JP2005162744A - Method for producing unsaturated aldehyde and unsaturated carboxylic acid - Google Patents

Method for producing unsaturated aldehyde and unsaturated carboxylic acid Download PDF

Info

Publication number
JP2005162744A
JP2005162744A JP2004326998A JP2004326998A JP2005162744A JP 2005162744 A JP2005162744 A JP 2005162744A JP 2004326998 A JP2004326998 A JP 2004326998A JP 2004326998 A JP2004326998 A JP 2004326998A JP 2005162744 A JP2005162744 A JP 2005162744A
Authority
JP
Japan
Prior art keywords
catalyst
atomic ratio
unsaturated
catalysts
unsaturated carboxylic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004326998A
Other languages
Japanese (ja)
Inventor
Tsutomu Teshigawara
力 勅使河原
Nariyasu Kanuka
成康 嘉糠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP2004326998A priority Critical patent/JP2005162744A/en
Publication of JP2005162744A publication Critical patent/JP2005162744A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing an unsaturated aldehyde and an unsaturated carboxylic acid, capable of stably producing the aldehyde and the acid corresponding to a raw material olefin for a long period in a high yield, by catalytically oxidizing the olefin in a gaseous phase with molecular oxygen or a molecular oxygen-containing gas. <P>SOLUTION: This method comprises (A) using two or more kinds of complex oxides comprising Mo, Bi, and Si-based complex oxides and having ratios of Si contents to Mo contents different from each other as catalysts, (B) dividing a reactor in the direction of a tube axis of the reactor and arranging a plurality of reaction zones used for being filled with the catalysts, and (C) filling the plurality of reaction zones with two or more of the catalysts comprising the complex oxides in such a manner that the ratios of the Si contents to the Mo contents in the catalysts are gradually increased in the direction from the inlet of a raw material gas to the outlet of the gas. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、オレフィンを分子状酸素または分子状酸素含有ガスにより気相接触酸化し、長期にわたり安定して、かつ高収率で対応する不飽和アルデヒドおよび不飽和カルボン酸を製造する方法に関する。   The present invention relates to a process for producing a corresponding unsaturated aldehyde and unsaturated carboxylic acid by vapor phase catalytic oxidation of olefin with molecular oxygen or a molecular oxygen-containing gas and stably for a long period of time in a high yield.

プロピレン、イソブチレンなどのオレフィンを、複合酸化物触媒の存在下に分子状酸素により気相接触酸化して、それぞれ対応するアクロレイン、メタクロレインなどの不飽和アルデヒドおよびアクリル酸、メタクリル酸などの不飽和カルボン酸を製造する方法については、従来から数多くの提案がなされ、既に一部は工業的に実施されている。   Olefin such as propylene and isobutylene is subjected to gas phase catalytic oxidation with molecular oxygen in the presence of a complex oxide catalyst, and the corresponding unsaturated aldehyde such as acrolein and methacrolein and unsaturated carboxylic acid such as acrylic acid and methacrylic acid. Many proposals have been made on the method for producing acids, and some of them have already been industrially implemented.

この製造反応は、固定床多管式反応器を用いて行われるが、大きな発熱を伴う反応のために、特に原料ガス入口側にホットスポット(異常高温部)を生じ易く、このため過度の酸化反応による収率の低下と、触媒劣化が加速されることによる触媒寿命が低下する問題を生じる。特に、単位触媒あたりの生産量を高めるために原料のオレフィン濃度を高くしたり、空間速度を大きくしようとするとこの問題はさらに増大する。結果的に、長期にわたり安定して、かつ高収率で対応する不飽和アルデヒドおよび不飽和カルボン酸を製造ことは実際上困難であった。   This production reaction is carried out using a fixed-bed multitubular reactor. However, due to the reaction with a large exotherm, a hot spot (abnormally high temperature part) tends to be generated particularly on the raw material gas inlet side, and therefore excessive oxidation occurs. There arises a problem that the yield of the reaction is reduced and the catalyst life is reduced due to acceleration of catalyst deterioration. In particular, this problem is further increased if the olefin concentration of the raw material is increased or the space velocity is increased in order to increase the production amount per unit catalyst. As a result, it has been practically difficult to produce the corresponding unsaturated aldehydes and unsaturated carboxylic acids stably over a long period of time and in high yields.

従来から、上記ホットスポットを抑え、生産性と触媒寿命を改善するための製造方法が提案されている。例えば、特許文献1には、複合酸化物触媒中のBiおよびFeの量を変更した触媒を、原料ガス入口から出口に向かってBiおよびFeの量が少なくなるように充填した固定床管式反応器を用いて反応させる方法が開示されている。   Conventionally, production methods for suppressing the hot spots and improving productivity and catalyst life have been proposed. For example, Patent Document 1 discloses a fixed bed tubular reaction in which a catalyst in which the amount of Bi and Fe in a complex oxide catalyst is changed is packed so that the amount of Bi and Fe decreases from the raw material gas inlet toward the outlet. A method of reacting using a vessel is disclosed.

