JP4497442B2 - Method for producing methacrolein and methacrylic acid - Google Patents

Method for producing methacrolein and methacrylic acid Download PDF

Info

Publication number
JP4497442B2
JP4497442B2 JP2001007493A JP2001007493A JP4497442B2 JP 4497442 B2 JP4497442 B2 JP 4497442B2 JP 2001007493 A JP2001007493 A JP 2001007493A JP 2001007493 A JP2001007493 A JP 2001007493A JP 4497442 B2 JP4497442 B2 JP 4497442B2
Authority
JP
Japan
Prior art keywords
catalyst layer
temperature
catalyst
methacrylic acid
heat medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001007493A
Other languages
Japanese (ja)
Other versions
JP2002212127A (en
Inventor
聖午 渡辺
求 大北
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Chemical Corp
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp, Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Chemical Corp
Priority to JP2001007493A priority Critical patent/JP4497442B2/en
Publication of JP2002212127A publication Critical patent/JP2002212127A/en
Application granted granted Critical
Publication of JP4497442B2 publication Critical patent/JP4497442B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Description

【0001】
【発明の属する技術分野】
本発明は、固定床管型反応器を用いてイソブチレンおよび/または第3級ブタノールを固体酸化触媒の存在下に分子状酸素で気相接触酸化してメタクロレインおよびメタクリル酸を製造する方法に関するものである。
【0002】
【従来の技術】
イソブチレンまたは第3級ブタノールの気相接触酸化反応によりメタクロレインおよびメタクリル酸を製造する際に使用する触媒に関しては数多くの提案がなされている(以下、特に断りのない限りこの気相接触酸化反応を単に「酸化反応」という。)。これら提案は主として触媒を構成する元素およびその比率に関するものである。
【0003】
酸化反応は発熱反応であるため、触媒層で蓄熱が起こる。過剰な蓄熱の結果生じる局所的異常高温帯域はホットスポットと呼ばれ、この部分では過度の酸化反応により収率が低下する。このため、酸化反応の工業的実施において、ホットスポットの発生は重大な問題であり、特に生産性を上げるために原料ガス中におけるイソブチレンまたは第3級ブタノール濃度を高めた場合、ホットスポットが発生し易くなる傾向があることから反応条件に関して大きな制約を強いられているのが現状である。
【0004】
したがって、ホットスポット部の温度を抑えることは工業的に高収率でメタクロレインおよびメタクリル酸を生産する上で非常に重要である。また、特にモリブデン含有固体酸化触媒を用いる場合、モリブデン成分が昇華しやすいことから、ホットスポットの発生を防止することは重要である。
【0005】
ホットスポット部の温度を抑える方法として、これまでにいくつかの提案がなされている。例えば特開平3−176440号公報には、触媒組成を変動させて調製した活性の異なる複数個の触媒を原料ガス入口側から出口側に向かって活性がより高くなるように充填し、この触媒層にイソブチレンまたは第3級ブタノールおよび酸素を含む原料ガスを流通させる方法が開示されている。また、特開平8−92147号公報には、熱媒浴を備えた多管式固定床反応器を用いてプロピレンをアクロレインに気相酸化する際に、熱媒浴の温度が反応器の入口部と出口部の間で2〜10℃上がるように熱媒の流れを制御する方法が開示されている。
【0006】
【発明が解決しようとする課題】
しかし、これらの方法は単にホットスポット部の温度を低くすることが目的であり、1箇所のホットスポット部における熱媒浴の温度と触媒層の温度との差(ΔT)をある程度にまで小さくする方法に過ぎない。すなわち、これらの方法は、酸化反応による発熱を触媒層内で積極的に制御するに至っていないため、例えば、生産性を上げるためにイソブチレンまたは第3級ブタノールの濃度を更に高めた場合、ホットスポット部における発熱が顕著となる。そのため、反応条件に関し依然かなりの制約を強いられる。すなわち、イソブチレンまたは第3級ブタノールの濃度を工業的に満足できるような水準まで高めた際に工業的に満足できるような収率でメタクロレインおよびメタクリル酸が得られていないのが現状である。
【0007】
したがって、本発明は、固定床管型反応器にてイソブチレンおよび/または第3級ブタノールを固体酸化触媒の存在下に分子状酸素で気相接触酸化してメタクロレインおよびメタクリル酸を製造する方法において、より高収率でメタクロレインおよびメタクリル酸を製造する方法を提供することを目的とする。
【0008】
【課題を解決するための手段】
本発明は、固体酸化触媒が充填された触媒層と熱媒浴を備えた固定床管型反応器を用いて、イソブチレンおよび/または第3級ブタノールならびに分子状酸素を含む原料ガスを前記触媒層に流通させることによりメタクロレインおよびメタクリル酸を合成するメタクリル酸の製造方法において、触媒層中に熱媒浴の温度と触媒層の温度との差(ΔT=触媒層の温度−熱媒浴の温度)が50℃を超える箇所が1箇所もなく、かつΔTが15〜50℃となる高温帯域を2箇所以上設けることを特徴とするメタクロレインおよびメタクリル酸の製造方法である。
【0009】
【発明の実施の形態】
本発明において、メタクロレインおよびメタクリル酸を合成する反応は熱媒浴を備えた固定床管型反応器を用いて実施される。ここで用いる熱媒については特に限定はないが、一般的には硝酸カリウムおよび亜硝酸ナトリウムを含む塩溶融物が用いられる。また、管型反応器についても特に制限はないが、工業的には内径20〜30mmの反応管を数千〜数万本備えた多管式反応器が好ましい。
【0010】
本発明において、用いる固体酸化触媒はこの酸化反応用の固体触媒であれば特に限定されず、従来から知られているモリブデンを含む複合酸化物等を用いることができるが、好ましくは下記の式(1)で表される複合酸化物である。
MoaBibFecdefgh (1)
式(1)において、Mo、Bi、FeおよびOはそれぞれモリブデン、ビスマス、鉄および酸素を表し、Aはニッケルおよび/またはコバルト、Xはマグネシウム、亜鉛、クロム、マンガン、スズおよび鉛からなる群より選ばれた少なくとも1種の元素、Yはリン、ホウ素、イオウ、テルル、ケイ素、ゲルマニウム、セリウム、ニオブ、チタン、ジルコニウム、タングステンおよびアンチモンからなる群より選ばれた少なくとも1種の元素、Zはカリウム、ナトリウム、ルビジウム、セシウムおよびタリウムからなる群より選ばれた少なくとも1種の元素を表す。ただし、a、b、c、d、e、f、gおよびhは各元素の原子比を表し、a=12のとき、0.1≦b≦5、0.1≦c≦5、1≦d≦12、0≦e≦10、0≦f≦10、0.01≦g≦3であり、hは前記各元素の原子価を満足するのに必要な酸素の原子比である。特に好ましい各元素の原子比は、a=12のとき、0.2≦b≦3、0.5≦c≦4、2≦d≦10、0≦e≦10、0≦f≦10、0.1≦g≦2である。
【0011】
本発明で用いる触媒を調製する方法は特に限定されず、成分の著しい偏在を伴わない限り、従来からよく知られている種々の方法を用いることができる。
【0012】
触媒の調製に用いる原料は特に限定されず、各元素の硝酸塩、炭酸塩、酢酸塩、アンモニウム塩、酸化物、ハロゲン化物等を組み合わせて使用することができる。例えばモリブデン原料としてはパラモリブデン酸アンモニウム、三酸化モリブデン、モリブデン酸、塩化モリブデン等が使用できる。
【0013】
本発明に用いられる触媒は無担体でもよいが、シリカ、アルミナ、シリカ・アルミナ、シリコンカーバイト等の不活性担体に担持させた担持触媒や、あるいはこれらで希釈した触媒を用いることもできる。
【0014】
本発明において、触媒層とは、固定床管型反応器の反応管内において少なくとも触媒が含まれている空間部分を指す。すなわち、触媒だけが充填されている空間だけでなく、触媒が不活性担体等で希釈されている空間部分も触媒層とする。ただし、反応管両端部の何も充填されていない空間部分や不活性担体等だけが充填されている空間部分は、触媒が実質的に含まれないので触媒層には含まない。
【0015】
本発明において、熱媒浴を備えた固定床管型反応器に固体酸化触媒を充填し、イソブチレンおよび/または第3級ブタノールならびに分子状酸素を含む原料ガスを触媒層に流通させることによりメタクロレインおよびメタクリル酸を合成するに際し、触媒層中に熱媒浴の温度と触媒層の温度との差(ΔT)が15〜50℃となる高温帯域を2箇所以上設けることが重要である。原料ガスには、イソブチレンまたは第3級ブタノールのいずれか一方が含まれている必要があるが、両方含まれていてもよい。触媒層におけるΔTの最大値は小さいほど好ましく、高くなりすぎると、過度の酸化反応により選択率が低下し、その結果収率が低下するのみならず、熱負荷による触媒の劣化・変質も懸念されるので50℃以内でなければならない。本発明における酸化反応は発熱反応であるため、ある程度の大きさのΔTが生じることは避けられない。しかし、ΔTが15〜50℃の高温帯域が2箇所以上となるような条件に調節することで、1箇所に集中した局所的異常高温域が生じることを避けることができる。なお、当然のことながら、これら各高温帯域の間にはΔTが15℃未満となる帯域が存在しなければならない。
【0016】
高温帯域が2箇所以上となるような条件に調節する方法は特に限定されないが、例えば、反応管内を管軸方向に2層以上に分割して設けた反応帯に触媒をそれぞれ充填する方法において、各反応帯の管軸方向の長さを調節し、かつ各反応帯における単位容積当たりの触媒活性を調節する方法等が挙げられる。この際、単位容積当たりの触媒活性を調節する手法としては、例えば、触媒を不活性担体で希釈する際の希釈割合を調節する方法、触媒組成または調製法を変更して得られる活性の異なる触媒を用いて調節する方法等が挙げられる。
【0017】
触媒層に設けた2箇所以上のΔTが15〜50℃となる高温帯域は、原料ガス入り口側から数えて第1番目の高温帯域と第2番目の高温帯域の間の距離が、触媒層全長の0.13〜0.6倍であるように配置することが好ましく、特に0.14〜0.5倍とすることが特に好ましい。触媒層全長に対する高温帯域間の距離の割合が小さくなるほど、反応器内に充填した触媒のうち有効に作用するものの割合が増加する傾向にあり、大きくなるほど、触媒の劣化・変質を招く可能性が低くなる傾向にある。また、高温帯域が3つ以上あるときには、隣り合う各高温帯域間の距離を、触媒層全長の0.2〜0.9倍、特に0.25〜0.8倍としてもよい。高温帯域の数は、通常5以下であり、実用的には2または3が好ましい。なお、各高温帯域間の距離とは、各高温帯域においてΔTが最大である箇所間の距離を表わす。
【0018】
また、原料ガス入り口からの第1番目の高温帯域までの位置(ΔTが最大の位置)は、触媒層全長の好ましくは0〜0.7倍の位置、特に好ましくは0.1〜0.5倍の位置である。
【0019】
また、触媒の充填の微小な不均一等に基づき、管軸方向のΔT曲線上には微細なピークと谷が見られるのが通常である。そこで、高温帯域の範囲を決める際には、測定点の前後の実測ΔTについて触媒層全長の0.005倍の範囲、好ましくは0.01倍の範囲で平均ΔTを求めると、そのピークと谷によるノイズが低減される。仮に実測ΔTで高温帯域の要件を満たす発熱ピークが観察されたとしても、平均ΔTに基づいたときに高温帯域の要件を満たさない場合は、その発熱ピークをもって別の高温帯域とは解釈しないものとする。
【0020】
本発明において、触媒層中におけるΔTとは、触媒層内のある測定位置の温度とその周囲の熱媒浴の温度との差のことである。反応器の形態、反応条件、熱媒の流動状態等によっては、熱媒浴中の熱媒の温度に若干の不均一分布が生じる場合があるが、その度合いが小さい場合は熱媒浴の平均温度を熱媒浴温度として扱っても差し支えない。ただし、その度合いが小さくない場合には、各場所における熱媒浴温度を測定してΔTを求める必要がある。
【0021】
また、触媒層内の温度を測定する方法としては、例えば、触媒を充填するに先立ち、管型反応器内に保護管を設置しておき、この保護管内に熱電対を挿入して反応中の各場所における温度を測定する方法を挙げることができる。この方法において、保護管の設置位置は反応管の管軸方向に対して垂直な断面の中心付近が好ましく、保護管の長さは触媒層を超える長さが必要である。この方法は触媒層のあらゆる位置の温度を簡便に測定できるので好ましい。なお、工業的に用いられる多管式反応器の場合には、すべての反応管内の触媒層温度を測定することは実際上不可能であるので、実質的に反応器全体を代表する反応管のいくつかについて測定することになる。
【0022】
本発明の実施に際し、原料ガス中のイソブチレンおよび/または第3級ブタノールの濃度は広い範囲で変えることができるが、1〜20容量%が適当であり、3〜8容量%が特に好ましい。
【0023】
分子状酸素源としては空気を用いるのが経済的に有利であるが、必要に応じて純酸素で富化した空気を用いてもよい。原料ガス中の酸素濃度はイソブチレンおよび第3級ブタノールの合計1モルに対して0.3〜4モルが好ましく、特に0.4〜3モルが好ましい。原料ガスは本反応に対して実質的に影響を与えない低級飽和アルデヒド等の不純物を少量含んでいてもよいし、窒素、水蒸気、二酸化炭素等の不活性ガスを加えて希釈してもよい。
【0024】
酸化反応の反応圧力は常圧から数気圧が好ましい。反応温度である熱媒浴温度は280〜450℃が好ましく、特に300〜400℃が好ましい。原料ガスの空間速度は300〜3000hr-1が好ましく、特に500〜2000hr-1が好ましい。
【0025】
【実施例】
以下、実施例を挙げて本発明を更に詳細に説明する。なお、実施例および比較例中の「部」は重量部を意味する。触媒組成は触媒成分の原料仕込み量から求めた。反応器の熱媒としては硝酸カリウム50質量%および亜硝酸ナトリウム50質量%からなる塩溶融物を用いた。反応原料および生成物の分析はガスクロマトグラフィーにより行った。
