JP2004249196A - Particulate material filling method and fixed bed - Google Patents

Particulate material filling method and fixed bed Download PDF

Info

Publication number
JP2004249196A
JP2004249196A JP2003041224A JP2003041224A JP2004249196A JP 2004249196 A JP2004249196 A JP 2004249196A JP 2003041224 A JP2003041224 A JP 2003041224A JP 2003041224 A JP2003041224 A JP 2003041224A JP 2004249196 A JP2004249196 A JP 2004249196A
Authority
JP
Japan
Prior art keywords
catalyst
tubular
particulate matter
filling
container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003041224A
Other languages
Japanese (ja)
Inventor
Tomomichi Hino
智道 日野
Akira Ogawa
朗 小川
Hiroyuki Naito
啓幸 内藤
Hideyasu Takezawa
英泰 竹沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP2003041224A priority Critical patent/JP2004249196A/en
Publication of JP2004249196A publication Critical patent/JP2004249196A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a filling method capable of minimizing the powdering and collapsing of non-supported molded catalyst or supported catalyst all having a low mechanical strength, and preventing an easy bridging of catalyst particles within reaction tubes. <P>SOLUTION: When particulate materials are caused to fall down into a container through an opening formed vertically above the internal space of the container, one or more tubes each having concave and convex portions formed on its inner surface are inserted into the container to allow the particulate materials to fall down into the container through the tubes. In this way, the fixed bed can be filled with the particulate materials using such method. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は容器に粒子状物質を充填する方法に関する。特に垂直管型反応器に非担持成形触媒または担持触媒を充填する方法に関する。
【0002】
【従来の技術】
工業的に気固触媒反応を行う場合、内部に触媒が充填された固定床を有する、垂直管型反応器を用いることがある。反応器内に触媒を充填するには、反応器上部より、触媒を投入落下させて充填する方法が一般的である。しかし、触媒が多孔性を有する非担持成形触媒や担持触媒である場合、投入落下時の衝撃により、触媒が粉化、崩壊することがある。管内での反応が発熱反応の場合、触媒の粉化、崩壊が起こると、反応管内での触媒の充填密度が上昇し、それに伴って触媒層の単位体積あたりの発熱量も増加する。一般的に発熱反応を垂直管型反応器で行う場合、除熱用ジャケットを反応管の外側に設置して反応熱を除去するが、発熱量が大きくなると、触媒層内温度が上昇し、所望の反応成績が得られなくなるばかりではなく、触媒性能の劣化を引き起こしたり、場合によっては、過度の発熱により反応の制御が難しくなる可能性がある。更に、触媒の粉化、崩壊が起こると、触媒の粒径が小さくなり、層内の空隙率が低下し、反応ガスを流した際の圧力損失が上昇する。工業的に反応を行う場合、反応後の工程の関連もあり、反応器の出口圧力を一定値以上に保つ必要があるため、触媒層の圧力損失が上昇すると、反応器入口の圧力を上げざるを得ない。これに伴い、原料ガスを反応器に送気するコンプレッサー等の所要動力が増加し、製造コストアップにつながってしまう。
【0003】
多孔性を有する非担持成形触媒や担持触媒の粉化、崩壊を防ぐ手段としては、触媒自体の機械的強度を向上させる方法がある。具体的には、成形圧力を上げたり、担持させる触媒粉の粒径を小さくし、触媒粉同士の接触面積を増加させる方法が挙げられる。しかし、このような手法で機械的強度を高くした触媒は、概して触媒の持つ比表面積が小さかったり、反応に有効な活性点の数が少なかったり、反応に有効な細孔分布が制御できない等の理由で目的生成物の収率が低くなり、実用的ではないことが多い。
【0004】
そこで、機械的強度の高くない非担持成形触媒や担持触媒の粉化、崩壊を最小限に抑えて反応器に充填する方法として、反応管内に任意の形状に成形された線状鋼を挿入し、これに沿わせて触媒粒子を充填する方法が特許文献1に提案されている。この方法によって充填を行う際、触媒は線状鋼、または管壁と接触し落下していく。しかし、管壁は通常平滑であるため、落下速度の低減効果は殆ど期待できない。従って、有効な落下速度低減効果を得るためには、線状鋼を太くしたり、形状を複雑化することにより、触媒との引っ掛かりを増大させざるをえない。だが、このような形状の線状鋼を用いて充填を行った場合、引っ掛かりが増大した分、概して反応管内で触媒粒子が容易にブリッジを起こしてしまう確率が高かった。
【0005】
また、特許文献2には、ひも状物質を介在させて触媒を落下充填する方法が開示されているが、この方法においても、ブリッジ形成を回避しつつ優れた落下速度低減効果を得るという点で改善の余地があった。
【0006】
従ってこれらの状況から、機械的強度の高くない非担持成形触媒や担持触媒の粉化、崩壊を最小限に抑えて反応器に充填する更なる手法の開発が切に望まれている。
【0007】
【特許文献1】
特開昭52−3579号公報
【特許文献2】
特開平6−7669号公報
【0008】
【発明が解決しようとする課題】
