JP2005213179A - Catalyst layer and method for forming the same, fixed bed tubular reactor, method for producing methacrolein or methacrylic acid - Google Patents

Catalyst layer and method for forming the same, fixed bed tubular reactor, method for producing methacrolein or methacrylic acid Download PDF

Info

Publication number
JP2005213179A
JP2005213179A JP2004020977A JP2004020977A JP2005213179A JP 2005213179 A JP2005213179 A JP 2005213179A JP 2004020977 A JP2004020977 A JP 2004020977A JP 2004020977 A JP2004020977 A JP 2004020977A JP 2005213179 A JP2005213179 A JP 2005213179A
Authority
JP
Japan
Prior art keywords
reaction
catalyst layer
catalyst
reaction zone
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004020977A
Other languages
Japanese (ja)
Inventor
Tomomichi Hino
智道 日野
Akira Ogawa
朗 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP2004020977A priority Critical patent/JP2005213179A/en
Publication of JP2005213179A publication Critical patent/JP2005213179A/en
Pending legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a catalyst layer which can not only lower the temperature of a hot spot but also equalize the loads of an oxidation reaction to prevent the local deterioration of the catalyst, to provide a method for forming the same, and to provide a fixed bed tubular reactor, and to provide a method for producing methacrolein or methacrylic acid. <P>SOLUTION: This catalyst layer which is heated with a heating medium to react raw material gases is characterized in that the catalyst layer is divided into two or more reaction zones in the longitudinal direction of the catalyst layer and that a reaction load ratio : CRc(i) per unit mass of the catalyst in each reaction zone is 0.6 to 1.0. The fixed bed tubular reactor comprises a reaction tube in which the catalyst layer is formed, a heating medium bath filled with a heating medium for heating the reaction tube, and a gas-supplying mechanism for supplying a raw material gas to the reaction tube. The method for producing the methacrolein or methacrylic acid comprises reacting tert-butanol and / or isobutylene with molecular oxygen in the fixed bed tubular reactor. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、メタクロレインまたはメタクリル酸の製造などに使用される触媒層およびその形成方法、固定床管型反応器に関する。さらには、メタクロレインまたはメタクリル酸の製造方法に関する。   The present invention relates to a catalyst layer used for production of methacrolein or methacrylic acid, a method for forming the catalyst layer, and a fixed bed tubular reactor. Furthermore, it is related with the manufacturing method of methacrolein or methacrylic acid.

メタクロレインまたはメタクリル酸は、触媒を用いたtert−ブタノールおよび/またはイソブチレンの気相接触酸化反応により製造されている。この気相接触酸化反応は発熱反応であるため触媒層では蓄熱が起こり、その蓄熱の結果、局所的に高温帯域が生じることがある。その局所的高温帯域はホットスポットと呼ばれ、このホットスポットの温度が高すぎると過度の酸化反応を生じて目的生成物の収率が低下する。そのため、この気相接触酸化反応を工業的に実施する場合には、ホットスポットの温度抑制が重要な課題になる。ところが、生産性を上げるために原料ガス中におけるtert−ブタノールおよび/またはイソブチレン濃度を高めた場合などではホットスポットの温度が高くなる傾向があった。したがって、ホットスポットの温度を抑制するためには、tert−ブタノールおよび/またはイソブチレン濃度を高めることができないなど反応条件に関する制約が多かった。   Methacrolein or methacrylic acid is produced by a gas phase catalytic oxidation reaction of tert-butanol and / or isobutylene using a catalyst. Since this gas phase catalytic oxidation reaction is an exothermic reaction, heat storage occurs in the catalyst layer, and as a result of the heat storage, a high temperature zone may be locally generated. The local high temperature zone is called a hot spot. If the temperature of the hot spot is too high, an excessive oxidation reaction occurs and the yield of the target product decreases. Therefore, when this gas phase catalytic oxidation reaction is carried out industrially, it is an important issue to suppress the temperature of the hot spot. However, when the concentration of tert-butanol and / or isobutylene in the raw material gas is increased in order to increase productivity, the temperature of the hot spot tends to increase. Therefore, in order to suppress the temperature of the hot spot, there are many restrictions on the reaction conditions such that the tert-butanol and / or isobutylene concentration cannot be increased.

そこで、ホットスポットの温度を抑える方法として、例えば、触媒層を複数の反応帯に分割し、ガス入口側の触媒層を不活性物質で希釈する方法(例えば、特許文献1参照。)、触媒層を複数の反応帯に分割し、ガス入口側からガス出口側に向けて触媒活性物質の担持率(触媒一個あたりの活性物質の質量割合)を順次大きくする方法(例えば、特許文献2参照。)、触媒層を複数の反応帯に分割し、ガス入口側からガス出口側に向けて触媒成型体の大きさを順次小さくする方法(例えば、特許文献3参照。)等が提案されている。
これらの方法は、触媒層における原料ガス入口側での単位容積当たりの反応率を低くすることで、単位容積当たりの反応発熱量を抑え、結果としてホットスポットの温度を低くしようとする方法である。そして、これらの方法によれば、ホットスポットでの過度の酸化反応を抑制できるので収率が向上する上に、熱的負荷の減少により触媒寿命を延長できる。
特公昭43−24403号公報 特開平6−192144号公報 特開平4−217932号公報
Therefore, as a method for suppressing the temperature of the hot spot, for example, the catalyst layer is divided into a plurality of reaction zones, and the catalyst layer on the gas inlet side is diluted with an inert substance (see, for example, Patent Document 1), the catalyst layer. Is divided into a plurality of reaction zones, and the catalyst active substance loading rate (mass ratio of active substance per catalyst) is sequentially increased from the gas inlet side toward the gas outlet side (see, for example, Patent Document 2). A method of dividing the catalyst layer into a plurality of reaction zones and sequentially reducing the size of the molded catalyst from the gas inlet side to the gas outlet side has been proposed (for example, see Patent Document 3).
In these methods, the reaction rate per unit volume on the raw material gas inlet side in the catalyst layer is lowered to suppress the reaction heat generation amount per unit volume, and as a result, the temperature of the hot spot is lowered. . And according to these methods, since an excessive oxidation reaction at a hot spot can be suppressed, the yield is improved and the life of the catalyst can be extended by reducing the thermal load.
Japanese Patent Publication No.43-24403 JP-A-6-192144 JP-A-4-217932

しかし、これらの方法は、ホットスポットの温度を抑制することのみに着目しているため、結果的に、触媒層内の酸化反応負荷分布が不均一となり、酸化反応負荷の高い部分が発生する恐れがあった。さらに、酸化反応負荷が高くなった部分が生じた場合には、触媒の再酸化不良が起こりやすくなるため、触媒の劣化が促進されて、触媒層全体としての寿命が大幅に短くなる恐れがあった。
本発明は、上記従来の問題を解決するためになされたものであり、ホットスポットの温度を抑制するだけでなく、酸化反応負荷を均一化して局部的な触媒の劣化を抑制できる触媒層およびその形成方法、固定床管型反応器、メタクロレインまたはメタクリル酸の製造方法を提供することを目的とする。
However, these methods focus only on suppressing the temperature of the hot spot, and as a result, the oxidation reaction load distribution in the catalyst layer becomes non-uniform, and a portion with a high oxidation reaction load may be generated. was there. Furthermore, when a portion with a high oxidation reaction load occurs, the catalyst tends to fail to be reoxidized. This may accelerate the deterioration of the catalyst and significantly shorten the life of the entire catalyst layer. It was.
The present invention has been made in order to solve the above-described conventional problems, and not only suppresses the temperature of the hot spot, but also a catalyst layer that can equalize the oxidation reaction load and suppress local catalyst degradation, and the catalyst layer It is an object of the present invention to provide a forming method, a fixed bed tubular reactor, a method for producing methacrolein or methacrylic acid.

本発明の触媒層は、熱媒体により加熱されて原料ガスを反応させる触媒層において、
該触媒層の長さ方向が2層以上の反応帯に分割されており、各反応帯では、下記(1)〜(3)式によって定義される触媒単位質量あたりの反応負荷比率CRc(i)が0.6〜1.0にあることを特徴とする。
The catalyst layer of the present invention is a catalyst layer that is heated by a heat medium to react a raw material gas.
The length direction of the catalyst layer is divided into two or more reaction zones, and in each reaction zone, the reaction load ratio CRc (i) per catalyst unit mass defined by the following formulas (1) to (3) Is 0.6 to 1.0.