【0026】
また、イソブチレンおよび/または第3級ブタノールの反応率、生成したメタクロレインおよびメタクリル酸の選択率はそれぞれ以下のように定義される。
イソブチレンおよび/または第3級ブタノールの反応率(%)=(B/A)×100
メタクロレインの選択率(%)=(C/B)×100
メタクリル酸の選択率(%)=(D/B)×100
ここで、Aは供給したイソブチレンおよび/または第3級ブタノールのモル数、Bは反応したイソブチレンおよび/または第3級ブタノールのモル数、Cは生成したメタクロレインのモル数、Dは生成したメタクリル酸のモル数である。
【0027】
[実施例1]
水400部に60%硝酸42部を加え均一溶液とした後、硝酸ビスマス68.7部を加え溶解した。これに硝酸ニッケル102.9部および三酸化アンチモン24.1部を順次加えた。この混合液に28%アンモニア水165部を加えて白色沈殿物と青色の上澄み液を得た。これを加熱攪拌し、水の大部分を蒸発させ、得られたスラリー状物を120℃で16時間乾燥した後、750℃で2時間熱処理し、微粉砕して、ビスマス−ニッケル−アンチモン化合物の微粉末を得た。
【0028】
水1000部にパラモリブデン酸アンモニウム500部、パラタングステン酸アンモニウム12.3部および硝酸セシウム23.0部を加え、加熱攪拌した(A液)。別に水700部に硝酸第二鉄230.8部、硝酸コバルト418.9部および硝酸マグネシウム60.5部を順次加え溶解した(B液)。A液にB液を加えスラリー状とした後、20%シリカゾル425.5部および前記のビスマス−ニッケル−アンチモン化合物の微粉末を加え、加熱攪拌し、水の大部分を蒸発させた。
【0029】
得られたケーキ状物質を130℃で乾燥させた後、空気雰囲気下300℃で1時間焼成し、粉砕した。得られた乾燥粉砕物100部に対してグラファイト2部を添加混合し、打錠成形機により外径5mm、内径2mm、長さ3mmのリング状に成形した。この打錠成形物を空気流通下に520℃で3時間焼成し、触媒1を得た。触媒1の組成は、酸素を除いた原子比で、Mo120.2Bi0.6Fe2.4Sb0.7Ni1.5Co6.1Mg1.0Cs0.5Si6.0であった。
【0030】
熱媒浴を備えた内径25.4mmの鋼鉄製固定床管型反応器の原料ガス入口部に触媒1を370mLと外径5mmのアルミナ球130mLを混合したものを充填し、出口部に触媒1を1000mLを充填した。このときの触媒層の長さは3005mmであった。この触媒層にイソブチレン5容量%、酸素12容量%、水蒸気10容量%および窒素73容量%からなる原料ガスを反応温度(熱媒浴温度)340℃、空間速度1000hr-1で通じた。
【0031】
このときの触媒層温度を測定したところ、原料ガス入口側の端から300mmの位置が最大温度となる第一の高温帯域と原料ガス入口側の端から1200mmの位置が最大温度となる第二の高温帯域が観測された。すなわち、触媒層の長さに対する上記2箇所の高温帯域間の距離の割合は0.3であった。また、第一高温帯域の最大温度の位置におけるΔTは28℃、第二高温帯域の最大温度の位置におけるΔTは25℃であった。なお、原料ガス入口側の端から1000mmの位置におけるΔTは13℃であった。
【0032】
反応生成物を捕集して分析したところ、イソブチレン反応率96.8%、メタクロレイン選択率87.0%、メタクリル酸選択率3.3%であった。
【0033】
[比較例1]
熱媒浴を備えた内径25.4mmの鋼鉄製固定床管型反応器の原料ガス入口部に触媒1を620mLと外径5mmのアルミナ球130mLを混合したものを充填し、出口部に触媒1を750mLを充填した。このときの触媒層の長さは3005mmであった。この触媒層にイソブチレン5容量%、酸素12容量%、水蒸気10容量%および窒素73容量%からなる原料ガスを反応温度(熱媒浴温度)340℃、空間速度1000hr-1で通じた。
【0034】
このときの触媒層温度を測定したところ、原料ガス入口側の端から400mmの位置が最大温度となる一つの高温帯域のみが観測された。また、この高温帯域の最大温度におけるΔTは40℃であった。
【0035】
反応生成物を捕集して分析したところ、イソブチレン反応率97.5%、メタクロレイン選択率85.2%、メタクリル酸選択率3.2%であった。
【0036】
[比較例2]
熱媒浴を備えた内径25.4mmの鋼鉄製固定床管型反応器に触媒1を1500mL充填した。このときの触媒層の長さは3005mmであった。この触媒層にイソブチレン5容量%、酸素12容量%、水蒸気10容量%および窒素73容量%からなる原料ガスを反応温度(熱媒浴温度)340℃、空間速度1000hr-1で通じた。
【0037】
このときの触媒層温度を測定したところ、原料ガス入口側の端から200mmの位置が最大温度となる一つの高温帯域のみが観測された。また、この高温帯域の最大温度におけるΔTは54℃であった。
【0038】
反応生成物を捕集して分析したところ、イソブチレン反応率99.1%、メタクロレイン選択率82.1%、メタクリル酸選択率3.4%であった。
【0039】
[比較例3]
熱媒浴を備えた内径25.4mmの鋼鉄製固定床管型反応器に触媒1を1370mL充填した。このときの触媒層の長さは2745mmであった。この触媒層にイソブチレン5容量%、酸素12容量%、水蒸気10容量%および窒素73容量%からなる原料ガスを反応温度(熱媒浴温度)340℃、空間速度1000hr-1で通じた。
【0040】
このときの触媒層温度を測定したところ、原料ガス入口側の端から200mmの位置が最大温度となる一つの高温帯域のみが観測された。また、この高温帯域の最大温度におけるΔTは51℃であった。
【0041】
反応生成物を捕集して分析したところ、メタクロレイン反応率98.8%、メタクロレイン選択率82.3%、メタクリル酸選択率3.3%であった。
【0042】
[比較例4]
熱媒浴を備えた内径25.4mmの鋼鉄製固定床管型反応器の原料ガス入口部に触媒1を140mLと外径5mmのアルミナ球50mLを混合したものを充填し、出口部に触媒1を1310mL充填した。このときの触媒層の長さは3005mmであった。この触媒層にイソブチレン5容量%、酸素12容量%、水蒸気10容量%および窒素73容量%からなる原料ガスを反応温度(熱媒浴温度)340℃、空間速度1000hr-1で通じた。
【0043】
このときの触媒層温度を測定したところ、原料ガス入口側の端から200mmの位置が最大温度となる第一の高温帯域と原料ガス入口側の端から560mmの位置が最大温度となる第二の高温帯域が観測された。すなわち、触媒層の長さに対する上記2箇所の高温帯域間の距離の割合は0.12であった。また、第一高温帯域の最大温度におけるΔTは21℃、第二高温帯域の最大温度におけるΔTは52℃であった。なお、原料ガス入口側の端から380mmの位置におけるΔTは14℃であった。
【0044】
反応生成物を捕集して分析したところ、イソブチレン反応率98.2%、メタクロレイン選択率84.7%、メタクリル酸選択率3.3%であった。
【0045】
[実施例2]
水1000部にパラモリブデン酸アンモニウム500部および硝酸セシウム9.2部を加えて加熱溶解した(C液)。別に水300部に硝酸第二鉄209.8部、硝酸鉛625.3部およびテルル酸162.6部を加え、溶解した(D液)。C液にD液を加えスラリー状とした後、三酸化アンチモン178.9部および30%シリカゾル709.0部を加え、その後、水の大部分を蒸発させた。
【0046】
得られたケーキ状物質を130℃で乾燥させた後、空気雰囲気下300℃で1時間焼成し、粉砕した。得られた焼成粉砕物100部に対してグラファイト2部を添加混合し、打錠成形機により外径5mm、内径2mm、長さ3mmのリング状に成型した。この打錠成形物を空気流通下に500℃で3時間焼成し、触媒2を得た。触媒2の組成は、酸素を除いた原子比で、Mo12Te3Fe2.2Pb8Sb5.2Cs0.2Si15であった。
【0047】
熱媒浴を備えた内径25.4mmの鋼鉄製固定床管型反応器の原料ガス入口部に触媒2を150mLと外径5mmのアルミナ球90mLを混合したものを充填し、中央部に触媒2を200mLと外径5mmのアルミナ球40mLを混合したものを充填し、出口部に触媒2を1020mL充填した。このときの触媒層の長さは3005mmであった。この触媒層に第3級ブタノール5容量%、酸素12容量%、水蒸気10容量%および窒素73容量%からなる原料ガスを反応温度(熱媒浴温度)340℃、空間速度1000hr-1で通じた。
【0048】
このときの触媒層温度を測定したところ、原料ガス入口側の端から180mmの位置が最大温度となる第一の高温帯域と原料ガス入口側の端から620mmの位置が最大温度となる第二の高温帯域と原料ガス入口側の端から1100mmの位置が最大温度となる第三の高温帯域が観測された。すなわち、触媒層の長さに対する上記3箇所の隣り合う高温帯域間の距離の割合は、第一と第二の高温帯域間が0.15、第二と第三の高温帯域間が0.16であった。また、第一高温帯域の最大温度におけるΔTは23℃、第二高温帯域の最大温度におけるΔTは26℃、第三高温帯域の最大温度におけるΔTは24℃であった。なお、原料ガス入口側の端から480mmの位置におけるΔTは12℃、原料ガス入口側の端から960mmの位置におけるΔTは13℃であった。
【0049】
反応生成物を捕集して分析したところ、第3級ブタノール反応率100.0%、メタクロレイン選択率81.1%であり、メタクリル酸選択率は2.1%であった。
【0050】
【発明の効果】
本発明によれば、熱媒浴を備えた固定床管型反応器に固体酸化触媒を充填し、イソブチレンおよび/または第3級ブタノールならびに分子状酸素を含む原料ガスを触媒層に流通させることによりメタクロレインおよびメタクリル酸を合成するに際し、ΔTが50℃を超える箇所が1箇所もなく、かつΔTが15〜50℃となる高温帯域を2箇所以上設けることにより、高収率でメタクロレインおよびメタクリル酸を製造することができる。
【0051】
また本発明によれば、原料ガス入り口側から数えて第1番目の高温帯域と第2番目の高温帯域の間の距離が、触媒層全長の0.13〜0.6倍となるようにすることで、さらに収率が向上する。
【0052】
さらに、固体酸化触媒として前記式(1)で表される複合酸化物を用いることでもさらに収率が向上する。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a process for producing methacrolein and methacrylic acid by gas-phase catalytic oxidation of isobutylene and / or tertiary butanol with molecular oxygen in the presence of a solid oxidation catalyst using a fixed bed tubular reactor. It is.
[0002]
[Prior art]
Many proposals have been made regarding catalysts used in the production of methacrolein and methacrylic acid by gas-phase catalytic oxidation reaction of isobutylene or tertiary butanol (hereinafter, unless otherwise specified, this gas-phase catalytic oxidation reaction is carried out). Simply called "oxidation reaction"). These proposals mainly relate to the elements constituting the catalyst and their proportions.
[0003]
Since the oxidation reaction is an exothermic reaction, heat storage occurs in the catalyst layer. The local abnormally high temperature zone resulting from excessive heat storage is called a hot spot, and in this part, the yield decreases due to excessive oxidation reaction. For this reason, in the industrial implementation of the oxidation reaction, the occurrence of hot spots is a serious problem. In particular, when the concentration of isobutylene or tertiary butanol in the raw material gas is increased in order to increase productivity, hot spots are generated. Since there is a tendency to become easy, the present condition is that a large restriction is imposed on the reaction conditions.
[0004]
Therefore, it is very important to suppress the temperature of the hot spot part in industrially producing methacrolein and methacrylic acid at a high yield. In particular, when a molybdenum-containing solid oxidation catalyst is used, it is important to prevent the occurrence of hot spots because the molybdenum component tends to sublime.
[0005]