また、特許文献2には、含有されるアルカリ土類元素の種類及び/又は量を変更した活性の異なる複数個の触媒を調製し、これらを、各反応管内の触媒層を管軸方向に2層以上に分割した複数個の反応帯に原料ガスの入口から出口に向って触媒活性が高くなるように充填した固定床管式反応器を用いて反応させる方法が開示されている。   Further, in Patent Document 2, a plurality of catalysts having different activities with different types and / or amounts of alkaline earth elements contained therein are prepared, and the catalyst layers in each reaction tube are divided into 2 in the tube axis direction. A method is disclosed in which a reaction is performed using a fixed bed tubular reactor in which a plurality of reaction zones divided into layers or more are packed so that the catalytic activity increases from the inlet to the outlet of the raw material gas.

更に、特許文献3、特許文献4には、触媒組成を事実上変更せずに焼成温度の異なる複数個の触媒を調製し、これらを、各反応管内の触媒層を管軸方向に2層以上に分割した複数個の反応帯に、原料ガスの入口側ほど高温度で焼成し調製した触媒を充填した固定床管式反応器を用いて反応させる方法が開示されている。   Furthermore, in Patent Document 3 and Patent Document 4, a plurality of catalysts having different calcination temperatures are prepared without substantially changing the catalyst composition, and two or more catalyst layers in each reaction tube are arranged in the tube axis direction. There is disclosed a method of reacting a plurality of reaction zones divided into a plurality of reaction zones using a fixed bed tubular reactor filled with a catalyst prepared by firing at a higher temperature toward the inlet side of the raw material gas.

しかしながら、これら従来技術による場合、それなりに効果は得られるものの、必ずしも満足のいくものではなく、ホットスポットに起因する問題を十分に解決するための新たな方法が求められている。
特開2001-48817号公報 特許2809476号公報 特開平10−168003号公報 特許3139285号公報
However, according to these conventional techniques, although the effect is obtained as it is, it is not always satisfactory, and a new method for sufficiently solving the problem caused by the hot spot is required.
JP 2001-48817 A Japanese Patent No. 2809476 JP-A-10-168003 Japanese Patent No. 3139285

上記のような従来技術に鑑み、本発明の目的は、Mo−Bi系複合酸化物触媒の存在下にオレフィン、特にプロピレンを気相酸化する場合において、ホットスポットに起因する問題を解決する新たなる手段を提供し、長期にわたり安定して、かつ高収率で不飽和アルデヒド、特にアクロレインおよび不飽和カルボン酸、特にアクリル酸を製造する方法を提供することにある。   In view of the prior art as described above, the object of the present invention is to solve the problem caused by hot spots in the case of vapor phase oxidation of olefins, particularly propylene, in the presence of a Mo-Bi composite oxide catalyst. It is an object of the present invention to provide a method for producing unsaturated aldehydes, particularly acrolein and unsaturated carboxylic acids, particularly acrylic acid, in a stable and high yield for a long period of time.

本発明者は、上記課題を解決すべく鋭意研究を進めたところ、特定の組成を有するMo−Bi系複合酸化物触媒であって、成分中のMoに対するSiの含有量の異なる複数種の触媒を使用し、かつ固定床管式反応管を分割して触媒を充填する複数の反応帯を設け、これらの複数の反応帯のそれぞれに対して、原料ガス入口から出口に向って上記複数種の触媒を充填した反応器を使用するという新たな方法を採用することにより、上記課題を解決できることを見出した。   As a result of diligent research to solve the above-mentioned problems, the present inventor is a Mo-Bi composite oxide catalyst having a specific composition, and a plurality of types of catalysts having different Si contents relative to Mo in the component. And providing a plurality of reaction zones for dividing the fixed bed tubular reaction tube and filling the catalyst, and for each of these plurality of reaction zones, It has been found that the above problem can be solved by adopting a new method of using a reactor filled with a catalyst.

