JP2006142288A - Fixed bed multitubular reactor - Google Patents

Fixed bed multitubular reactor Download PDF

Info

Publication number
JP2006142288A
JP2006142288A JP2005317990A JP2005317990A JP2006142288A JP 2006142288 A JP2006142288 A JP 2006142288A JP 2005317990 A JP2005317990 A JP 2005317990A JP 2005317990 A JP2005317990 A JP 2005317990A JP 2006142288 A JP2006142288 A JP 2006142288A
Authority
JP
Japan
Prior art keywords
catalyst
reaction tubes
fixed bed
reaction tube
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005317990A
Other languages
Japanese (ja)
Inventor
Yasuhiko Mori
康彦 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP2005317990A priority Critical patent/JP2006142288A/en
Publication of JP2006142288A publication Critical patent/JP2006142288A/en
Pending legal-status Critical Current

Links

Landscapes

  • Devices And Processes Conducted In The Presence Of Fluids And Solid Particles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a fixed bed multitubular reactor in which the pressure loss of each of reaction tubes is decreased and the work of packing a catalyst in each of reaction tubes and the work of adjusting the pressure loss of each of reaction tubes are facilitated to improve the working efficiency. <P>SOLUTION: This fixed bed multitubular reactor has a plurality of reaction tubes to be packed with a solid granular material. The inside surface of each of reaction tubes is made flat and smooth. In the concrete, the inside surface of any of the plurality of reaction tubes is made to have ≤3 μm arithmetic mean surface roughness (Ra) or ≤30 μm maximum height (Ry). <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、触媒を用いる気相接触酸化反応等に適用される、固定床多管式熱交換型反応器等の固定床多管式反応器に関する。   The present invention relates to a fixed bed multitubular reactor such as a fixed bed multitubular heat exchange reactor applied to a gas phase catalytic oxidation reaction using a catalyst.

一般に、塩素の製造においては、生成した塩素ガス中に含まれる塩化水素を、酸素を含むガスを用いて触媒の存在下で接触酸化することが行われる。この酸化反応は発熱反応であるため、例えば複数の反応管に粒状の触媒を充填した固定床多管式熱交換型反応器を用いて反応が行なわれる。   Generally, in the production of chlorine, hydrogen chloride contained in the produced chlorine gas is subjected to catalytic oxidation in the presence of a catalyst using a gas containing oxygen. Since this oxidation reaction is an exothermic reaction, the reaction is performed using, for example, a fixed bed multitubular heat exchange reactor in which a plurality of reaction tubes are filled with a granular catalyst.

このような固定床多管式反応器では、ガス量が少ないと過度の温度上昇が生じたり、副反応が起こりやすいため、各管でガスの流れができるだけ均一となるように触媒を充填することが重要である。ガスの流れを均一にするには、不活性ガス等を用いて測定される触媒層の圧力損失Δpが全ての反応管で一致するのが望ましく、例えば非特許文献1には、全ての圧力損失を約5%以内にすることが記載されている。   In such a fixed bed multitubular reactor, if the amount of gas is small, excessive temperature rise or side reaction is likely to occur, so the gas flow in each tube should be filled as uniform as possible. is important. In order to make the gas flow uniform, it is desirable that the pressure loss Δp of the catalyst layer measured using an inert gas or the like be consistent in all the reaction tubes. Is within about 5%.

また、特許文献1には、触媒充填後の各反応管の圧力損失が平均値の±20%となるように、圧力損失が平均値よりも低い反応管または平均値よりも高い反応管には、触媒を抜き出して充填し直すなどして、各反応管の圧力損失を調整することが記載されている。   Patent Document 1 discloses that a reaction tube having a pressure loss lower than the average value or a reaction tube having a higher value than the average value so that the pressure loss of each reaction tube after filling the catalyst becomes ± 20% of the average value. In addition, it is described that the pressure loss of each reaction tube is adjusted by extracting and refilling the catalyst.

特許文献2には、各反応管の触媒容量が均一となるように計量し、1リッター当たり30秒以上の充填時間で触媒を反応管に充填することが記載されている。   Patent Document 2 describes that the catalyst capacity of each reaction tube is measured to be uniform, and the catalyst is filled into the reaction tube with a filling time of 30 seconds or more per liter.

