JP2009084167A - Manufacturing method of acrolein and/or acrylic acid - Google Patents

Manufacturing method of acrolein and/or acrylic acid Download PDF

Info

Publication number
JP2009084167A
JP2009084167A JP2007253251A JP2007253251A JP2009084167A JP 2009084167 A JP2009084167 A JP 2009084167A JP 2007253251 A JP2007253251 A JP 2007253251A JP 2007253251 A JP2007253251 A JP 2007253251A JP 2009084167 A JP2009084167 A JP 2009084167A
Authority
JP
Japan
Prior art keywords
gas
catalyst
reactor
stopped
molecular oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007253251A
Other languages
Japanese (ja)
Inventor
Michio Tanimoto
道雄 谷本
Nobuyuki Hakozaki
伸幸 箱崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Shokubai Co Ltd
Original Assignee
Nippon Shokubai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Shokubai Co Ltd filed Critical Nippon Shokubai Co Ltd
Priority to JP2007253251A priority Critical patent/JP2009084167A/en
Publication of JP2009084167A publication Critical patent/JP2009084167A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Catalysts (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing acrolein and/or acrylic acid by a catalytic gas-phase oxidation of propylene and/or propane, where acrolein and/or acrylic acid are manufactured in a high yield stably for a long period of time on an industrial scale even when the operation is temporarily suspended and then resumed. <P>SOLUTION: On suspending an operation of a catalytic gas-phase oxidation process, the feed of a reaction raw material gas is suspended; subsequently an inert gas is fed to the reactor followed by feeding a molecular oxygen-containing gas; then the feed of the molecular oxygen to the reactor is suspended. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は気相酸化触媒を充填した反応管を有する固定床反応器を用いて、プロピレンおよび/またはプロパンを分子状酸素または分子状酸素含有ガスにより接触気相酸化してアクロレインおよび/またはアクリル酸を製造する方法に関する。   The present invention uses a fixed bed reactor having a reaction tube filled with a gas phase oxidation catalyst, and a propylene and / or propane is subjected to catalytic gas phase oxidation with molecular oxygen or a molecular oxygen-containing gas, thereby acrolein and / or acrylic acid. It relates to a method of manufacturing.

アクリル酸は、各種合成樹脂、塗料、可塑剤の原料として工業的に重要な物質であり、近年では吸水性樹脂の原料としての重要性が高まり、アクリル酸の需要も増大する傾向にある。   Acrylic acid is an industrially important material as a raw material for various synthetic resins, paints, and plasticizers. In recent years, the importance as a raw material for water-absorbing resins has increased, and the demand for acrylic acid tends to increase.

アクリル酸の製法としては、プロピレンを原料とした二段接触気相酸化法が最も一般的であり、広く工業的に行われている。この方法の形態としては、プロピレンをアクロレインに変換するための触媒(以下、「前段触媒」という。)が充填されたの第一固定床反応器にて、プロピレンおよび分子状酸素を含む原料ガスの接触気相酸化によりアクロレインとし、得られたアクロレインをアクリル酸に変換するための触媒(以下、「後段触媒」という。)が充填された第二固定床反応器にて接触気相酸化してアクリル酸を製造する方法と、一つの反応器に前段触媒と後段触媒とが充填された固定床反応器にてプロピレンおよび分子状酸素を含む原料ガスを接触気相酸化してアクリル酸を製造する方法と、大きく分けて2つの方法がある。   As a method for producing acrylic acid, a two-stage contact gas phase oxidation method using propylene as a raw material is the most common and widely used industrially. As a form of this method, in a first fixed bed reactor packed with a catalyst for converting propylene to acrolein (hereinafter referred to as “pre-stage catalyst”), a raw material gas containing propylene and molecular oxygen is supplied. Acrolein is converted into acrolein by catalytic gas phase oxidation, and the resulting gas is oxidized in a second fixed bed reactor packed with a catalyst for converting the obtained acrolein into acrylic acid (hereinafter referred to as “second-stage catalyst”). Method for producing acid, and method for producing acrylic acid by catalytic gas phase oxidation of a raw material gas containing propylene and molecular oxygen in a fixed bed reactor in which a first stage catalyst and a second stage catalyst are packed in one reactor There are two main methods.

また近年、プロピレンに比べ安価なプロパンを原料として、脱水素あるいは酸化脱水素によりプロピレンとし、得られたプロピレンを上記二段接触気相酸化する方法やプロパンを直接一段で接触気相酸化する方法などが種々検討されている。   In recent years, propane, which is cheaper than propylene, is used as a raw material to produce propylene by dehydrogenation or oxidative dehydrogenation, and the obtained propylene is subjected to the above-mentioned two-stage contact gas-phase oxidation, or the propane is directly contacted in one stage. Various studies have been made.

このようなプロピレンおよび/またはプロパンの接触気相酸化によりアクリル酸を製造する方法において、高収率で長期間安定かつ安全に製造することを目的に様々な提案がされており、気相酸化反応の停止方法あるいはスタートアップ方法についても幾つかの提案がなされている。   In such a method for producing acrylic acid by catalytic gas phase oxidation of propylene and / or propane, various proposals have been made for the purpose of producing a high yield and stable for a long period of time safely. Some proposals have also been made on how to stop or start up.

例えば、特許文献1には、接触気相酸化工程の運転停止中においても酸素を含有するガスを反応器に供給することで、触媒性能の劣化が防止できることが開示されている。   For example, Patent Document 1 discloses that deterioration of catalyst performance can be prevented by supplying a gas containing oxygen to the reactor even when the operation of the catalytic gas phase oxidation step is stopped.

特許文献2では、反応器入口の各導入ガスの流量を基に計算して得られた各ガスの濃度の値と、ガス分析計による分析値とが共に設定範囲外になったときにのみ運転を停止させることで、運転の無駄な緊急停止を省き、停止が必要な場合のみに確実に停止するための方法が開示されている。   In Patent Document 2, the operation is performed only when the concentration value of each gas obtained by calculation based on the flow rate of each introduced gas at the reactor inlet and the analysis value by the gas analyzer are both out of the set range. By stopping the operation, there is disclosed a method for eliminating an emergency stop of useless operation and stopping it only when it is necessary to stop.

また、特許文献3には、反応器に供給する被酸化原料と分子状酸素含有ガスとの組成によって請ずる爆発範囲を回避し、かつ希釈ガスの供給量を低減することで、安全な反応器のスタートアップが達成できることが開示されている。   Further, Patent Document 3 discloses a safe reactor by avoiding the explosion range undertaken by the composition of the raw material to be oxidized and the molecular oxygen-containing gas supplied to the reactor, and reducing the supply amount of the dilution gas. It is disclosed that startups can be achieved.

