンを表し、Aはヒ素、アンチモン、ゲルマニウム、ビスマス、ジルコニウム、ホウ素、ケイ素およびセレンからなる群より選ばれた少なくとも1種の元素を表し、Bは銅、鉄、クロム、ニッケル、マンガン、コバルト、スズ、銀、亜鉛、パラジウム、ロジウム、チタン、タンタル、イリジウム、イオウ、ランタン、セリウムおよびテルルからなる群より選ばれた少なくとも1種の元素を表し、Cはバナジウム、タングステンおよびニオブからなる群より選ばれた少なくとも1種の元素を表し、Dはアルカリ金属、アルカリ土類金属およびタリウムからなる群より選ばれた少なくとも1種の元素を表し、Oは酸素を表す。また、a、b、c、d、e、fおよびxはそれぞれMo、P、A、B、C、DおよびOの原子比を表し、a=12のとき、0.1≦b≦3、0≦c≦3、0≦d≦3、0≦e≦3、0.01≦f≦3、であり、xは前記各成分の原子価を満足するのに必要な酸素の原子比である。
【0015】
また、触媒の形状については、特に限定はなく、たとえば球状、円柱状、また中空状等、いずれでもよい。また、シリカ、アルミナ、シリカ・アルミナ、シリコンカーバイト等の不活性担体に担持させるか、あるいはこれで希釈して用いることもできる。
【0016】
本発明で反応に用いる反応器としては、例えば内径20〜30mm程度の反応管を束ねた熱交換型多管式反応器が一般的であり、反応管内に触媒を充填し、シェル側には熱媒を循環させることにより酸化反応により発生した熱を除熱し、反応温度をコントロールする。反応管の径については、内径を細くしすぎると触媒充填層での圧力損失が大きくなるため収率が低下するし、逆に内径を大きくし過ぎると、酸化反応により発生した熱を除熱することが難しくなり、触媒層にホットスポットができ収率低下することがある。従って、これらを考慮の上、反応管の径を適宜設定することができる。
【0017】
本発明では、出口ガスの温度が300℃を越えた場合に、出口ガスが触媒層を出てから3.0秒以内の時間内に300℃以下にガスを急冷することが必須である。3.0秒を超えた時間を要すると、メタクロレインの後酸化を防止するには不十分であり、また、反応器の触媒層出口ガスの温度が300℃以下の場合はメタクロレインの後酸化はほとんど起こらない。
【0018】
本発明に用いられる冷却装置は、式(I)
40≦S/V≦100 [m2/m3] (I)
(但し、Vは、冷却装置内で出口ガスが冷却される空間(以下、冷却空間という)の容積を表し、Sは冷却空間中の冷却伝熱面積を表す。)
を満足し、反応器出口側に取り付けたときに、出口ガスが触媒層を出てから3.0秒の時間内に300℃以下にガスを急冷することができるものであればよい。
【0019】
最も好ましい冷却装置としては、フィン付き管型熱交換器を挙げることができる。そして、出口ガスをシェル側に導き、チューブ側に冷媒を流すように用いることが好ましい。この装置を用いたとき、冷却空間容積Vはシェル側の容積であり、冷却伝熱面積Sは、チューブ、フィンを合わせた金属表面積である。このようなフィン付き管型熱交換器を用いることにより、冷却空間容積Vと冷却伝熱面積Sとの関係が
40m2/m3≦S/V≦100m2/m3
を容易に満たす。さらに圧力損失も小さいため、収率低下を小さくできる。
【0020】
本発明では触媒層出口ガスの冷却温度は、出口ガスの露点以上とすることが好ましい。例えば、出口ガスの露点が240℃程度であれば触媒層出口ガスの冷却温度は250℃以上が好ましい。露点以下に冷却すると出口ガスの一部が凝縮し配管または熱交換器を閉塞することがある。特に反応管に直結して冷却装置を設置設置する場合は大きな問題となる。
【0021】
尚、冷却装置として、特公平7−119187号公報に記載されているような触媒を充填した反応管出口に直結してガス急冷ゾーンを設ける方法では、次のような問題がある。即ち、内径20〜30mm程度の反応管を使用し、触媒を充填した反応管に直結してガス急冷ゾーンを設けた場合、急冷ゾーンにおける比表面積は、自ずと200〜140 m2/m3となる。言い換えると触媒を充填した反応管に直結してガス急冷ゾーンを設けた場合、急冷ゾーンにおける比表面積は、反応管内径が決まれば一律決まり操作できない値となる。さらに反応温度をコントロールする熱媒ユニットと別に、反応ガスを冷却するためにもう1つの熱媒ユニットを設ける必要があり、設備が過大となる。さらに、反応管が長くなる分反応管触媒層の圧力も高くなり、収率の低下を招くため好ましくない。
【0022】
また、出口側に多管式熱交換器を別途設ける場合でも、チューブ側にプロセスガスを流し、シェル側に冷媒を流すようにした場合、反応管触媒層の圧力が高くなり、収率の低下を招き易い。
【0023】
本発明で用いる原料ガス中には、メタクロレインと共に分子状酸素が必要で、酸素源としては空気を用いるのが経済的に有利であるが、必要ならば純酸素で富化した空気等を用いてもよい。原料ガス中の酸素量はメタクロレインに対して0.3〜4倍モル、特に0.4〜2.5倍モルの範囲が好ましい。原料ガスには窒素、水蒸気、炭酸ガス等の不活性ガスが含まれていてもよい。
【0024】
【実施例】
以下、本発明を実施例、比較例を挙げて具体的に説明する。説明中、メタクロレインの反応率、生成するメタクリル酸、副反応物の選択率は以下のように定義される。
【0025】
メタクロレインの反応率(%)=(B/A)×100
メタクリル酸または副反応物等の選択率(%)=(C/B)×100
ここで、Aは供給したメタクロレインのモル数、Bは反応したメタクロレインのモル数、Cは生成したメタクリル酸または副反応物等のモル数である。
【0026】
また、以下の説明中の「部」は重量部を表し、原料ガスおよび生成ガスの分析はガスクロマトグラフィーにより行った。また、触媒組成は、原料仕込み量から求めた。
【0027】
[実施例1]
酸素以外の元素の組成が、
Mo121.5Cu0.3Fe0.40.5Cs1
である触媒を調製し、外径5mm、内径2mm、長さ3mmのリング状に成型した。
【0028】
次に、図1に模式的に示すように、内径25.4mm、長さ3200mmのステンレス製反応管7本を備え、シェル側は溶融塩を循環させることにより熱交換可能な反応器2(内径208.3mm)を用意し、反応管の原料ガス入口側に触媒370mlと外径5mmのアルミナ球130mlを混合したものを充填し、出口側に触媒1000mlを充填し、触媒充填層の長さを3000mmとした。そして溶融塩の温度を290℃に設定して、熱媒入口ライン5から溶融塩を導入し、熱媒出口ライン6から排出して循環させた。
【0029】
次に、反応管出口部に直結して、フィン付き管型熱交換器3(伝熱面積0.152m2)を設置し、触媒層からの出口ガスをフィン付き管型熱交換器のシェル側に導き、一方、チューブ側に冷媒として140℃に予熱した空気を、冷媒供給ライン7より導入し、冷媒出口ライン8より排出して循環させた。この装置のシェル側のS/Vは50m2/m3である。
【0030】
次にメタクロレイン5.0vol%、酸素10.0vol%、水蒸気9.0vol%、残りが窒素ガスからなる混合ガスを空間速度(SV)1200hー1(標準温度・標準圧力換算)で反応管へ、原料ガス供給ライン1より供給した。
【0031】
このような条件で反応させた結果、反応管出口とフィン付き管型熱交換器の間の温度は310℃となった。フィン付き管型熱交換器により冷却されたガスの温度は275℃であった。また、出口ガスが触媒層を出てからフィン付き管型熱交換器の出口に至るまでの時間は、2.6秒であった。
【0032】
反応ガス出口ライン4から冷却後の反応ガスを凝縮捕集し、組成分析を行ったところ、原料メタクロレインの転化率は85%であり、メタクリル酸への選択率は84.5%、COxへの選択率は12%、その他3.5%であった。
【0033】
[比較例1]
実施例1においてフィン付き管型熱交換器のチューブ側に冷媒として、200℃に予熱した空気を供給し、それ以外は実施例1と同様にして反応を行った。
【0034】
反応管出口とフィン付き管型熱交換器の間の温度は実施例1と同様に310℃であったが、フィン付き管型熱交換器により冷却されたガスの温度は305℃であった。
【0035】
この時、原料メタクロレインの転化率は85%であり、メタクリル酸への選択率は81%、COxへの選択率は14%、その他5%であった。
【0036】
[比較例2]
図2に示すように、反応器2の反応管出口部とフィン付き管型熱交換器3を内径52.7mmの長さ1mの配管9を用いてつなぎ、その配管表面に保温材を巻いた以外は実施例1と同様にして反応を行った。S/Vは94m2/m3であった(尚、配管内の空間は冷却空間に含まれない。)。図2に示した装置において、配管9以外の部分は図1に示した装置と同様である。
【0037】
その結果、反応管出口直後の配管の温度は310℃であった。また、熱交換器入口の温度は308℃であった。フィン付き管型熱交換器により冷却されたガスの温度は275℃であった。また、出口ガスが触媒層を出てからフィン付き管型熱交換器の出口に至るまでの時間は、6秒であった。