特開2003‐252807号公報Japanese Patent Laid-Open No. 2003-252807 特開2002‐306953号公報JP 2002-306953 A DOWDEN, D.N. ANDREW, S.P.S CAMPBELL, J.S.著、「CATALIST HANDBOOK」、WOLFE SCIENTIFIC BOOKS、1970年発行、167頁DOWDEN, D.N. ANDREW, S.P.S CAMPBELL, J.S.

しかしながら、上記のような工夫を行なっても、通常の多管式反応管は数千本から数万本の反応管を有しているため、触媒充填後の各反応管の圧力損失を均一にするのは困難であった。このため、各反応管への触媒充填作業に多大の注意を払い、圧力損失を均一に調整するために多くの労力を費やしているのが実情である。   However, even if the above-described measures are taken, a normal multi-tubular reaction tube has several thousand to several tens of thousands of reaction tubes, so that the pressure loss of each reaction tube after filling the catalyst is made uniform. It was difficult to do. For this reason, the actual situation is that much attention is paid to the work of filling the catalyst into each reaction tube, and a great deal of effort is spent to uniformly adjust the pressure loss.

従って、本発明の課題は、各反応管の圧力損失を低減して、各反応管への触媒充填作業および各反応管の圧力損失の調整作業が簡単になり、作業効率が向上する固定床多管式反応器を提供することである。   Therefore, an object of the present invention is to reduce the pressure loss of each reaction tube, simplify the work of filling the catalyst into the reaction tube and the adjustment of the pressure loss of each reaction tube, and improve the work efficiency. It is to provide a tubular reactor.

本発明者らは、上記課題を解決すべく鋭意検討を重ねた結果、使用する反応管の内面の表面粗さが大きい場合には、反応管の径が同じであっても、充填した触媒等の固形粒状物の嵩密度や充填密度にばらつきが生じやすく、そのために圧力損失がばらつきやすいことを突き止め、本発明を完成するに至った。   As a result of intensive studies to solve the above problems, the present inventors have found that when the surface roughness of the inner surface of the reaction tube to be used is large, even if the diameter of the reaction tube is the same, the packed catalyst, etc. It was found that the bulk density and the packing density of the solid particulates are likely to vary, and therefore the pressure loss is likely to vary, and the present invention has been completed.

すなわち、本発明の固定床多管式反応器は、固体粒状物が充填される複数の反応管を有するものであって、各反応管の内面が平滑であることを特徴とする。
具体的には、前記複数の反応管は、内面の算術平均粗さ(Ra)がいずれも3μm以下であるか、あるいは内面の最大高さ(Ry)がいずれも30μm以下である。前記複数の反応管は、いずれも内面の算術平均粗さ(Ra)が3μm以下で、かつ内面の最大高さ(Ry)が30μm以下であるのがよい。
That is, the fixed bed multitubular reactor of the present invention has a plurality of reaction tubes filled with solid particulate matter, and is characterized in that the inner surface of each reaction tube is smooth.
Specifically, each of the plurality of reaction tubes has an arithmetic average roughness (Ra) of an inner surface of 3 μm or less, or a maximum inner surface height (Ry) of 30 μm or less. Each of the plurality of reaction tubes preferably has an arithmetic mean roughness (Ra) of the inner surface of 3 μm or less and a maximum height (Ry) of the inner surface of 30 μm or less.

本発明によれば、各反応管の内面が平滑で、表面粗さが小さいので、反応管内に充填された触媒の充填密度(見掛け嵩密度)が大きくなる。さらに、各反応管内面の表面粗さが均一、すなわち内面の算術平均粗さ(Ra)がいずれも3μm以下、あるいは最大高さ(Ry)がいずれも30μm以下であるので、各反応管間での圧力損失のばらつきが小さくなり、圧力損失を均一にすることができる。そのため各反応管への触媒充填作業および各反応管の圧力損失の調整作業が簡単になり、作業効率を向上させることができる。   According to the present invention, since the inner surface of each reaction tube is smooth and the surface roughness is small, the packing density (apparent bulk density) of the catalyst filled in the reaction tube is increased. Furthermore, the inner surface roughness of each reaction tube is uniform, that is, the arithmetic average roughness (Ra) of the inner surface is 3 μm or less, or the maximum height (Ry) is 30 μm or less. Variation in the pressure loss is reduced, and the pressure loss can be made uniform. Therefore, the work of filling the catalyst into each reaction tube and the operation of adjusting the pressure loss of each reaction tube are simplified, and the work efficiency can be improved.