特開2005−314314号公報JP 2005-314314 A 特開2004−277339号公報JP 2004-277339 A 特開2002−53519号公報JP 2002-53519 A

しかしながら、アクリル酸は現在数百万トン/年の規模で生産されており、工業的規模で0.1%でも収率が向上すれば経済的に非常に大きな意味を持つことになる。さらに、より長期間にわたり安定に製造できればなおのことである。前記した製造方法あるいは停止方法では、目的とするアクリル酸の収率や長期間の製造において改善は見られているものの、近年の需要の増大を鑑みればなお改善の余地を残すものである。   However, acrylic acid is currently produced at a scale of several million tons / year, and if the yield is improved even at an industrial scale of 0.1%, it will be very economically significant. Furthermore, it is even more so if it can be manufactured stably over a longer period of time. Although the above-described production method or stopping method has been improved in the yield of the target acrylic acid and long-term production, there is still room for improvement in view of the recent increase in demand.

特許文献1では、接触気相酸化工程の運転を停止して再度運転を再開するまで、触媒の温度を保ったまま酸素を連続的に供給しないと触媒上に蓄積している一部重質の副生成物等の還元性物質が触媒を還元して、触媒の酸化状態が変化するため、触媒の性能が劣化すること、そのため、運転停止時も分子状酸素を供給すれば触媒の酸化状態が維持され触媒の性能が劣化しないことが開示されている。しかしながら、その実施例においては、反応に供していない新しい触媒を反応管に充填して、その運転前に酸素含有ガスを供給した際の効果しかなく、実際の製造において、一旦反応に供した後の触媒について、定期点検あるいは緊急停止などで反応を停止する際の評価は全くなされていない。このような、一旦反応に供した後の運転停止時においては触媒の温度を保った状態で酸素を連続的に供給しつづけた場合、触媒の酸化が進み、定常状態での高収率が得られていた触媒の微妙な酸化状態が崩れ、再スタート後定常状態に達するまで収率が低くなり、長期間にわたる安定製造において十分とは言えない。   In Patent Document 1, unless oxygen is continuously supplied while maintaining the temperature of the catalyst until the operation of the catalytic gas phase oxidation step is stopped and the operation is restarted, a part of heavy fuel accumulated on the catalyst is stored. Reducing substances such as by-products reduce the catalyst and the oxidation state of the catalyst changes, so the performance of the catalyst deteriorates.For this reason, if molecular oxygen is supplied even when the operation is stopped, the oxidation state of the catalyst is reduced. It is disclosed that the performance of the catalyst is maintained and does not deteriorate. However, in this embodiment, there is only the effect of filling the reaction tube with a new catalyst that has not been subjected to the reaction and supplying the oxygen-containing gas before the operation. No evaluation has been made on the catalyst in the case of stopping the reaction by periodic inspection or emergency stop. When the operation is stopped after being once subjected to the reaction, if the oxygen is continuously supplied while maintaining the temperature of the catalyst, the oxidation of the catalyst proceeds and a high yield in a steady state is obtained. The subtle oxidation state of the catalyst that has been lost collapses, and the yield decreases until a steady state is reached after restarting, which is not sufficient for stable production over a long period of time.

特許文献2では、分析計の誤作動などによる緊急停止を避け、必要時のみ緊急停止できる方法に関するものであり、運転停止における触媒性能への影響に関しては何ら開示されていない。   Patent Document 2 relates to a method capable of avoiding an emergency stop due to a malfunction of an analyzer and the like and capable of performing an emergency stop only when necessary, and does not disclose any influence on the catalyst performance in the operation stop.

特許文献3では、運転停止状態から効率よく反応をスタートアップさせる方法に関するものであり、特許文献2同様に運転停止における触媒性能への影響に関しては何ら開示されていない。   Patent Document 3 relates to a method for efficiently starting up a reaction from an operation stop state, and does not disclose any influence on catalyst performance in operation stop as in Patent Document 2.

かくして、本発明の目的は、プロピレンおよび/またはプロパンの接触気相酸化によりアクロレインおよび/またはアクリル酸を製造する方法において、工業的な規模で定期点検や緊急停止等で運転を一時的に中断した場合でも、運転再開後も高い収率を維持し、長期間安定して高収率でアクロレインおよび/またはアクリル酸を製造するための方法を提供することにある。   Thus, an object of the present invention is to temporarily interrupt operation on an industrial scale by periodic inspection or emergency stop in a method for producing acrolein and / or acrylic acid by catalytic gas phase oxidation of propylene and / or propane. Even in such a case, the object is to provide a method for producing acrolein and / or acrylic acid in a high yield stably for a long period of time while maintaining a high yield even after resumption of operation.

本発明者らは、上記課題を解決すべく鋭意検討を行った結果、プロピレンおよび/またはプロパンを分子状酸素または分子状酸素含有ガスにより接触気相酸化してアクロレインおよび/またはアクリル酸を製造する方法において、接触気相酸化工程の運転を停止する際、反応原料ガスの供給が停止された後、当該反応器に不活性ガスを供給し、次いで前記不活性ガスの供給を停止し、分子状酸素含有ガスを供給した後、反応器への分子状酸素の供給を停止することで、再度運転を開始しても高収率で長期間安定かつ安全に製造できることを見出し本発明に至った。   As a result of intensive studies to solve the above problems, the inventors of the present invention produce acrolein and / or acrylic acid by catalytic vapor phase oxidation of propylene and / or propane with molecular oxygen or a molecular oxygen-containing gas. In the method, when stopping the operation of the catalytic gas phase oxidation step, after the supply of the reaction raw material gas is stopped, the inert gas is supplied to the reactor, and then the supply of the inert gas is stopped, After the supply of the oxygen-containing gas, the molecular oxygen supply to the reactor was stopped, and it was found that even if the operation is started again, it can be produced stably and safely for a long time with a high yield.

本発明によれば、上記課題の解決により、プロピレンおよび/またはプロパンを分子状酸素または分子状酸素含有ガスにより接触気相酸化してアクロレインおよび/またはアクリル酸を製造する方法において、酸化反応工程の停止、再スタートによる収率の低下がなく、高収率で長期間安定かつ安全な製造が可能となる。   According to the present invention, in the method of producing acrolein and / or acrylic acid by catalytic vapor phase oxidation of propylene and / or propane with molecular oxygen or a molecular oxygen-containing gas, There is no decrease in yield due to stopping and restarting, and high yield and stable and safe production over a long period of time are possible.