As a method for suppressing the temperature of the hot spot part, several proposals have been made so far. For example, in Japanese Patent Laid-Open No. 3-176440, a plurality of catalysts having different activities prepared by varying the catalyst composition are filled so that the activity becomes higher from the raw material gas inlet side toward the outlet side, and this catalyst layer Discloses a method of circulating a source gas containing isobutylene or tertiary butanol and oxygen. Japanese Patent Application Laid-Open No. 8-92147 discloses that when a propylene is vapor-phase oxidized to acrolein using a multi-tube fixed bed reactor equipped with a heating medium bath, the temperature of the heating medium bath is set at the inlet of the reactor. And a method of controlling the flow of the heating medium so as to increase by 2 to 10 ° C. between the outlet portion and the outlet portion.
[0006]
[Problems to be solved by the invention]
However, these methods are merely intended to lower the temperature of the hot spot portion, and the difference (ΔT) between the temperature of the heat medium bath and the temperature of the catalyst layer in one hot spot portion is reduced to some extent. It's just a way. That is, since these methods do not actively control the heat generation due to the oxidation reaction in the catalyst layer, for example, when the concentration of isobutylene or tertiary butanol is further increased in order to increase productivity, Heat generation in the part becomes remarkable. For this reason, considerable constraints are still imposed on the reaction conditions. That is, when the concentration of isobutylene or tertiary butanol is increased to a level that can be industrially satisfied, methacrolein and methacrylic acid are not obtained in a yield that can be industrially satisfied.
[0007]
Accordingly, the present invention provides a process for producing methacrolein and methacrylic acid by gas phase catalytic oxidation of isobutylene and / or tertiary butanol with molecular oxygen in the presence of a solid oxidation catalyst in a fixed bed tubular reactor. An object of the present invention is to provide a method for producing methacrolein and methacrylic acid with higher yield.
[0008]
[Means for Solving the Problems]
The present invention uses a fixed bed tubular reactor equipped with a catalyst layer filled with a solid oxidation catalyst and a heat medium bath, and supplies the raw material gas containing isobutylene and / or tertiary butanol and molecular oxygen to the catalyst layer. In the method for producing methacrylic acid, which synthesizes methacrolein and methacrylic acid by circulating in the catalyst, the difference between the temperature of the heat medium bath and the temperature of the catalyst layer in the catalyst layer (ΔT = temperature of the catalyst layer−temperature of the heat medium bath) Is a method for producing methacrolein and methacrylic acid, characterized in that there is no one location exceeding 50 ° C. and two or more high-temperature zones in which ΔT is 15 to 50 ° C. are provided.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
In the present invention, the reaction for synthesizing methacrolein and methacrylic acid is carried out using a fixed bed tubular reactor equipped with a heat medium bath. The heating medium used here is not particularly limited, but a salt melt containing potassium nitrate and sodium nitrite is generally used. The tubular reactor is not particularly limited, but industrially, a multitubular reactor having several thousand to several tens of thousands of reaction tubes having an inner diameter of 20 to 30 mm is preferable.
[0010]
In the present invention, the solid oxidation catalyst to be used is not particularly limited as long as it is a solid catalyst for this oxidation reaction, and conventionally known composite oxides containing molybdenum and the like can be used, but preferably the following formula ( It is a complex oxide represented by 1).
Mo a Bi b Fe c A d X e Y f Z g O h (1)
In the formula (1), Mo, Bi, Fe and O represent molybdenum, bismuth, iron and oxygen, respectively, A is nickel and / or cobalt, X is magnesium, zinc, chromium, manganese, tin and lead. At least one element selected, Y is phosphorus, boron, sulfur, tellurium, silicon, germanium, cerium, niobium, titanium, zirconium, tungsten and antimony, Z is potassium And at least one element selected from the group consisting of sodium, rubidium, cesium and thallium. However, a, b, c, d, e, f, g, and h represent the atomic ratio of each element. When a = 12, 0.1 ≦ b ≦ 5, 0.1 ≦ c ≦ 5, 1 ≦ d ≦ 12, 0 ≦ e ≦ 10, 0 ≦ f ≦ 10, 0.01 ≦ g ≦ 3, and h is an atomic ratio of oxygen necessary to satisfy the valence of each element. Particularly preferable atomic ratios of the respective elements are 0.2 ≦ b ≦ 3, 0.5 ≦ c ≦ 4, 2 ≦ d ≦ 10, 0 ≦ e ≦ 10, 0 ≦ f ≦ 10, 0 when a = 12. .1 ≦ g ≦ 2.
[0011]
The method for preparing the catalyst used in the present invention is not particularly limited, and various well-known methods can be used as long as there is no significant uneven distribution of components.
[0012]
The raw materials used for the preparation of the catalyst are not particularly limited, and nitrates, carbonates, acetates, ammonium salts, oxides, halides and the like of each element can be used in combination. For example, ammonium paramolybdate, molybdenum trioxide, molybdic acid, molybdenum chloride, etc. can be used as the molybdenum raw material.
[0013]
The catalyst used in the present invention may be carrier-free, but a supported catalyst supported on an inert carrier such as silica, alumina, silica-alumina, silicon carbide, or a catalyst diluted with these may also be used.
[0014]
In the present invention, the catalyst layer refers to a space portion containing at least the catalyst in the reaction tube of the fixed bed tubular reactor. That is, not only the space filled with only the catalyst but also the space where the catalyst is diluted with an inert carrier or the like is used as the catalyst layer. However, the space portion where nothing is filled at both ends of the reaction tube or the space portion where only the inert carrier is filled is not included in the catalyst layer because the catalyst is substantially not included.
[0015]
In the present invention, methacrolein is prepared by filling a fixed bed tubular reactor equipped with a heat medium bath with a solid oxidation catalyst and circulating a raw material gas containing isobutylene and / or tertiary butanol and molecular oxygen to the catalyst layer. In synthesizing methacrylic acid, it is important to provide two or more high-temperature zones in which the difference (ΔT) between the temperature of the heat medium bath and the temperature of the catalyst layer is 15 to 50 ° C. in the catalyst layer. The source gas needs to contain either isobutylene or tertiary butanol, but may contain both. The maximum value of ΔT in the catalyst layer is preferably as small as possible. If it is too high, the selectivity decreases due to an excessive oxidation reaction, resulting in a decrease in yield as well as deterioration and alteration of the catalyst due to heat load. Therefore, it must be within 50 ° C. Since the oxidation reaction in the present invention is an exothermic reaction, it is inevitable that ΔT having a certain size is generated. However, by adjusting the conditions such that the high temperature zone having ΔT of 15 to 50 ° C. is two or more, it is possible to avoid the occurrence of a locally abnormal high temperature region concentrated in one location. As a matter of course, a zone where ΔT is less than 15 ° C. must exist between each of these high temperature zones.