本発明の固定床多管式反応器は、触媒などの固体粒状物が充填された複数の反応管を備える。この反応管に、所定の原料化合物を通過させながら、気相接触反応により原料化合物を酸化させ、目的化合物を得る。   The fixed bed multitubular reactor of the present invention includes a plurality of reaction tubes filled with solid particulate matter such as a catalyst. While passing a predetermined raw material compound through the reaction tube, the raw material compound is oxidized by a gas phase contact reaction to obtain a target compound.

このような反応に供される原料化合物には、例えば気相酸化法により塩素を得るための塩化水素および酸素、気相酸化法によりアクロレイン、さらにアクリル酸を得るためのプロピレンおよび酸素、気相酸化法によりメタクロレイン、さらにメタクリル酸を得るためのイソブチレンおよび酸素などが挙げられる。   The raw material compounds subjected to such a reaction include, for example, hydrogen chloride and oxygen for obtaining chlorine by a gas phase oxidation method, acrolein by a gas phase oxidation method, and propylene and oxygen for obtaining acrylic acid, gas phase oxidation Examples of the method include methacrolein, and isobutylene and oxygen for obtaining methacrylic acid.

使用する反応管はコイル状であってもよいが、通常は直線状の直管が使用される。直管は水平配置、垂直配置のいずれでもよいが、通常は垂直方向に配置され、原料化合物を垂直方向に通過させる縦型である。   The reaction tube used may be coiled, but a straight straight tube is usually used. The straight pipe may be either a horizontal arrangement or a vertical arrangement, but is usually a vertical type which is arranged in the vertical direction and allows the raw material compound to pass in the vertical direction.

反応管内に充填される触媒としては、例えば塩化水素および酸素から塩素を得る気相酸化法では、酸化ルテニウムを主成分とし
、ルチル型酸化チタンに担持させた酸化触媒が挙げられ、さらにプロピレンおよび酸素からアクロレイン、さらにアクリル酸を得るための気相酸化法や、イソブチレンおよび酸素からメタクロレイン、さらにメタクリル酸を得るための気相酸化法の場合には、それぞれ所定の酸化触媒が使用される。
As the catalyst filled in the reaction tube, for example, in the gas phase oxidation method for obtaining chlorine from hydrogen chloride and oxygen, an oxidation catalyst mainly composed of ruthenium oxide and supported on rutile titanium oxide can be cited, and further propylene and oxygen In the case of the gas phase oxidation method for obtaining acrolein and further acrylic acid from gas, and the gas phase oxidation method for obtaining methacrolein and further methacrylic acid from isobutylene and oxygen, a predetermined oxidation catalyst is used.

触媒は、反応に対して不活性な不活性充填材で希釈して用いてもよい。また、触媒を複数の触媒層に分けて反応管内に充填してもよく、その場合には触媒層同士の間に不活性充填材層を介在させてもよい。   The catalyst may be diluted with an inert filler that is inert to the reaction. Further, the catalyst may be divided into a plurality of catalyst layers and filled in the reaction tube. In that case, an inert filler layer may be interposed between the catalyst layers.

触媒の形状は、球形粒状、円柱形ペレット状、リング形状、あるいは成形後に粉砕分級した顆粒状などの形状が挙げられ、特に制限されるものではない。触媒の大きさは、通常、径が10mm以下であるのが好ましく、触媒径が10mmを超えると、活性が低下するおそれがある。また、触媒径が過度に小さくなると、反応管内の圧力損失が大きくなるため、通常は触媒径が0.1mm以上であるのがよい。   Examples of the shape of the catalyst include a spherical particle shape, a cylindrical pellet shape, a ring shape, and a granular shape obtained by pulverization and classification after molding, and are not particularly limited. In general, the catalyst preferably has a diameter of 10 mm or less, and if the catalyst diameter exceeds 10 mm, the activity may decrease. In addition, when the catalyst diameter is excessively small, the pressure loss in the reaction tube increases, and therefore the catalyst diameter is usually preferably 0.1 mm or more.