【0038】
この時、原料メタクロレインの転化率は85%であり、メタクリル酸への選択率は80%、COxへの選択率は15%、その他5%であった。
【0039】
[比較例3]
図3に示すように、反応管に直結して長さ1000mmのガス冷却部13を設けた反応器を用い、遮蔽板により触媒充填部12と、長さ1000mmのガス冷却部13の2つに分け、それぞれ独立して熱媒を循環させることができるようにし、ガス冷却部から出てくるガス温度が275℃となるようにガス冷却部の熱媒温度を調整して、熱媒入口ライン10より熱媒を供給し、熱媒出口ライン11より熱媒を排出して循環させた。なお、ガス冷却部には外径5mmのアルミナ球を充填した。S/Vは147m2/m3であった。
【0040】
この結果、原料メタクロレインの転化率は85%であり、メタクリル酸への選択率は82%、COxへの選択率は14%、その他4%であった。
【0041】
【発明の効果】
本発明によれば、メタクロレインの気相酸化によりメタクリル酸を製造する過程で、メタクロレインの後酸化を防止し、高収率なメタクリル酸を安定に製造する方法を提供することができる。
【図面の簡単な説明】
【図1】実施例1で示したプロセスを示す図である。
【図2】比較例1で示したプロセスを示す図である。
【図3】比較例3で示したプロセスを示す図である。
【符号の説明】
1 原料ガス供給ライン
2 反応器
3 フィン付き管型熱交換器
4 反応ガス出口ライン
5 熱媒入口ライン
6 熱媒出口ライン
7 冷媒供給ライン
8 冷媒出口ライン
9 配管
10 熱媒入口ライン
11 熱媒出口ライン
12 触媒充填部
13 ガス冷却部
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for stably producing methacrylic acid at a high yield by gas phase oxidation of methacrolein.
[0002]
[Prior art]
When producing methacrylic acid by gas phase oxidation of methacrolein using a phosphorus-molybdenum multi-component metal oxidation catalyst, the catalyst used is charged into a heat exchange type multi-tubular reactor, and the raw material methacrolein is charged with molecular oxygen. It is well known to introduce it together with it to carry out a catalytic gas phase oxidation reaction.
[0003]
The reaction temperature of gas phase oxidation of methacrolein using a phosphorus-molybdenum multi-component metal oxidation catalyst is generally 200 to 400 ° C. In this reaction, since a reaction rate of 100% of methacrolein cannot be obtained, unreacted methacrolein is recovered and circulated and supplied to the reactor. Accordingly, unreacted methacrolein is contained in the catalyst layer outlet gas of the reactor, and methacrolein is easily post-oxidized, which causes a problem of yield reduction.
[0004]
As a solution to this problem, Japanese Patent Application Laid-Open No. 64-29339 discloses that a hot reaction gas of 300 to 340 ° C. coming out of an oxidation reactor is cooled to 220 to 260 ° C., particularly 230 to 250 ° C. using a heat exchanger. In this case, it is described that the post-oxidation of the methacrolein-containing reaction gas is prevented. As the heat exchanger at that time, a tubular heat exchanger can be used, and the heat exchange specific surface area is preferably 200 m 2 / m 3. It is described.
[0005]
Thus, in order to prevent post-oxidation of methacrolein, it is important how quickly the catalyst layer outlet gas of the reactor is rapidly cooled. However, the temperature range of 220 to 260 ° C. is the dew point region of the reaction gas (catalyst layer outlet gas), and when cooled below the dew point, condensation of the reaction gas occurs, and the heat exchanger and piping are contaminated or blocked. Energy is wasted due to an increase in power loss due to an increase in pressure loss and an accompanying increase in power for the air compressor and the like. In some cases, continuous operation becomes impossible due to heat exchanger blockage.
[0006]
On the other hand, in Japanese Patent Publication No. 7-119187, as a method for suppressing the production of acetonylacetone, which is an impurity, there is a method in which a cooling zone is provided in an extended portion of a reaction tube to rapidly cool a gas after reaction (catalyst layer outlet gas). Are listed. However, this publication does not describe the improvement in the yield of methacrylic acid. In fact, the study by the present inventors is not satisfactory in terms of preventing the post-oxidation of methacrolein and improving the yield of methacrylic acid. there were.
[0007]
[Problems to be solved by the invention]
The present invention has been made in order to solve the conventional problems. In the process of producing methacrylic acid by vapor phase oxidation of methacrolein, the post-oxidation of methacrolein is prevented, and a high yield of methacrylic acid is stabilized. It aims at providing the method of manufacturing to.