本発明はこのような背景のもと、機械的強度の高くない非担持成形触媒や担持触媒の粉化、崩壊を最小限に抑え、かつ反応管内で触媒粒子が容易にブリッジしない充填方法を提供すべく、なされたものである。
【0009】
【課題を解決するための手段】
本発明者らは、前記課題を解決すべく、鋭意研究の結果、内表面に凹凸部を有する管状物を用いることで、非担持成形触媒や担持触媒の粉化、崩壊を低減できるだけでなく、充填中に反応管内で触媒粒子が容易にブリッジしないことを見出し、本発明を完成させるに到った。
【0010】
すなわち本発明は、以下の(1)〜(14)を提供するものである。
【0011】
(1)鉛直上方に開口を有する容器の内部に、該開口から粒子状物質を落下充填するにあたり、内表面に凹凸部を有する管状物を1本以上該容器内に挿入し、該管状物の内部を通して粒子状物質を落下充填することを特徴とする粒子状物質の充填方法。
【0012】
(2)前記管状物の凹凸部が蛇腹状で、かつ該凹凸部の高さが0.1〜20mmであり、幅が0.1〜20mmであり、ピッチが1〜200mmである(1)記載の方法。
【0013】
(3)前記粒子状物質の粒子径を、前記管状物の内径で割った値が、0.05〜0.5である(1)または(2)記載の方法。
【0014】
(4)前記管状物の凹凸部が網状で、かつ線径が0.1〜5mmであり、長手方向ピッチが0.5〜100mmであり、円周方向ピッチが0.5〜100mmである(1)記載の方法。
【0015】
(5)前記粒子状物質の粒子径を、前記管状物の内径で割った値が、0.05〜0.5である(4)記載の方法。
【0016】
(6)前記粒子状物質が、非担持成形触媒または担持触媒である(1)〜(5)の何れかに記載の方法。
【0017】
(7)前記粒子状物質が、イソブチレンもしくは第三級ブタノールを分子状酸素により気相接触酸化してメタクロレイン及びメタクリル酸を合成するための非担持成形触媒もしくは担持触媒である(6)記載の方法。
【0018】
(8)前記粒子状物質が、メタクロレインを分子状酸素により気相接触酸化してメタクリル酸を合成するための非担持成形触媒もしくは担持触媒である(6)記載の方法。
【0019】
(9)前記粒子状物質が、プロピレンを分子状酸素により気相接触酸化してアクロレイン及びアクリル酸を合成するための非担持成形触媒もしくは担持触媒である(6)記載の方法。
【0020】
(10)前記粒子状物質が、アクロレインを分子状酸素により気相接触酸化してアクリル酸を合成するための非担持成形触媒もしくは担持触媒である(6)記載の方法。
【0021】
(11)前記容器が管状容器であり、該管状容器の一つの開口端部が鉛直上方に位置する(1)〜(10)の何れかに記載の方法。
【0022】
(12)前記管状容器が、粒子状物質が充填されてなる固定床を形成するための領域を有する垂直管型反応器である(11)記載の方法。
【0023】
(13)前記垂直管型反応器が熱交換式反応器である(12)記載の方法。
【0024】
(14)(12)または(13)記載の方法によって粒子状物質が充填されてなる固定床。
【0025】
【発明の実施の形態】
粒子状物質としては、容器に落下充填する対象となるものを用いることが可能であれば、形状、サイズ、材質等には特段の制限はないが、後述するように粒子径は充填に使用する管状物の内径の0.05〜0.5倍が好ましい。粒子状物質は、例えば、粒子状物質自体がより細かい粒子から形成される、もしくは粒子内部で発泡させるものであってもよいし、非多孔質体であってもよい。本発明は、鉛直上方に開口を有する容器の内部に、開口から粒子状物質を落下充填する際、容器内面、及び充填層上面との接触による衝撃によって粉化、崩壊を起こしうる粒子状物質の、粉化、崩壊を抑制して充填を行う場合に好適に適用できる。粒子状物質の平均圧壊強度が10〜5000kPaの場合に、本発明は特に効果的である。ここで、平均圧壊強度は、充填に使用する粒子状物質の中からサンプルを抽出し、これらサンプル一粒にアムスラー型圧縮試験機で徐々に圧力を加えて行き、粒子の粉化、崩壊が発生した時点での圧力を測定した結果の個数平均を示す。圧壊強度測定用サンプルの抽出は任意に行えるが、数値の精度の面から見て、充填に使用する粒子状物質の個数の0.01〜50%程度にすることが好ましい。
【0026】
容器としては、鉛直方向に開口を有する容器を用いることができ、管状、箱状など様々な形状をとりうる。本発明は、管状容器であって、その一つの開口端部が鉛直上方に位置する容器に充填を行う場合に特に効果的であり、粒子状物質が充填されてなる固定床を形成するための領域を有する垂直管型反応器に充填を行う場合に特に好適に適用できる。
【0027】
中でも本発明は特に、非担持成形触媒または担持触媒の垂直管型反応器への落下充填に好適に適用される。従って、以下、非担持成形触媒または担持触媒の垂直管型反応器への落下充填に適用する場合を代表的例として、本発明を詳細に説明する。なお、ここで非担持成形触媒とは担体を用いず、主として触媒成分を成形器で成形することによって得られる触媒体のことであり、担持触媒とは、多孔質もしくは非多孔質体からなる担体に触媒成分を担持することによって得られる触媒体のことである。
【0028】
本発明では、非担持成形触媒または担持触媒の反応管への充填に、内表面に凹凸部を有する管状物を用いる。
【0029】
本発明が適用される反応器としては、例えば、垂直管型反応器が挙げられる。ここで反応器とは、少なくとも反応管等の内部に固定床が形成される部材(以下、反応管等と言う。)を含む設備である。反応器には、反応管等の部材以外に、例えば、反応管の開口部に設けられる反応流体の入口部や出口部、反応管の周囲に設けられる反応温度を調節するための熱媒体を存在させるジャケット部等、反応管等の部材に付帯する構造を含む。反応管とは、内部に固定床が形成される管状部材である。管型反応器とは反応管を有する反応器のことであり、垂直管型反応器とは反応管の長手方向が略鉛直に設けられた反応器のことである。また熱交換式反応器とは、反応管の周囲のジャケット部に熱媒体を流すことで熱交換機能を付与した反応器のことである。図1に竪型熱交換式反応器の一例を示す。
【0030】
発熱を伴う気固触媒反応を行う場合では、反応管として、外径7〜60mm、肉厚1〜4mm、長さ0.5〜10m程度のものが一般的に用いられており、本発明はこのようなものに適用できるが、本発明では特に、管径が小さく、管長が長いものの方が得られる効果が大きい。また、管型反応器は、反応管が1本の単管式のものでもよいが、工業的には反応管が複数本、例えば2〜40000本程度の多管式のものが好適である。
【0031】
図1の竪型熱交換式反応器を用いて気固触媒反応を行う場合、反応原料ガスは入口1から供給されて、反応管5の下部から上部へ流通し、反応物は出口2から抜き出される。加熱、もしくは除熱用の熱媒体は熱媒体入口3から流入し熱媒体出口4へ流出する。気固触媒反応によるイソブチレンやメタクロレインの酸化のような発熱反応の場合、熱媒体としてはナイターが好適に利用される。ナイターとは亜硝酸ナトリウム、硝酸カリウム、硝酸ナトリウム等を含んだ高温用熱媒体である。本例では熱媒体、及び反応原料ガスはアップフローで供給されているが、場合によっては上部からダウンフローで供給されることもある。この場合でも、本発明は問題なく適用される。
【0032】