本発明で使用される、触媒が充填される各反応管は、通常、内径が約15〜50mmの範囲から選ばれる実質的に同一形状の金属管である。ここで「実質的に同一形状」とは、反応管の外径、肉厚および長さが設計誤差の範囲にあることを意味する。なお、設計誤差は通常±2.5%以内、好ましくは±0.5%以内が許容される。なお、反応管の内径は触媒径の4倍以上となるように、反応管の内径と触媒径とを決定するのが好ましいが、特に制限されるものではない。   Each reaction tube filled with a catalyst used in the present invention is usually a metal tube having substantially the same shape and having an inner diameter selected from a range of about 15 to 50 mm. Here, “substantially the same shape” means that the outer diameter, wall thickness, and length of the reaction tube are within the range of the design error. The design error is usually within ± 2.5%, preferably within ± 0.5%. Although it is preferable to determine the inner diameter of the reaction tube and the catalyst diameter so that the inner diameter of the reaction tube is four times or more the catalyst diameter, it is not particularly limited.

本発明で使用される反応管は内面が平滑であることが必要であり、具体的には表面粗さが小さいことが必要である。これにより、各反応管での触媒充填密度を高くすることができる。   The reaction tube used in the present invention needs to have a smooth inner surface, and specifically needs to have a small surface roughness. Thereby, the catalyst packing density in each reaction tube can be made high.

表面粗さは、算術平均粗さ(Ra)、最大高さ(Ry)などで表される。算術平均粗さ(Ra)、最大高さ(Ry)は、JIS B 0601‐1994に記載の方法に準じて測定することができる。   The surface roughness is represented by arithmetic average roughness (Ra), maximum height (Ry), and the like. The arithmetic average roughness (Ra) and the maximum height (Ry) can be measured according to the method described in JIS B 0601-1994.

本発明では、反応器が有する全反応管の内面の算術平均粗さ(Ra)が3μm以下、好ましくは1.5μm以下であるか、あるいは全反応管の内面の最大高さ(Ry)が30μm以下、好ましくは15μm以下である。これにより、各反応管の表面粗さが均一になり、触媒の充填密度が高くなり、各反応管間での充填密度のばらつきが小さくなるので、圧力損失のばらつきを低減することができる。算術平均粗さ(Ra)および最大高さ(Ry)が同時に上記範囲を満足するのが望ましい。   In the present invention, the arithmetic mean roughness (Ra) of the inner surfaces of all reaction tubes of the reactor is 3 μm or less, preferably 1.5 μm or less, or the maximum height (Ry) of the inner surfaces of all reaction tubes is 30 μm. Hereinafter, it is preferably 15 μm or less. Thereby, the surface roughness of each reaction tube becomes uniform, the packing density of the catalyst becomes high, and the variation in packing density among the reaction tubes becomes small, so that the variation in pressure loss can be reduced. It is desirable that the arithmetic average roughness (Ra) and the maximum height (Ry) satisfy the above range at the same time.

算術平均粗さ(Ra)が3μmより大きい場合、または最大高さ(Ry)が30μmより大きい場合には、表面粗さが大きいために、触媒の充填密度が小さくなる傾向にあり、且つ充填密度のばらつきが大きくなる。このため、触媒充填作業を慎重に行なっても、触媒充填後の圧力損失にばらつきが生じやすくなる。   When the arithmetic average roughness (Ra) is greater than 3 μm, or when the maximum height (Ry) is greater than 30 μm, the packing density of the catalyst tends to be small due to the large surface roughness, and the packing density The variation of the is increased. For this reason, even if the catalyst filling operation is performed carefully, the pressure loss after the catalyst filling tends to vary.

このような内面の表面粗さの低い反応管としては、例えば継ぎ目のないシームレス管が好適に採用可能である。このようなシームレス管から、表面粗さが上記条件に適合する反応管を選定すればよい。充填密度を上げ圧力損失を下げるには、できるだけ表面粗さが低いのがよい。   As such a reaction tube having a low surface roughness of the inner surface, for example, a seamless tube with no joint can be suitably employed. From such a seamless tube, a reaction tube whose surface roughness meets the above conditions may be selected. In order to increase the packing density and decrease the pressure loss, the surface roughness should be as low as possible.

各反応管への触媒の充填方法としては、特に限定されないが、例えば縦型の場合は、反応管の上部に空間部を残して触媒を管内に投入落下させて充填すればよい。この際、各管への充填速度を一定にしたり、できるだけゆっくりと充填するのが好ましい。   The method of filling the reaction tube with the catalyst is not particularly limited. For example, in the case of a vertical type, the catalyst may be charged and dropped into the tube while leaving a space in the upper part of the reaction tube. At this time, it is preferable that the filling rate into each tube is constant or as slow as possible.