即ち、本発明は、下記の要旨を有することを特徴とするものである。
(1)固定床管型反応器を用いてオレフィンを分子状酸素または分子状酸素含有ガスにより気相接触酸化して不飽和アルデヒドおよび不飽和カルボン酸を製造する方法において、
(A)触媒として下記の式(1)
MoaBibCocNidFeeXfYgZhQiSijOk (1)
(式中、Xは、Na、K、Rb、Cs及びTlからなる群から選ばれる少なくとも1種の元素を示し、Yは、B、P、As及びWからなる群から選ばれる少なくとも1種の元素を示し、Zは、Mg、Ca、Zn、Ce及びSmからなる群から選ばれる少なくとも1種の元素を示し、Qはハロゲン原子を示す。aからkはそれぞれの元素の原子比を表わし、a=12のとき、0.5≦b≦7、0≦c≦10、0≦d≦10、0≦c+d≦10、0.05≦e≦3、0.0005≦f≦3、0≦g≦3、0≦h≦1、0≦i≦0.5、0≦j≦40、であり、またkは他の元素の酸化状態を満足させる数値である。)
で表され、かつMoに対するSiの原子比が異なる2種以上の複合酸化物触媒を用い、
(B)反応器を管軸方向に分割して触媒を充填する複数の反応帯を設け、
(C)該複数の反応帯のそれぞれに対し、原料ガス入口から出口に向かってMoに対するSiの原子比が大きくなるように上記2種以上の複合酸化物触媒を充填することを特徴とする不飽和アルデヒドおよび不飽和カルボン酸の製造方法。
(2)原料ガス入口側の触媒のMoに対するSiの原子比を1とした場合、ガス出口側の触媒のMoに対するSiの原子比が1より大きくかつ10以下になるように2種以上の複合酸化物触媒を充填する上記(1)に記載の製造方法。
(3)反応帯の数が2〜4である上記(1)又は(2)に記載の製造方法。
(4)オレフィンがプロピレンであり、不飽和アルデヒドおよび不飽和カルボン酸がそれぞれ、アクロレイン及びアクリル酸である上記(1)〜(3)のいずれかに記載の製造方法。
That is, the present invention has the following gist.
(1) In a method for producing an unsaturated aldehyde and an unsaturated carboxylic acid by vapor-phase catalytic oxidation of an olefin with molecular oxygen or a molecular oxygen-containing gas using a fixed bed tubular reactor,
(A) As a catalyst, the following formula (1)
MoaBibCocNidFeeXfYgZhQiSijOk (1)
(Wherein X represents at least one element selected from the group consisting of Na, K, Rb, Cs and Tl; Y represents at least one element selected from the group consisting of B, P, As and W) Represents an element, Z represents at least one element selected from the group consisting of Mg, Ca, Zn, Ce and Sm, Q represents a halogen atom, a to k represent an atomic ratio of each element, When a = 12, 0.5 ≦ b ≦ 7, 0 ≦ c ≦ 10, 0 ≦ d ≦ 10, 0 ≦ c + d ≦ 10, 0.05 ≦ e ≦ 3, 0.0005 ≦ f ≦ 3, 0 ≦ (g ≦ 3, 0 ≦ h ≦ 1, 0 ≦ i ≦ 0.5, 0 ≦ j ≦ 40, and k is a numerical value that satisfies the oxidation state of other elements.)
And two or more complex oxide catalysts having different atomic ratios of Si to Mo
(B) providing a plurality of reaction zones in which the reactor is divided in the tube axis direction and filled with a catalyst;
(C) Filling each of the plurality of reaction zones with the two or more composite oxide catalysts so that the atomic ratio of Si to Mo increases from the source gas inlet toward the outlet. A method for producing saturated aldehydes and unsaturated carboxylic acids.
(2) When the atomic ratio of Si to Mo of the catalyst on the source gas inlet side is 1, two or more kinds of composites so that the atomic ratio of Si to Mo of the catalyst on the gas outlet side is greater than 1 and 10 or less The production method according to the above (1), wherein the oxide catalyst is filled.
(3) The manufacturing method as described in said (1) or (2) whose number of reaction zones is 2-4.
(4) The production method according to any one of (1) to (3), wherein the olefin is propylene, and the unsaturated aldehyde and the unsaturated carboxylic acid are acrolein and acrylic acid, respectively.

本発明の方法によれば、ホットスポットの発生に伴う暴走反応や過度の酸化反応による副生物の生成を抑制し、高選択率かつ高収率で目的とする不飽和アルデヒドおよび不飽和カルボン酸を製造することができる。さらに、熱負荷による触媒の劣化が防止され、触媒を長時間安定して使用することができるため、生産性も大幅に向上させることが可能になる。   According to the method of the present invention, the generation of by-products due to runaway reaction and excessive oxidation reaction associated with the occurrence of hot spots is suppressed, and the target unsaturated aldehyde and unsaturated carboxylic acid are obtained with high selectivity and high yield. Can be manufactured. Furthermore, deterioration of the catalyst due to heat load is prevented, and the catalyst can be used stably for a long time, so that productivity can be greatly improved.

本発明により何故に上記のような優れた効果が達成されるかについては必ずしも明らかではないが、以下のように推測される。   The reason why the above-described excellent effect is achieved by the present invention is not necessarily clear, but is estimated as follows.

本発明で使用するモリブデン−ビスマス系複合酸化物触媒は、上記した式(1)で表される触媒である。   The molybdenum-bismuth complex oxide catalyst used in the present invention is a catalyst represented by the above formula (1).

本発明では、上記組成を有する複合酸化物触媒であって、Moに対するSiの含有比率が異なる2種以上の触媒が使用される。この場合、Moの原子比を12とした場合、Siは0〜40、好ましくは0.5〜30の範囲で異なる触媒が使用される。そして、本発明では、Moに対するSiの原子比が異なる触媒、例えば、原料ガス入口側の触媒のMoに対するSiの原子比を1とした場合、ガス出口側の触媒のMoに対するSiの原子比が好ましくは1〜10、特に好ましくは2〜5の範囲で異なる2種類以上の触媒が使用される。   In the present invention, two or more types of catalysts having different composition ratios of Si with respect to Mo are used. In this case, when the atomic ratio of Mo is 12, different catalysts are used in the range of Si of 0 to 40, preferably 0.5 to 30. And in this invention, when the atomic ratio of Si with respect to Mo of the catalyst in which the atomic ratio of Si with respect to Mo differs, for example, the catalyst of the raw material gas inlet side is set to 1, the atomic ratio of Si with respect to Mo of the catalyst of the gas outlet side is Preferably, two or more different catalysts are used in the range of 1 to 10, particularly preferably 2 to 5.