Figure 2005213179
Figure 2005213179
Figure 2005213179
Figure 2005213179
Figure 2005213179
Figure 2005213179

(式中、Rc(i)はi層目反応帯の反応負荷(℃・m/kg)、Li(j)はi層目反応帯におけるj番目の温度測定点からj+1番目の温度測定点までの長さ方向距離(m)、Wc(i)はi層目反応帯の触媒充填量(kg)、Ti(j)はi層目反応帯におけるj番目測定点での触媒層温度(℃)、TBは熱媒体温度(℃)、RcMAXはRc(i)の最大値、nは反応帯数、mはi層目の反応帯における温度測定点数を表す。ただし、i=1〜n。また、i,jは原料ガスの入口側から順に数えるものとする。) (Where Rc (i) is the reaction load (° C. · m / kg) of the i-th layer reaction zone, and Li (j) is from the jth temperature measurement point to the j + 1th temperature measurement point in the i-th layer reaction zone. In the longitudinal direction (m), Wc (i) is the catalyst charge (kg) in the i-th reaction zone, Ti (j) is the catalyst layer temperature (° C.) at the j-th measurement point in the i-th reaction zone , TB heat medium temperature (℃), RcMAX the maximum value of Rc (i), n is the reaction zone number, m i represents the temperature measurement points in the reaction zone of the i-th layer. However, i = 1 to n. In addition, i and j are counted sequentially from the inlet side of the source gas.)

本発明の固定床管型反応器は、上述した触媒層が形成された反応管と、
前記反応管を加熱する熱媒体が充填される熱媒体浴と、
前記反応管に原料ガスを供給するガス供給機構とを備えることを特徴とする。
本発明のメタクロレインまたはメタクリル酸の製造方法は、上述した固定床管型反応器にて、tert−ブタノール及び/又はイソブチレンと分子状酸素とを反応させることを特徴とする。
本発明の触媒層形成方法は、反応管に触媒を充填し、長さ方向が2層以上の反応帯に分割された触媒層を形成する第1の工程と、前記触媒層にて原料ガスを試験反応させ、その試験反応時の触媒層温度を測定する第2の工程とを有し、
各反応帯での上記(1)〜(3)式によって定義される触媒単位質量あたりの反応負荷比率CRc(i)が0.6〜1.0を満たすまで第1の工程と第2の工程とを繰り返すことを特徴とする。
本発明の触媒層形成方法は、上述した触媒層形成方法で形成された触媒層と同一の触媒層を他の反応管内に形成することを特徴とする。
The fixed bed tube reactor of the present invention includes a reaction tube in which the catalyst layer described above is formed,
A heating medium bath filled with a heating medium for heating the reaction tube;
And a gas supply mechanism for supplying a raw material gas to the reaction tube.
The method for producing methacrolein or methacrylic acid of the present invention is characterized in that tert-butanol and / or isobutylene and molecular oxygen are reacted in the above-described fixed bed tubular reactor.
The catalyst layer forming method of the present invention includes a first step of filling a reaction tube with a catalyst and forming a catalyst layer divided in a reaction zone having a length direction of two or more layers, and a raw material gas in the catalyst layer. And a second step of measuring the catalyst layer temperature during the test reaction,
The first step and the second step until the reaction load ratio CRc (i) per catalyst unit mass defined by the above formulas (1) to (3) in each reaction zone satisfies 0.6 to 1.0. It is characterized by repeating.
The catalyst layer forming method of the present invention is characterized in that the same catalyst layer as that formed by the above-described catalyst layer forming method is formed in another reaction tube.

本発明によれば、気相接触酸化におけるホットスポットの温度を抑制でき、しかも、酸化反応負荷を均一化して局部的な触媒の劣化を抑制できるので、触媒を長期安定的に利用できる。   According to the present invention, the temperature of the hot spot in the gas phase catalytic oxidation can be suppressed, and the oxidation reaction load can be made uniform to suppress local deterioration of the catalyst, so that the catalyst can be stably used for a long time.

以下、本発明の一実施形態例について説明する。なお、この例は、触媒層によってメタクロレインまたはメタクリル酸を製造する例である。
はじめに、触媒層について説明する。
触媒層は、反応管内において少なくとも触媒が含まれている部分のことである。よって、触媒のみが充填されている部分だけでなく、シリカ、アルミナ、シリカ・アルミナ、シリコンカーバイト等の不活性担体等で触媒が希釈されている部分も含まれる。ただし、反応管両端部の何も充填されていない部分や不活性担体のみが充填されている部分は、触媒が実質的に含まれないので触媒層には含まれない。そして、この触媒層は、熱媒体で加熱されて原料ガスを反応させる反応管内の層である。
Hereinafter, an embodiment of the present invention will be described. This example is an example of producing methacrolein or methacrylic acid using a catalyst layer.
First, the catalyst layer will be described.
The catalyst layer is a portion containing at least a catalyst in the reaction tube. Therefore, not only the portion filled with only the catalyst but also the portion where the catalyst is diluted with an inert carrier such as silica, alumina, silica-alumina, silicon carbide, etc. are included. However, a portion where nothing is filled at both ends of the reaction tube or a portion where only the inert carrier is filled is not included in the catalyst layer because the catalyst is not substantially included. And this catalyst layer is a layer in the reaction tube which is heated with a heat medium and reacts raw material gas.

この触媒層は、その長さ方向(反応管の管軸方向)が2層以上の反応帯に分割されている。ここで、2層以上の反応帯に分割されているとは、触媒の充填条件が異なる層が2層以上形成されていることをいう。そして、各反応帯では、上記(1)〜(3)式によって定義される触媒単位質量あたりの反応負荷比率CRc(i)(以下、CRc(i)と略すことがある)が0.6〜1.0にある。CRc(i)が0.6未満の場合には、局所的な触媒劣化が生じ、触媒寿命が短くなる。   The catalyst layer is divided into two or more reaction zones in the length direction (the tube axis direction of the reaction tube). Here, being divided into two or more reaction zones means that two or more layers having different catalyst filling conditions are formed. In each reaction zone, the reaction load ratio CRc (i) (hereinafter, abbreviated as CRc (i)) per catalyst unit mass defined by the above formulas (1) to (3) is 0.6 to 1.0. When CRc (i) is less than 0.6, local catalyst degradation occurs and the catalyst life is shortened.

触媒層の分割数については、分割数を多くすれば、細かく実質触媒成分質量を調整できてより最適化できるものの、分割数を多くしすぎると触媒充填時の手間が増加するため、工業的には2〜4分割程度が選ばれる。   Regarding the number of divisions of the catalyst layer, if the number of divisions is increased, the mass of the substantial catalyst component can be finely adjusted and can be further optimized. 2 to 4 divisions are selected.

なお、Rc(i)の算出では、反応負荷が均一化されている以下の仮定を前提としている。1)触媒層での発熱量と触媒が関与した酸化反応量は比例する。2)触媒層の半径方向に温度分布は存在しない。3)反応帯によらず、熱媒体と触媒層との間の総括伝熱係数は一定である。4)各反応帯において、反応帯入口部から流入するガスが持ち込む熱量と、反応帯出口部から持ち出す熱量の影響は考慮しない。
これらの前提の上では、触媒層内温度から熱媒体温度を引いた値(ΔT)と触媒が関与した酸化反応量は一次の関係で表現できる。従って、このΔTを長さ方向に各反応帯の入口部から出口部まで積分し、得られた値をその反応帯の触媒充填質量で割ることで、反応帯毎の触媒単位質量あたりの反応負荷比率を算出できる。
厳密には、上記1)〜4)の仮定は成立しない。すなわち、触媒層の位置によって、メタクロレインまたはメタクリル酸が生成する主反応と、COxやその他の成分が生成する反応とが起こる割合は多少異なる。触媒層の半径方向には多少の差はあれ温度分布が生じている。反応帯毎に実質触媒成分質量を調整することで総括伝熱係数は変化する。各反応帯内で発生した熱量のごく一部は原料ガスによって反応帯外に持ち出される。しかし、これらのことが生じても影響が小さいので、CRc(i)が0.6〜1.0を満たせば触媒層は効果を十分に奏する。
The calculation of Rc (i) is based on the following assumption that the reaction load is uniform. 1) The amount of heat generated in the catalyst layer is proportional to the amount of oxidation reaction involving the catalyst. 2) There is no temperature distribution in the radial direction of the catalyst layer. 3) The overall heat transfer coefficient between the heat medium and the catalyst layer is constant regardless of the reaction zone. 4) In each reaction zone, the effects of the amount of heat brought in by the gas flowing in from the reaction zone inlet and the amount of heat taken out from the reaction zone outlet are not considered.
Under these assumptions, the value obtained by subtracting the heat medium temperature from the temperature in the catalyst layer (ΔT) and the amount of oxidation reaction involving the catalyst can be expressed by a linear relationship. Therefore, this ΔT is integrated in the length direction from the inlet to the outlet of each reaction zone, and the obtained value is divided by the catalyst filling mass of the reaction zone, thereby obtaining the reaction load per catalyst unit mass for each reaction zone. The ratio can be calculated.
Strictly speaking, the assumptions 1) to 4) are not satisfied. That is, depending on the position of the catalyst layer, the rate at which the main reaction in which methacrolein or methacrylic acid is generated and the reaction in which COx and other components are generated slightly differs. There is a temperature distribution in the radial direction of the catalyst layer with some difference. The overall heat transfer coefficient changes by adjusting the substantial catalyst component mass for each reaction zone. A small portion of the heat generated in each reaction zone is taken out of the reaction zone by the raw material gas. However, even if these occur, the influence is small. Therefore, if CRc (i) satisfies 0.6 to 1.0, the catalyst layer has a sufficient effect.