本発明の固定床多管式反応器は、通常、熱交換型反応器として使用される。この熱交換型反応器では、触媒が充填された反応管の外側にジャケット(シェル)部を有し、反応で生成した反応熱をジャケット(シェル)の熱媒体によって除去する。具体的には、ディスク・アンド・ドーナツ型の多管式反応器、欠円バッフル型の多管式反応器などが好適に使用される。熱媒体としては、例えば溶融塩、スチーム、有機化合物、溶融金属などが挙げられ、特に溶融塩、スチームを使用するのが熱安定性や取り扱い性のうえから好ましい。   The fixed bed multitubular reactor of the present invention is usually used as a heat exchange reactor. This heat exchange type reactor has a jacket (shell) part outside the reaction tube filled with the catalyst, and the reaction heat generated by the reaction is removed by the heat medium of the jacket (shell). Specifically, a disk-and-doughnut-type multitubular reactor, a non-circular baffle-type multitubular reactor, and the like are preferably used. Examples of the heat medium include a molten salt, steam, an organic compound, and a molten metal. In particular, it is preferable to use a molten salt and steam from the viewpoint of thermal stability and handleability.

以下、実施例を挙げて本発明を詳細に説明するが、本発明は以下の実施例に限定されるものではない。   EXAMPLES Hereinafter, although an Example is given and this invention is demonstrated in detail, this invention is not limited to a following example.

反応器には、溶融塩(硝酸カリウム/亜硝酸ナトリウム=1/1重量比)を熱媒体とするジャケットを備え同一品質の複数の反応管(ニッケル・シームレス管、内径21mm、長さ5m)からなる固定床多管式熱交換型反応器を用いた。
反応管の内面の表面粗さ(Ra,Ry)は、反応管から切り出したサンプルについて、JIS B 0601‐1991に従い、触針式粗さ測定器(株式会社ミツトヨ製)を用いて測定した。
各反応管に、塩化水素の酸化反応に用いる触媒(酸化ルテニウムを酸化チタンおよび酸化アルミニウム上に担持した触媒)と不活性充填材(イナートボール)とを2620g充填した。使用した触媒は直径3mm、長さ5mmの円柱状粒状物であり、不活性充填材も同寸法の円柱状粒状物である。各反応管への触媒充填密度は、平均値が1.326g/cm3であった。
充填後、反応器の上部から乾燥空気を4リットル/分(絶対圧力0.1MPa(大気圧)換算)で供給し、デジタルマノメータで各反応管の圧力損失ΔPを測定した。
The reactor is equipped with a jacket using molten salt (potassium nitrate / sodium nitrite = 1/1 weight ratio) as a heat medium, and consists of a plurality of reaction tubes (nickel seamless tube, inner diameter 21 mm, length 5 m) of the same quality. A fixed bed multi-tube heat exchange reactor was used.
The surface roughness (Ra, Ry) of the inner surface of the reaction tube was measured using a stylus type roughness measuring instrument (manufactured by Mitutoyo Corporation) according to JIS B 0601-1991 for the sample cut out from the reaction tube.
Each reaction tube was filled with 2620 g of a catalyst (a catalyst in which ruthenium oxide was supported on titanium oxide and aluminum oxide) used for the oxidation reaction of hydrogen chloride and an inert filler (inert ball). The catalyst used is a cylindrical granular material having a diameter of 3 mm and a length of 5 mm, and the inert filler is also a cylindrical granular material having the same dimensions. The catalyst packing density in each reaction tube had an average value of 1.326 g / cm 3 .
After filling, dry air was supplied from the upper part of the reactor at 4 liters / minute (absolute pressure 0.1 MPa (atmospheric pressure) conversion), and the pressure loss ΔP of each reaction tube was measured with a digital manometer.