一方、本発明では、固定床管型反応器の反応器の触媒層を管軸方向に2層以上に分割して2以上の反応帯を設ける。反応器の分割は、分割数が多くなればそれだけホットスポットの抑制が容易になるが、通常、好ましくは、2〜4、好ましくは2又は3の反応帯を形成するように分割される。使用する反応管の本数、触媒の充填する長さ、反応管径は、運転条件や生産能力などによって異なり適宜決定される。   On the other hand, in the present invention, two or more reaction zones are provided by dividing the catalyst layer of the reactor of the fixed bed tubular reactor into two or more layers in the tube axis direction. The division of the reactor becomes easier as the number of divisions increases, so that suppression of hot spots is facilitated, but the division is usually preferably performed so as to form reaction zones of 2 to 4, preferably 2 or 3. The number of reaction tubes to be used, the length to be filled with the catalyst, and the diameter of the reaction tube vary depending on operating conditions and production capacity, and are appropriately determined.

本発明では、上記2つ以上の複数に分割された反応器の反応帯に対して、上記したMoに対するSiの原子比が異なる2種以上の触媒を、原料ガス入口から出口に向かって触媒中のMoに対するSiの含有量比が大きくなるように充填される。反応器の分割により2つの反応帯を設けた場合を例に挙げると、Moに対するSiの原子比が異なる2種類の触媒を調製し、原料ガス入口側の反応帯(以下、前段反応帯という)に充填される触媒のMoに対するSiの原子比に比して、出口側の反応帯(以下、後段反応帯という)に充填される触媒のMoに対するSiの原子比が大きくなるように触媒が充填される。即ち、相対的にMoに対するSiの原子比の小さい触媒を前段反応帯に、また、前段反応帯に比して相対的にMoに対するSiの原子比の大きい触媒を後段反応帯に充填される。   In the present invention, two or more types of catalysts having different atomic ratios of Si to Mo described above are mixed in the catalyst from the raw material gas inlet to the outlet with respect to the reaction zone of the two or more divided reactors. It fills so that content ratio of Si with respect to Mo may become large. For example, when two reaction zones are provided by dividing the reactor, two types of catalysts having different atomic ratios of Si to Mo are prepared, and a reaction zone on the raw material gas inlet side (hereinafter referred to as a pre-stage reaction zone). The catalyst is packed so that the atomic ratio of Si to Mo of the catalyst packed in the outlet side reaction zone (hereinafter referred to as the subsequent reaction zone) is larger than the atomic ratio of Si to Mo of the catalyst packed in the catalyst. Is done. That is, a catalyst having a relatively small atomic ratio of Si to Mo is filled in the former reaction zone, and a catalyst having a relatively large atomic ratio of Si to Mo as compared to the preceding reaction zone is filled in the latter reaction zone.

本発明で複数の反応帯に対してMoに対するSiの原子比が異なる2種以上の触媒を原料ガス入口から出口に向かって充填される場合、原料ガス入口側の触媒のMoに対するSiの原子比を1とした場合、ガス出口側の触媒のMoに対するSiの原子比が、好ましくは1より大きく、特に好ましくは2以上で、かつ、好ましくは10以下、特に好ましくは5以下になるように充填するのが好ましい。原料ガス入口側の触媒に対して、原料ガス出口側の触媒のMoに対するSiの原子比が10より大きい場合には、入り口側と出口側の活性の差が大きくなり好ましくはない。   In the present invention, when two or more kinds of catalysts having different atomic ratios of Si to Mo with respect to a plurality of reaction zones are filled from the raw material gas inlet to the outlet, the atomic ratio of Si to Mo of the catalyst on the raw material gas inlet side Is set to 1, the atomic ratio of Si to Mo of the catalyst on the gas outlet side is preferably larger than 1, particularly preferably 2 or more, and preferably 10 or less, particularly preferably 5 or less. It is preferable to do this. When the atomic ratio of Si to Mo of the catalyst on the source gas outlet side is larger than 10 on the catalyst on the source gas inlet side, the difference in activity between the inlet side and the outlet side is not preferable.

本発明で各反応帯に充填する触媒の形状、大きさなどについて特に制限はなく、既知の形状、大きさなどから適宜選ぶことができる。例えば、形状についていえば、球状、円柱状、リング状などのいずれでもよい。   In the present invention, the shape, size, etc. of the catalyst charged in each reaction zone are not particularly limited, and can be appropriately selected from known shapes, sizes, etc. For example, the shape may be any of a spherical shape, a cylindrical shape, a ring shape, and the like.

本発明で使用する上記触媒の調製方法には特に制限はなく、通常、各元素成分を含有する原料化合物の所要量を水性媒体中に適宜溶解あるいは分散し、加熱撹拌した後、蒸発乾固、乾燥、粉砕して製造される。各成分の原料は、それぞれの元素の硝酸塩、アンモニウム塩、水酸化物、酸化物、酢酸塩などが用いられる。得られた粉体状の触媒は、通常、好ましくは、押出し成形、造粒成形などの成形方法により上記した任意の形状に成型される。この際、触媒の強度、粉化度を改善するために一般に知られているガラス繊維などの無機繊維、各種ウィスカーなどを添加してもよい。また、触媒物性を再現性よく制御するために、硝酸アンモニウム、セルロース、デンプン、ポリビニルアルコール、ステアリン酸など一般に結合剤として知られている添加物を使用することもできる。   The method for preparing the catalyst used in the present invention is not particularly limited. Usually, the required amount of the raw material compound containing each element component is appropriately dissolved or dispersed in an aqueous medium, heated and stirred, and then evaporated to dryness. Manufactured by drying and grinding. As the raw material of each component, nitrates, ammonium salts, hydroxides, oxides, acetates of the respective elements are used. The obtained powdery catalyst is usually preferably molded into the above-described arbitrary shape by a molding method such as extrusion molding or granulation molding. At this time, in order to improve the strength and the degree of pulverization of the catalyst, generally known inorganic fibers such as glass fibers, various whiskers and the like may be added. In order to control the physical properties of the catalyst with good reproducibility, additives generally known as binders such as ammonium nitrate, cellulose, starch, polyvinyl alcohol and stearic acid can also be used.