[0008]
[Means for solving problems]
As a result of extensive research, the present inventor used as conditions for preventing post-oxidation of methacrolein for the time required for rapid cooling, the gas temperature at the outlet of the catalyst layer of the reactor that requires rapid cooling, the gas temperature after rapid cooling, and rapid cooling The present inventors have found the conditions to be satisfied by the heat exchanger and have arrived at the present invention.
[0009]
In other words, methacrylic acid that gas-phase catalytically oxidizes methacrolein by introducing a raw material gas containing at least methacrolein and molecular oxygen into a heat exchange type multi-tubular reactor filled with a phosphorus-molybdenum multi-metal oxide catalyst. In the production method, the catalyst layer outlet gas of the reactor is led to a cooling device satisfying the following formula (I), and when the temperature of the outlet gas exceeds 300 ° C., the outlet gas leaves the catalyst layer. The present invention relates to a method for producing methacrylic acid, characterized by quenching a gas to 300 ° C. or less within a time of 0 seconds or less.
[0010]
40 ≦ S / V ≦ 100 [m 2 / m 3 ] (I)
However, V represents the volume of the space in which the outlet gas is cooled in the cooling device (hereinafter referred to as cooling space), and S represents the cooling heat transfer area in the cooling space.
[0011]
At this time, the temperature at which the outlet gas is cooled in the cooling device is preferably not less than the dew point of the outlet gas and not more than 300 ° C.
[0012]
As the cooling device, a tubular heat exchanger with fins is preferable, and as the cooling heat transfer area S, a metal surface area that is forcibly cooled by a refrigerant in a cooling space can be used.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
The catalyst used in the gas phase oxidation reaction of methacrolein in the present invention is not particularly limited as long as it is one or two or more oxide catalysts containing phosphorus and molybdenum as main components. Molybdenum-based heteropolyacids or metal salts thereof are preferred, and those represented by the following general formula are particularly preferred.
[0014]
Mo a P b Ac B d C e D f O x
Here, in the formula, Mo represents molybdenum, P represents phosphorus, A represents at least one element selected from the group consisting of arsenic, antimony, germanium, bismuth, zirconium, boron, silicon, and selenium, B is at least one element selected from the group consisting of copper, iron, chromium, nickel, manganese, cobalt, tin, silver, zinc, palladium, rhodium, titanium, tantalum, iridium, sulfur, lanthanum, cerium and tellurium. C represents at least one element selected from the group consisting of vanadium, tungsten and niobium, D represents at least one element selected from the group consisting of alkali metal, alkaline earth metal and thallium, O represents oxygen. A, b, c, d, e, f and x represent the atomic ratio of Mo, P, A, B, C, D and O, respectively, and when a = 12, 0.1 ≦ b ≦ 3, 0 ≦ c ≦ 3, 0 ≦ d ≦ 3, 0 ≦ e ≦ 3, 0.01 ≦ f ≦ 3, and x is an atomic ratio of oxygen necessary to satisfy the valence of each component. .
[0015]
Further, the shape of the catalyst is not particularly limited, and may be any shape such as a spherical shape, a cylindrical shape, or a hollow shape. Further, it can be supported on an inert carrier such as silica, alumina, silica / alumina, or silicon carbide, or diluted with this.
[0016]