[0016]
The method for adjusting the conditions such that the high temperature zone is at two or more locations is not particularly limited. For example, in the method of filling the reaction zone in which the inside of the reaction tube is divided into two or more layers in the axial direction with the catalyst, Examples thereof include a method of adjusting the length of each reaction zone in the tube axis direction and adjusting the catalyst activity per unit volume in each reaction zone. In this case, as a method for adjusting the catalyst activity per unit volume, for example, a method of adjusting the dilution ratio when the catalyst is diluted with an inert carrier, a catalyst having different activities obtained by changing the catalyst composition or the preparation method The method of adjusting using is mentioned.
[0017]
In the high temperature zone where ΔT at two or more places provided in the catalyst layer is 15 to 50 ° C., the distance between the first high temperature zone and the second high temperature zone counted from the raw material gas inlet side is the total length of the catalyst layer. Is preferably 0.13 to 0.6 times, more preferably 0.14 to 0.5 times. As the ratio of the distance between the high-temperature zones to the total catalyst layer length decreases, the ratio of the catalyst charged in the reactor that works effectively tends to increase. As the ratio increases, the catalyst may deteriorate or deteriorate. It tends to be lower. Further, when there are three or more high temperature zones, the distance between adjacent high temperature zones may be 0.2 to 0.9 times, particularly 0.25 to 0.8 times the total length of the catalyst layer. The number of high-temperature zones is usually 5 or less, and 2 or 3 is preferable for practical use. In addition, the distance between each high temperature zone represents the distance between locations where ΔT is maximum in each high temperature zone.
[0018]
The position from the raw material gas inlet to the first high temperature zone (position where ΔT is maximum) is preferably a position 0 to 0.7 times the total length of the catalyst layer, particularly preferably 0.1 to 0.5. Double position.
[0019]
Further, based on minute non-uniformity of the catalyst filling, etc., it is usual that fine peaks and valleys are seen on the ΔT curve in the tube axis direction. Therefore, when determining the range of the high temperature zone, if the average ΔT is obtained in the range of 0.005 times the total length of the catalyst layer, preferably 0.01 times, of the measured ΔT before and after the measurement point, the peak and valley Noise due to is reduced. Even if an exothermic peak satisfying the requirement of the high temperature zone is observed in the actual measurement ΔT, if the requirement of the high temperature zone is not satisfied based on the average ΔT, the exothermic peak is not interpreted as another high temperature zone. To do.
[0020]
In the present invention, ΔT in the catalyst layer is the difference between the temperature at a certain measurement position in the catalyst layer and the temperature of the surrounding heat medium bath. Depending on the form of the reactor, reaction conditions, the flow state of the heat medium, etc., the temperature of the heat medium in the heat medium bath may be slightly uneven, but if the degree is small, the heat medium bath average The temperature may be treated as the heat medium bath temperature. However, when the degree is not small, it is necessary to measure ΔT by measuring the temperature of the heat medium bath in each place.
[0021]
Further, as a method for measuring the temperature in the catalyst layer, for example, prior to filling the catalyst, a protective tube is installed in the tubular reactor, and a thermocouple is inserted into the protective tube to carry out the reaction. The method of measuring the temperature in each place can be mentioned. In this method, the position of the protective tube is preferably near the center of the cross section perpendicular to the tube axis direction of the reaction tube, and the length of the protective tube needs to exceed the catalyst layer. This method is preferable because the temperature at any position of the catalyst layer can be easily measured. In the case of a multi-tubular reactor used industrially, it is practically impossible to measure the temperature of the catalyst layer in all the reaction tubes. Therefore, a reaction tube that substantially represents the entire reactor. Some will be measured.
[0022]
In carrying out the present invention, the concentration of isobutylene and / or tertiary butanol in the raw material gas can be varied within a wide range, but 1 to 20% by volume is appropriate, and 3 to 8% by volume is particularly preferable.
[0023]
Although it is economically advantageous to use air as the molecular oxygen source, air enriched with pure oxygen may be used as necessary. The oxygen concentration in the raw material gas is preferably from 0.3 to 4 mol, particularly preferably from 0.4 to 3 mol, per 1 mol in total of isobutylene and tertiary butanol. The source gas may contain a small amount of impurities such as lower saturated aldehydes that do not substantially affect the present reaction, or may be diluted by adding an inert gas such as nitrogen, water vapor or carbon dioxide.
[0024]
The reaction pressure for the oxidation reaction is preferably from atmospheric pressure to several atmospheres. The temperature of the heat medium bath as the reaction temperature is preferably 280 to 450 ° C, particularly preferably 300 to 400 ° C. The space velocity of the source gas is preferably 300 to 3000 hr −1 , particularly preferably 500 to 2000 hr −1 .
[0025]
【Example】