本発明においては、式(I)で表される複合酸化物をそれ自体単独で使用することができるが、アルミナ、シリカ、シリカ−アルミナ、シリコンカーバイド、酸化チタン、酸化マグネシウム、アルミニウムスポンジ、シリカ−チタニアなど一般に不活性担体として知られている担体に担持して使用してもよい。この場合もまた、触媒の強度などを改善するために前記の無機繊維などを添加してもよく、また、触媒物性を再現性よく制御するために前記の硝酸アンモニウムなどの結合剤を使用することもできる。これら成形体あるいは担持体を、例えば、空気流通下に300〜600℃の温度で1〜10時間程度焼成される。   In the present invention, the composite oxide represented by the formula (I) can be used alone, but alumina, silica, silica-alumina, silicon carbide, titanium oxide, magnesium oxide, aluminum sponge, silica- It may be used by supporting it on a carrier generally known as an inert carrier such as titania. In this case as well, the above-mentioned inorganic fibers may be added to improve the strength of the catalyst, and a binder such as ammonium nitrate may be used in order to control the physical properties of the catalyst with good reproducibility. it can. These compacts or carriers are fired, for example, at a temperature of 300 to 600 ° C. for about 1 to 10 hours under air flow.

本発明の分子状酸素または分子状酸素含有ガスを使用した気相接触酸化反応には、反応管を通じて単流通法でもリサイクル法であってもよく、この種の反応に一般的に使用される条件下で実施できる。例えば、プロピレン1〜15容量%、分子状酸素3〜30容量%、水蒸気0〜60容量%、窒素、炭酸ガスなどの不活性ガス20〜80容量%などからなる混合ガスを、内径が好ましくは15〜50mmの各反応管の各反応帯に充填した触媒層に250〜450℃、0.1〜1MPaの加圧下、空間速度(SV)300〜5000hr−1で導入される。しかし、本発明では、より生産性を上げるために高負荷反応条件下、例えば、より高い原料濃度、又は高い空間速度の条件下でも運転することもできる。 The gas phase catalytic oxidation reaction using molecular oxygen or molecular oxygen-containing gas of the present invention may be a single flow method or a recycling method through a reaction tube, and the conditions generally used for this kind of reaction. Can be implemented below. For example, a mixed gas composed of 1 to 15% by volume of propylene, 3 to 30% by volume of molecular oxygen, 0 to 60% by volume of water vapor, 20 to 80% by volume of an inert gas such as nitrogen or carbon dioxide, The catalyst layer filled in each reaction zone of each 15-50 mm reaction tube is introduced at a space velocity (SV) of 300-5000 hr −1 under a pressure of 250-450 ° C. and 0.1-1 MPa. However, in the present invention, it is possible to operate under high load reaction conditions, for example, higher raw material concentration or high space velocity conditions in order to increase productivity.

以下に本発明の実施例を挙げて本発明をさらに詳細に説明するが、本発明はかかる実施例に限定して解釈されるものでないことはもちろんである。なお、下記において、例1は、本発明の実施例であり、例2〜4は比較例である。各実施例における、転化率、選択率、収率は、次の式で算出される。
・転化率(モル%)=(反応したプロピレンのモル数/供給したプロピレンのモル数)×100
・選択率(モル%)=(生成したアクロレインのモル数+生成したアクリル酸のモル数)/反応したプロピレンのモル数×100
・収率(モル%)=(生成したアクロレインのモル数+生成したアクリル酸のモル数)/供給したプロピレンのモル数×100
EXAMPLES The present invention will be described in more detail below with reference to examples of the present invention, but the present invention should not be construed as being limited to such examples. In the following, Example 1 is an example of the present invention, and Examples 2 to 4 are comparative examples. The conversion rate, selectivity, and yield in each example are calculated by the following equations.
Conversion (mol%) = (number of moles of reacted propylene / number of moles of supplied propylene) × 100
Selectivity (mol%) = (mol number of produced acrolein + mol number of produced acrylic acid) / mol number of reacted propylene × 100
Yield (mol%) = (number of moles of produced acrolein + number of moles of produced acrylic acid) / number of moles of supplied propylene × 100

例1
(触媒1の調製)
パラモリブデン酸アンモン105.5gを加温した純水500mlに溶解させた。次に硝酸第二鉄10.1g、硝酸コバルト97.0gを加温した純水100mlに溶解させた。これらの溶液を、充分に撹拌しながら徐々に混合した。
Example 1
(Preparation of catalyst 1)
105.5 g of ammonium paramolybdate was dissolved in 500 ml of heated pure water. Next, 10.1 g of ferric nitrate and 97.0 g of cobalt nitrate were dissolved in 100 ml of heated pure water. These solutions were gradually mixed with thorough stirring.