ところで、本発明では、非担持成形触媒は従来から管型反応器用に利用されている触媒を使用することができる。その非担持成形触媒の形状は、球状、円柱状、星型状等、公知のいずれの形状であってもよく、形状打錠機、押出し成形機、転動造粒機等で成形されるものを用いることができる。また、本発明において、担持触媒を利用する場合、担体の種類としては、シリカ、アルミナ、シリカ・アルミナ、マグネシア、チタニア等の公知の担体を用いることができる。その形状については、球状、円柱状、円筒状、板状等、公知のいずれの形状であってもよい。また、本発明において使用され、反応管に充填される触媒としては、触媒の反応強度を調節するため等に使われる、シリカ、アルミナ、シリカ・アルミナ、マグネシア、チタニア等を球状、円柱状、円筒状、板状等に成形した担体や反応に不活性な金属等で作られた触媒希釈材等が混合された触媒も含む。
【0033】
これら触媒が用いられる対象となる反応についても、炭化水素の酸化反応、水蒸気改質反応等、公知のいずれの反応であってもよい。本発明の効果が好適に得られる、大きな発熱を伴う気固触媒反応の中から例示すれば、イソブチレン又は第三級ブタノールを分子状酸素により気相接触酸化してメタクロレイン及びメタクリル酸を合成する反応、メタクロレインを分子状酸素により気相接触酸化してメタクリル酸を合成する反応、プロピレンを分子状酸素により気相接触酸化してアクロレイン及びアクリル酸を合成する反応、アクロレインを分子状酸素により気相接触酸化してアクリル酸を合成する反応などが挙げられる。
【0034】
イソブチレン又は第三級ブタノールの酸化によるメタクロレイン及びメタクリル酸製造用触媒としては、例えば、一般式MoBiFe(ここで式中Mo、Bi、Fe及びOはそれぞれモリブデン、ビスマス、鉄及び酸素を示し、Aはニッケル及び/又はコバルトを示し、Xはカリウム、ルビジウム、セシウム及びタリウムからなる群より選ばれた少なくとも1種の元素を示し、Yはマグネシウム、亜鉛、マンガン、鉛、錫及びクロムからなる群より選ばれた少なくとも1種の元素を示し、Zはリン、ホウ素、アンチモン、ケイ素、硫黄、テルル、タングステン及びセリウムからなる群より選ばれた少なくとも1種の元素を示す。a、b、c、d、e、f、g及びhは各元素の原子比率を表し、a=12のときb=0.01〜3、c=0.5〜4、d=1〜12、e=0.01〜2、f=0〜5、g=0〜20であり、hは前記各成分の原子価を満足するのに必要な酸素の原子比率である。)で表される組成を有するものが挙げられる。
【0035】
また、メタクロレインの酸化によるメタクリル酸製造用触媒としては、例えば、一般式PMo(ここで式中P、Mo、V及びOはそれぞれリン、モリブデン、バナジウム及び酸素を示し、Xはヒ素、アンチモン、ビスマス、ゲルマニウム、ジルコニウム、テルル、銀、セレン及びホウ素からなる群より選ばれた少なくとも1種の元素を示し、Yは鉄、銅、亜鉛、クロム、マグネシウム、タンタル、マンガン、バリウム、ガリウム、セリウム及びランタンからなる群より選ばれた少なくとも1種の元素を示し、Zはカリウム、ルビジウム、セシウム及びタリウムからなる群より選ばれた少なくとも1種の元素を示す。a、b、c、d、e、f及びgは各元素の原子比率を表し、b=12のときa=0.5〜3、c=0.01〜3、d=0〜3、e=0〜3、f=0.01〜3であり、gは前記各成分の原子価を満足するのに必要な酸素の原子比率である。)で表される組成を有するものが挙げられる。
【0036】
プロピレンの酸化によるアクロレイン及びアクリル酸製造用触媒としては、一般式MoBiFeSi(ここで式中Mo、Bi、Fe、Si及びOはそれぞれモリブデン、ビスマス、鉄、ケイ素及び酸素を示し、Aはニッケル及び/又はコバルトを示し、Xはマグネシウム、亜鉛、マンガン、カルシウム、クロム、ニオブ、銀、バリウム、スズ、タンタル及び鉛からなる群より選ばれた少なくとも一種の元素を示し、Yはリン、ホウ素、硫黄、セレン、テルル、セリウム、タングステン、アンチモン及びチタンからなる群より選ばれた少なくとも一種の元素を示し、Zはリチウム、ナトリウム、カリウム、ルビジウム、セシウム及びタリウムからなる群より選ばれた少なくとも一種の元素を示す。a、b、c、d、e、f、g、h及びiは各元素の原子比率を表し、a=12のときb=0.01〜3、c=0.01〜5、d=1〜12、e=0〜6、f=0〜5、g=0.001〜1、h=0〜20であり、iは前記各成分の原子価を満足するのに必要な酸素の原子比率である。)で表される組成を有するものが挙げられる。
【0037】
アクロレインの酸化によるアクリル酸製造用触媒としては、一般式MoSi(ここで式中Mo、V、Si及びOはそれぞれモリブデン、バナジウム、ケイ素及び酸素を示し、Aは鉄、コバルト、クロム及びストロンチウムからなる群より選ばれた少なくとも一種の元素を示し、Xはゲルマニウム、ホウ素、ヒ素、セレン、銀、ナトリウム、スズ、テルル、セリウム及びサマリウムからなる群より選ばれた少なくとも一種の元素を示し、Yはマグネシウム、アルミニウム、チタン、マンガン、銅、亜鉛、ジルコニウム、ニオブ、タングステン、タンタル、アンチモン及びビスマスからなる群より選ばれた少なくとも一種の元素を示す。a、b、c、d、e、f及びgは各元素の原子比率を表し、a=12のときb=0.1〜6、c=0.1〜15、d=0.1〜3、e=0〜3、f=0〜20であり、gは前記各成分の原子価を満足するのに必要な酸素の原子比率である。)で表される組成を有するものが挙げられる。
【0038】
本発明に用いられる非担持成形触媒または担持触媒粒子は、反応管への充填の際に、粉化、崩壊を起こしうるもの全てに適用が可能であるが、圧壊強度が10〜5000kPa程度の範囲にあるものに対して最も好適に用いることができる。
【0039】
本発明に用いられる管状物としては、内表面に凹凸部を有し、反応管内に挿入可能なものを用いることができる。管状物の材質は金属繊維、布等を適宜採用することができるが、価格、強度、弾力性、挿入の容易さから樹脂製のものが最も好適に利用される。また、管状物内面に施される凹凸部は、ブリッジを組むなどによって触媒粒子の落下充填を妨げることなく、触媒粒子の落下速度を低減できる形状を適宜採用できるが、その一例として、図2に示す蛇腹状管状物を挙げることができる。具体的には、凹凸部の高さ11が好ましくは0.1〜20mm、より好ましくは0.5〜5mmの範囲、凹凸部の幅10が好ましくは0.1〜20mm、より好ましくは0.5〜5mmの範囲、凹凸部のピッチ9が好ましくは1〜200mm、より好ましくは1〜50mmのものが挙げられる。凹凸部の高さ11を大きくすれば、触媒粒子の落下速度をより低減できるし、凹凸部の高さ11を小さくすれば、触媒粒子がブリッジを組む確率がより小さくなる。管状物の内径8が大きければ触媒粒子がブリッジを組む確率がより小さくなるし、小さければ触媒粒子の落下速度をより低減できる。これらの効果のバランスを考慮して内径8は決定されるが、その指標のひとつとして、平均粒子径を管状物内径で割った値が挙げられる。ここで平均粒子径とは、充填に使用される触媒粒子の中からサンプルを抽出し、それらサンプル一粒ずつに対して、サンプル粒子自体の体積と同等の体積を有する球体の直径、つまり球相当直径の、個数平均径を指す。平均粒子径測定用サンプルの抽出は任意に行えるが、数値の精度の面から見て、充填に使用する粒子状物質の個数の0.01〜50%程度にすることが好ましい。この平均粒子径を管状物内径で割った値が、好ましくは0.05から0.5、より好ましくは、0.1〜0.3になるように内径を決定すれば、優れた触媒粒子の落下充填が行える場合が多い。また、使用する管状物の本数は、触媒粒子の落下充填を妨げない範囲で適宜選ぶことができる。本数が多ければ、触媒粒子の充填速度が向上するし、本数が少なければ充填にかかる費用が低減される。ところで、図2では、蛇腹状の凹凸部がそれぞれ独立した形状の管状物の例を示したが、管状物の凹凸部がスパイラル状につながった形状のものでも、勿論問題なく利用できる。なお、凹凸部の高さ11は、凹部の最も深い個所を基準とした凸部の最も高い個所の高さである。また、凹凸部のピッチ9は、管状物の軸方向のピッチである。