As a reactor used for the reaction in the present invention, for example, a heat exchange type multi-tube reactor in which reaction tubes having an inner diameter of about 20 to 30 mm are bundled is generally used. The reaction tube is filled with a catalyst, and the shell side is heated. By circulating the medium, the heat generated by the oxidation reaction is removed and the reaction temperature is controlled. As for the diameter of the reaction tube, if the inner diameter is too small, the pressure loss in the catalyst packed bed increases, resulting in a decrease in yield. Conversely, if the inner diameter is too large, the heat generated by the oxidation reaction is removed. This may make it difficult to form hot spots on the catalyst layer and lower the yield. Therefore, in consideration of these, the diameter of the reaction tube can be appropriately set.
[0017]
In the present invention, when the temperature of the exit gas exceeds 300 ° C., it is essential to rapidly cool the gas to 300 ° C. or less within a time of 3.0 seconds or less after the exit gas leaves the catalyst layer. If the time exceeding 3.0 seconds is required, it is insufficient to prevent the post-oxidation of methacrolein, and the post-oxidation of methacrolein when the temperature of the catalyst layer outlet gas of the reactor is 300 ° C. or lower. Hardly happens.
[0018]
The cooling device used in the present invention has the formula (I)
40 ≦ S / V ≦ 100 [m 2 / m 3 ] (I)
(However, V represents the volume of the space in which the outlet gas is cooled in the cooling device (hereinafter referred to as cooling space), and S represents the cooling heat transfer area in the cooling space.)
And when the gas is attached to the outlet side of the reactor, any gas can be used as long as the gas can be rapidly cooled to 300 ° C. or lower within 3.0 seconds after the outlet gas leaves the catalyst layer.
[0019]
As the most preferable cooling device, a finned tube heat exchanger can be mentioned. And it is preferable to guide the outlet gas to the shell side and to flow the refrigerant to the tube side. When this apparatus is used, the cooling space volume V is a shell-side volume, and the cooling heat transfer area S is a metal surface area including tubes and fins. By using such a finned tube heat exchanger, the relationship between the cooling space volume V and the cooling heat transfer area S is 40 m 2 / m 3 ≦ S / V ≦ 100 m 2 / m 3.
Meet easily. Furthermore, since the pressure loss is small, the yield reduction can be reduced.
[0020]
In the present invention, the cooling temperature of the catalyst layer outlet gas is preferably equal to or higher than the dew point of the outlet gas. For example, if the dew point of the outlet gas is about 240 ° C., the cooling temperature of the catalyst layer outlet gas is preferably 250 ° C. or higher. When cooled below the dew point, some of the outlet gas may condense and block the piping or heat exchanger. In particular, when a cooling device is installed and installed directly connected to the reaction tube, it becomes a big problem.
[0021]
Incidentally, the method of providing a gas quenching zone directly connected to the outlet of a reaction tube filled with a catalyst as described in Japanese Patent Publication No. 7-119187 as a cooling device has the following problems. That is, when a reaction tube having an inner diameter of about 20 to 30 mm is used and a gas quenching zone is provided directly connected to a reaction tube filled with a catalyst, the specific surface area in the quenching zone is naturally 200 to 140 m 2 / m 3. . In other words, when the gas quenching zone is provided directly connected to the reaction tube filled with the catalyst, the specific surface area in the quenching zone becomes a value that cannot be uniformly operated once the reaction tube inner diameter is determined. In addition to the heat medium unit that controls the reaction temperature, another heat medium unit must be provided to cool the reaction gas, resulting in excessive facilities. Furthermore, since the pressure of the reaction tube catalyst layer increases as the reaction tube becomes longer, the yield is reduced, which is not preferable.