このような触媒層を反応管内に形成するには、まず、第1の工程において、反応管に触媒を充填し、長さ方向を2層以上の反応帯に分割した触媒層を形成する。通常、一回目の触媒充填は経験的知見に基づいて充填する。次いで、第2の工程において、その触媒層にて原料ガスを試験反応させ、その試験反応時の触媒層温度を測定する。
そして、各反応帯においてCRc(i)を求め、全ての反応帯のCRc(i)が0.6〜1.0を満たさなかった場合には、触媒を反応管から抜き出し、第1の工程からやり直す。全ての反応帯のCRc(i)が0.6〜1.0を満たしていた場合には、その触媒層を最終的なものとする。
In order to form such a catalyst layer in the reaction tube, first, in the first step, the catalyst is filled in the reaction tube, and the catalyst layer is formed by dividing the length direction into two or more reaction zones. Usually, the first catalyst filling is performed based on empirical knowledge. Next, in the second step, the source gas is subjected to a test reaction in the catalyst layer, and the catalyst layer temperature during the test reaction is measured.
And CRc (i) is calculated | required in each reaction zone, and when CRc (i) of all the reaction zones does not satisfy 0.6-1.0, a catalyst is extracted from a reaction tube, and it begins from the 1st process. Try again. When CRc (i) of all reaction zones satisfies 0.6 to 1.0, the catalyst layer is finalized.

上記触媒層の形成方法において、第1の工程における触媒の充填においては、触媒の充填条件が異なる層を2層以上形成して2層以上の反応帯に分割した触媒層を形成する。触媒の充填条件とは、触媒の種類、触媒と不活性担体との混合比率、触媒の担持率、触媒成型体の大きさなどのことである。
また、触媒層入口側におけるホットスポットの温度を抑制させるために、原料ガス入口側の反応帯の単位容積あたりの実質触媒成分量が少なくなるように充填する。単位容積あたりの実質触媒成分量が少なくなるような充填方法としては、例えば、1)触媒層を複数の反応帯に分割し、原料ガス入口側の反応帯を不活性物質で希釈する方法、2)触媒層を複数の反応帯に分割し、原料ガス入口側から生成ガス出口側に向けて触媒活性物質の担持率(触媒一個あたりの活性物質の質量割合)を順次大きくする方法、3)触媒層を複数の反応帯に分割し、原料ガス入口側から生成ガス出口側に向けて触媒成型体の大きさを順次小さくする方法等が挙げられる。なお、ホットスポットの温度を抑制させるとは、メタクロレインまたはメタクリル酸の製造の場合、触媒層温度から熱媒体温度を引いた値(ΔT)の反応管の長さ方向分布の最大値を45℃以下にすることである。
In the catalyst layer forming method, in the catalyst filling in the first step, two or more layers having different catalyst filling conditions are formed to form a catalyst layer divided into two or more reaction zones. The catalyst filling conditions include the type of catalyst, the mixing ratio of the catalyst and the inert carrier, the loading ratio of the catalyst, the size of the molded catalyst, and the like.
Further, in order to suppress the temperature of the hot spot on the catalyst layer inlet side, the catalyst is filled so that the substantial amount of catalyst component per unit volume of the reaction zone on the raw material gas inlet side is reduced. Examples of the filling method that reduces the amount of the substantial catalyst component per unit volume include, for example, 1) a method in which the catalyst layer is divided into a plurality of reaction zones, and the reaction zone on the raw material gas inlet side is diluted with an inert substance; ) A method in which the catalyst layer is divided into a plurality of reaction zones, and the loading ratio of the catalytically active substance (mass ratio of active substance per catalyst) is increased sequentially from the raw material gas inlet side to the product gas outlet side. Examples include a method of dividing the layer into a plurality of reaction zones and sequentially reducing the size of the catalyst molded body from the raw material gas inlet side toward the product gas outlet side. In addition, in the case of the production of methacrolein or methacrylic acid, the temperature of the hot spot is suppressed by setting the maximum value of the distribution in the length direction of the reaction tube of the value obtained by subtracting the heat medium temperature from the catalyst layer temperature (ΔT) to 45 ° C. Is to:

反応管に充填される触媒としては固体酸化触媒が用いられる。固体酸化触媒としては、周知のモリブデンを含む複合酸化物等を用いることができるが、下記の組成式で表される複合酸化物が好ましい。
MoBiFe
(式中、Mo、Bi、Fe、およびOはそれぞれモリブデン、ビスマス、鉄、および酸素を表し、Aはニッケルおよび/またはコバルト、Xはマグネシウム、亜鉛、マンガン、スズおよび鉛からなる群より選ばれた少なくとも1種の元素、Yはリン、ホウ素、イオウ、テルル、ケイ素、セレン、ゲルマニウム、セリウム、ニオブ、アルミニウム、チタン、ジルコニウム、タングステンおよびアンチモンからなる群より選ばれた少なくとも1種の元素、Zはカリウム、ナトリウム、ルビジウム、セシウム、およびタリウムからなる群より選ばれた少なくとも1種の元素を示す。ただし、a、b、c、d、e、f、gおよびhは各元素の原子比を表し、a=12のとき、0.1≦b≦5、0.1≦c≦5、1≦d≦12、0≦e≦10、0≦f≦10、0.01≦g≦3、であり、hは前記各成分の原子価を満足するのに必要な酸素の原子比である。)
また、固体酸化触媒はシリカ、アルミナ、シリカ・アルミナ、シリコンカーバイト等の不活性担体に担持されていてもよい。
A solid oxidation catalyst is used as the catalyst filled in the reaction tube. As the solid oxidation catalyst, a known composite oxide containing molybdenum or the like can be used, but a composite oxide represented by the following composition formula is preferable.
Mo a Bi b Fe c A d X e Y f Z g O h
(Wherein Mo, Bi, Fe, and O represent molybdenum, bismuth, iron, and oxygen, respectively, A is selected from the group consisting of nickel and / or cobalt, and X is selected from the group consisting of magnesium, zinc, manganese, tin, and lead. At least one element, Y is at least one element selected from the group consisting of phosphorus, boron, sulfur, tellurium, silicon, selenium, germanium, cerium, niobium, aluminum, titanium, zirconium, tungsten and antimony, Z Represents at least one element selected from the group consisting of potassium, sodium, rubidium, cesium, and thallium, provided that a, b, c, d, e, f, g, and h represent the atomic ratio of each element. When a = 12, 0.1 ≦ b ≦ 5, 0.1 ≦ c ≦ 5, 1 ≦ d ≦ 12, 0 ≦ e ≦ 10, 0 ≦ f ≦ 0,0.01 ≦ g ≦ 3, a, h is the atomic ratio of oxygen required to satisfy the valence of each component.)
The solid oxidation catalyst may be supported on an inert carrier such as silica, alumina, silica / alumina, or silicon carbide.

上記固体酸化触媒の調製方法としては、成分の著しい偏在を伴わない限り、周知の種々の方法を採用できる。触媒の調製に用いる原料としては、各元素の硝酸塩、炭酸塩、酢酸塩、アンモニウム塩、酸化物、ハロゲン化物等を組み合わせて使用できる。例えば、モリブデン原料としてはパラモリブデン酸アンモニウム、三酸化モリブデン、モリブデン酸、塩化モリブデン等を使用できる。
固体酸化触媒は成型して使用され、その形態としては、タブレット状に成型された打錠成型触媒、円柱状もしくはリング状に成型された押出成型触媒などが挙げられる。
As a method for preparing the solid oxidation catalyst, various known methods can be adopted as long as the components are not significantly unevenly distributed. As raw materials used for preparing the catalyst, nitrates, carbonates, acetates, ammonium salts, oxides, halides and the like of each element can be used in combination. For example, ammonium paramolybdate, molybdenum trioxide, molybdic acid, molybdenum chloride, etc. can be used as the molybdenum raw material.
The solid oxidation catalyst is used after being molded, and examples of the form thereof include a tableting catalyst formed into a tablet shape, and an extrusion catalyst formed into a columnar shape or a ring shape.

反応帯毎に担持触媒や打錠成型触媒が使い分けられている場合には、同じ質量の触媒成型体であっても実質触媒成分質量がそれぞれ異なるから、CRc(i)を求める際には、Wc(i)としては、充填した触媒成型体の質量ではなく、各反応帯の実質触媒成分質量を採用するのがよい。   When a supported catalyst or a compression-molded catalyst is properly used for each reaction zone, even if a catalyst molded body has the same mass, the mass of the substantial catalyst component is different. Therefore, when calculating CRc (i), Wc As (i), it is preferable to adopt the mass of the substantial catalyst component in each reaction zone, not the mass of the filled catalyst molded body.

第2の工程における試験反応では、熱媒体によって反応温度を通常200〜450℃、好ましくは250〜400℃、反応圧力を常圧から1MPa程度の範囲にし、原料ガスを触媒層に通して反応させてメタクロレインまたはメタクリル酸を得る。
ここで、試験反応とは、メタクロレインまたはメタクリル酸を得ることを目的とした反応ではなく、触媒層の充填条件を決定することを目的とした反応のことである。
In the test reaction in the second step, the reaction temperature is usually 200 to 450 ° C., preferably 250 to 400 ° C. with the heat medium, the reaction pressure is in the range of normal pressure to about 1 MPa, and the raw material gas is allowed to react through the catalyst layer. To obtain methacrolein or methacrylic acid.
Here, the test reaction is not a reaction aiming at obtaining methacrolein or methacrylic acid, but a reaction aiming at determining packing conditions of the catalyst layer.