【0040】
また、本発明に用いられる管状物として、凹凸部が網状のものも挙げられる。(一例を図3、網目部分の拡大図を図4に示す。)この網状の管状物としては、管内に挿入可能なものを用いることができる。網状の管状物の材質は金属繊維、天然繊維等を適宜採用することができるが、価格、強度、弾力性、挿入の容易さから樹脂製のものが最も好適に利用される。網の線径13、長手方向ピッチ14、円周方向ピッチ15は、触媒粒子の落下充填を実質的に妨げない範囲で適宜選ぶことができるが、具体的には、網の線径13が好ましくは0.1〜5mm、より好ましくは、1〜3mmの範囲、長手方向ピッチ14が好ましくは0.5〜100mm、より好ましくは3〜10mmの範囲、円周方向ピッチ15が好ましくは0.5〜100mm、より好ましくは3〜10mmの範囲のものがあげられる。線径13を太くすれば、引っ掛かりが増大し、触媒粒子の落下速度をより低減できるし、線径13を細くすれば、触媒粒子がブリッジを組む確率がより小さくなる。ピッチを小さくすれば引っ掛かりが増大し、触媒粒子の落下速度をより低減できるし、ピッチを大きくすれば、触媒粒子がブリッジを組む確率がより小さくなる。ただし、最大でも、触媒粒子が容易に網状の管状物の外部に抜けてしまわない程度のピッチにしておく方が良い。網状の管状物の内径、及び本数に関しては、上述の蛇腹状の管状物の場合と同様である。
【0041】
また、これら管状物を用いた、反応管内への充填触媒粒子の供給方法は、実質的に触媒粒子の落下充填が妨げられない方法を適宜採用することができる。例えば、反応管上端部にホッパーを設置し、所定量の触媒粒子を連続的に供給しても良いし、所定量の触媒粒子を一括でホッパー内に投入し、バイブレーター等で振動を与えながら管内に落とし込んでも良い。また、ホッパーを用いずに、その他特殊な触媒供給フィーダーを設置して供給を行っても良い。また、これら管状物の反応管水平断面中の位置は、触媒層の充填が均一に行える場所であれば任意に選択できる。
【0042】
ところで、充填中、これら管状物の下端は、常に反応管内充填層の上面よりも上方にあった方が良い。管状物の下端が、充填層の上面より下に来ると、管状物の内部に充填層が形成されてしまい、充填実施後、管状物の抜き出しが難しくなることがあるという点で不利である。充填に用いた管状物の形状、材質が目的生成物の収率に影響を及ぼさないものであれば、必ずしも触媒充填後に抜き出す必要はない。しかし、反応管内に管状物が存在した状態であると、反応管内部の容積が小さくなり、触媒粒子の充填可能量が少なくなってしまうという点で不利なので、触媒粒子充填後には管状物は抜き出す方が好ましい。管状物の下端を充填層の上面よりも上方に保つ具体的手段としては、充填層面の上昇と共に、管状物を引き上げる方法、一定量の触媒粒子を事前に計量し、反応管径と触媒粒子のかさ密度から充填層面の上昇量を予測して、下端が予測充填層面以上となるような長さを有する管状物を別途用意し、それらを切替えながら充填を行う方法等が挙げられる。後者の方法を用いる場合、管状物の切替回数を増やせば、下端から充填層上面までの距離が短くて済み、触媒粒子の粉化、崩壊がより低減できるし、切替回数を減らせば、準備する管状物の数を減らすことができる。また、充填がある程度進行し、反応管上端からの触媒粒子の落下距離が短くなってくると、管状物を用いて充填を行わなくても構わない。落下距離が短い領域では、触媒粒子の落下速度が小さい、つまり落下充填時の衝撃が小さいため、触媒粒子の粉化、崩壊が起きない、もしくは起こったとしてもその影響はわずかとなるからである。ただし、管状物を用いなくても良い落下距離はその触媒粒子の持つ機械的強度により異なる。
【0043】
このように、内表面に凹凸部を有する管状物を用いて落下充填を行うことで、反応管内でのブリッジを防止しながら、粉化、崩壊を最小限に抑えた非担持成形触媒や担持触媒粒子の落下充填を行うことが可能となる。
【0044】
【実施例】
以下、具体的実施例を挙げて本発明を更に説明する。なお、文中「部」は質量部を意味する。非担持成形触媒または担持触媒の平均粒子径および平均圧壊強度は、製造した触媒粒子の中から、ランダムに抽出した0.1%(個数基準)の触媒粒子の平均値である。また、非担持成形触媒、または担持触媒の充填粉化率は次のように定義される。触媒a部を鉛直方向に設置した管型反応器上部より充填し、充填後反応器底部より回収された触媒の内、14メッシュのふるいを通過しないものがb部であったとする。
【0045】
【数1】

Figure 2004249196
また、圧力損失は、元圧196kPaの空気を、下端部を大気開放した反応管の上端部から、流量3m/hrにて流入させた時の反応管上端部の圧力として測定した。なお、文中「圧力、圧壊強度」は全てゲージ圧である。
【0046】
また、文中触媒層は反応管の下側から、「一層目」、「二層目」と数えることとする。
【0047】
(実施例1)
イソブチレン又は第三級ブタノールを分子状酸素により気相接触酸化してメタクロレイン及びメタクリル酸を合成するための触媒として、以下の触媒粉末を調整した。
Mo120.2Bi0.5Fe2.5NiCs0.5
(式中、Mo、W、Bi、Fe、Ni、Cs及びOはそれぞれモリブデン、タングステン、ビスマス、鉄、ニッケル、セシウム及び酸素を表す。また、元素記号右下併記の数字は各元素の原子比であり、xは前記各成分の原子価を満足するのに必要な酸素の原子比率である。)得られた触媒粉末970部をグラファイト粉末30部とよく混合した後、外径5mm、高さ5mmの円筒形に打錠成形した。得られた成形触媒粒子の平均粒子径は5.7mm、平均圧壊強度は2000kPaであった。
【0048】
反応管は外径30mm、肉厚1.4mm、長さ5.5mのステンレス鋼製のものを用いた。触媒粒子の充填には反応管上部に設置したホッパーを用いた。充填量は2kgとし、1kgずつ二層に分け充填を行った。また、一層目の充填にのみ、反応管上部から予め予測した一層目の充填高さよりやや上の位置まで挿入した蛇腹状ホース(管状物)の内部を通して充填を行い、二層目の充填はホッパーから自然落下させて充填した。充填に用いた蛇腹状ホースは塩化ビニル製で、外径24mm、内径19.8mm、凹凸部の高さ0.7mm、凹凸部の幅1mm、凹凸部のピッチ8.0mm、長さ2.5mであった。この時、平均粒子径をホース内径で割った値は0.29となった。なお、一層目の充填実施後、蛇腹状ホースは抜き出した。充填実施後、触媒層の圧力損失、充填粉化率を測定した。結果を表1に示す。