以下、本発明にかかる接触気相酸化法によるアクロレインおよび/またはアクリル酸の製造方法について詳しく説明するが、本発明の範囲はこれらの説明に拘束されることはなく、以下の例示以外についても本発明の趣旨を損なわない範囲で適宜変更し、実施することができる。   Hereinafter, the method for producing acrolein and / or acrylic acid by the contact gas phase oxidation method according to the present invention will be described in detail. However, the scope of the present invention is not limited to these descriptions, and the present invention is not limited to the following examples. The present invention can be changed and implemented as appropriate without departing from the spirit of the invention.

本発明によれば、接触気相酸化工程の運転を停止する際、プロピレンおよび/またはプロパン、分子状酸素および不活性ガス等からなる混合ガス(以下、「反応原料ガス」という。)の供給を停止した後、反応器に不活性ガスを供給させ、次いで好ましくは260℃〜440℃の温度範囲、特に好ましくはで分子状酸素含有ガスを供給した後、ガスの供給を停止すればよい。本発明における運転停止時としては、装置の点検や部品等の交換による停止や装置トラブル等による緊急停止などが挙げられる。   According to the present invention, when the operation of the catalytic gas phase oxidation step is stopped, the supply of a mixed gas composed of propylene and / or propane, molecular oxygen and an inert gas (hereinafter referred to as “reaction raw material gas”) is performed. After stopping, the inert gas is supplied to the reactor, and then the molecular oxygen-containing gas is preferably supplied in a temperature range of 260 ° C. to 440 ° C., particularly preferably, and then the gas supply is stopped. Examples of the operation stop in the present invention include stop by inspection of the apparatus, replacement of parts and the like, emergency stop due to apparatus trouble, and the like.

運転を停止する際には、当然ながらの反応原料ガスの供給も停止する必要がある。しかしながら、反応原料ガスの供給を停止しても、反応器内および配管内には、反応原料ガスあるいはその反応生成物含有ガスが滞留した状態になるため、この状態で分子状酸素含有ガスを供給すると、高温物や電気スパークなどの着火源により爆発を起こしうる爆発組成を形成する場合がある。それ故、反応原料ガスの供給を停止し、続いて、窒素、水蒸気などからなる不活性ガスを製造装置に導入することで、系内に滞留している原料ガスを系外へ放出させる必要がある。この不活性ガスの導入量は、装置固有の大きさにより異なるため一概に特定できないが、通常反応器および配管容量の30倍程度の量を導入すれば十分である。   When the operation is stopped, the supply of the reaction raw material gas naturally needs to be stopped. However, even if the supply of the reaction raw material gas is stopped, the reaction raw material gas or its reaction product-containing gas remains in the reactor and the piping, so the molecular oxygen-containing gas is supplied in this state. Then, an explosion composition that may cause an explosion may be formed by an ignition source such as a high-temperature object or an electric spark. Therefore, it is necessary to stop the supply of the reaction raw material gas, and then introduce the inert gas composed of nitrogen, water vapor, etc. into the production apparatus to release the raw material gas remaining in the system out of the system. is there. The amount of the inert gas introduced varies depending on the size inherent to the apparatus and cannot be specified unconditionally. However, it is usually sufficient to introduce an amount of about 30 times the reactor and piping capacity.

上記不活性ガスによる反応系内の置換ができれば、次に分子状酸素含有ガスを反応器内に導入すればよい。分子状酸素の供給を行わない場合、触媒の表面上には原料あるいは反応物あるいは副生成物などの有機物が吸着しており、これらの触媒上に吸着している有機物が触媒中の酸素によって酸化され、その際に触媒自体は酸素が引き抜かれるため還元されて触媒の反応に好適な微妙な酸化状態が変化してしまい性能が低下するためと推測される。このような触媒上に吸着した有機物を除去するには、分子状酸素を供給することが必要であり、その際、260℃以上の温度で行うのが好ましく、260℃より低いと触媒上に吸着した有機物の除去が不十分となる。一方、分子状酸素による処理をあまり高い温度行うと、有機物の除去は容易になるが、触媒自体が高温の処理により熱劣化してしまう可能性が高く好ましくない。好ましくは440℃以下、より好ましくは4420℃以下、特に好ましくは400℃以下の温度で処理するのが良い。中でも、気相酸化を停止する直前の反応温度を維持した状態で処理するのが最も好ましい。   If the reaction system can be replaced with the inert gas, then a molecular oxygen-containing gas may be introduced into the reactor. When molecular oxygen is not supplied, organic substances such as raw materials, reactants or by-products are adsorbed on the surface of the catalyst, and the organic substances adsorbed on these catalysts are oxidized by oxygen in the catalyst. In this case, it is presumed that the catalyst itself is reduced because oxygen is extracted, so that the subtle oxidation state suitable for the reaction of the catalyst changes and the performance deteriorates. In order to remove such organic substances adsorbed on the catalyst, it is necessary to supply molecular oxygen, and at this time, it is preferable to carry out the reaction at a temperature of 260 ° C. or higher. Removal of the organic matter is insufficient. On the other hand, if the treatment with molecular oxygen is performed at a very high temperature, the removal of organic substances becomes easy, but it is not preferable because the catalyst itself may be thermally deteriorated due to the high-temperature treatment. The treatment is preferably performed at a temperature of 440 ° C. or lower, more preferably 4420 ° C. or lower, particularly preferably 400 ° C. or lower. Among these, it is most preferable to perform the treatment while maintaining the reaction temperature immediately before stopping the gas phase oxidation.

分子状酸素含有ガスの導入量については、装置固有の大きさによって異なるため一概に特定できないが、好ましくは、分子状酸素含有ガスを反応管に充填された前段触媒に対する空間速度で200〜3000h−1の範囲で導入した際の、供給した分子状酸素含有ガス中に含まれる酸化炭素の量を除く反応器出口ガス中に含まれる酸化炭素の量(以下、「反応器出口部酸化炭素含有量」という。)が好ましくは1000ppm以下、より好ましくは500ppm以下になるまで供給すれば良い。但し、後述のように長期間分子状酸素を導入してしまうと、触媒性能の低下に繋がるため、少なくとも反応器出口部酸化炭素含有量が0ppmになる前、すなわち反応器出口ガス中の酸化炭素濃度と供給した分子状酸素含有ガス中の酸化炭素濃度とが等しくなる前に分子状酸素の供給を停止する必要がある。 The amount of the molecular oxygen-containing gas introduced varies depending on the size inherent to the apparatus, and thus cannot be specified unconditionally. However, preferably, the space oxygen velocity is 200 to 3000 h − with respect to the preceding catalyst in which the molecular oxygen-containing gas is charged in the reaction tube. The amount of carbon oxide contained in the reactor outlet gas excluding the amount of carbon oxide contained in the supplied molecular oxygen-containing gas when introduced in the range of 1 (hereinafter referred to as “reactor outlet portion carbon oxide content” “)” Is preferably 1000 ppm or less, more preferably 500 ppm or less. However, if molecular oxygen is introduced for a long period of time as will be described later, the catalyst performance is lowered. Therefore, at least before the content of carbon oxide at the outlet of the reactor reaches 0 ppm, that is, carbon oxide in the reactor outlet gas. It is necessary to stop the supply of molecular oxygen before the concentration and the carbon oxide concentration in the supplied molecular oxygen-containing gas become equal.