原料ガスとしては、tert−ブタノールおよび/またはイソブチレンと分子状酸素を含んでいれば特に限定されない。例えば、原料ガスとして、tert−ブタノールおよび/またはイソブチレンを3〜9容量%、酸素を5〜15容量%および水蒸気を5〜50容量%含むガスが用いられる。また、酸素源は空気を用いることが経済的に有利であり好ましい。原料ガスには窒素や二酸化炭素等の不活性ガスを含んでいてもよい。原料ガスには、本発明の酸化反応、もしくはその他の気相酸化反応によって発生した、空気よりも酸素含有率の低い排ガスを含んでいてもよい。排ガスはそのまま利用してもよいし、白金等の燃焼触媒を用いる方法等により有機物を低減した排ガスを利用してもよい。
原料ガスは、反応に対して実質的に影響を与えない不純物を少量含んでいてもよい。
原料ガスの流量は特に限定されないが、空間速度が300〜3000hr−1になる流量であることが好ましく、特に500〜2000hr−1になるような流量が好ましい。
The source gas is not particularly limited as long as it contains tert-butanol and / or isobutylene and molecular oxygen. For example, a gas containing 3 to 9% by volume of tert-butanol and / or isobutylene, 5 to 15% by volume of oxygen, and 5 to 50% by volume of water vapor is used as the source gas. Moreover, it is economically advantageous and preferable to use air as the oxygen source. The source gas may contain an inert gas such as nitrogen or carbon dioxide. The source gas may contain an exhaust gas having an oxygen content lower than that of air generated by the oxidation reaction of the present invention or other gas phase oxidation reaction. The exhaust gas may be used as it is, or an exhaust gas in which organic substances are reduced by a method using a combustion catalyst such as platinum may be used.
The source gas may contain a small amount of impurities that do not substantially affect the reaction.
The flow rate of the source gas is not particularly limited, but is preferably a flow rate at which the space velocity is 300 to 3000 hr −1 , and particularly preferably a flow rate at which the space velocity is 500 to 2000 hr −1 .

原料ガスとしてtert−ブタノールを用いる場合には、tert−ブタノールからイソブチレンへの脱水反応が吸熱反応のため、原料ガス入口側のTi(j)がjの増加と共に低下し、TBより小さくなることがある。このTi(j)がTB未満の領域では主にtert−ブタノールの脱水が起こっているため、触媒は酸化反応に有効に利用されていない。tert−ブタノールの脱水がある程度進行し、酸化反応が進めば、Ti(j)は再び上昇してTBを越えるようになる。したがって、CRc(i)の計算においては、Ti(j)がTB未満の領域である点は計算対象から除外し、Ti(j)がTBを越えた点から行えばよい。   When tert-butanol is used as the source gas, the dehydration reaction from tert-butanol to isobutylene is an endothermic reaction, so that Ti (j) on the source gas inlet side decreases as j increases and becomes smaller than TB. is there. In the region where Ti (j) is less than TB, tert-butanol is mainly dehydrated, so the catalyst is not effectively used for the oxidation reaction. When dehydration of tert-butanol proceeds to some extent and the oxidation reaction proceeds, Ti (j) rises again and exceeds TB. Therefore, in the calculation of CRc (i), the point where Ti (j) is less than TB may be excluded from the calculation target, and may be performed from the point where Ti (j) exceeds TB.

また、第2の工程において、試験反応時の触媒層温度は、反応管の長さ方向に対して垂直な断面の中心に設置した保護管に挿入した熱電対で測定することができる。この際、保護管内と触媒とを隔絶し、測温する位置は挿入する熱電対の長さを調節できる構造としておくことが望ましい。また、反応管内に固定挿入された多数の熱電対で触媒層温度を測定してもよい。
また、触媒層温度を測定し、反応帯毎の触媒層温度分布を測定する際には、反応負荷算出の精度が向上することから、Li(j)が小さい方が好ましい。ただし、触媒層の長さ方向の温度変化が小さい部分ではLi(j)が大きくてもその値を大きくしても反応負荷算出の精度が低下しない。また、Li(j)を決定する際には、Ti(j)とTi(j+1)の差が5℃以下となるような範囲とすることが好ましい。
In the second step, the catalyst layer temperature during the test reaction can be measured with a thermocouple inserted in a protective tube installed at the center of the cross section perpendicular to the length direction of the reaction tube. At this time, it is desirable to isolate the inside of the protective tube from the catalyst, and to set the temperature measurement position so that the length of the thermocouple to be inserted can be adjusted. Further, the catalyst layer temperature may be measured by a number of thermocouples fixedly inserted in the reaction tube.
Further, when measuring the catalyst layer temperature and measuring the catalyst layer temperature distribution for each reaction zone, it is preferable that Li (j) is small because the accuracy of the reaction load calculation is improved. However, in the portion where the temperature change in the length direction of the catalyst layer is small, the accuracy of the reaction load calculation does not decrease even if Li (j) is large or the value is increased. Further, when determining Li (j), it is preferable that the difference between Ti (j) and Ti (j + 1) is within a range of 5 ° C. or less.

次に、固定床管型反応器について説明する。
固定床管型反応器は、上記触媒層が形成された反応管と、前記反応管を加熱する熱媒体が充填される熱媒体浴と、前記反応管に原料ガスを供給するガス供給機構とを備えるものである。
この固定床管型反応器においては、反応管内の少なくとも一部に触媒層が形成されていればよい
熱媒体浴に充填される熱媒体としては、例えば、硝酸カリウムおよび亜硝酸ナトリウム他を含む塩溶融物が挙げられる。
ガス供給機構の一例としては、tert−ブタノール等の液状原料をガス化する棚段塔や充填塔等からなる蒸発装置と、蒸発器から得られたガスを昇圧するコンプレッサー等の昇圧装置と、空気や窒素等のその他のガス状副原料を昇圧するコンプレッサー等の昇圧装置と、ガス化、昇圧された液状原料と昇圧されたガス状原料とを混合するガスミキサー等の気体混合装置を備えたものが挙げられる。また、液状原料の代わりにイソブチレン等のガス状原料を使用する場合には蒸発装置は必要なく、このガス状原料はコンプレッサー等の昇圧装置を介して気体混合装置に送られる。
Next, the fixed bed tube reactor will be described.
The fixed bed tube reactor includes a reaction tube in which the catalyst layer is formed, a heat medium bath filled with a heat medium for heating the reaction tube, and a gas supply mechanism for supplying a raw material gas to the reaction tube. It is to be prepared.
In this fixed bed tubular reactor, it is sufficient that a catalyst layer is formed in at least a part of the reaction tube. As the heat medium filled in the heat medium bath, for example, salt melting including potassium nitrate, sodium nitrite and others. Things.
As an example of the gas supply mechanism, an evaporator including a plate tower or a packed tower for gasifying a liquid raw material such as tert-butanol, a booster such as a compressor for boosting a gas obtained from the evaporator, and an air Equipped with a booster such as a compressor for boosting other gaseous auxiliary materials such as nitrogen and nitrogen, and a gas mixing device such as a gas mixer for mixing the gasified and pressurized liquid material with the pressurized gaseous material Is mentioned. Further, when a gaseous raw material such as isobutylene is used in place of the liquid raw material, an evaporation device is not necessary, and this gaseous raw material is sent to a gas mixing device via a booster such as a compressor.

そして、上記固定床管型反応器を用いたメタクロレインまたはメタクリル酸の製造では、tert−ブタノールおよび/またはイソブチレンと分子状酸素とを含む原料ガスを、ガス供給機構により反応管に供給し、触媒層で反応させる。その際の反応条件は、上記第2の工程での条件と同様である。   In the production of methacrolein or methacrylic acid using the above fixed bed tubular reactor, a raw material gas containing tert-butanol and / or isobutylene and molecular oxygen is supplied to the reaction tube by a gas supply mechanism, React in layers. The reaction conditions at that time are the same as those in the second step.

以上説明した実施形態例では、熱媒体で加熱されて原料ガスを反応させる触媒層が2層以上の反応帯に分割されており、各反応帯ではCRc(i)が0.6〜1.0にあり、各反応帯における単位触媒質量あたりの酸化反応量が考慮されているので、ホットスポットの温度を抑制するだけでなく、触媒層内の酸化反応負荷分布を均一化できる。その結果、触媒の再酸化不良を防止できるので、触媒の劣化を抑制し、触媒層全体としての寿命を長くできる。   In the embodiment described above, the catalyst layer that is heated by the heat medium and reacts with the raw material gas is divided into two or more reaction zones, and CRc (i) is 0.6 to 1.0 in each reaction zone. Since the amount of oxidation reaction per unit catalyst mass in each reaction zone is taken into consideration, not only the temperature of the hot spot can be suppressed, but also the oxidation reaction load distribution in the catalyst layer can be made uniform. As a result, since reoxidation failure of the catalyst can be prevented, deterioration of the catalyst can be suppressed and the life of the entire catalyst layer can be extended.