【0049】
(実施例2)
蛇腹状ホースの替わりに網状ホースを用いること以外は実施例1と同じ方法で触媒粒子の充填を行った。充填に用いた網状筒はポリプロピレン製で、外径24mm、線径1mm、長手方向ピッチ6mm、円周方向ピッチ3mm、長さ2.5mであった。この時、平均粒子径をホース内径で割った値は0.26となった。結果を表1に示す。
【0050】
(比較例1)
一層目の充填を自然落下で行う以外は実施例1と同じ方法で触媒粒子の充填を行った。結果を表1に示す。一層目の充填を自然落下とすることで、圧力損失、充填粉化率共に高くなった。
【0051】
(実施例3)
メタクロレインを分子状酸素により気相接触酸化してメタクリル酸を合成するための触媒として、以下の触媒粉末を調整した。
1.5Mo120.8Sb0.5Cu0.1
(式中、P、Mo、V、Sb、Cu、K及びOはリン、モリブデン、バナジウム、アンチモン、銅、カリウム及び酸素を表す。また、元素記号右下併記の数字は各元素の原子比であり、xは前記各成分の原子価を満足するのに必要な酸素の原子比率である。)得られた触媒粉末970部をグラファイト粉末30部とよく混合した後、外径5mm、高さ5mmの円筒形に打錠成形した。得られた成形触媒粒子の平均粒子径は5.7mm、平均圧壊強度は1800kPaであった。
【0052】
上記で得られた触媒粒子を用いること以外は実施例1と同じ方法で触媒粒子の充填を行った。結果を表1に示す。この時、平均粒子径をホース内径で割った値は0.29となった。
【0053】
(比較例2)
一層目の充填を自然落下で行う以外は実施例3と同じ方法で触媒粒子の充填を行った。結果を表1に示す。一層目の充填を自然落下とすることで、圧力損失、充填粉化率共に高くなった。
【0054】
(実施例4)
プロピレンを分子状酸素により気相接触酸化してアクロレイン、及びアクリル酸を合成するための触媒として、以下の触媒粉末を調整した。
Mo120.3BiFeCo0.05Te0.1
(式中、Mo、W、Bi、Fe、Co、K、Te及びOはモリブデン、タングステン、ビスマス、鉄、コバルト、カリウム、テルル及び酸素を表す。また、元素記号右下併記の数字は各元素の原子比であり、xは前記各成分の原子価を満足するのに必要な酸素の原子比率である。)得られた触媒粉末970部をグラファイト粉末30部とよく混合した後、外径5mm、高さ5mmの円筒形に打錠成形した。得られた成形触媒粒子の平均粒子径は5.7mm、平均圧壊強度は2500kPaであった。
【0055】
上記で得られた触媒粒子を用いること以外は実施例1と同じ方法で触媒粒子の充填を行った。結果を表1に示す。この時、平均粒子径をホース内径で割った値は0.29となった。
【0056】
(比較例3)
一層目の充填を自然落下で行う以外は実施例4と同じ方法で触媒粒子の充填を行った。結果を表1に示す。一層目の充填を自然落下とすることで、圧力損失、充填粉化率共に高くなった。
【0057】
(実施例5)
アクロレインを分子状酸素により気相接触酸化してアクリル酸を合成するための触媒として、以下の触媒粉末を調整した。
Mo12SiNa0.7Fe0.5Co0.5
(式中、Mo、V、Si、Na、Fe、Co及びOはモリブデン、バナジウム、ケイ素、ナトリウム、鉄、コバルト及び酸素を表す。また、元素記号右下併記の数字は各元素の原子比であり、xは前記各成分の原子価を満足するのに必要な酸素の原子比率である。)得られた触媒粉末970部をグラファイト粉末30部とよく混合した後、外径5mm、高さ5mmの円筒形に打錠成形した。得られた成形触媒粒子の平均粒子径は5.7mm、平均圧壊強度は2400kPaであった。
【0058】
上記で得られた触媒粒子を用いること以外は実施例1と同じ方法で触媒粒子の充填を行った。結果を表1に示す。この時、平均粒子径をホース内径で割った値は0.29となった。
【0059】
(比較例4)
一層目の充填を自然落下で行う以外は実施例5と同じ方法で触媒粒子の充填を行った。結果を表1に示す。一層目の充填を自然落下とすることで、圧力損失、充填粉化率共に高くなった。
【0060】
(実施例6)
イソブチレン又は第三級ブタノールを分子状酸素により気相接触酸化してメタクロレイン及びメタクリル酸を合成するための触媒として、実施例1に示した触媒粒子を準備した。
【0061】
反応管は外径60mm、肉厚3.0mm、長さ5.5mのステンレス鋼製のものを用いた。触媒粒子の充填には反応管上部に設置したホッパーを用いた。充填量は8kgとし、4kgずつ二層に分け充填を行った。また、一層目の充填にのみ、ホースを用いて充填を行い、二層目の充填はホッパーから自然落下させて充填した。充填には塩化ビニル製で、外径24mm、内径19.8mm、凹凸部の高さ0.7mm、凹凸部の幅1mm、凹凸部のピッチ8.0mm、長さ2.5mのホースを3本用いた。この時、平均粒子径をホース内径で割った値は0.29となった。なお、一層目の充填実施後、ホースは抜き出した。充填実施後、触媒層の圧力損失、充填粉化率を測定した。結果を表1に示す。
【0062】
(実施例7)
触媒粒子を一層目0.5kg、二層目0.5kg、三層目1kgに分割し、充填に使用するホースの長さを、一層目3.7m、二層目2.5mとし、三層目は自然落下で充填を行う以外は実施例1と同じ方法で触媒粒子の充填を行った。結果を表1に示す。
【0063】
(比較例5)
一層目、及び二層目の充填に際し、蛇腹状ホースを使用せず、線径1mmのピアノ線を内径5mm、ピッチ3mmのらせん状とし、20mm毎にらせん方向を反転させた線状鋼を反応管に挿入し、触媒粒子を線状鋼の外側に沿って充填し、充填層高の上昇に従って線状鋼を引き上げること以外は実施例1と同じ方法で触媒粒子の充填を行った。結果を表1に示す。
【0064】
【表1】
Figure 2004249196
このように、触媒粒子充填時に内面に凹凸部を有する管状物を用いると、触媒粒子のブリッジ発生を抑制しながら、触媒層の圧力損失、充填粉化率を低くできることがわかる。
【図面の簡単な説明】
【図1】本発明で使用される管状容器の一例として、竪型熱交換式反応器の具体的構造を示すものである。
【図2】本発明で使用される蛇腹状管状物の一例を示すものである。
【図3】本発明で使用される網状管状物の一例を示すものである。
【図4】本発明で使用される網状管状物の網目部を拡大した図である。
【符号の説明】
1:反応原料ガス入口
2:反応ガス出口
3:熱媒体入口
4:熱媒体出口
5:反応管
6:邪魔板
7:蛇腹状管状物外径
8:蛇腹状管状物内径
9:凹凸部ピッチ
10:凹凸部幅
11:凹凸部高さ
12:網状管状物外径
13:線径
14:長手方向ピッチ
15:円周方向ピッチ[0001]
TECHNICAL FIELD OF THE INVENTION
The invention relates to a method for filling a container with particulate matter. In particular, the present invention relates to a method for filling an unsupported shaped catalyst or a supported catalyst in a vertical tube reactor.