次に、純水40mlにホウ砂0.96gおよび硝酸カリウム0.51gを加温下に溶解させて、上記スラリーに加える。次に、シリカ72.9gを加えて、充分に撹拌した。続いて純水20mlに硝酸2.7mlを溶解した液を加え、さらに硝酸ビスマス24.1gを加えて、撹拌混合した。
このスラリーを加熱乾燥した後、空気雰囲気で300℃/1時間の熱処理に付した。
得られた粒状固体を粉砕し、打錠成形機にて径5mm、高さ4mmの錠剤に成形した。
Next, 0.96 g of borax and 0.51 g of potassium nitrate are dissolved in 40 ml of pure water under heating, and added to the slurry. Next, 72.9 g of silica was added and stirred thoroughly. Subsequently, a solution in which 2.7 ml of nitric acid was dissolved in 20 ml of pure water was added, and 24.1 g of bismuth nitrate was further added, followed by stirring and mixing.
The slurry was heat-dried and then subjected to a heat treatment at 300 ° C./1 hour in an air atmosphere.
The obtained granular solid was pulverized and formed into tablets having a diameter of 5 mm and a height of 4 mm with a tableting machine.

次に打錠成形品を焼成容器に入れ、少量の空気を流通させながら、3時間かけて510℃まで昇温させ、該温度で4時間の焼成を行い、複合酸化物触媒を製造した。
仕込み原料から計算される触媒は、次の原子比を有する複合酸化物である。
Mo:Bi:Co:Fe:Na:B:K:Si =12:1:6.6:0.6:0.1:0.2:0.1:24
Next, the tablet-molded product was put into a firing container, heated to 510 ° C. over 3 hours while circulating a small amount of air, and fired at that temperature for 4 hours to produce a composite oxide catalyst.
The catalyst calculated from the charged raw materials is a complex oxide having the following atomic ratio.
Mo: Bi: Co: Fe: Na: B: K: Si = 12: 1: 6.6: 0.6: 0.1: 0.2: 0.1: 24

(触媒2の調製)
パラモリブデン酸アンモン105.5gを加温した純水500mlに溶解させた。次に硝酸第二鉄10.1g、硝酸コバルト97.0gを加温した純水100mlに溶解させた。これらの溶液を、充分に撹拌しながら徐々に混合した。
次に、純水40mlにホウ砂0.96gおよび硝酸カリウム0.51gを加温下に溶解させて、上記スラリーに加えた。次に、シリカ15.0gを加えて、充分に撹拌した。
続いて純水20mlに硝酸2.7mlを溶解した液を加え、さらに硝酸ビスマス24.1gを加えて、撹拌混合した。
このスラリーを加熱乾燥した後、空気雰囲気で300℃/1時間の熱処理に付した。
得られた粒状固体を粉砕し、打錠成形機にて径5mm、高さ4mmの錠剤に成形した。
(Preparation of catalyst 2)
105.5 g of ammonium paramolybdate was dissolved in 500 ml of heated pure water. Next, 10.1 g of ferric nitrate and 97.0 g of cobalt nitrate were dissolved in 100 ml of heated pure water. These solutions were gradually mixed with thorough stirring.
Next, 0.96 g of borax and 0.51 g of potassium nitrate were dissolved in 40 ml of pure water under heating, and added to the slurry. Next, 15.0 g of silica was added and stirred thoroughly.
Subsequently, a solution in which 2.7 ml of nitric acid was dissolved in 20 ml of pure water was added, and 24.1 g of bismuth nitrate was further added, followed by stirring and mixing.
The slurry was heat-dried and then subjected to a heat treatment at 300 ° C./1 hour in an air atmosphere.
The obtained granular solid was pulverized and formed into a tablet having a diameter of 5 mm and a height of 4 mm with a tableting machine.

次に打錠成形品を焼成容器に入れ、少量の空気を流通させながら、3時間かけて510℃まで昇温させ、該温度で4時間の焼成を行い、複合酸化物触媒を製造した。
仕込み原料から計算される触媒は、次の原子比を有する複合酸化物である。
Mo:Bi:Co:Fe:Na:B:K:Si =12:1:6.6:0.6:0.1:0.2:0.1:5
(酸化反応)熱伝対を設置した直径25mmのステンレス製反応管の原料ガス入口側に上記触媒2を500mlを充填し、原料ガス出口側に触媒1を1000mlを充填した。上記反応管入口からプロピレン8容量%、空気67容量%、水蒸気25容量%の混合ガスをSV1800hr−1で導入し1,000時間にわたって反応を継続した。反応初期の性能および1,000時間経過時の性能を表1に示した。
Next, the tablet-molded product was put into a firing container, heated to 510 ° C. over 3 hours while circulating a small amount of air, and fired at that temperature for 4 hours to produce a composite oxide catalyst.
The catalyst calculated from the charged raw materials is a complex oxide having the following atomic ratio.
Mo: Bi: Co: Fe: Na: B: K: Si = 12: 1: 6.6: 0.6: 0.1: 0.2: 0.1: 5
(Oxidation reaction) 500 ml of the catalyst 2 was filled on the raw material gas inlet side of a stainless steel reaction tube having a diameter of 25 mm provided with a thermocouple, and 1000 ml of the catalyst 1 was filled on the raw material gas outlet side. A mixed gas of 8% by volume of propylene, 67% by volume of air, and 25% by volume of water vapor was introduced at SV1800hr- 1 from the reaction tube inlet, and the reaction was continued for 1,000 hours. Table 1 shows the initial reaction performance and the performance after 1,000 hours.