酸化炭素の検出方法としては、例えば、ガスクロマトグラフ方式等のガス濃度分析計で分析すればよく、分析方法としては、製造の一連の装置に組みこまれたオンライン分析でも、ガスをサンプリングし、そのサンプリングガスを別途分析計に導入して分析してもよい。   As a method for detecting carbon oxide, for example, it may be analyzed by a gas concentration analyzer such as a gas chromatograph method. As an analysis method, gas is sampled even in an on-line analysis incorporated in a series of manufacturing equipment. A sampling gas may be separately introduced into the analyzer for analysis.

本発明においては、最終的に、分子状酸素含有ガスを供給した後に、分子状酸素の供給を停止する必要がある。その際、分子状酸素の供給を停止すればよく、供給ガスを完全に停止するあるいは分子状酸素含有ガスを不活性ガスに切り替えるなどの方法が採用される。   In the present invention, after the molecular oxygen-containing gas is finally supplied, it is necessary to stop the supply of molecular oxygen. At that time, the supply of molecular oxygen may be stopped, and a method of completely stopping the supply gas or switching the molecular oxygen-containing gas to an inert gas is adopted.

分子状酸素を停止せずに、長時間あるいは再運転時まで供給し続けた場合、上記の有機物による還元とは逆に、触媒の酸化が進み、触媒の反応に好適な酸化状態が変化してしまい性能が低下するためと推測される。   If molecular oxygen is not supplied for a long time or until re-operation without being stopped, the oxidation of the catalyst proceeds and the oxidation state suitable for the reaction of the catalyst changes, contrary to the reduction by the organic matter described above. It is estimated that the performance is reduced.

本発明で用いられる前段触媒としては、特に制限はなく、公知の一般に用いられている酸化物触媒を用いることができる。   There is no restriction | limiting in particular as a pre-stage catalyst used by this invention, The well-known generally used oxide catalyst can be used.

具体的には、前段触媒としては、下記一般式(I):
MoBiFeX1X2X3X4 (I)
(ここで、Moはモリブデン、Biはビスマス、Feは鉄、X1はコバルトおよびニッケルから選ばれる少なくとも1種の元素、X2はアルカリ金属、アルカリ土類金属、ホウ素およびタリウムから選ばれる少なくとも1種の元素、X3はタングステン、ケイ素、アルミニウム、ジルコニウムおよびチタンから選ばれる少なくとも1種の元素、X4はリン、テルル、アンチモン、スズ、セリウム、鉛、ニオブ、マンガン、砒素および亜鉛から選ばれる少なくとも1種の元素、Oは酸素を表し、またa、b、c、d、e、f、gおよびxはそれぞれMo、Bi、Fe、A、B、C、DおよびOの原子比を表し、a=12のとき、b=0.1〜10、c=0.1〜20、d=2〜20、e=0.001〜10、f=0〜30、g=0〜4であり、xは各元素の酸化状態によって定まる数値である)で示される酸化物触媒が好適に使用できる。
Specifically, as the pre-stage catalyst, the following general formula (I):
Mo a Bi b Fe c X1 d X2 e X3 f X4 g O x (I)
(Where Mo is molybdenum, Bi is bismuth, Fe is iron, X1 is at least one element selected from cobalt and nickel, X2 is at least one element selected from alkali metals, alkaline earth metals, boron and thallium. Element, X3 is at least one element selected from tungsten, silicon, aluminum, zirconium and titanium, X4 is at least one element selected from phosphorus, tellurium, antimony, tin, cerium, lead, niobium, manganese, arsenic and zinc The element O represents oxygen, and a, b, c, d, e, f, g and x represent the atomic ratio of Mo, Bi, Fe, A, B, C, D and O, respectively, a = 12 Where b = 0.1-10, c = 0.1-20, d = 2-20, e = 0.001-10, f = 0-30, g = 0-4, and x is each An oxide catalyst represented by (a value determined by the oxidation state of the element) can be preferably used.

同様に、後段触媒についても特に制限はなく、公知の一般に用いられている酸化触媒を用いることができる。具体的には、後段触媒としては、下記一般式(II):
MoY1Y2Y3Y4 (II)
(ここで、Moはモリブデン、Vはバナジウム、Wはタングステン、Y1はアンチモン、ビスマス、クロム、ニオブ、リン、鉛、亜鉛、コバルト、ニッケルおよびスズから選ばれる少なくとも1種の元素、Y2は銅および鉄から選ばれる少なくとも1種の元素、Y3はアルカリ金属、アルカリ土類金属およびタリウムから選ばれる少なくとも1種の元素、Y4はケイ素、アルミニウム、チタン、ジルコニウム、イットリウム、ロジウムおよびセリウムから選ばれる少なくとも1種の元素、Oは酸素を表し、またh、i、j、k、l、m、nおよびyはそれぞれMo、V、W、Y1、Y2、Y3、Y4およびOの原子比を表し、h=12のとき、i=2〜14、j=0〜12、k=0〜5、l=0.01〜6、m=0〜5、n=0〜10であり、yは各元素の酸化状態によって定まる数値である)で示される酸化物触媒が好適に使用できる。
Similarly, the latter catalyst is not particularly limited, and a known and commonly used oxidation catalyst can be used. Specifically, as the latter stage catalyst, the following general formula (II):
Mo h V i W j Y1 k Y2 l Y3 m Y4 n O y (II)
(Where Mo is molybdenum, V is vanadium, W is tungsten, Y1 is at least one element selected from antimony, bismuth, chromium, niobium, phosphorus, lead, zinc, cobalt, nickel and tin, Y2 is copper and At least one element selected from iron, Y3 is at least one element selected from alkali metals, alkaline earth metals and thallium; Y4 is at least one selected from silicon, aluminum, titanium, zirconium, yttrium, rhodium and cerium The seed element, O represents oxygen, and h, i, j, k, l, m, n and y represent the atomic ratios of Mo, V, W, Y1, Y2, Y3, Y4 and O, respectively, h = 12, i = 2-14, j = 0-12, k = 0-5, l = 0.01-6, m = 0-5, n = 0-10, y is An oxide catalyst represented by (a value determined by the oxidation state of each element) can be preferably used.