[0002]
[Prior art]
When performing a gas-solid catalytic reaction industrially, a vertical tube reactor having a fixed bed filled with a catalyst may be used. In order to charge the catalyst in the reactor, a method is generally used in which the catalyst is charged and dropped from the upper portion of the reactor to charge the catalyst. However, when the catalyst is a non-supported molded catalyst or a supported catalyst having porosity, the catalyst may be powdered or disintegrated due to the impact at the time of dropping. In the case where the reaction in the tube is an exothermic reaction, when the catalyst is powdered or disintegrated, the packing density of the catalyst in the reaction tube increases, and accordingly, the calorific value per unit volume of the catalyst layer also increases. Generally, when performing an exothermic reaction in a vertical tube reactor, a heat removal jacket is installed outside the reaction tube to remove reaction heat. Not only cannot obtain the reaction results, but also cause deterioration of the catalyst performance, and in some cases, excessive heat generation may make it difficult to control the reaction. Further, when the powdering or disintegration of the catalyst occurs, the particle size of the catalyst decreases, the porosity in the layer decreases, and the pressure loss when flowing the reaction gas increases. When performing the reaction industrially, the pressure at the reactor inlet must be increased when the pressure loss of the catalyst layer increases because the outlet pressure of the reactor needs to be kept at a certain value or more because of the process after the reaction. Not get. Along with this, the required power of a compressor or the like for feeding the raw material gas to the reactor increases, which leads to an increase in manufacturing cost.
[0003]
As a means for preventing powdering and disintegration of a porous non-supported molded catalyst or supported catalyst, there is a method of improving the mechanical strength of the catalyst itself. Specifically, there is a method of increasing the molding pressure or reducing the particle size of the catalyst powder to be supported, and increasing the contact area between the catalyst powders. However, catalysts whose mechanical strength has been increased by such a method generally have a small specific surface area of the catalyst, a small number of active sites effective for the reaction, and a difficulty in controlling the pore distribution effective for the reaction. For that reason, the yield of the desired product is low and is often not practical.
[0004]
Therefore, as a method of filling the reactor with minimizing powdering and collapse of the unsupported molded catalyst or supported catalyst that does not have high mechanical strength, a linear steel molded into an arbitrary shape is inserted into the reaction tube. Patent Document 1 proposes a method of filling catalyst particles in accordance with the method. When filling by this method, the catalyst comes into contact with the linear steel or the pipe wall and falls. However, since the pipe wall is usually smooth, the effect of reducing the falling speed can hardly be expected. Therefore, in order to obtain an effective effect of reducing the falling speed, it is inevitable to increase the catch with the catalyst by increasing the thickness of the linear steel or complicating the shape. However, when the filling was performed using the linear steel having such a shape, the probability that the catalyst particles easily caused bridging in the reaction tube was generally high due to the increase in the catch.
[0005]
Further, Patent Document 2 discloses a method of drop-filling a catalyst with a string-like substance interposed therebetween, but also in this method, an excellent drop speed reduction effect is obtained while avoiding bridge formation. There was room for improvement.
[0006]
Under these circumstances, there is an urgent need for the development of a further method of filling the reactor with minimizing powdering and disintegration of the non-supported molded catalyst and the supported catalyst having low mechanical strength.
[0007]
[Patent Document 1]
JP-A-52-3579
[Patent Document 2]
JP-A-6-7669
[0008]
[Problems to be solved by the invention]
Under such a background, the present invention provides a filling method that minimizes powdering and disintegration of unsupported molded catalysts and supported catalysts having low mechanical strength, and that does not easily bridge catalyst particles in a reaction tube. It was done to do so.
[0009]
[Means for Solving the Problems]
The present inventors, in order to solve the above problems, as a result of intensive research, by using a tubular article having an uneven surface on the inner surface, not only can reduce the powdering of the unsupported formed catalyst and the supported catalyst, disintegration, The inventors have found that the catalyst particles do not easily bridge in the reaction tube during the filling, and have completed the present invention.
[0010]
That is, the present invention provides the following (1) to (14).
[0011]
(1) When a particulate substance is dropped and filled from the opening into a container having an opening vertically above, one or more tubular objects having an uneven portion on the inner surface are inserted into the container. A method for filling particulate matter, wherein the particulate matter is dropped and filled through the inside.
[0012]
(2) The uneven portion of the tubular article has a bellows shape, and the height of the uneven portion is 0.1 to 20 mm, the width is 0.1 to 20 mm, and the pitch is 1 to 200 mm. The described method.
[0013]
(3) The method according to (1) or (2), wherein a value obtained by dividing a particle diameter of the particulate matter by an inner diameter of the tubular object is 0.05 to 0.5.
[0014]
(4) The irregularities of the tubular object are net-like, the wire diameter is 0.1 to 5 mm, the longitudinal pitch is 0.5 to 100 mm, and the circumferential pitch is 0.5 to 100 mm ( 1) The method according to the above.
[0015]
(5) The method according to (4), wherein a value obtained by dividing a particle diameter of the particulate matter by an inner diameter of the tubular object is 0.05 to 0.5.
[0016]
(6) The method according to any one of (1) to (5), wherein the particulate matter is an unsupported shaped catalyst or a supported catalyst.
[0017]
(7) The particulate catalyst according to (6), wherein the particulate matter is a non-supported molded catalyst or a supported catalyst for synthesizing methacrolein and methacrylic acid by gas-phase catalytic oxidation of isobutylene or tertiary butanol with molecular oxygen. Method.
[0018]
(8) The method according to (6), wherein the particulate matter is an unsupported shaped catalyst or a supported catalyst for synthesizing methacrylic acid by gas phase catalytic oxidation of methacrolein with molecular oxygen.
[0019]
(9) The method according to (6), wherein the particulate matter is a non-supported shaped catalyst or a supported catalyst for synthesizing acrolein and acrylic acid by gas phase catalytic oxidation of propylene with molecular oxygen.
[0020]
(10) The method according to (6), wherein the particulate matter is a non-supported molded catalyst or a supported catalyst for synthesizing acrylic acid by subjecting acrolein to gas-phase catalytic oxidation with molecular oxygen.
[0021]
(11) The method according to any one of (1) to (10), wherein the container is a tubular container, and one open end of the tubular container is located vertically above.
[0022]
(12) The method according to (11), wherein the tubular container is a vertical tube reactor having an area for forming a fixed bed filled with particulate matter.
[0023]
(13) The method according to (12), wherein the vertical tube reactor is a heat exchange reactor.
[0024]
(14) A fixed bed filled with particulate matter by the method according to (12) or (13).