[0022]
Even when a multi-tubular heat exchanger is separately provided on the outlet side, when the process gas is flowed to the tube side and the refrigerant is flowed to the shell side, the pressure of the reaction tube catalyst layer increases and the yield decreases. It is easy to invite.
[0023]
In the raw material gas used in the present invention, molecular oxygen is required together with methacrolein, and it is economically advantageous to use air as the oxygen source. However, if necessary, air enriched with pure oxygen is used. May be. The amount of oxygen in the raw material gas is preferably in the range of 0.3 to 4 times mol, particularly 0.4 to 2.5 times mol of methacrolein. The source gas may contain an inert gas such as nitrogen, water vapor, or carbon dioxide.
[0024]
【Example】
Hereinafter, the present invention will be specifically described with reference to Examples and Comparative Examples. In the description, the reaction rate of methacrolein, the methacrylic acid produced, and the selectivity of side reaction products are defined as follows.
[0025]
Reaction rate of methacrolein (%) = (B / A) × 100
Selectivity of methacrylic acid or by-products (%) = (C / B) × 100
Here, A is the number of moles of methacrolein supplied, B is the number of moles of reacted methacrolein, and C is the number of moles of produced methacrylic acid or by-products.
[0026]
Further, “parts” in the following description represents parts by weight, and analysis of the raw material gas and the product gas was performed by gas chromatography. Moreover, the catalyst composition was calculated | required from the raw material preparation amount.
[0027]
[Example 1]
The composition of elements other than oxygen is
Mo 12 P 1.5 Cu 0.3 Fe 0.4 V 0.5 Cs 1
Was prepared and molded into a ring shape having an outer diameter of 5 mm, an inner diameter of 2 mm, and a length of 3 mm.
[0028]
Next, as schematically shown in FIG. 1, a reactor 2 (inner diameter) is provided with seven stainless steel reaction tubes having an inner diameter of 25.4 mm and a length of 3200 mm, and the shell side is capable of heat exchange by circulating molten salt. 208.3 mm) is prepared, and a mixture of 370 ml of catalyst and 130 ml of alumina spheres having an outer diameter of 5 mm is filled on the raw material gas inlet side of the reaction tube, and 1000 ml of catalyst is filled on the outlet side. It was set to 3000 mm. And the temperature of molten salt was set to 290 degreeC, molten salt was introduce | transduced from the heat-medium inlet line 5, was discharged | emitted from the heat-medium outlet line 6, and was circulated.
[0029]
Next, a finned tubular heat exchanger 3 (heat transfer area 0.152 m 2 ) is installed directly to the reaction tube outlet, and the outlet gas from the catalyst layer is supplied to the shell side of the finned tubular heat exchanger. On the other hand, air preheated to 140 ° C. as a refrigerant on the tube side was introduced from the refrigerant supply line 7, discharged from the refrigerant outlet line 8 and circulated. The S / V on the shell side of this device is 50 m 2 / m 3 .
[0030]
Next, methacrolein 5.0 vol%, oxygen 10.0 vol%, water vapor 9.0 vol%, and the remaining mixed gas consisting of nitrogen gas into the reaction tube at a space velocity (SV) of 1200 h- 1 (standard temperature / standard pressure conversion). The raw material gas supply line 1 supplied.
[0031]
As a result of the reaction under such conditions, the temperature between the outlet of the reaction tube and the finned tubular heat exchanger was 310 ° C. The temperature of the gas cooled by the finned tubular heat exchanger was 275 ° C. Moreover, the time from the exit gas leaving the catalyst layer to the exit of the finned tubular heat exchanger was 2.6 seconds.