表面粗さ(Ra、Ry)が実施例1と異なる品質の反応管を用いて、実施例1と同様にして触媒を充填し、各反応管の圧力損失ΔPを測定した。各反応管への触媒充填密度は1.341g/cm3であった。これらの測定結果を表1に示す。

Figure 2006142288

表1から、反応管の表面粗さが該反応管の触媒充填かさ密度および圧力損失に影響しており、表面粗さが低いほど、反応管の触媒充填かさ密度が大きく、触媒がつまりやすく、圧力損失のばらつきが小さくなっていることがわかる。 Using a reaction tube having a surface roughness (Ra, Ry) different from that of Example 1, the catalyst was filled in the same manner as in Example 1, and the pressure loss ΔP of each reaction tube was measured. The catalyst packing density in each reaction tube was 1.341 g / cm 3 . These measurement results are shown in Table 1.
Figure 2006142288

From Table 1, the surface roughness of the reaction tube affects the catalyst filling bulk density and pressure loss of the reaction tube. The lower the surface roughness, the larger the catalyst filling bulk density of the reaction tube and the easier the catalyst is to clog, It can be seen that the variation in pressure loss is small.

Claims (7)

固体粒状物が充填される複数の反応管を有する固定床多管式反応器において、各反応管の内面が平滑であることを特徴とする固定床多管式反応器。   A fixed bed multitubular reactor having a plurality of reaction tubes filled with solid particulate matter, wherein the inner surface of each reaction tube is smooth. 前記反応管がシームレス管である請求項1に記載の固定床多管式反応器。   The fixed-bed multitubular reactor according to claim 1, wherein the reaction tube is a seamless tube. 固体粒状物が充填される複数の反応管を有する固定床多管式反応器において、前記複数の反応管は、内面の算術平均粗さ(Ra)がいずれも3μm以下であることを特徴とする固定床多管式反応器。   In the fixed bed multi-tubular reactor having a plurality of reaction tubes filled with solid particulate matter, the plurality of reaction tubes each have an arithmetic mean roughness (Ra) of an inner surface of 3 μm or less. Fixed bed multi-tube reactor. 前記算術平均粗さ(Ra)がいずれも1.5μm以下である請求項3に記載の固定床多管式反応器。   The fixed bed multitubular reactor according to claim 3, wherein the arithmetic average roughness (Ra) is 1.5 μm or less. 固体粒状物が充填される複数の反応管を有する固定床多管式反応器において、前記複数の反応管は、内面の最大高さ(Ry)がいずれも30μm以下であることを特徴とする固定床多管式反応器。   A fixed bed multitubular reactor having a plurality of reaction tubes filled with solid particulate matter, wherein the plurality of reaction tubes each have a maximum inner surface height (Ry) of 30 μm or less. Floor multi-tube reactor. 前記最大高さ(Ry)がいずれも15μm以下である請求項5に記載の固定床多管式反応器。   The fixed bed multitubular reactor according to claim 5, wherein each of the maximum heights (Ry) is 15 μm or less. 固体粒状物が充填される複数の反応管を有する固定床多管式反応器において、前記複数の反応管は、いずれも内面の算術平均粗さ(Ra)が3μm以下で、かつ内面の最大高さ(Ry)が30μm以下であることを特徴とする固定床多管式反応器。

In the fixed bed multitubular reactor having a plurality of reaction tubes filled with solid particulate matter, each of the plurality of reaction tubes has an arithmetic mean roughness (Ra) of the inner surface of 3 μm or less and a maximum height of the inner surface. (Ry) is 30 μm or less.

JP2005317990A 2005-11-01 2005-11-01 Fixed bed multitubular reactor Pending JP2006142288A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005317990A JP2006142288A (en) 2005-11-01 2005-11-01 Fixed bed multitubular reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005317990A JP2006142288A (en) 2005-11-01 2005-11-01 Fixed bed multitubular reactor

Publications (1)

Publication Number Publication Date
JP2006142288A true JP2006142288A (en) 2006-06-08

Family

ID=36622567

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005317990A Pending JP2006142288A (en) 2005-11-01 2005-11-01 Fixed bed multitubular reactor

Country Status (1)

Country Link
JP (1) JP2006142288A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007025869A1 (en) 2007-06-01 2008-07-03 Basf Se To service tube bundle of gas-phase hydrocarbon oxidation reactor immediately prior to re-charging with fresh bed of catalyst solids, they are brushed internally
DE102007028333A1 (en) 2007-06-15 2008-12-18 Basf Se Method for introducing a subset taken from at least one production batch of annular shell catalysts K into a reaction tube of a tube bundle reactor
JP2012197272A (en) * 2011-03-09 2012-10-18 Mitsubishi Chemicals Corp Process for producing conjugated diene
JP2012211126A (en) * 2011-03-22 2012-11-01 Mitsubishi Chemicals Corp Method for producing conjugated diene
US9340472B2 (en) 2011-03-09 2016-05-17 Mitsubishi Chemical Corporation Method for producing conjugated diene