[0025]
BEST MODE FOR CARRYING OUT THE INVENTION
As the particulate matter, there is no particular limitation on the shape, size, material, etc., as long as a substance to be dropped and filled in the container can be used, but the particle diameter is used for filling as described later. It is preferably 0.05 to 0.5 times the inner diameter of the tubular article. The particulate material may be, for example, a material in which the particulate material itself is formed from finer particles, foamed inside the particles, or a non-porous material. The present invention relates to a container having an opening vertically above, when dropping and filling the particulate matter from the opening, the inner surface of the container, and powdered by impact due to contact with the upper surface of the packed layer, of the particulate matter that can cause collapse It can be suitably applied when filling while suppressing powdering and disintegration. The present invention is particularly effective when the average crushing strength of the particulate matter is 10 to 5000 kPa. Here, the average crushing strength is determined by extracting samples from the particulate matter used for filling, gradually applying pressure to each of these samples using an Amsler compression tester, and powdering and disintegration of particles occur. The number average of the result of the measurement of the pressure at the time of the measurement is shown. Although the extraction of the sample for measuring the crushing strength can be arbitrarily performed, it is preferable that the number is about 0.01 to 50% of the number of the particulate materials used for filling in view of the numerical accuracy.
[0026]
As the container, a container having an opening in the vertical direction can be used, and can have various shapes such as a tubular shape and a box shape. The present invention is particularly effective in the case where a tubular container is filled with a container whose one open end is located vertically above, and for forming a fixed bed filled with particulate matter. It can be particularly suitably applied when filling a vertical tube type reactor having a region.
[0027]
In particular, the present invention is suitably applied to the drop filling of a non-supported molded catalyst or a supported catalyst into a vertical tube reactor. Therefore, the present invention will be described below in detail by taking as an example a case where the present invention is applied to drop filling of an unsupported formed catalyst or a supported catalyst into a vertical tube reactor. Here, the non-supported molded catalyst is a catalyst body obtained by molding a catalyst component with a molding machine without using a carrier, and the supported catalyst is a carrier made of a porous or non-porous body. Means a catalyst body obtained by supporting a catalyst component on a catalyst.
[0028]
In the present invention, a tubular article having an uneven portion on the inner surface is used for filling the unsupported formed catalyst or the supported catalyst into the reaction tube.
[0029]
The reactor to which the present invention is applied includes, for example, a vertical tube reactor. Here, the reactor is equipment including at least a member having a fixed bed formed inside the reaction tube or the like (hereinafter, referred to as a reaction tube or the like). In the reactor, in addition to members such as a reaction tube, for example, a heat medium for adjusting a reaction temperature provided around an inlet and an outlet of a reaction fluid provided at an opening of the reaction tube and around the reaction tube is provided. It includes a structure attached to a member such as a reaction tube such as a jacket portion to be formed. The reaction tube is a tubular member in which a fixed bed is formed. The tube reactor refers to a reactor having a reaction tube, and the vertical tube reactor refers to a reactor in which the longitudinal direction of the reaction tube is provided substantially vertically. The heat exchange type reactor is a reactor provided with a heat exchange function by flowing a heat medium through a jacket around a reaction tube. FIG. 1 shows an example of a vertical heat exchange reactor.
[0030]
In the case of performing a gas-solid catalytic reaction involving heat generation, a reaction tube having an outer diameter of about 7 to 60 mm, a wall thickness of about 1 to 4 mm, and a length of about 0.5 to 10 m is generally used. Although the present invention can be applied to such a structure, in the present invention, a tube having a small tube diameter and a long tube length has a larger effect. In addition, the tubular reactor may be a single tube type having one reaction tube, but a multi-tube type reactor having a plurality of reaction tubes, for example, about 2 to 40,000, is suitable industrially.
[0031]
When performing a gas-solid catalytic reaction using the vertical heat exchange reactor of FIG. 1, the reaction raw material gas is supplied from the inlet 1, flows from the lower part of the reaction tube 5 to the upper part, and the reactant is withdrawn from the outlet 2 Will be issued. The heat medium for heating or heat removal flows in from the heat medium inlet 3 and flows out to the heat medium outlet 4. In the case of an exothermic reaction such as oxidation of isobutylene or methacrolein by a gas-solid catalytic reaction, a night medium is suitably used as a heating medium. A night game is a heat medium for high temperature containing sodium nitrite, potassium nitrate, sodium nitrate and the like. In this example, the heat medium and the reaction raw material gas are supplied in an upflow manner, but may be supplied in a downflow manner from above in some cases. In this case, the present invention can be applied without any problem.
[0032]
By the way, in the present invention, a catalyst conventionally used for a tubular reactor can be used as the unsupported molded catalyst. The shape of the unsupported molded catalyst may be any of known shapes such as a sphere, a column, and a star, and is formed by a shape tableting machine, an extruder, a rolling granulator, or the like. Can be used. In the present invention, when a supported catalyst is used, known supports such as silica, alumina, silica-alumina, magnesia, and titania can be used as the type of the support. The shape may be any known shape such as a sphere, a column, a cylinder, and a plate. Further, as the catalyst used in the present invention and filled in the reaction tube, silica, alumina, silica-alumina, magnesia, titania, etc. used for adjusting the reaction strength of the catalyst may be spherical, cylindrical, cylindrical, etc. It also includes a catalyst mixed with a carrier formed into a shape, a plate, or the like, or a catalyst diluent made of a metal or the like inert to a reaction.
[0033]
The reaction for which these catalysts are used may be any known reaction such as a hydrocarbon oxidation reaction and a steam reforming reaction. The gas-solid catalytic reaction accompanied by a large amount of heat generated by suitably obtaining the effects of the present invention is exemplified by gas-phase catalytic oxidation of isobutylene or tertiary butanol with molecular oxygen to synthesize methacrolein and methacrylic acid. Reaction, gas-phase catalytic oxidation of methacrolein with molecular oxygen to synthesize methacrylic acid, propylene gas-phase catalytic oxidation with molecular oxygen to synthesize acrolein and acrylic acid, acrolein gaseous by molecular oxygen A reaction for synthesizing acrylic acid by phase contact oxidation is exemplified.
[0034]
Examples of the catalyst for producing methacrolein and methacrylic acid by oxidation of isobutylene or tertiary butanol include, for example, those represented by the general formula MoaBibFecAdXeYfZgOh(Wherein, Mo, Bi, Fe and O represent molybdenum, bismuth, iron and oxygen, A represents nickel and / or cobalt, and X is selected from the group consisting of potassium, rubidium, cesium and thallium. Y represents at least one element, Y represents at least one element selected from the group consisting of magnesium, zinc, manganese, lead, tin and chromium, and Z represents phosphorus, boron, antimony, silicon, sulfur, tellurium, It represents at least one element selected from the group consisting of tungsten and cerium, where a, b, c, d, e, f, g and h represent the atomic ratio of each element, and when a = 12, b = 0 .01-3, c = 0.5-4, d = 1-12, e = 0.01-2, f = 0-5, g = 0-20, and h represents the valence of each component. Oxygen atoms needed to satisfy Is the rate. Include those having a composition represented by).
[0035]
Examples of the catalyst for producing methacrylic acid by oxidation of methacrolein include, for example, a compound represented by the general formula PaMobVcXdYeZfOg(Where P, Mo, V and O represent phosphorus, molybdenum, vanadium and oxygen, respectively, and X is selected from the group consisting of arsenic, antimony, bismuth, germanium, zirconium, tellurium, silver, selenium and boron. Y represents at least one element, Y represents at least one element selected from the group consisting of iron, copper, zinc, chromium, magnesium, tantalum, manganese, barium, gallium, cerium, and lanthanum; It represents at least one element selected from the group consisting of rubidium, cesium and thallium, where a, b, c, d, e, f and g represent the atomic ratio of each element, and when b = 12, a = 0 0.5-3, c = 0.01-3, d = 0-3, e = 0-3, f = 0.01-3, and g is necessary to satisfy the valence of each component. Of oxygen Those having a composition represented by a child ratio.) And the like.