[0032]
When the reaction gas after cooling was condensed and collected from the reaction gas outlet line 4 and the composition analysis was performed, the conversion rate of the raw material methacrolein was 85%, the selectivity to methacrylic acid was 84.5%, and to COx. The selectivity was 12% and the other 3.5%.
[0033]
[Comparative Example 1]
In Example 1, air preheated to 200 ° C. was supplied as a refrigerant to the tube side of the finned tubular heat exchanger, and the reaction was performed in the same manner as in Example 1 except that.
[0034]
The temperature between the reaction tube outlet and the finned tube heat exchanger was 310 ° C. as in Example 1, but the temperature of the gas cooled by the finned tube heat exchanger was 305 ° C.
[0035]
At this time, the conversion rate of the raw material methacrolein was 85%, the selectivity to methacrylic acid was 81%, the selectivity to COx was 14%, and the other was 5%.
[0036]
[Comparative Example 2]
As shown in FIG. 2, the reaction tube outlet portion of the reactor 2 and the finned tubular heat exchanger 3 were connected by using a pipe 9 having an inner diameter of 52.7 mm and a length of 1 m, and a heat insulating material was wound around the pipe surface. The reaction was carried out in the same manner as in Example 1 except that. S / V was 94 m 2 / m 3 (note that the space in the pipe is not included in the cooling space). In the apparatus shown in FIG. 2, portions other than the pipe 9 are the same as those in the apparatus shown in FIG.
[0037]
As a result, the temperature of the pipe immediately after the reaction tube outlet was 310 ° C. The temperature at the heat exchanger inlet was 308 ° C. The temperature of the gas cooled by the finned tubular heat exchanger was 275 ° C. The time from the exit gas leaving the catalyst layer to the exit of the finned tubular heat exchanger was 6 seconds.
[0038]
At this time, the conversion rate of the raw material methacrolein was 85%, the selectivity to methacrylic acid was 80%, the selectivity to COx was 15%, and the other was 5%.
[0039]
[Comparative Example 3]
As shown in FIG. 3, a reactor directly connected to a reaction tube and provided with a gas cooling unit 13 having a length of 1000 mm is divided into two parts, a catalyst charging unit 12 and a gas cooling unit 13 having a length of 1000 mm by a shielding plate. The heat medium can be circulated independently, and the heat medium temperature of the gas cooling part is adjusted so that the gas temperature coming out of the gas cooling part becomes 275 ° C. More heating medium was supplied, and the heating medium was discharged from the heating medium outlet line 11 and circulated. The gas cooling part was filled with alumina spheres having an outer diameter of 5 mm. S / V was 147 m 2 / m 3 .
[0040]
As a result, the conversion rate of the raw material methacrolein was 85%, the selectivity to methacrylic acid was 82%, the selectivity to COx was 14%, and the others were 4%.
[0041]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to this invention, the process of preventing the post-oxidation of methacrolein in the process of producing methacrylic acid by gas phase oxidation of methacrolein and stably producing methacrylic acid with high yield can be provided.
[Brief description of the drawings]
FIG. 1 is a diagram showing a process shown in Example 1. FIG.
FIG. 2 is a diagram showing a process shown in Comparative Example 1;
FIG. 3 is a diagram showing a process shown in Comparative Example 3;
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Raw material gas supply line 2 Reactor 3 Finned tube heat exchanger 4 Reaction gas outlet line 5 Heat medium inlet line 6 Heat medium outlet line 7 Refrigerant supply line 8 Refrigerant outlet line 9 Pipe 10 Heat medium inlet line 11 Heat medium outlet Line 12 Catalyst filling part 13 Gas cooling part