Hereinafter, the present invention will be described in more detail with reference to examples. In the examples and comparative examples, “parts” means parts by weight. The catalyst composition was determined from the raw material charge of the catalyst component. As a heat medium for the reactor, a salt melt composed of 50% by mass of potassium nitrate and 50% by mass of sodium nitrite was used. Reaction raw materials and products were analyzed by gas chromatography.
[0026]
Moreover, the reaction rate of isobutylene and / or tertiary butanol, and the selectivity of the produced methacrolein and methacrylic acid are respectively defined as follows.
Reaction rate of isobutylene and / or tertiary butanol (%) = (B / A) × 100
Selectivity of methacrolein (%) = (C / B) × 100
Methacrylic acid selectivity (%) = (D / B) × 100
Where A is the number of moles of isobutylene and / or tertiary butanol fed, B is the number of moles of reacted isobutylene and / or tertiary butanol, C is the number of moles of methacrolein produced, and D is the number of moles of methacrylic produced. The number of moles of acid.
[0027]
[Example 1]
After adding 42 parts of 60% nitric acid to 400 parts of water to make a homogeneous solution, 68.7 parts of bismuth nitrate was added and dissolved. To this, 102.9 parts of nickel nitrate and 24.1 parts of antimony trioxide were sequentially added. 165 parts of 28% aqueous ammonia was added to this mixed solution to obtain a white precipitate and a blue supernatant. This was heated and stirred to evaporate most of the water, and the resulting slurry was dried at 120 ° C. for 16 hours, heat treated at 750 ° C. for 2 hours, pulverized, and bismuth-nickel-antimony compound. A fine powder was obtained.
[0028]
500 parts of ammonium paramolybdate, 12.3 parts of ammonium paratungstate, and 23.0 parts of cesium nitrate were added to 1000 parts of water, and the mixture was heated and stirred (solution A). Separately, 230.8 parts of ferric nitrate, 418.9 parts of cobalt nitrate and 60.5 parts of magnesium nitrate were sequentially added to 700 parts of water and dissolved (Liquid B). After liquid B was added to liquid A to form a slurry, 425.5 parts of 20% silica sol and fine powder of the bismuth-nickel-antimony compound were added and stirred under heating to evaporate most of the water.
[0029]
The obtained cake-like substance was dried at 130 ° C., then fired at 300 ° C. for 1 hour in an air atmosphere and pulverized. 2 parts of graphite was added to and mixed with 100 parts of the obtained dried pulverized product, and formed into a ring shape having an outer diameter of 5 mm, an inner diameter of 2 mm, and a length of 3 mm by a tableting machine. The tableted product was calcined at 520 ° C. for 3 hours under air flow to obtain Catalyst 1. The composition of the catalyst 1 was Mo 12 W 0.2 Bi 0.6 Fe 2.4 Sb 0.7 Ni 1.5 Co 6.1 Mg 1.0 Cs 0.5 Si 6.0 by atomic ratio excluding oxygen.
[0030]
A mixture of 370 mL of catalyst 1 and 130 mL of alumina spheres having an outer diameter of 5 mm is filled in the raw material gas inlet of a steel fixed-bed tube reactor having an inner diameter of 25.4 mm equipped with a heat medium bath, and the catalyst 1 is charged in the outlet. Was charged with 1000 mL. At this time, the length of the catalyst layer was 3005 mm. A raw material gas consisting of 5% by volume of isobutylene, 12% by volume of oxygen, 10% by volume of water vapor and 73% by volume of nitrogen was passed through this catalyst layer at a reaction temperature (heat medium bath temperature) of 340 ° C. and a space velocity of 1000 hr −1 .
[0031]
When the temperature of the catalyst layer at this time was measured, the first high temperature zone where the position 300 mm from the end on the source gas inlet side becomes the maximum temperature and the second temperature where the position 1200 mm from the end on the source gas inlet side becomes the maximum temperature were measured. A high temperature zone was observed. That is, the ratio of the distance between the two high temperature zones to the length of the catalyst layer was 0.3. Further, ΔT at the maximum temperature position in the first high temperature zone was 28 ° C., and ΔT at the maximum temperature position in the second high temperature zone was 25 ° C. Note that ΔT at a position 1000 mm from the end on the raw material gas inlet side was 13 ° C.
[0032]
When the reaction product was collected and analyzed, the reaction rate of isobutylene was 96.8%, the selectivity of methacrolein was 87.0%, and the selectivity of methacrylic acid was 3.3%.
[0033]
[Comparative Example 1]
A mixture of 620 mL of catalyst 1 and 130 mL of alumina spheres having an outer diameter of 5 mm is filled in the raw material gas inlet of a steel fixed-bed tube reactor having an inner diameter of 25.4 mm equipped with a heat medium bath, and the catalyst 1 is charged in the outlet. Was charged with 750 mL. At this time, the length of the catalyst layer was 3005 mm. A raw material gas consisting of 5% by volume of isobutylene, 12% by volume of oxygen, 10% by volume of water vapor and 73% by volume of nitrogen was passed through this catalyst layer at a reaction temperature (heat medium bath temperature) of 340 ° C. and a space velocity of 1000 hr −1 .
[0034]
When the temperature of the catalyst layer at this time was measured, only one high temperature zone where the maximum temperature was at a position 400 mm from the end on the raw material gas inlet side was observed. Further, ΔT at the maximum temperature in this high temperature zone was 40 ° C.
[0035]
When the reaction product was collected and analyzed, the reaction rate of isobutylene was 97.5%, methacrolein selectivity was 85.2%, and methacrylic acid selectivity was 3.2%.
[0036]
[Comparative Example 2]
1500 mL of catalyst 1 was packed in a steel fixed-bed tube reactor having an inner diameter of 25.4 mm equipped with a heat medium bath. At this time, the length of the catalyst layer was 3005 mm. A raw material gas consisting of 5% by volume of isobutylene, 12% by volume of oxygen, 10% by volume of water vapor and 73% by volume of nitrogen was passed through this catalyst layer at a reaction temperature (heat medium bath temperature) of 340 ° C. and a space velocity of 1000 hr −1 .
[0037]
When the temperature of the catalyst layer at this time was measured, only one high temperature zone where the maximum temperature was at a position 200 mm from the end on the raw material gas inlet side was observed. Further, ΔT at the maximum temperature in this high temperature zone was 54 ° C.
[0038]
When the reaction product was collected and analyzed, the reaction rate of isobutylene was 99.1%, methacrolein selectivity was 82.1%, and methacrylic acid selectivity was 3.4%.
[0039]
[Comparative Example 3]