なお、本発明の触媒層および固定床管型反応器は、上述した実施形態例に限定されない。例えば、同種の反応管を多数本有し、それらの反応管に触媒層を形成する場合には、上述したような、CRc(i)が前記範囲を満たすように第1の工程と第2の工程とを繰り返して触媒層を形成するという方法を全ての反応管に適用しなくてもよい。すなわち、上述した触媒層形成方法で一本または数本の反応管内に触媒層を形成し、その触媒層と同一の触媒層を他の反応管内に形成してもよい。他の反応管に形成した触媒層は、CRc(i)が前記範囲を満たすもののいわば複製であるから、CRc(i)が前記範囲を満たすものである。
工業的には、この方法が採用される。つまり、工業的には反応管本数は数千〜数万本であり、全ての反応管について温度を測定して触媒層を形成するのは手間がかかりすぎる。そのため、まず、生産に使用する反応管と同種の反応管を1本または数本具備するパイロット設備で、上記触媒層形成方法によりCRc(i)が前記範囲を満たす触媒層を見出す。そして、その触媒層と同じ触媒の充填条件で生産に使用する反応管内に触媒を充填して、全ての反応管について、CRc(i)が前記範囲を満たす触媒層を形成する。このような方法によれば、CRc(i)が前記範囲を満たす触媒層を形成する手間が少なくなる。
The catalyst layer and the fixed bed tube reactor of the present invention are not limited to the above-described embodiment examples. For example, when a plurality of reaction tubes of the same kind are formed and a catalyst layer is formed in these reaction tubes, the first step and the second step are performed so that CRc (i) satisfies the above range as described above. The method of forming the catalyst layer by repeating the steps may not be applied to all reaction tubes. That is, a catalyst layer may be formed in one or several reaction tubes by the above-described catalyst layer forming method, and the same catalyst layer as that catalyst layer may be formed in another reaction tube. The catalyst layer formed in the other reaction tube is a replica of CRc (i) that satisfies the above range, so that CRc (i) satisfies the above range.
Industrially, this method is adopted. That is, industrially, the number of reaction tubes is several thousand to several tens of thousands, and it takes too much time to form the catalyst layer by measuring the temperature of all the reaction tubes. Therefore, first, a catalyst layer in which CRc (i) satisfies the above range is found by the above catalyst layer forming method in a pilot facility having one or several reaction tubes of the same type as the reaction tubes used for production. Then, the catalyst is filled in the reaction tube used for production under the same catalyst filling conditions as the catalyst layer, and a catalyst layer in which CRc (i) satisfies the above range is formed for all the reaction tubes. According to such a method, labor for forming a catalyst layer in which CRc (i) satisfies the above range is reduced.

また、本発明は、触媒層で気相接触反応を行う場合にはいずれも適用可能である。ただし、tert−ブタノールおよび/またはイソブチレンと分子状酸素との反応ではとりわけ効果を発揮する。   In addition, the present invention can be applied to any case where a gas phase contact reaction is performed in a catalyst layer. However, the reaction of tert-butanol and / or isobutylene with molecular oxygen is particularly effective.

以下、実施例を挙げて本発明を更に詳細に説明する。なお、実施例および比較例中の「部」は質量部を意味する。
また、以下の実施例または比較例において、固定床多管型反応器の熱媒体としては、硝酸カリウム50質量%および亜硝酸ナトリウム50質量%からなる塩溶融物を用いた。触媒層内の温度は反応管の長さ方向に対して垂直な断面の中心に設置したSUS304製保護管に挿入した熱電対により測定した。さらに、保護管内は触媒と隔絶されており、測温する位置は挿入する熱電対の長さを調節して変えることができる。
Hereinafter, the present invention will be described in more detail with reference to examples. In addition, "part" in an Example and a comparative example means a mass part.
In the following examples or comparative examples, a salt melt composed of 50% by mass of potassium nitrate and 50% by mass of sodium nitrite was used as the heat medium of the fixed bed multitubular reactor. The temperature in the catalyst layer was measured by a thermocouple inserted in a protective tube made of SUS304 installed at the center of the cross section perpendicular to the length direction of the reaction tube. Further, the inside of the protective tube is isolated from the catalyst, and the temperature measuring position can be changed by adjusting the length of the thermocouple to be inserted.

また、原料ガスおよび反応生成ガスの分析は、ガスクロマトグラフィーを用いて行った。そして、tert−ブタノールおよびイソブチレンの反応率、生成したメタクロレインおよびメタクリル酸の選択率、収率はそれぞれ以下のように定義される。
tert−ブタノールおよびイソブチレンの反応率(%)=(B/A)×100
メタクロレインの選択率(%)=(C/B)×100
メタクリル酸の選択率(%)=(D/B)×100
メタクロレインおよびメタクリル酸の収率(%)={(C+D)/A}×100
ここで、Aは供給したtert−ブタノールおよびイソブチレンの合計モル数、Bは酸化反応に使用されたtert−ブタノールおよびイソブチレンの合計モル数から反応器出口でのtert−ブタノールおよびイソブチレンの合計モル数を引いたもの、Cは生成したメタクロレインのモル数、Dは生成したメタクリル酸のモル数である。
The analysis of the raw material gas and the reaction product gas was performed using gas chromatography. And the reaction rate of tert-butanol and isobutylene, the selectivity of the produced methacrolein and methacrylic acid, and the yield are defined as follows, respectively.
Reaction rate of tert-butanol and isobutylene (%) = (B / A) × 100
Selectivity of methacrolein (%) = (C / B) × 100
Methacrylic acid selectivity (%) = (D / B) × 100
Yield of methacrolein and methacrylic acid (%) = {(C + D) / A} × 100
Here, A is the total number of moles of tert-butanol and isobutylene supplied, and B is the total number of moles of tert-butanol and isobutylene at the reactor outlet from the total number of moles of tert-butanol and isobutylene used in the oxidation reaction. Subtracted, C is the number of moles of methacrolein produced, and D is the number of moles of methacrylic acid produced.

(比較例1)
純水1000部に、パラモリブデン酸アンモニウム500部、パラタングステン酸アンモニウム6.2部および硝酸セシウム23.0部を加え、加熱攪拌した(A液)。これとは別に、純水600部に60質量%および硝酸41.9部を加えて均一にした後、硝酸ビスマス68.7部を加え、溶解した。これに硝酸第二鉄200.2部、硝酸ニッケル116.6部、硝酸コバルト432.7部および硝酸マグネシウム54.5部を順次加え、さらに水400部を加え、溶解した(B液)。A液にB液を加えて水性スラリーとした後、三酸化アンチモン24.1部を加えて加熱攪拌し、スプレー乾燥機を用いて乾燥することにより乾燥球状粒子を得た。そして、この乾燥球状粒子を300℃で1時間、510℃で3時間焼成を行い、触媒焼成物とした。このようにして得られた触媒焼成物500部に対してヒドロキシプロピルメチルセルロース15部を加え、乾式混合した。ここに純水170部を混合し、混練り機で粘土状物質になるまで混合した後、不定形の混練物をスクリュー式押出し成形機を用いて押出し成形し、直径45mm、長さ280mmの円柱状の1次成形品を得た。次いで、この1次成形品を水分が蒸発しないようにプラスチックフィルムで包んで密封し、さらに密閉容器に入れて25℃の恒温槽で22時間養生した。養生した後、この1次成形品をピストン式押出成形機を用いて押出成形し、外径5mm、内径2mm、長さ5mmのリング状の触媒成形品を得た。次いで、得られた触媒成形品を110℃熱風乾燥機を用いて乾燥し、400℃で3時間再度焼成を行い、触媒成形品の最終焼成品を得た。得られた触媒成形品の組成は、酸素を除いた原子比で、
Mo12Bi0.6Fe2.1Ni1.7Co6.3Mg0.90.1Sb0.7Cs0.5
であった。なお、触媒の組成は触媒成分の原料仕込み量から求めた。
(Comparative Example 1)
To 1000 parts of pure water, 500 parts of ammonium paramolybdate, 6.2 parts of ammonium paratungstate, and 23.0 parts of cesium nitrate were added and stirred with heating (solution A). Separately, 60% by mass and 41.9 parts of nitric acid were added to 600 parts of pure water to make it uniform, and then 68.7 parts of bismuth nitrate were added and dissolved. To this, 200.2 parts of ferric nitrate, 116.6 parts of nickel nitrate, 432.7 parts of cobalt nitrate and 54.5 parts of magnesium nitrate were sequentially added, and 400 parts of water was further added and dissolved (Liquid B). Liquid B was added to liquid A to form an aqueous slurry, and then 24.1 parts of antimony trioxide was added, heated and stirred, and dried using a spray dryer to obtain dry spherical particles. The dried spherical particles were calcined at 300 ° C. for 1 hour and at 510 ° C. for 3 hours to obtain a catalyst calcined product. 15 parts of hydroxypropylmethylcellulose was added to 500 parts of the catalyst calcined product thus obtained and dry mixed. After mixing 170 parts of pure water and mixing with a kneader until a clay-like substance is obtained, the irregular shaped kneaded product is extruded using a screw-type extruder, and is a circle having a diameter of 45 mm and a length of 280 mm. A columnar primary molded product was obtained. Next, this primary molded product was sealed with a plastic film so as not to evaporate moisture, and further sealed in a sealed container and cured in a thermostatic bath at 25 ° C. for 22 hours. After curing, this primary molded product was extruded using a piston-type extruder, and a ring-shaped catalyst molded product having an outer diameter of 5 mm, an inner diameter of 2 mm, and a length of 5 mm was obtained. Next, the obtained catalyst molded product was dried using a 110 ° C. hot air dryer and fired again at 400 ° C. for 3 hours to obtain a final fired product of the catalyst molded product. The composition of the obtained catalyst molded product is an atomic ratio excluding oxygen,
Mo 12 Bi 0.6 Fe 2.1 Ni 1.7 Co 6.3 Mg 0.9 W 0.1 Sb 0.7 Cs 0.5
Met. The composition of the catalyst was determined from the raw material charge of the catalyst component.