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08102447A (en) * 1994-09-30 1996-04-16 Shin Etsu Handotai Co Ltd Quartz glass jig for semiconductor heat treatment and manufacture thereof
JPH0957494A (en) * 1995-08-22 1997-03-04 Mitsubishi Materials Corp Forming method for formed body having smooth surface
JP2002362901A (en) * 2001-06-08 2002-12-18 Mitsubishi Heavy Ind Ltd Reforming apparatus
JP2004249196A (en) * 2003-02-19 2004-09-09 Mitsubishi Rayon Co Ltd Particulate material filling method and fixed bed

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08102447A (en) * 1994-09-30 1996-04-16 Shin Etsu Handotai Co Ltd Quartz glass jig for semiconductor heat treatment and manufacture thereof
JPH0957494A (en) * 1995-08-22 1997-03-04 Mitsubishi Materials Corp Forming method for formed body having smooth surface
JP2002362901A (en) * 2001-06-08 2002-12-18 Mitsubishi Heavy Ind Ltd Reforming apparatus
JP2004249196A (en) * 2003-02-19 2004-09-09 Mitsubishi Rayon Co Ltd Particulate material filling method and fixed bed

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007025869A1 (en) 2007-06-01 2008-07-03 Basf Se To service tube bundle of gas-phase hydrocarbon oxidation reactor immediately prior to re-charging with fresh bed of catalyst solids, they are brushed internally
DE102007028333A1 (en) 2007-06-15 2008-12-18 Basf Se Method for introducing a subset taken from at least one production batch of annular shell catalysts K into a reaction tube of a tube bundle reactor
JP2012197272A (en) * 2011-03-09 2012-10-18 Mitsubishi Chemicals Corp Process for producing conjugated diene
US9340472B2 (en) 2011-03-09 2016-05-17 Mitsubishi Chemical Corporation Method for producing conjugated diene
JP2012211126A (en) * 2011-03-22 2012-11-01 Mitsubishi Chemicals Corp Method for producing conjugated diene

Similar Documents

Publication Publication Date Title
JPWO2009147965A1 (en) Catalyst and method for producing unsaturated aldehyde and unsaturated carboxylic acid
JP4947917B2 (en) Fixed bed reactor for gas phase catalytic oxidation and method for producing acrolein or acrylic acid
JP2006142288A (en) Fixed bed multitubular reactor
JPH0784400B2 (en) Process for producing unsaturated aldehyde and unsaturated acid
CN105899480A (en) Mechanically stable hollow-cylindrical moulded catalyst body for the gas phase oxidation of an alkene in order to obtain an unsaturated aldehyde and/or an unsaturated carboxylic acid
KR101813734B1 (en) Method for producing chlorine using fixed bed reactor
JP2003340267A (en) Method for packing catalyst and multitubular heat exchange type reactor
JP4549290B2 (en) Multi-tube reactor
JP4295462B2 (en) Gas phase catalytic oxidation method
JP2005238225A (en) Filler for vapor-phase reactor
JP6422764B2 (en) Catalyst filling method
JP4194359B2 (en) Gas phase catalytic oxidation method
JP4572573B2 (en) Method for producing (meth) acrolein or (meth) acrylic acid
JP5500775B2 (en) Fixed bed reactor
JP5130155B2 (en) Chlorine production method
JP2010235504A (en) Method for producing acrolein and acrylic acid
KR100694950B1 (en) Method for producing methacrylic acid
WO2022250030A1 (en) Method of producing (meth)acrolein and/or (meth)acrylic acid
JP2019155351A (en) Catalyst group
JP2004249196A (en) Particulate material filling method and fixed bed
JP5479803B2 (en) Method for producing (meth) acrolein or (meth) acrylic acid
JP5902374B2 (en) Acrylic acid production method
JP2010241700A (en) Method for producing acrylic acid
JP2009084167A (en) Manufacturing method of acrolein and/or acrylic acid
JP2004002323A (en) Method for producing unsaturated aldehyde

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061121

A131 Notification of reasons for refusal

Effective date: 20091104

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20091225

Free format text: JAPANESE INTERMEDIATE CODE: A523

A131 Notification of reasons for refusal

Effective date: 20100803

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110920