1370 mL of catalyst 1 was packed in a steel fixed-bed tube reactor having an inner diameter of 25.4 mm equipped with a heat medium bath. At this time, the length of the catalyst layer was 2745 mm. A raw material gas consisting of 5% by volume of isobutylene, 12% by volume of oxygen, 10% by volume of water vapor and 73% by volume of nitrogen was passed through this catalyst layer at a reaction temperature (heat medium bath temperature) of 340 ° C. and a space velocity of 1000 hr −1 .
[0040]
When the temperature of the catalyst layer at this time was measured, only one high temperature zone where the maximum temperature was at a position 200 mm from the end on the raw material gas inlet side was observed. Further, ΔT at the maximum temperature in this high temperature zone was 51 ° C.
[0041]
When the reaction product was collected and analyzed, the methacrolein reaction rate was 98.8%, the methacrolein selectivity was 82.3%, and the methacrylic acid selectivity was 3.3%.
[0042]
[Comparative Example 4]
A mixture of 140 mL of catalyst 1 and 50 mL of alumina spheres with an outer diameter of 5 mm is filled in the raw material gas inlet of a steel fixed-bed tube reactor having an inner diameter of 25.4 mm equipped with a heat medium bath, and the catalyst 1 is charged in the outlet. Was charged to 1310 mL. At this time, the length of the catalyst layer was 3005 mm. A raw material gas consisting of 5% by volume of isobutylene, 12% by volume of oxygen, 10% by volume of water vapor and 73% by volume of nitrogen was passed through this catalyst layer at a reaction temperature (heat medium bath temperature) of 340 ° C. and a space velocity of 1000 hr −1 .
[0043]
When the catalyst layer temperature at this time was measured, the first high temperature zone where the position 200 mm from the end on the source gas inlet side becomes the maximum temperature and the second temperature where the position 560 mm from the end on the source gas inlet side becomes the maximum temperature were measured. A high temperature zone was observed. That is, the ratio of the distance between the two high temperature zones to the length of the catalyst layer was 0.12. Further, ΔT at the maximum temperature in the first high temperature zone was 21 ° C., and ΔT at the maximum temperature in the second high temperature zone was 52 ° C. Note that ΔT at a position of 380 mm from the end on the raw material gas inlet side was 14 ° C.
[0044]
When the reaction product was collected and analyzed, it was found that the reaction rate of isobutylene was 98.2%, methacrolein selectivity was 84.7%, and methacrylic acid selectivity was 3.3%.
[0045]
[Example 2]
500 parts of ammonium paramolybdate and 9.2 parts of cesium nitrate were added to 1000 parts of water and dissolved by heating (solution C). Separately, 209.8 parts of ferric nitrate, 625.3 parts of lead nitrate and 162.6 parts of telluric acid were added to 300 parts of water and dissolved (solution D). After liquid D was added to liquid C to form a slurry, 178.9 parts of antimony trioxide and 709.0 parts of 30% silica sol were added, and then most of the water was evaporated.
[0046]
The obtained cake-like substance was dried at 130 ° C., then fired at 300 ° C. for 1 hour in an air atmosphere and pulverized. 2 parts of graphite was added to and mixed with 100 parts of the fired pulverized product, and molded into a ring shape having an outer diameter of 5 mm, an inner diameter of 2 mm, and a length of 3 mm by a tableting machine. The tableting product was calcined at 500 ° C. for 3 hours under air flow to obtain Catalyst 2. The composition of the catalyst 2 was Mo 12 Te 3 Fe 2.2 Pb 8 Sb 5.2 Cs 0.2 Si 15 in an atomic ratio excluding oxygen.
[0047]
A mixture of 150 mL of catalyst 2 and 90 mL of alumina spheres with an outer diameter of 5 mm is filled in the raw material gas inlet of a steel fixed-bed tube reactor having an inner diameter of 25.4 mm equipped with a heat medium bath, and catalyst 2 is loaded in the center. Was mixed with 200 mL of alumina spheres having an outer diameter of 5 mm and 40 mL, and 1020 mL of catalyst 2 was charged at the outlet. At this time, the length of the catalyst layer was 3005 mm. A raw material gas consisting of 5% by volume of tertiary butanol, 12% by volume of oxygen, 10% by volume of water vapor and 73% by volume of nitrogen was passed through this catalyst layer at a reaction temperature (heat medium bath temperature) of 340 ° C. and a space velocity of 1000 hr −1 . .
[0048]
When the temperature of the catalyst layer at this time was measured, the first high temperature zone where the position 180 mm from the end on the source gas inlet side becomes the maximum temperature and the second temperature where the position 620 mm from the end on the source gas inlet side becomes the maximum temperature were measured. A third high temperature zone where the maximum temperature was observed at a position 1100 mm from the end of the high temperature zone and the raw material gas inlet side was observed. That is, the ratio of the distance between the three adjacent high temperature zones to the length of the catalyst layer is 0.15 between the first and second high temperature zones and 0.16 between the second and third high temperature zones. Met. Further, ΔT at the maximum temperature in the first high temperature zone was 23 ° C., ΔT at the maximum temperature in the second high temperature zone was 26 ° C., and ΔT at the maximum temperature in the third high temperature zone was 24 ° C. Note that ΔT at a position 480 mm from the end on the source gas inlet side was 12 ° C., and ΔT at a position 960 mm from the end on the source gas inlet side was 13 ° C.
[0049]
When the reaction product was collected and analyzed, the tertiary butanol reaction rate was 100.0%, the methacrolein selectivity was 81.1%, and the methacrylic acid selectivity was 2.1%.
[0050]
【The invention's effect】
According to the present invention, a fixed bed tube reactor equipped with a heat medium bath is filled with a solid oxidation catalyst, and a raw material gas containing isobutylene and / or tertiary butanol and molecular oxygen is circulated through the catalyst layer. When synthesizing methacrolein and methacrylic acid, there is no place where ΔT exceeds 50 ° C., and two or more high temperature zones where ΔT is 15 to 50 ° C. are provided. Acid can be produced.
[0051]
Further, according to the present invention, the distance between the first high temperature zone and the second high temperature zone as counted from the raw material gas inlet side is 0.13 to 0.6 times the total length of the catalyst layer. This further improves the yield.
[0052]
Furthermore, the yield is further improved by using the composite oxide represented by the formula (1) as a solid oxidation catalyst.