反応には、熱媒浴と内径25.4mmの反応管を備えたSUS304製固定床管型反応器を用いた。触媒層は2層の反応帯に分割し、原料ガスの供給側に位置するガス入口側反応帯(1層目反応帯)では、触媒を0.37kg(570mL)と外径5mmのアルミナ球190mLとを混合したものを充填した。この原料ガス入口側反応帯の触媒層の長さは1502mmとした。また、ガス出口側反応帯(2層目反応帯)では、触媒を0.49kg(760mL)充填した。このとき、ガス出口側反応帯の触媒層の長さは1506mmとした。   For the reaction, a fixed bed tubular reactor made of SUS304 equipped with a heat medium bath and a reaction tube having an inner diameter of 25.4 mm was used. The catalyst layer is divided into two reaction zones. In the gas inlet side reaction zone (first reaction zone) located on the source gas supply side, the catalyst is 0.37 kg (570 mL) and the outer diameter is 5 mm alumina spheres 190 mL. And was mixed. The length of the catalyst layer in the source gas inlet side reaction zone was 1502 mm. In the gas outlet side reaction zone (second layer reaction zone), 0.49 kg (760 mL) of the catalyst was charged. At this time, the length of the catalyst layer in the gas outlet side reaction zone was 1506 mm.

そして、熱媒体温度319℃で、tert−ブタノール7.0容量%、酸素10容量%、水蒸気10容量%および窒素73.0容量%からなる原料ガスを空間速度1500hr−1で触媒層に通して反応を行った。
反応開始2日後、触媒層温度を測定したところ、ガス入口側反応帯の上流端から950mmの位置に最大温度を有するホットスポットが観測され、この最大温度におけるΔTは38℃であった。また、ガス入口側反応帯の上流端から350mmの位置で触媒層温度が実質的に熱媒体温度を越えた。ガス入口側反応帯のRc(i)は105.9℃・m/kg、CRc(i)は1.0、ガス出口側反応帯のRc(i)は61.4℃・m/kg、CRc(i)は0.58であった。
Then, a raw material gas consisting of 7.0% by volume of tert-butanol, 10% by volume of oxygen, 10% by volume of water vapor and 73.0% by volume of nitrogen was passed through the catalyst layer at a space velocity of 1500 hr −1 at a heat medium temperature of 319 ° C. Reaction was performed.
Two days after the start of the reaction, the catalyst layer temperature was measured. As a result, a hot spot having a maximum temperature was observed at a position of 950 mm from the upstream end of the gas inlet side reaction zone, and ΔT at this maximum temperature was 38 ° C. Further, the catalyst layer temperature substantially exceeded the heat medium temperature at a position 350 mm from the upstream end of the gas inlet side reaction zone. Rc (i) of the gas inlet side reaction zone is 105.9 ° C. · m / kg, CRc (i) is 1.0, Rc (i) of the gas outlet side reaction zone is 61.4 ° C. · m / kg, CRc (I) was 0.58.

この比較例1においては、tert−ブタノールおよびイソブチレンの反応率は83.4%、メタクロレイン選択率は87.6%、メタクリル酸選択率は2.1%、メタクロレインおよびメタクリル酸の収率は74.8%であった。
また、比較例1の条件で充填した触媒層は活性低下が早く、熱媒体温度を330℃まで上昇させて触媒の劣化に伴う活性低下を補おうとしたが、反応開始30日後においては反応初期のtert−ブタノールおよびイソブチレンの反応率を維持できなかった。
In Comparative Example 1, the reaction rate of tert-butanol and isobutylene was 83.4%, the methacrolein selectivity was 87.6%, the methacrylic acid selectivity was 2.1%, and the yields of methacrolein and methacrylic acid were It was 74.8%.
In addition, the catalyst layer filled under the conditions of Comparative Example 1 had a rapid decrease in activity, and the temperature of the heat medium was increased to 330 ° C. to compensate for the decrease in activity due to the deterioration of the catalyst. The reaction rate of tert-butanol and isobutylene could not be maintained.

(実施例1)
比較例1では、ガス出口側反応帯のCRc(i)が0.6未満であったたため、反応管から触媒を抜き取り、ガス入口側反応帯の触媒量を減らして再充填した。具体的には、ガス入口側反応帯では、触媒を0.29kg(460mL)と外径5mmのアルミナ球300mLとを混合したものを充填した。そして、熱媒体温度を322℃としたこと以外は比較例1と同様にして反応を行った。
(Example 1)
In Comparative Example 1, since CRc (i) in the gas outlet side reaction zone was less than 0.6, the catalyst was removed from the reaction tube, and the amount of catalyst in the gas inlet side reaction zone was reduced and refilled. Specifically, in the gas inlet side reaction zone, the catalyst was mixed with 0.29 kg (460 mL) and 300 mL of alumina spheres having an outer diameter of 5 mm. Then, the reaction was performed in the same manner as in Comparative Example 1 except that the heat medium temperature was 322 ° C.

反応開始2日後、触媒層温度を測定したところ、ガス出口側反応帯の上流端から200mmの位置に最大温度を有するホットスポットが観測され、この最大温度におけるΔTは39℃であった。また、ガス入口側反応帯の上流端から350mmの位置で触媒層温度が実質的に熱媒体温度を越えた。そして、原料ガス入口側反応帯のRc(i)は107.2℃・m/kg、CRc(i)は1.0、原料ガス出口側反応帯のRc(i)は73.8℃・m/kg、CRc(i)は0.69であった。   Two days after the start of the reaction, the catalyst layer temperature was measured. As a result, a hot spot having a maximum temperature was observed at a position 200 mm from the upstream end of the gas outlet side reaction zone, and ΔT at this maximum temperature was 39 ° C. Further, the catalyst layer temperature substantially exceeded the heat medium temperature at a position 350 mm from the upstream end of the gas inlet side reaction zone. The Rc (i) of the raw material gas inlet side reaction zone is 107.2 ° C. · m / kg, the CRc (i) is 1.0, and the Rc (i) of the raw material gas outlet side reaction zone is 73.8 ° C. · m. / Kg, CRc (i) was 0.69.

また、tert−ブタノールおよび/またはイソブチレンの反応率は84.2%、メタクロレイン選択率は87.8%、メタクリル酸の選択率は2.0%、メタクロレインおよびメタクリル酸の収率は75.6%であった。反応開始30日後においても、熱媒温度322℃のままでtert−ブタノール反応率は84.5%であり、触媒層は十分な反応活性を保っていた。よって、実施例1では、比較例1より触媒層の実質触媒成分質量が少ないにもかかわらず触媒寿命が長くなった。   The reaction rate of tert-butanol and / or isobutylene was 84.2%, the methacrolein selectivity was 87.8%, the selectivity of methacrylic acid was 2.0%, and the yield of methacrolein and methacrylic acid was 75. It was 6%. Even after 30 days from the start of the reaction, the reaction rate of tert-butanol was 84.5% with the heat medium temperature kept at 322 ° C., and the catalyst layer maintained sufficient reaction activity. Therefore, in Example 1, the catalyst life was longer in spite of the fact that the mass of the substantial catalyst component in the catalyst layer was smaller than in Comparative Example 1.

(実施例2)
反応管の中に熱電対保護管を挿入せず、反応中の触媒層内温度分布を測定しないで、実施例1の触媒層と同じ触媒層を他の反応管内に形成した。ガス入口側反応帯の触媒層の長さは1408mm、ガス出口側反応帯の触媒層の長さは1501mmとした。
反応開始2日後、tert−ブタノールおよびイソブチレンの反応率は84.7%、メタクロレイン選択率は87.9%、メタクリル酸選択率は2.0%、メタクロレインおよびメタクリル酸の収率は76.1%であった。反応開始30日後においても、熱媒体温度を322℃のままにできた上に、tert−ブタノールおよびイソブチレンの反応率は84.7%であり、触媒層は十分な反応活性を保っていた。
(Example 2)
A catalyst layer identical to the catalyst layer of Example 1 was formed in another reaction tube without inserting a thermocouple protection tube into the reaction tube and measuring the temperature distribution in the catalyst layer during the reaction. The length of the catalyst layer in the gas inlet side reaction zone was 1408 mm, and the length of the catalyst layer in the gas outlet side reaction zone was 1501 mm.
Two days after the start of the reaction, the reaction rate of tert-butanol and isobutylene was 84.7%, the methacrolein selectivity was 87.9%, the methacrylic acid selectivity was 2.0%, and the yields of methacrolein and methacrylic acid were 76. 1%. Even after 30 days from the start of the reaction, the heat medium temperature was kept at 322 ° C., and the reaction rates of tert-butanol and isobutylene were 84.7%, and the catalyst layer maintained sufficient reaction activity.