Claims (3)

リン−モリブデン系多元金属酸化物触媒を充填した熱交換型多管式反応器に少なくともメタクロレインと分子状酸素とを含む原料ガスを導入して、メタクロレインを気相接触酸化するメタクリル酸の製造方法において、
前記反応器の触媒層出口ガスを下記式(I)を満たす冷却装置に導き、出口ガスの温度が300℃を越えた場合に、出口ガスが触媒層を出てから3.0秒以内の時間内に300℃以下にガスを急冷することを特徴とするメタクリル酸の製造方法。
40≦S/V≦100 [m2/m3] (I)
(但し、Vは、冷却装置内で出口ガスが冷却される空間(以下、冷却空間という)の容積を表し、Sは冷却空間中の冷却伝熱面積を表す。)
Production of methacrylic acid for gas-phase catalytic oxidation of methacrolein by introducing a raw material gas containing at least methacrolein and molecular oxygen into a heat exchange type multi-tubular reactor filled with a phosphorus-molybdenum multi-component metal oxide catalyst In the method
The catalyst layer outlet gas of the reactor is led to a cooling device satisfying the following formula (I), and when the temperature of the outlet gas exceeds 300 ° C., the time within 3.0 seconds after the outlet gas leaves the catalyst layer A method for producing methacrylic acid, wherein the gas is rapidly cooled to 300 ° C. or less.
40 ≦ S / V ≦ 100 [m 2 / m 3 ] (I)
(However, V represents the volume of the space in which the outlet gas is cooled in the cooling device (hereinafter referred to as cooling space), and S represents the cooling heat transfer area in the cooling space.)
前記冷却装置内において出口ガスが冷却される温度が前記出口ガスの露点以上、300℃以下であることを特徴とする請求項1記載のメタクリル酸の製造方法。The method for producing methacrylic acid according to claim 1, wherein a temperature at which the outlet gas is cooled in the cooling device is not less than a dew point of the outlet gas and not more than 300 ° C. 前記冷却装置は、フィン付き管型熱交換器であって、前記冷却伝熱面積は、冷却空間中、冷媒により強制的に冷却されている金属表面積であることを特徴とする請求項1または2記載のメタクリル酸の製造方法。The cooling device is a finned tube heat exchanger, and the cooling heat transfer area is a metal surface area that is forcibly cooled by a refrigerant in a cooling space. The manufacturing method of methacrylic acid of description.
JP2000066898A 2000-03-10 2000-03-10 Method for producing methacrylic acid Expired - Lifetime JP4553440B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000066898A JP4553440B2 (en) 2000-03-10 2000-03-10 Method for producing methacrylic acid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000066898A JP4553440B2 (en) 2000-03-10 2000-03-10 Method for producing methacrylic acid