触媒の成形方法としては、従来からよく知られている活性成分を一定の形状に成形する押し出し成形法や打錠成形法等、あるいは活性成分を一定の形状を有する任意の不活性担体に担持させる担持法によって製造することができ、その形状についても特に制限はなく、球状、円柱状、リング状、不定形などのいずれの形状でもよい。もちろん球状の場合、真球である必要はなく実質的に球状であればよく、円柱状およびリング状についても同様である。   As a method for forming the catalyst, a conventionally well-known extrusion molding method for molding an active ingredient into a certain shape, a tableting molding method, or the like, or an active component is supported on any inert carrier having a certain shape. It can be produced by a supporting method, and the shape thereof is not particularly limited, and may be any shape such as a spherical shape, a cylindrical shape, a ring shape, and an indefinite shape. Of course, in the case of a spherical shape, it does not need to be a true sphere, and may be substantially spherical, and the same applies to a cylindrical shape and a ring shape.

なお、反応器に充填される触媒は、それぞれ単一な触媒である必要はなく、例えば前段触媒において、活性の異なる複数種の触媒を用い、これらを活性の異なる順に充填したり、触媒の一部を不活性担体などで希釈したりしてもよい。後段触媒についても同様である。   Note that the catalyst charged in the reactor does not need to be a single catalyst. For example, a plurality of types of catalysts having different activities may be used in the preceding stage catalyst, and these may be charged in the order of different activities, The part may be diluted with an inert carrier or the like. The same applies to the latter stage catalyst.

前段触媒および後段触媒の好適な反応温度は、反応条件などによって適宜選択されるが、前段触媒では、通常、300〜380℃であり、また、後段触媒では、通常、250〜350℃である。さらに、前段触媒の反応温度と後段触媒の反応温度との差は10〜110℃、好ましくは30〜80℃とするのがよい。   A suitable reaction temperature for the pre-stage catalyst and the post-stage catalyst is appropriately selected depending on the reaction conditions and the like, but is usually 300 to 380 ° C. for the pre-stage catalyst, and usually 250 to 350 ° C. for the post-stage catalyst. Furthermore, the difference between the reaction temperature of the former catalyst and the reaction temperature of the latter catalyst is 10 to 110 ° C, preferably 30 to 80 ° C.

なお、前段触媒の反応温度と後段触媒の反応温度とは、それぞれの反応器または反応帯における熱媒体入口温度に実質的に相当するものであり、熱媒体入口温度は、上記の範囲内で設定されたそれぞれの設定温度に応じて決定される。   The reaction temperature of the front catalyst and the reaction temperature of the rear catalyst substantially correspond to the heat medium inlet temperature in each reactor or reaction zone, and the heat medium inlet temperature is set within the above range. It is determined according to each set temperature.

以下に、実施例を挙げて本発明を具体的に説明するが、本発明はもとより下記実施例により制限を受けるものではなく、本発明の趣旨に適合し得る範囲で適当に変更を加えて実施することも可能であり、それらはいずれも本発明の技術的範囲に含まれる。なお、以下では、便宜上、「質量部」を単に「部」、と記すことがある。なお、プロピレン転化率およびアクリル酸収率は次式によって求めた。   Hereinafter, the present invention will be described in detail with reference to examples. However, the present invention is not limited to the following examples, and may be implemented with appropriate modifications within a range that can meet the gist of the present invention. These are all included in the technical scope of the present invention. Hereinafter, for convenience, “parts by mass” may be simply referred to as “parts”. The propylene conversion rate and acrylic acid yield were determined by the following formulas.