(実施例3)
触媒層を三つの反応帯に分割し、ガス入口側反応帯では触媒を0.21kg(330mL)と外径5mmのアルミナ球330mLとを混合したものを充填した。このガス入口側反応帯の触媒層の長さは1305mmとした。中間部反応帯では触媒を0.10kg(150mL)と外径5mmのアルミナ球100mLとを混合したものを充填した。この反応帯の触媒層の長さは498mmとした。ガス出口側反応帯では触媒を0.39kg(610mL)を充填した。このガス出口側反応帯の触媒層の長さは1206mmとした。
(Example 3)
The catalyst layer was divided into three reaction zones. In the reaction zone on the gas inlet side, a mixture of 0.21 kg (330 mL) of catalyst and 330 mL of alumina spheres having an outer diameter of 5 mm was filled. The length of the catalyst layer in the gas inlet side reaction zone was 1305 mm. In the intermediate reaction zone, a mixture of 0.10 kg (150 mL) of catalyst and 100 mL of alumina spheres having an outer diameter of 5 mm was packed. The length of the catalyst layer in this reaction zone was 498 mm. In the gas outlet side reaction zone, 0.39 kg (610 mL) of catalyst was charged. The length of the catalyst layer in the gas outlet side reaction zone was 1206 mm.

そして、熱媒体温度を325℃として反応を開始した。反応開始2日後、触媒層温度を測定したところ、ガス出口側反応帯の上流端から300mmの位置に最大温度を有するホットスポットが観測され、この最大温度におけるΔTは36℃であった。また、ガス入口側反応帯の上流端から350mmの位置で触媒層温度が実質的に熱媒体温度を越えた。ガス入口側反応帯のRc(i)は109.7℃・m/kg、CRc(i)は0.91、中間部反応帯のRc(i)は120.7℃・m/kg、CRc(i)は1.0、原料ガス出口側反応帯のRc(i)は76.8℃・m/kg、CRc(i)は0.64であった。
この反応において、tert−ブタノールおよびイソブチレンの反応率は83.3%、メタクロレイン選択率は88.3%、メタクリル酸選択率は2.0%、メタクロレインおよびメタクリル酸の収率は75.2%であった。反応開始30日後においても、熱媒体温度を325℃のままにできた上に、tert−ブタノールおよびイソブチレンの反応率は83.6%であり、触媒層は十分な反応活性を保っていた。
The reaction was started at a heat medium temperature of 325 ° C. Two days after the start of the reaction, the catalyst layer temperature was measured. As a result, a hot spot having a maximum temperature was observed at a position 300 mm from the upstream end of the gas outlet side reaction zone, and ΔT at this maximum temperature was 36 ° C. Further, the catalyst layer temperature substantially exceeded the heat medium temperature at a position 350 mm from the upstream end of the gas inlet side reaction zone. Rc (i) of the gas inlet side reaction zone is 109.7 ° C. · m / kg, CRc (i) is 0.91, Rc (i) of the intermediate reaction zone is 120.7 ° C. · m / kg, CRc ( i) was 1.0, Rc (i) in the reaction zone on the raw material gas outlet side was 76.8 ° C. · m / kg, and CRc (i) was 0.64.
In this reaction, the reaction rate of tert-butanol and isobutylene was 83.3%, the methacrolein selectivity was 88.3%, the methacrylic acid selectivity was 2.0%, and the yield of methacrolein and methacrylic acid was 75.2. %Met. Even after 30 days from the start of the reaction, the heat medium temperature was kept at 325 ° C., and the reaction rates of tert-butanol and isobutylene were 83.6%, and the catalyst layer maintained sufficient reaction activity.

Claims (5)

熱媒体により加熱されて原料ガスを反応させる触媒層において、
該触媒層の長さ方向が2層以上の反応帯に分割されており、各反応帯では、下記(1)〜(3)式によって定義される触媒単位質量あたりの反応負荷比率CRc(i)が0.6〜1.0にあることを特徴とする触媒層。
Figure 2005213179
Figure 2005213179
Figure 2005213179
(式中、Rc(i)はi層目反応帯の反応負荷(℃・m/kg)、Li(j)はi層目反応帯におけるj番目の温度測定点からj+1番目の温度測定点までの長さ方向距離(m)、Wc(i)はi層目反応帯の触媒充填量(kg)、Ti(j)はi層目反応帯におけるj番目測定点での触媒層温度(℃)、TBは熱媒体温度(℃)、RcMAXはRc(i)の最大値、nは反応帯数、mはi層目の反応帯における温度測定点数を表す。ただし、i=1〜n。また、i,jは原料ガスの入口側から順に数えるものとする。)
In the catalyst layer that is heated by the heat medium to react the raw material gas,
The length direction of the catalyst layer is divided into two or more reaction zones, and in each reaction zone, the reaction load ratio CRc (i) per catalyst unit mass defined by the following formulas (1) to (3) Is in the range of 0.6 to 1.0.
Figure 2005213179
Figure 2005213179
Figure 2005213179
(Where Rc (i) is the reaction load (° C. · m / kg) of the i-th layer reaction zone, and Li (j) is from the jth temperature measurement point to the j + 1th temperature measurement point in the i-th layer reaction zone. In the longitudinal direction (m), Wc (i) is the catalyst charge (kg) in the i-th reaction zone, Ti (j) is the catalyst layer temperature (° C.) at the j-th measurement point in the i-th reaction zone , TB heat medium temperature (℃), RcMAX the maximum value of Rc (i), n is the reaction zone number, m i represents the temperature measurement points in the reaction zone of the i-th layer. However, i = 1 to n. In addition, i and j are counted sequentially from the inlet side of the source gas.)
請求項1に記載された触媒層が形成された反応管と、
前記反応管を加熱する熱媒体が充填される熱媒体浴と、
前記反応管に原料ガスを供給するガス供給機構とを備えることを特徴とする固定床管型反応器。
A reaction tube in which the catalyst layer according to claim 1 is formed;
A heating medium bath filled with a heating medium for heating the reaction tube;
A fixed bed tube reactor comprising a gas supply mechanism for supplying a raw material gas to the reaction tube.
請求項2に記載された固定床管型反応器にて、tert−ブタノールおよび/またはイソブチレンと分子状酸素とを反応させることを特徴とするメタクロレインまたはメタクリル酸の製造方法。   A method for producing methacrolein or methacrylic acid, comprising reacting tert-butanol and / or isobutylene with molecular oxygen in the fixed bed tubular reactor according to claim 2. 反応管に触媒を充填し、長さ方向が2層以上の反応帯に分割された触媒層を形成する第1の工程と、前記触媒層にて原料ガスを試験反応させ、その試験反応時の触媒層温度を測定する第2の工程とを有し、
各反応帯での下記(4)〜(6)式によって定義される触媒単位質量あたりの反応負荷比率CRc(i)が0.6〜1.0を満たすまで第1の工程と第2の工程とを繰り返すことを特徴とする触媒層形成方法。
Figure 2005213179
Figure 2005213179
Figure 2005213179
(式中、Rc(i)はi層目反応帯の反応負荷(℃・m/kg)、Li(j)はi層目反応帯におけるj番目の温度測定点からj+1番目の温度測定点までの長さ方向距離(m)、Wc(i)はi層目反応帯の触媒充填量(kg)、Ti(j)はi層目反応帯におけるj番目測定点での触媒層温度(℃)、TBは熱媒体温度(℃)、RcMAXはRc(i)の最大値、nは反応帯数、mはi層目の反応帯における温度測定点数を表す。ただし、i=1〜n。また、i,jは原料ガスの入口側から順に数えるものとする。)
A first step of filling the reaction tube with a catalyst and forming a catalyst layer whose length direction is divided into two or more reaction zones, and a test reaction of the raw material gas in the catalyst layer, and at the time of the test reaction A second step of measuring the catalyst layer temperature,
The first step and the second step until the reaction load ratio CRc (i) per catalyst unit mass defined by the following equations (4) to (6) in each reaction zone satisfies 0.6 to 1.0: The catalyst layer forming method characterized by repeating.
Figure 2005213179
Figure 2005213179
Figure 2005213179
(Where Rc (i) is the reaction load (° C. · m / kg) of the i-th layer reaction zone, and Li (j) is from the jth temperature measurement point to the j + 1th temperature measurement point in the i-th layer reaction zone. In the longitudinal direction (m), Wc (i) is the catalyst charge (kg) in the i-th reaction zone, Ti (j) is the catalyst layer temperature (° C.) at the j-th measurement point in the i-th reaction zone , TB heat medium temperature (℃), RcMAX the maximum value of Rc (i), n is the reaction zone number, m i represents the temperature measurement points in the reaction zone of the i-th layer. However, i = 1 to n. In addition, i and j are counted sequentially from the inlet side of the source gas.)
請求項4に記載された触媒層形成方法で形成された触媒層と同一の触媒層を他の反応管内に形成することを特徴とする触媒層形成方法。
A catalyst layer forming method, wherein the same catalyst layer as the catalyst layer formed by the catalyst layer forming method according to claim 4 is formed in another reaction tube.
JP2004020977A 2004-01-29 2004-01-29 Catalyst layer and method for forming the same, fixed bed tubular reactor, method for producing methacrolein or methacrylic acid Pending JP2005213179A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004020977A JP2005213179A (en) 2004-01-29 2004-01-29 Catalyst layer and method for forming the same, fixed bed tubular reactor, method for producing methacrolein or methacrylic acid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004020977A JP2005213179A (en) 2004-01-29 2004-01-29 Catalyst layer and method for forming the same, fixed bed tubular reactor, method for producing methacrolein or methacrylic acid