Claims (3)

固体酸化触媒が充填された触媒層と熱媒浴を備えた固定床管型反応器を用いて、イソブチレンおよび/または第3級ブタノールならびに分子状酸素を含む原料ガスを前記触媒層に流通させることによりメタクロレインおよびメタクリル酸を合成するメタクリル酸の製造方法において、触媒層中に熱媒浴の温度と触媒層の温度との差(ΔT=触媒層の温度−熱媒浴の温度)が50℃を超える箇所が1箇所もなく、かつΔTが15〜50℃となる高温帯域を2箇所以上設けることを特徴とするメタクロレインおよびメタクリル酸の製造方法。Using a fixed bed tube reactor equipped with a catalyst layer filled with a solid oxidation catalyst and a heat medium bath, a raw material gas containing isobutylene and / or tertiary butanol and molecular oxygen is circulated through the catalyst layer. In the method for producing methacrylic acid, which synthesizes methacrolein and methacrylic acid, the difference between the temperature of the heat medium bath and the temperature of the catalyst layer in the catalyst layer (ΔT = temperature of the catalyst layer−temperature of the heat medium bath) is 50 ° C. A method for producing methacrolein and methacrylic acid, characterized in that there are no more than 1 place and two or more high-temperature zones where ΔT is 15 to 50 ° C. are provided. 原料ガス入り口側から数えて第1番目の高温帯域と第2番目の高温帯域の間の距離が、触媒層全長の0.13〜0.6倍であることを特徴とする請求項1記載のメタクロレインおよびメタクリル酸の製造方法。The distance between the first high temperature zone and the second high temperature zone, counted from the raw material gas inlet side, is 0.13 to 0.6 times the total length of the catalyst layer. Method for producing methacrolein and methacrylic acid. 前記固体酸化触媒が下記の式(1)で表される複合酸化物であることを特徴とする請求項1または2記載のメタクロレインおよびメタクリル酸の製造方法。
MoaBibFecdefgh (1)
(式中、Mo、Bi、FeおよびOはそれぞれモリブデン、ビスマス、鉄および酸素を表し、Aはニッケルおよび/またはコバルト、Xはマグネシウム、亜鉛、クロム、マンガン、スズおよび鉛からなる群より選ばれた少なくとも1種の元素、Yはリン、ホウ素、イオウ、テルル、ケイ素、ゲルマニウム、セリウム、ニオブ、チタン、ジルコニウム、タングステンおよびアンチモンからなる群より選ばれた少なくとも1種の元素、Zはカリウム、ナトリウム、ルビジウム、セシウムおよびタリウムからなる群より選ばれた少なくとも1種の元素を表す。ただし、a、b、c、d、e、f、gおよびhは各元素の原子比を表し、a=12のとき、0.1≦b≦5、0.1≦c≦5、1≦d≦12、0≦e≦10、0≦f≦10、0.01≦g≦3であり、hは前記各元素の原子価を満足するのに必要な酸素の原子比である。)
The method for producing methacrolein and methacrylic acid according to claim 1 or 2, wherein the solid oxidation catalyst is a complex oxide represented by the following formula (1).
Mo a Bi b Fe c A d X e Y f Z g O h (1)
(Wherein Mo, Bi, Fe and O represent molybdenum, bismuth, iron and oxygen, respectively, A is nickel and / or cobalt, X is selected from the group consisting of magnesium, zinc, chromium, manganese, tin and lead) At least one element, Y is phosphorus, boron, sulfur, tellurium, silicon, germanium, cerium, niobium, titanium, zirconium, tungsten and antimony, and Z is potassium, sodium Represents at least one element selected from the group consisting of rubidium, cesium and thallium, where a, b, c, d, e, f, g and h represent the atomic ratio of each element, and a = 12 When 0.1 ≦ b ≦ 5, 0.1 ≦ c ≦ 5, 1 ≦ d ≦ 12, 0 ≦ e ≦ 10, 0 ≦ f ≦ 10, 0.01 ≦ g ≦ In it, h is the atomic ratio of oxygen required to satisfy the valence of each element.)
JP2001007493A 2001-01-16 2001-01-16 Method for producing methacrolein and methacrylic acid Expired - Lifetime JP4497442B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001007493A JP4497442B2 (en) 2001-01-16 2001-01-16 Method for producing methacrolein and methacrylic acid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001007493A JP4497442B2 (en) 2001-01-16 2001-01-16 Method for producing methacrolein and methacrylic acid