例2
例1において、触媒1を1500mlのみを使用した以外は例1と同様に反応を行った。反応初期の性能および1,000時間経過時の性能を表1に示した。
Example 2
In Example 1, the reaction was performed in the same manner as in Example 1 except that only 1500 ml of Catalyst 1 was used. Table 1 shows the initial reaction performance and the performance after 1,000 hours.

例3
例1において、触媒2を1500mlのみを使用した以外は実施例1と同様に反応を行った。反応初期の性能および1,000時間経過時の性能を表1に示す。
Example 3
In Example 1, the reaction was performed in the same manner as in Example 1 except that only 1500 ml of catalyst 2 was used. Table 1 shows the initial reaction performance and the performance after 1,000 hours.

Figure 2005162744
Figure 2005162744

本発明の製造方法は、オレフィン、特にプロピレンを分子状酸素または分子状酸素含有ガスにより気相接触酸化し、長期にわたり安定して、かつ高収率で対応する不飽和アルデヒド、特にアクロレインおよび不飽和カルボン酸、特にアクリル酸を製造するために広く使用できる。製造された不飽和アルデヒドおよび不飽和カルボン酸は、化学品の中間原料として広範な用途に使用される。   The production method of the present invention comprises gas-phase catalytic oxidation of olefins, particularly propylene, with molecular oxygen or molecular oxygen-containing gas, and the corresponding unsaturated aldehydes, particularly acrolein and unsaturated, corresponding to long-term stable and high yields. It can be widely used to produce carboxylic acids, especially acrylic acid. The produced unsaturated aldehydes and unsaturated carboxylic acids are used in a wide range of applications as intermediate raw materials for chemicals.

Claims (4)

触媒を充填した固定床管型反応器を用いてオレフィンを分子状酸素または分子状酸素含有ガスにより気相接触酸化して不飽和アルデヒドおよび不飽和カルボン酸を製造する方法において、
(A)触媒として,下記の式(1)
MoaBibCocNidFeeXfYgZhQiSijOk (1)
(式中、Xは、Na、K、Rb、Cs及びTlからなる群から選ばれる少なくとも1種の元素を示し、Yは、B、P、As及びWからなる群から選ばれる少なくとも1種の元素を示し、Zは、Mg、Ca、Zn、Ce及びSmからなる群から選ばれる少なくとも1種の元素を示し、Qはハロゲン原子を示す。また、aからkはそれぞれの元素の原子比を表わし、a=12のとき、0.5≦b≦7、0≦c≦10、0≦d≦10、0≦c+d≦10、0.05≦e≦3、0.0005≦f≦3、0≦g≦3、0≦h≦1、0≦i≦0.5、0≦j≦40、であり、またkは他の元素の酸化状態を満足させる数値である。)
で表され、かつMoに対するSiの原子比が異なる2種以上の複合酸化物触媒を用い、
(B)反応器を管軸方向に分割し、触媒を充填する複数の反応帯を設け、
(C)該複数の反応帯のそれぞれに対し、原料ガス入口から出口に向かってMoに対するSiの原子比が大きくなるように上記2種以上の複合酸化物触媒を充填することを特徴とする不飽和アルデヒドおよび不飽和カルボン酸の製造方法。
In a method for producing unsaturated aldehydes and unsaturated carboxylic acids by gas-phase catalytic oxidation of olefins with molecular oxygen or a molecular oxygen-containing gas using a fixed bed tubular reactor packed with a catalyst,
(A) As a catalyst, the following formula (1)
MoaBibCocNidFeeXfYgZhQiSijOk (1)
(Wherein X represents at least one element selected from the group consisting of Na, K, Rb, Cs and Tl; Y represents at least one element selected from the group consisting of B, P, As and W) Z represents an element, Z represents at least one element selected from the group consisting of Mg, Ca, Zn, Ce and Sm, Q represents a halogen atom, and a to k represent the atomic ratio of each element. And when a = 12, 0.5 ≦ b ≦ 7, 0 ≦ c ≦ 10, 0 ≦ d ≦ 10, 0 ≦ c + d ≦ 10, 0.05 ≦ e ≦ 3, 0.0005 ≦ f ≦ 3, (0 ≦ g ≦ 3, 0 ≦ h ≦ 1, 0 ≦ i ≦ 0.5, 0 ≦ j ≦ 40, and k is a numerical value that satisfies the oxidation state of other elements.)
And two or more complex oxide catalysts having different atomic ratios of Si to Mo
(B) Dividing the reactor in the direction of the tube axis and providing a plurality of reaction zones filled with catalyst,
(C) Filling each of the plurality of reaction zones with the two or more composite oxide catalysts so that the atomic ratio of Si to Mo increases from the source gas inlet toward the outlet. A method for producing saturated aldehydes and unsaturated carboxylic acids.
原料ガス入口側の触媒のMoに対するSiの原子比を1とした場合、ガス出口側の触媒のMoに対するSiの原子比が1より大きくかつ10以下になるように2種以上の複合酸化物触媒を充填する請求項1に記載の製造方法。   Two or more complex oxide catalysts so that the atomic ratio of Si to Mo of the catalyst on the gas outlet side is 1 and the atomic ratio of Si to Mo of the catalyst on the gas outlet side is greater than 1 and 10 or less The manufacturing method of Claim 1 filled with. 反応帯の数が2〜4である請求項1又は2に記載の製造方法。   The production method according to claim 1 or 2, wherein the number of reaction zones is 2 to 4. オレフィンがプロピレンであり、不飽和アルデヒドおよび不飽和カルボン酸がそれぞれ、アクロレイン及びアクリル酸である請求項1〜3のいずれかに記載の製造方法。   The production method according to any one of claims 1 to 3, wherein the olefin is propylene, and the unsaturated aldehyde and the unsaturated carboxylic acid are acrolein and acrylic acid, respectively.
JP2004326998A 2003-11-14 2004-11-10 Method for producing unsaturated aldehyde and unsaturated carboxylic acid Withdrawn JP2005162744A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004326998A JP2005162744A (en) 2003-11-14 2004-11-10 Method for producing unsaturated aldehyde and unsaturated carboxylic acid