プロピレン転化率(モル%)
=(反応したプロピレンのモル数/供給したプロピレンのモル数)×100
アクリル酸収率(モル%)
=(生成したアクリル酸のモル数/供給したプロピレンのモル数)×100
<参考例>
[前段触媒1の調製]
蒸留水2000部を加熱攪拌しつつモリブデン酸アンモニウム500部を溶解した(A液)。別に500部の蒸留水に硝酸コバルト137部および硝酸ニッケル206部を溶解させ(B液)、さらに別途、350部の蒸留水に濃硝酸(65wt%)30部を加えて酸性とした溶液に硝酸第二鉄38.1部および硝酸ビスマス572部を溶解させた(C液)。A液にこれらの硝酸塩溶液(B液、C液)を滴下した。引き続き、ホウ砂9.0部、20wt%シリカゾル1702部および硝酸カリウム2.4部を加えた。このようにして得られた懸濁液を加熱、攪拌、蒸発せしめた。得られた乾燥物を200℃で乾燥後に粉砕し、外径5mm、長さ4mmのペレット状に打錠成型した。次いで、得られた成形物を空気雰囲気下470℃で6時間焼成し、前段触媒1を得た。その酸素以外の金属元素の組成は原子比で以下の通りであった。
Mo12BiCoNiFe0.4Na0.20.40.1Si24
[後段触媒1の調製]
蒸留水3000部を加熱攪拌しながら、そのなかにパラモリブデン酸アンモニウム525部、メタバナジン酸アンモニウム87部、パラタングステン酸アンモニウム80.3部を溶解した。別に蒸留水300部を加熱攪拌しながら、硝酸銅71.9部を溶解した。得られた2つの水溶液を混合し、さらに三酸化アンチモン18.1部を添加し、懸濁液を得た。この懸濁液を、蒸発乾固にてケーキ状の固形物とし、得られた固形物を、390℃で約5時間焼成を行った。焼成後の固形物を250μm以下に粉砕し、触媒粉体を得た。遠心流動コーティング装置に平均粒径4mmのα−アルミナ球形担体を投入し、次いで結合剤として15重量%の硝酸アンモニウム水溶液と共に触媒粉体を90℃の熱風を通しながら投入して担体に担持させた後、空気雰囲気下400℃で6時間熱処理をして後段触媒1を得た。この触媒の担体を除いた酸素以外の金属元素の組成は原子比で以下の通りであった。
Mo121.2Cu1.2Sb0.5
[反応器]
全長6000mm、内径25mmのSUS製反応管およびこれを覆う熱媒体を流すためのシェルからなる反応器を鉛直方向に用意した。なお、シェルの下から3000mmの位置にシェルを上下に分割する厚さ50mmの仕切り板を設け、上方および下方のシェル空間部のいずれにおいても熱媒体を下方から上方に循環した。反応管上部より順に前段触媒1、外径8mmのSUS製ラシヒリングおよび後段触媒1を落下させて、それぞれの長さが前段触媒:2800mm、ラシヒリング:400mmおよび後段触媒:2800mmとなるように充填した。
[酸化反応]
前段触媒層の温度(下方シェル空間部の熱媒体入口温度):330℃、後段触媒層の温度(上方シェル空間部の熱媒体入口温度):265℃とし、反応器の下部から、プロピレン5体積%、酸素10体積%、水蒸気20体積%および窒素65体積%からなる混合ガスを反応原料ガスとして、前段触媒に対する空間速度1600h−1(STP)で導入し、気相接触酸化を2000時間継続して行った。その反応結果を表1に示す。
Propylene conversion (mol%)
= (Number of moles of reacted propylene / number of moles of supplied propylene) × 100
Acrylic acid yield (mol%)
= (Number of moles of acrylic acid produced / number of moles of supplied propylene) × 100
<Reference example>
[Preparation of catalyst 1]
While heating and stirring 2000 parts of distilled water, 500 parts of ammonium molybdate was dissolved (solution A). Separately, 137 parts of cobalt nitrate and 206 parts of nickel nitrate were dissolved in 500 parts of distilled water (Liquid B), and nitric acid was added to a solution made acidic by adding 30 parts of concentrated nitric acid (65 wt%) to 350 parts of distilled water. 38.1 parts of ferric iron and 572 parts of bismuth nitrate were dissolved (solution C). These nitrate solutions (B solution and C solution) were added dropwise to the A solution. Subsequently, 9.0 parts of borax, 1702 parts of 20 wt% silica sol, and 2.4 parts of potassium nitrate were added. The suspension thus obtained was heated, stirred and evaporated. The obtained dried product was dried at 200 ° C. and pulverized, and tableted into pellets having an outer diameter of 5 mm and a length of 4 mm. Next, the obtained molded product was calcined at 470 ° C. for 6 hours in an air atmosphere to obtain a pre-stage catalyst 1. The composition of metal elements other than oxygen was as follows in terms of atomic ratio.
Mo 12 Bi 5 Co 2 Ni 3 Fe 0.4 Na 0.2 B 0.4 K 0.1 Si 24
[Preparation of latter catalyst 1]
While heating and stirring 3000 parts of distilled water, 525 parts of ammonium paramolybdate, 87 parts of ammonium metavanadate, and 80.3 parts of ammonium paratungstate were dissolved therein. Separately, 71.9 parts of copper nitrate were dissolved while heating and stirring 300 parts of distilled water. The two aqueous solutions obtained were mixed, and 18.1 parts of antimony trioxide was further added to obtain a suspension. This suspension was evaporated to dryness to form a cake-like solid, and the obtained solid was calcined at 390 ° C. for about 5 hours. The fired solid was pulverized to 250 μm or less to obtain catalyst powder. After the α-alumina spherical carrier having an average particle diameter of 4 mm is put into the centrifugal fluidized coating apparatus, and then the catalyst powder is put together with 15% by weight ammonium nitrate aqueous solution as a binder while passing hot air at 90 ° C. and supported on the carrier. Then, heat treatment was performed at 400 ° C. for 6 hours in an air atmosphere to obtain a rear catalyst 1. The composition of metal elements other than oxygen excluding the catalyst support was as follows in terms of atomic ratio.
Mo 12 V 3 W 1.2 Cu 1.2 Sb 0.5
[Reactor]
A reactor consisting of a SUS reaction tube having a total length of 6000 mm and an inner diameter of 25 mm and a shell for flowing a heat medium covering the SUS reaction tube was prepared in the vertical direction. A partition plate having a thickness of 50 mm that divides the shell vertically was provided at a position of 3000 mm from the bottom of the shell, and the heat medium was circulated from below to above in both the upper and lower shell spaces. The front catalyst 1, the SUS Raschig ring with an outer diameter of 8 mm, and the rear catalyst 1 were dropped in order from the upper part of the reaction tube, and filled so that the respective lengths were 2800 mm for the front catalyst, 400 mm for the Raschig ring, and 2800 mm for the rear catalyst.
[Oxidation reaction]
The temperature of the front catalyst layer (heat medium inlet temperature in the lower shell space): 330 ° C., the temperature of the rear catalyst layer (heat medium inlet temperature in the upper shell space): 265 ° C., and 5 volumes of propylene from the bottom of the reactor %, Oxygen 10% by volume, water vapor 20% by volume and nitrogen 65% by volume as a reaction raw material gas was introduced at a space velocity of 1600 h −1 (STP) with respect to the preceding catalyst, and gas phase catalytic oxidation was continued for 2000 hours. I went. The reaction results are shown in Table 1.

Figure 2009084167
Figure 2009084167


<実施例1>
参考例において、2000時間気相酸化反応を継続した後、運転を停止した。その際、反応器へのガス供給を停止するにあたり、まず反応原料ガスを停止した後、熱媒体温度は維持したまま、窒素70体積%および水蒸気30体積%からなる不活性ガスを毎分25L(STP)の風量で約5分間流通させた後、続いて酸素18体積%、窒素82体積%からなる酸素含有ガスを毎分25L(STP)の風量で反応器出口部酸化炭素含有量が2000ppmになるまで流通させた後、ガスの供給を停止した。ガスの供給を48時間停止した後、再度反応原料ガスを導入し運転を開始した。その反応結果を表2に示す。
<比較例1>
実施例1において、運転停止時に不活性ガスを流通させた後、酸素含有ガスを流通させずにガスの供給を停止した以外は、同様に行った。その反応結果を表2に示す。
<実施例2>
実施例1において、運転停止時に反応器出口部酸化炭素含有量が1000ppmになるまで流通させた後、ガスの供給を停止した以外は、同様に行った。その反応結果を表2に示す。
<実施例3>
実施例1において、運転停止時に反応器出口部酸化炭素含有量が500ppmになるまで流通させた後、ガスの供給を停止した以外は、同様に行った。その反応結果を表2に示す。
<比較例2>
実施例3において、運転停止時に反応器出口部酸化炭素含有量が0ppmになった後も再運転を開始するまで(48時間)供給し続けた以外は、同様に行った。その反応結果を表2に示す。