Publications (2)

Publication Number Publication Date
JP2002212127A JP2002212127A (en) 2002-07-31
JP4497442B2 true JP4497442B2 (en) 2010-07-07

Family

ID=18875234

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001007493A Expired - Lifetime JP4497442B2 (en) 2001-01-16 2001-01-16 Method for producing methacrolein and methacrylic acid

Country Status (1)

Country Link
JP (1) JP4497442B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190063191A (en) 2017-11-29 2019-06-07 롯데케미칼 주식회사 Manufacturing method of catalysts for producing methacrolein or methacrylic acid having excellent heat-removing performance and mechanical strength
KR20200128734A (en) * 2018-03-14 2020-11-16 미쯔비시 케미컬 주식회사 Catalyst molded article, and method for producing unsaturated aldehyde and unsaturated carboxylic acid using the same

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6969774B2 (en) * 1999-12-10 2005-11-29 Mitsubishi Rayon Co., Ltd. Method for producing methacrylic acid
JP4838585B2 (en) 2003-07-14 2011-12-14 三菱レイヨン株式会社 Fixed-bed multitubular reactor
TWI302147B (en) * 2003-09-01 2008-10-21 Lg Chemical Ltd Method of producing unsaturated aldehyde and unsaturated acid in fixed-bed catalytic partial oxidation reactor with enhanced heat control system
TWI292755B (en) * 2003-12-26 2008-01-21 Lg Chemical Ltd Method of producing unsaturated aldehyde and/or unsaturated fatty acid
JP2005213179A (en) * 2004-01-29 2005-08-11 Mitsubishi Rayon Co Ltd Catalyst layer and method for forming the same, fixed bed tubular reactor, method for producing methacrolein or methacrylic acid
JP5130562B2 (en) * 2007-11-06 2013-01-30 日本化薬株式会社 Method for producing methacrolein and / or methacrylic acid
JP5479803B2 (en) * 2009-07-29 2014-04-23 三菱レイヨン株式会社 Method for producing (meth) acrolein or (meth) acrylic acid
EP3889124B1 (en) * 2019-12-16 2024-01-31 Resonac Corporation Fixed bed multi-tubular reactor for producing alkenyl acetate
KR20230084255A (en) 2020-11-27 2023-06-12 가부시끼가이샤 레조낙 Fixed-bed multi-tubular reactor for producing alkenyl acetate

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190063191A (en) 2017-11-29 2019-06-07 롯데케미칼 주식회사 Manufacturing method of catalysts for producing methacrolein or methacrylic acid having excellent heat-removing performance and mechanical strength
KR20200128734A (en) * 2018-03-14 2020-11-16 미쯔비시 케미컬 주식회사 Catalyst molded article, and method for producing unsaturated aldehyde and unsaturated carboxylic acid using the same
KR102547450B1 (en) 2018-03-14 2023-06-23 미쯔비시 케미컬 주식회사 Catalyst molded body and method for producing unsaturated aldehyde and unsaturated carboxylic acid using the same

Also Published As

Publication number Publication date
JP2002212127A (en) 2002-07-31

Similar Documents

Publication Publication Date Title
EP1055662B1 (en) A process for producing acrylic acid
US6781013B2 (en) Process for producing acrolein and acrylic acid
US6632965B1 (en) Process for producing acrolein and acrylic acid
JPH0784400B2 (en) Process for producing unsaturated aldehyde and unsaturated acid
JP2574948B2 (en) Method for producing methacrylic acid
JP4497442B2 (en) Method for producing methacrolein and methacrylic acid
JP4058270B2 (en) Method for producing methacrylic acid
JP2809476B2 (en) Method for producing acrolein and acrylic acid
US20050038291A1 (en) Preparation of (meth)acrolein and/or (meth)acrylic acid
JP4824867B2 (en) Method for producing methacrolein and methacrylic acid
JP5130562B2 (en) Method for producing methacrolein and / or methacrylic acid
KR100890675B1 (en) Process for producing methacrolein and/or methacrylic acid
JPWO2009057463A1 (en) Gas phase catalytic oxidation reaction method
JP4824871B2 (en) Method for producing acrolein and acrylic acid
JP2988660B2 (en) Method for producing methacrolein and methacrylic acid
JP4248163B2 (en) Method for producing methacrylic acid
JP2638241B2 (en) Method for producing methacrolein and methacrylic acid
KR950006528B1 (en) Process for producing methacrylic acid
JP2659839B2 (en) Method for producing methacrolein and methacrylic acid
JP5607865B2 (en) Method for producing methacrylic acid
JP5112849B2 (en) Fixed bed reactor and method for producing unsaturated carboxylic acid
JP2934267B2 (en) Method for producing methacrolein and methacrylic acid
JP2756160B2 (en) Method for producing methacrolein and methacrylic acid
JP2863509B2 (en) Method for producing methacrolein and methacrylic acid

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050615

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050712

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070403

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100409

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130423

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4497442

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130423

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130423

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130423

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140423

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term