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003385777 2003-11-14
JP2004326998A JP2005162744A (en) 2003-11-14 2004-11-10 Method for producing unsaturated aldehyde and unsaturated carboxylic acid

Publications (1)

Publication Number Publication Date
JP2005162744A true JP2005162744A (en) 2005-06-23

Family

ID=34741806

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004326998A Withdrawn JP2005162744A (en) 2003-11-14 2004-11-10 Method for producing unsaturated aldehyde and unsaturated carboxylic acid

Country Status (1)

Country Link
JP (1) JP2005162744A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100714606B1 (en) 2005-02-25 2007-05-07 주식회사 엘지화학 Method of producing unsaturated aldehyde and/or unsaturated acid
JP2010526765A (en) * 2007-01-19 2010-08-05 エバーヌ・テクノロジー・リミテッド・ライアビリティ・カンパニー Selective oxidation of alkanes and / or alkenes to beneficial oxygenates
WO2017010159A1 (en) * 2015-07-10 2017-01-19 日本化薬株式会社 Method for producing unsaturated aldehyde and/or unsaturated carboxylic acid
US9580376B2 (en) 2013-07-18 2017-02-28 Nippon Kayaku Kabushiki Kaisha Method for producing unsaturated aldehyde and/or unsaturated carboxylic acid

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100714606B1 (en) 2005-02-25 2007-05-07 주식회사 엘지화학 Method of producing unsaturated aldehyde and/or unsaturated acid
JP2010526765A (en) * 2007-01-19 2010-08-05 エバーヌ・テクノロジー・リミテッド・ライアビリティ・カンパニー Selective oxidation of alkanes and / or alkenes to beneficial oxygenates
US9580376B2 (en) 2013-07-18 2017-02-28 Nippon Kayaku Kabushiki Kaisha Method for producing unsaturated aldehyde and/or unsaturated carboxylic acid
JPWO2015008814A1 (en) * 2013-07-18 2017-03-02 日本化薬株式会社 Process for producing unsaturated aldehyde and / or unsaturated carboxylic acid
WO2017010159A1 (en) * 2015-07-10 2017-01-19 日本化薬株式会社 Method for producing unsaturated aldehyde and/or unsaturated carboxylic acid
JPWO2017010159A1 (en) * 2015-07-10 2018-04-19 日本化薬株式会社 Process for producing unsaturated aldehyde and / or unsaturated carboxylic acid

Similar Documents

Publication Publication Date Title
JP3793317B2 (en) Catalyst and method for producing unsaturated aldehyde and unsaturated acid
JP3943311B2 (en) Process for producing unsaturated aldehyde and unsaturated carboxylic acid
KR100714606B1 (en) Method of producing unsaturated aldehyde and/or unsaturated acid
JP3775872B2 (en) Method for producing acrolein and acrylic acid
JP2018140993A (en) Method for production of unsaturated aldehyde and/or unsaturated carboxylic acid
JPH0784400B2 (en) Process for producing unsaturated aldehyde and unsaturated acid
JP4318367B2 (en) Method for producing acrolein and acrylic acid
KR101393797B1 (en) Process for Heterogeneously Catalysed Gas Phase Partial Oxidation of At Least One Organic Starting Compound
KR100904134B1 (en) Method of producing unsaturated aldehyde and/or unsaturated acid
CN101495229B (en) Multi-metal oxide catalyst and method for producing (meth)acrylic acid by using the same
JP5045175B2 (en) Process for producing unsaturated aldehyde and / or unsaturated carboxylic acid
KR100661727B1 (en) Method of producing unsaturated aldehyde and/or unsaturated fatty acid
JP6694884B2 (en) Process for producing unsaturated aldehyde and / or unsaturated carboxylic acid
KR20030079685A (en) Catalytic gas phase oxidation process
JP2001011010A (en) Production of methacrylic acid
JP2003171340A (en) Method for producing acrylic acid
JP2004002209A (en) Method for producing unsaturated aldehyde
JP2005187460A (en) Method for producing unsaturated aldehyde and unsaturated carboxylic acid
JP2003146920A (en) Method for producing acrolein and acrylic acid
JP2005162744A (en) Method for producing unsaturated aldehyde and unsaturated carboxylic acid
JP2988660B2 (en) Method for producing methacrolein and methacrylic acid
JP2638241B2 (en) Method for producing methacrolein and methacrylic acid
JP5448331B2 (en) Acrylic acid production catalyst and method for producing acrylic acid using the catalyst
WO2007119607A1 (en) Process for producing methacrolein and/or methacrylic acid
JP2003261501A (en) Method for vapor-phase catalytic oxidation

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070619

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20090706

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20090709