<Example 1>
In the reference example, the operation was stopped after the gas phase oxidation reaction was continued for 2000 hours. At that time, in stopping the gas supply to the reactor, first, the reaction raw material gas was stopped, and then the inert gas composed of 70% by volume of nitrogen and 30% by volume of water vapor was maintained at 25 L STP) was allowed to flow for about 5 minutes, and oxygen content gas consisting of 18% by volume of oxygen and 82% by volume of nitrogen was subsequently increased to 2000 ppm at the reactor outlet at a flow rate of 25 L (STP). After the gas was circulated until it was, the gas supply was stopped. After the gas supply was stopped for 48 hours, the reaction raw material gas was introduced again and the operation was started. The reaction results are shown in Table 2.
<Comparative Example 1>
In Example 1, the same procedure was performed except that the supply of gas was stopped without circulating the oxygen-containing gas after circulating the inert gas when the operation was stopped. The reaction results are shown in Table 2.
<Example 2>
In Example 1, it was performed in the same manner except that the supply of gas was stopped after flowing through the reactor until the carbon oxide content at the outlet of the reactor reached 1000 ppm. The reaction results are shown in Table 2.
<Example 3>
In Example 1, it was carried out in the same manner except that the supply of gas was stopped after flowing until the carbon dioxide content at the outlet of the reactor reached 500 ppm when the operation was stopped. The reaction results are shown in Table 2.
<Comparative example 2>
In Example 3, the same procedure was performed except that the supply was continued until the re-operation was started (48 hours) even after the reactor outlet portion carbon oxide content reached 0 ppm when the operation was stopped. The reaction results are shown in Table 2.

Figure 2009084167
Figure 2009084167


<実施例4>
[気相酸化触媒の調製]
プロピレン含有ガスを気相接触酸化してアクロレイン含有ガスを生成するための前段触媒4および5を特開平4−217932号の実施例1記載の方法に準じて調製した。同様に、アクロレイン含有ガスを気相接触酸化してアクリル酸を製造するための後段触媒4および5を特開平9−241209号の実施例2記載の方法に準じて調製した。これら触媒の担体を除いた酸素以外の金属元素の組成は原子比で以下の通りであった。
前段触媒2 Mo10BiFeCo0.06Si1.5 平均直径5mm
前段触媒3 Mo10BiFeCo0.06Si1.5 平均直径8mm
後段触媒2 Mo122.5CuSr0.2 平均直径5mm
後段触媒3 Mo122.5CuSr0.2 平均直径8mm
[反応器]
反応管数約9,500本(反応管径25mm、長さ6000mm)およびこれを覆う熱媒体を流すためのシェルからなる固定床多管式反応器に、反応管上部より順に前段触媒3、前段触媒2、外径8mmのSUS製ラシヒリング、後段触媒3、後段触媒2を落下させてそれぞれの長さが、前段触媒3:800mm、前段触媒2:2000mm、ラシヒリング:400mm、後段触媒3:800mm、後段触媒2:2000mm層長800mmとなるように充填した。なお、シェルの下から3000mmの位置にシェルを上下に分割する厚さ50mmの仕切り板を設け、上方および下方のシェル空間部のいずれにおいても熱媒体を下方から上方に循環した。
[酸化反応]
前段触媒層の温度(下方シェル空間部の熱媒体入口温度):320℃、後段触媒層の温度(上方シェル空間部の熱媒体入口温度):260℃とし、反応器の下部から、プロピレン8体積%、酸素15体積%、水蒸気10体積%および窒素67体積%からなる混合ガスを原料ガスとして、前段触媒に対する空間速度1600h−1(STP)で導入し、気相接触酸化を行った。
[運転停止および再運転]
上記反応条件にて、4000時間気相酸化反応を継続した後、運転を停止した。その際、反応器へのガス供給を停止するにあたり、まず原料ガスを停止した後、熱媒体温度は維持したまま、窒素70体積%および水蒸気30体積%からなる不活性ガスを毎分200m(STP)の風量で約15分間流通させた後、続いて酸素18体積%、窒素82体積%からなる酸素含有ガスを毎分200m(STP)の風量で反応器出口部酸化炭素含有量が500ppmになるまで流通させた後、ガスの供給を停止した。ガスの供給を48時間停止した後、再度原料ガスを導入し運転を開始した。その反応結果を表3に示す。

<Example 4>
[Preparation of gas phase oxidation catalyst]
Pre-stage catalysts 4 and 5 for producing acrolein-containing gas by gas phase catalytic oxidation of propylene-containing gas were prepared according to the method described in Example 1 of JP-A-4-217932. Similarly, post-stage catalysts 4 and 5 for producing acrylic acid by gas phase catalytic oxidation of an acrolein-containing gas were prepared according to the method described in Example 2 of JP-A-9-241209. The composition of metal elements other than oxygen excluding these catalyst supports was as follows in terms of atomic ratio.
Previous catalyst 2 Mo 10 W 2 Bi 1 Fe 1 Co 4 K 0.06 Si 1.5 Average diameter 5 mm
Previous stage catalyst 3 Mo 10 W 2 Bi 1 Fe 1 Co 4 K 0.06 Si 1.5 Average diameter 8 mm
Rear catalyst 2 Mo 12 V 4 W 2.5 Cu 2 Sr 0.2 Average diameter 5 mm
Second stage catalyst 3 Mo 12 V 4 W 2.5 Cu 2 Sr 0.2 Average diameter 8 mm
[Reactor]
About 9,500 reaction tubes (reaction tube diameter: 25 mm, length: 6000 mm) and a fixed bed multi-tubular reactor comprising a shell for flowing a heat medium covering the reaction tube, the first catalyst 3 and the first Catalyst 2, SUS Raschig ring with outer diameter of 8 mm, rear stage catalyst 3, rear stage catalyst 2 are dropped and the respective lengths are: front stage catalyst 3: 800 mm, front stage catalyst 2: 2000 mm, Raschig ring: 400 mm, rear stage catalyst 3: 800 mm, Second stage catalyst 2: packed to 2000 mm and layer length of 800 mm. A partition plate having a thickness of 50 mm that divides the shell vertically was provided at a position of 3000 mm from the bottom of the shell, and the heat medium was circulated from below to above in both the upper and lower shell spaces.
[Oxidation reaction]
The temperature of the front catalyst layer (heat medium inlet temperature in the lower shell space): 320 ° C., the temperature of the rear catalyst layer (heat medium inlet temperature in the upper shell space): 260 ° C., and 8 volumes of propylene from the bottom of the reactor %, 15% by volume of oxygen, 10% by volume of water vapor and 67% by volume of nitrogen were introduced as a raw material gas at a space velocity of 1600 h −1 (STP) with respect to the preceding catalyst, and gas phase catalytic oxidation was performed.
[Stop and restart]
After the gas phase oxidation reaction was continued for 4000 hours under the above reaction conditions, the operation was stopped. At that time, when the gas supply to the reactor was stopped, first, the raw material gas was stopped, and then the inert gas composed of 70% by volume of nitrogen and 30% by volume of water vapor was maintained at 200 m 3 ( STP) was allowed to flow for about 15 minutes, and an oxygen-containing gas consisting of 18% by volume of oxygen and 82% by volume of nitrogen was subsequently supplied at an outlet carbon dioxide content of 500 ppm at a rate of 200 m 3 (STP) per minute. Then, the gas supply was stopped. After the gas supply was stopped for 48 hours, the raw material gas was introduced again and the operation was started. The reaction results are shown in Table 3.