Publications (2)

Publication Number Publication Date
JP2001253846A JP2001253846A (en) 2001-09-18
JP4553440B2 true JP4553440B2 (en) 2010-09-29

Family

ID=18586181

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000066898A Expired - Lifetime JP4553440B2 (en) 2000-03-10 2000-03-10 Method for producing methacrylic acid

Country Status (1)

Country Link
JP (1) JP4553440B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN203540518U (en) * 2013-10-30 2014-04-16 天津市化工设计院 Device for removing reaction heat generated in acrolein oxidation

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2238851B2 (en) * 1972-08-07 1979-08-30 Hoechst Ag, 6000 Frankfurt Process for the production of acrolein and / or acrylic acid while avoiding secondary reactions in the catalytic oxidation of propylene and / or acrolein
JPS5673041A (en) * 1979-11-19 1981-06-17 Mitsubishi Petrochem Co Ltd Preparation of acrylic acid
JPS58126831A (en) * 1982-01-22 1983-07-28 Nippon Shokubai Kagaku Kogyo Co Ltd Collection of methacrylic acid
JP2504777B2 (en) * 1987-06-27 1996-06-05 三井東圧化学株式会社 Method of quenching reaction gas
DE3721865A1 (en) * 1987-07-02 1989-01-12 Basf Ag METHOD FOR PRODUCING METHACRYLIC ACID
JPH07119187B2 (en) * 1992-02-10 1995-12-20 株式会社日本触媒 Method for producing methacrylic acid
JP3948837B2 (en) * 1998-08-10 2007-07-25 株式会社日本触媒 Acrylic acid production method

Also Published As

Publication number Publication date
JP2001253846A (en) 2001-09-18

Similar Documents

Publication Publication Date Title
EP0911313B1 (en) A production method of acrylic acid
EP0792866B1 (en) Process for production of acrylic acid
JP3224497B2 (en) A method for catalytic gas-phase oxidation of propene to acrolein.
US6395936B1 (en) Method for the catalytic gas phase oxidation of propene into acrolein
JP3646027B2 (en) Reactor for catalytic gas phase oxidation and method for producing (meth) acrylic acid using the same
EP1055662B1 (en) A process for producing acrylic acid
US7164039B2 (en) Heterogeneously catalyzed partial gas phase oxidation of propene to acrylic acid
RU2479569C2 (en) Method of using partial gas-phase oxidation of acrolein into acrylic acid or methacrolein into methacrylic acid on heterogeneous catalyst
BRPI0406992B1 (en) PROCESS FOR PARTIALLY OXIDATING GAS-ACRYLIC ACID PROPENE UNDER HETEROGENIC CATALYSIS
US20070021631A1 (en) Gas-phase catalytic oxidation process and process for producing (meth) acrolein or (meth) acrylic acid
EP1880757A1 (en) A reactor for gas-phase catalytic oxidation and a process for producing acrylic acid using it
JP3948837B2 (en) Acrylic acid production method
JP2809476B2 (en) Method for producing acrolein and acrylic acid
JP4058270B2 (en) Method for producing methacrylic acid
US7211691B2 (en) Heterogeneously catalyzed partial gas phase oxidation of propene to acrolein
JP4497442B2 (en) Method for producing methacrolein and methacrylic acid
US7019176B2 (en) Heterogeneously catalyzed partial gas phase oxidation of propene to acrolein
JP4553440B2 (en) Method for producing methacrylic acid
JP4824871B2 (en) Method for producing acrolein and acrylic acid
JP3523455B2 (en) Fixed bed reactor and method for producing unsaturated carboxylic acid
JP5171031B2 (en) Reactor for catalytic gas phase oxidation and method for producing acrylic acid using the same
JP4248163B2 (en) Method for producing methacrylic acid
JP4163895B2 (en) Method for producing (meth) acrolein and (meth) acrylic acid
JP2003261501A (en) Method for vapor-phase catalytic oxidation
KR101257411B1 (en) Method for production of (meth)acrylic acid

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070309

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20080902

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100426

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100630

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100713

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130723

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4553440

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130723

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130723

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130723

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130723

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term