Publications (1)

Publication Number Publication Date
JP2005213179A true JP2005213179A (en) 2005-08-11

Family

ID=34904750

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004020977A Pending JP2005213179A (en) 2004-01-29 2004-01-29 Catalyst layer and method for forming the same, fixed bed tubular reactor, method for producing methacrolein or methacrylic acid

Country Status (1)

Country Link
JP (1) JP2005213179A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011026284A (en) * 2009-07-29 2011-02-10 Mitsubishi Rayon Co Ltd Method for producing (meth)acrolein or (meth)acrylic acid
JP2011148765A (en) * 2009-12-21 2011-08-04 Mitsubishi Chemicals Corp Method for producing conjugated diene
US9580376B2 (en) 2013-07-18 2017-02-28 Nippon Kayaku Kabushiki Kaisha Method for producing unsaturated aldehyde and/or unsaturated carboxylic acid

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51127013A (en) * 1975-04-21 1976-11-05 Standard Oil Co Method of producing unsaturated aldehyde and acid by oxidising propylene and isobutylene
WO1991008185A1 (en) * 1989-12-06 1991-06-13 Nippon Shokubai Kagaku Kogyo Co., Ltd. Process for producing methacrolein and methacrylic acid
JPH04210937A (en) * 1990-02-08 1992-08-03 Nippon Shokubai Co Ltd Production of methacrylic acid
JPH0710802A (en) * 1993-06-28 1995-01-13 Sumitomo Chem Co Ltd Production of acrylic acid
JPH09301912A (en) * 1996-05-09 1997-11-25 Mitsubishi Rayon Co Ltd Packing of catalyst for synthesizing unsaturated aldehyde and unsaturated carboxylic acid
JPH10309457A (en) * 1997-04-23 1998-11-24 Basf Ag Reactor apparatus and treatment for fluid material
WO2001042184A1 (en) * 1999-12-10 2001-06-14 Mitsubishi Rayon Co., Ltd. Method for producing methacrylic acid
JP2001328951A (en) * 2000-05-19 2001-11-27 Nippon Shokubai Co Ltd Method for producing unsaturated aldehyde and unsaturated carboxylic acid
JP2002212127A (en) * 2001-01-16 2002-07-31 Mitsubishi Rayon Co Ltd Method for producing methacrolein and methacrylic acid
WO2003055835A1 (en) * 2001-12-27 2003-07-10 Mitsubishi Chemical Corporation Process for vapor-phase catalytic oxidation and process for production of (meth)acrolein or (meth)acrylic acid
WO2003057653A1 (en) * 2001-12-28 2003-07-17 Mitsubishi Chemical Corporation Method for vapor phase catalytic oxidation
JP2003206244A (en) * 2002-01-11 2003-07-22 Mitsubishi Chemicals Corp Method for gas-phase catalytic oxidation

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51127013A (en) * 1975-04-21 1976-11-05 Standard Oil Co Method of producing unsaturated aldehyde and acid by oxidising propylene and isobutylene
WO1991008185A1 (en) * 1989-12-06 1991-06-13 Nippon Shokubai Kagaku Kogyo Co., Ltd. Process for producing methacrolein and methacrylic acid
JPH04210937A (en) * 1990-02-08 1992-08-03 Nippon Shokubai Co Ltd Production of methacrylic acid
JPH0710802A (en) * 1993-06-28 1995-01-13 Sumitomo Chem Co Ltd Production of acrylic acid
JPH09301912A (en) * 1996-05-09 1997-11-25 Mitsubishi Rayon Co Ltd Packing of catalyst for synthesizing unsaturated aldehyde and unsaturated carboxylic acid
JPH10309457A (en) * 1997-04-23 1998-11-24 Basf Ag Reactor apparatus and treatment for fluid material
WO2001042184A1 (en) * 1999-12-10 2001-06-14 Mitsubishi Rayon Co., Ltd. Method for producing methacrylic acid
JP2001328951A (en) * 2000-05-19 2001-11-27 Nippon Shokubai Co Ltd Method for producing unsaturated aldehyde and unsaturated carboxylic acid
JP2002212127A (en) * 2001-01-16 2002-07-31 Mitsubishi Rayon Co Ltd Method for producing methacrolein and methacrylic acid
WO2003055835A1 (en) * 2001-12-27 2003-07-10 Mitsubishi Chemical Corporation Process for vapor-phase catalytic oxidation and process for production of (meth)acrolein or (meth)acrylic acid
WO2003057653A1 (en) * 2001-12-28 2003-07-17 Mitsubishi Chemical Corporation Method for vapor phase catalytic oxidation
JP2003206244A (en) * 2002-01-11 2003-07-22 Mitsubishi Chemicals Corp Method for gas-phase catalytic oxidation

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011026284A (en) * 2009-07-29 2011-02-10 Mitsubishi Rayon Co Ltd Method for producing (meth)acrolein or (meth)acrylic acid
JP2011148765A (en) * 2009-12-21 2011-08-04 Mitsubishi Chemicals Corp Method for producing conjugated diene
US9580376B2 (en) 2013-07-18 2017-02-28 Nippon Kayaku Kabushiki Kaisha Method for producing unsaturated aldehyde and/or unsaturated carboxylic acid
JPWO2015008814A1 (en) * 2013-07-18 2017-03-02 日本化薬株式会社 Process for producing unsaturated aldehyde and / or unsaturated carboxylic acid

Similar Documents

Publication Publication Date Title
JP6527499B2 (en) Process for producing unsaturated aldehyde and / or unsaturated carboxylic acid
JP3793317B2 (en) Catalyst and method for producing unsaturated aldehyde and unsaturated acid
CN103270013B (en) Method for long-term operation of a heterogeneously catalyzed partial gas phase oxidation of propene to obtain acrolein
RU2349576C2 (en) Method of prolonged heterogeneous catalysed partial oxidation of propene to acrolein in gaseous phase
US20060161019A1 (en) Multiple catalyst system and its use in a high hydrocarbon space velocity process for preparing unsaturated aldehydes and acids
RU2621715C2 (en) Method of obtaining an unsaturated aldehyde and/or unsaturated carboxylic acid
WO2015008814A1 (en) Method for manufacturing unsaturated aldehyde and/or unsaturated carboxylic acid
US7154009B2 (en) Long-term operation of a heterogeneously catalyzed gas phase partial oxidation of propene to acrolein
KR101558941B1 (en) Process For Producing Methacrolein And/Or Methacrylic Acid
JP4497442B2 (en) Method for producing methacrolein and methacrylic acid
JP5501221B2 (en) Method for producing acrolein and / or acrylic acid
JP2005213179A (en) Catalyst layer and method for forming the same, fixed bed tubular reactor, method for producing methacrolein or methacrylic acid
WO2002098827A1 (en) Process for producing (meth)acrolein and/or (meth)acrylic acid
JP5607865B2 (en) Method for producing methacrylic acid
JP2004002209A (en) Method for producing unsaturated aldehyde
KR101218128B1 (en) / process for producting methacrolein and/or methacrylic acid
WO2005110591A1 (en) Pilot test method for multitubular reactor
JP2003012589A (en) Method of producing acrolein and acrylic acid
JP4812034B2 (en) Method for producing methacrylic acid production catalyst, methacrylic acid production catalyst, and methacrylic acid production method
JP5479803B2 (en) Method for producing (meth) acrolein or (meth) acrylic acid
WO2017170721A1 (en) Restarting method
JP2009084167A (en) Manufacturing method of acrolein and/or acrylic acid
WO2024080208A1 (en) Method for producing unsaturated aldehyde and device for producing unsaturated aldehyde
JP2005162744A (en) Method for producing unsaturated aldehyde and unsaturated carboxylic acid
JP2016106082A (en) Method for producing unsaturated aldehyde and/or unsaturated carboxylic acid

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070129

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100223

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100421

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100608