Figure 2009084167
Figure 2009084167

Claims (2)

気相酸化触媒を充填した反応管を有する固定床反応器を用いて、プロピレンおよび/またはプロパンを分子状酸素または分子状酸素含有ガスにより接触気相酸化してアクロレインおよび/またはアクリル酸を製造する方法において、接触気相酸化工程の運転を停止する際、反応原料ガスの供給停止後、当該反応器に不活性ガスを供給し、次いで分子状酸素含有ガスを供給した後、反応器への分子状酸素の供給を停止することを特徴とするアクロレインおよび/またはアクリル酸の製造方法。   Acrolein and / or acrylic acid is produced by catalytic gas phase oxidation of propylene and / or propane with molecular oxygen or a molecular oxygen-containing gas using a fixed bed reactor having a reaction tube filled with a gas phase oxidation catalyst. In the method, when the operation of the catalytic gas phase oxidation step is stopped, after the supply of the reaction raw material gas is stopped, an inert gas is supplied to the reactor, and then a molecular oxygen-containing gas is supplied, and then molecules to the reactor are supplied. A method for producing acrolein and / or acrylic acid, characterized in that the supply of gaseous oxygen is stopped. 接触気相酸化工程の運転を停止する際に、分子状酸素含有ガスを、供給した分子状酸素含有ガス中に含まれる酸化炭素の量を除く反応器出口におけるガス中に含まれる酸化炭素の量が0ppmより多く1000ppm以下になるまで供給した後、反応器への分子状酸素の供給を停止することを特徴とする、請求項1に記載の方法。   The amount of carbon oxide contained in the gas at the outlet of the reactor excluding the amount of carbon oxide contained in the supplied molecular oxygen-containing gas when the operation of the catalytic gas phase oxidation step is stopped. 2. The method according to claim 1, wherein the supply of molecular oxygen to the reactor is stopped after supplying until the amount of oxygen exceeds 0 ppm and not more than 1000 ppm.
JP2007253251A 2007-09-28 2007-09-28 Manufacturing method of acrolein and/or acrylic acid Pending JP2009084167A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007253251A JP2009084167A (en) 2007-09-28 2007-09-28 Manufacturing method of acrolein and/or acrylic acid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007253251A JP2009084167A (en) 2007-09-28 2007-09-28 Manufacturing method of acrolein and/or acrylic acid

Publications (1)

Publication Number Publication Date
JP2009084167A true JP2009084167A (en) 2009-04-23

Family

ID=40658058

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007253251A Pending JP2009084167A (en) 2007-09-28 2007-09-28 Manufacturing method of acrolein and/or acrylic acid

Country Status (1)

Country Link
JP (1) JP2009084167A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014054408A1 (en) * 2012-10-01 2014-04-10 旭化成ケミカルズ株式会社 Method for stopping ammoxidation
CN115305629A (en) * 2022-08-08 2022-11-08 常熟市国光机械有限公司 Weft insertion and weft insertion double-axial knitting structure flat knitting machine yarn feeding device and knitting method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014054408A1 (en) * 2012-10-01 2014-04-10 旭化成ケミカルズ株式会社 Method for stopping ammoxidation
US9346747B2 (en) 2012-10-01 2016-05-24 Asahi Kasei Chemicals Corporation Method for stopping ammoxidation reaction
CN115305629A (en) * 2022-08-08 2022-11-08 常熟市国光机械有限公司 Weft insertion and weft insertion double-axial knitting structure flat knitting machine yarn feeding device and knitting method

Similar Documents

Publication Publication Date Title
JP6527499B2 (en) Process for producing unsaturated aldehyde and / or unsaturated carboxylic acid
US7132384B2 (en) Process for producing composite oxide catalyst
US7518015B2 (en) Process for heterogeneously catalyzed gas phase partial oxidation of at least one organic starting compound
JP5450591B2 (en) Method for producing oxidized organic compound
JPH0784400B2 (en) Process for producing unsaturated aldehyde and unsaturated acid
JP6694884B2 (en) Process for producing unsaturated aldehyde and / or unsaturated carboxylic acid
US7015354B2 (en) Preparation of (meth)acrolein and/or (meth)acrylic acid
WO2014014041A1 (en) Production method for unsaturated aldehyde and/or unsaturated carboxylic acid
WO2020203266A1 (en) Method for producing unsaturated aldehyde
JP5130562B2 (en) Method for producing methacrolein and / or methacrylic acid
US20060199975A1 (en) Process for preparing at least one organic target compound by heterogeneously catalyzed gas phase partial oxidation
JP2009084167A (en) Manufacturing method of acrolein and/or acrylic acid
JP4950986B2 (en) Method for producing methacrolein and / or methacrylic acid
JP5112849B2 (en) Fixed bed reactor and method for producing unsaturated carboxylic acid
JP2019509292A (en) Process for producing unsaturated aldehyde and unsaturated carboxylic acid
JP2010241700A (en) Method for producing acrylic acid
JP2006521317A (en) Heterogeneous catalytic partial gas phase oxidation of propene to acrolein
JP5902374B2 (en) Acrylic acid production method
JP2010235504A (en) Method for producing acrolein and acrylic acid
WO2017170721A1 (en) Restarting method
JP2005162744A (en) Method for producing unsaturated aldehyde and unsaturated carboxylic acid
JP2011102247A (en) Method of producing acrolein and/or acrylic acid
JP5433321B2 (en) Method for producing (meth) acrylic acid
JP2011225476A (en) Method for producing unsaturated aldehyde and/or unsaturated carboxylic acid
JP2011026284A (en) Method for producing (meth)acrolein or (meth)acrylic acid