[0036]
Catalysts for producing acrolein and acrylic acid by oxidation of propylene include those represented by the general formula MoaBibFecAdXeYfZgSihOi(Wherein Mo, Bi, Fe, Si and O represent molybdenum, bismuth, iron, silicon and oxygen, A represents nickel and / or cobalt, and X represents magnesium, zinc, manganese, calcium, chromium, Represents at least one element selected from the group consisting of niobium, silver, barium, tin, tantalum and lead, and Y is selected from the group consisting of phosphorus, boron, sulfur, selenium, tellurium, cerium, tungsten, antimony and titanium Z represents at least one element selected from the group consisting of lithium, sodium, potassium, rubidium, cesium, and thallium, a, b, c, d, e, f, g, h And i represent the atomic ratio of each element, and when a = 12, b = 0.01 to 3, c = 0.01 to 5, d = 1 to 12, and e = 0. 6, f = 0 to 5, g = 0.001 to 1, h = 0 to 20, and i is the atomic ratio of oxygen necessary to satisfy the valence of each component.) Having the following composition.
[0037]
Catalysts for the production of acrylic acid by oxidation of acrolein include those of the general formula MoaVbSicAdXeYfOg(Where Mo, V, Si and O represent molybdenum, vanadium, silicon and oxygen, A represents at least one element selected from the group consisting of iron, cobalt, chromium and strontium, and X represents germanium. , Boron, arsenic, selenium, silver, sodium, tin, tellurium, at least one element selected from the group consisting of cerium and samarium, Y is magnesium, aluminum, titanium, manganese, copper, zinc, zirconium, niobium, At least one element selected from the group consisting of tungsten, tantalum, antimony and bismuth is shown, a, b, c, d, e, f and g represent the atomic ratio of each element, and when a = 12, b = 0.1 to 6, c = 0.1 to 15, d = 0.1 to 3, e = 0 to 3, f = 0 to 20, and g is The atomic ratio of oxygen required to satisfy the child value. Include those having a composition represented by).
[0038]
The unsupported shaped catalyst or supported catalyst particles used in the present invention can be applied to all those which may be powdered and collapsed when filled in a reaction tube, but the crushing strength is in the range of about 10 to 5000 kPa. Can be most preferably used.
[0039]
As the tubular article used in the present invention, a tubular article having an uneven portion on the inner surface and insertable into a reaction tube can be used. As the material of the tubular material, a metal fiber, cloth, or the like can be appropriately used, but a resin material is most preferably used because of its price, strength, elasticity, and ease of insertion. In addition, the uneven portion provided on the inner surface of the tubular article can appropriately adopt a shape that can reduce the falling speed of the catalyst particles without hindering the falling and filling of the catalyst particles by forming a bridge or the like. The bellows-like tubular material shown in the figure can be mentioned. Specifically, the height 11 of the uneven portion is preferably in the range of 0.1 to 20 mm, more preferably 0.5 to 5 mm, and the width 10 of the uneven portion is preferably 0.1 to 20 mm, more preferably 0.1 to 20 mm. A range of 5 to 5 mm, and a pitch 9 of the uneven portion is preferably 1 to 200 mm, more preferably 1 to 50 mm. If the height 11 of the uneven portion is increased, the falling speed of the catalyst particles can be further reduced, and if the height 11 of the uneven portion is reduced, the probability that the catalyst particles form a bridge decreases. If the inside diameter 8 of the tubular article is large, the probability that the catalyst particles form a bridge is small, and if the inside diameter 8 is small, the falling speed of the catalyst particles can be further reduced. The inner diameter 8 is determined in consideration of the balance between these effects, and one of the indexes is a value obtained by dividing the average particle diameter by the inner diameter of the tubular article. Here, the average particle diameter is a diameter of a sphere having a volume equivalent to the volume of the sample particles per sample, and a sample is extracted from catalyst particles used for filling. Refers to the number average diameter of the diameter. The sample for measuring the average particle diameter can be arbitrarily extracted. However, from the viewpoint of numerical accuracy, it is preferable that the number is about 0.01 to 50% of the number of the particulate matter used for filling. If the inner diameter is determined so that the value obtained by dividing the average particle diameter by the inner diameter of the tubular article is preferably 0.05 to 0.5, and more preferably 0.1 to 0.3, excellent catalyst particles can be obtained. Drop filling is often possible. In addition, the number of tubular articles to be used can be appropriately selected within a range that does not hinder falling filling of the catalyst particles. If the number is large, the filling speed of the catalyst particles is improved, and if the number is small, the cost for filling is reduced. By the way, FIG. 2 shows an example of a tubular article in which the bellows-like concave and convex portions are independent from each other, but a tubular article in which the concave and convex portions of the tubular article are connected in a spiral shape can of course be used without any problem. The height 11 of the concave and convex portions is the height of the highest portion of the convex portion based on the deepest portion of the concave portion. The pitch 9 of the concave and convex portions is the pitch in the axial direction of the tubular object.
[0040]
Further, as the tubular article used in the present invention, a tubular article having an uneven portion in a net shape may be used. (One example is shown in FIG. 3 and an enlarged view of a mesh portion is shown in FIG. 4.) As this net-like tubular material, a material that can be inserted into a tube can be used. As the material of the net-like tubular material, a metal fiber, a natural fiber, or the like can be appropriately used, but a resin material is most preferably used in view of cost, strength, elasticity, and ease of insertion. The wire diameter 13, the longitudinal pitch 14, and the circumferential pitch 15 of the mesh can be appropriately selected within a range that does not substantially impede the falling and filling of the catalyst particles. Specifically, the wire diameter 13 of the mesh is preferable. Is in the range of 0.1 to 5 mm, more preferably in the range of 1 to 3 mm, the longitudinal pitch is preferably in the range of 0.5 to 100 mm, more preferably in the range of 3 to 10 mm, and the circumferential pitch is preferably in the range of 0.5 To 100 mm, more preferably 3 to 10 mm. If the wire diameter 13 is made thicker, catching increases and the falling speed of the catalyst particles can be further reduced. If the wire diameter 13 is made thinner, the probability that the catalyst particles form a bridge becomes smaller. If the pitch is reduced, the catch increases, and the falling speed of the catalyst particles can be further reduced. If the pitch is increased, the probability that the catalyst particles form a bridge decreases. However, at the maximum, it is preferable to set the pitch so that the catalyst particles do not easily come out of the reticulated tubular article. The inner diameter and the number of the net-like tubular objects are the same as in the case of the bellows-like tubular objects described above.
[0041]
In addition, as a method for supplying the filled catalyst particles into the reaction tube using these tubular materials, a method that does not substantially hinder the falling and filling of the catalyst particles can be appropriately adopted. For example, a hopper may be installed at the upper end of the reaction tube to continuously supply a predetermined amount of catalyst particles, or a predetermined amount of catalyst particles may be put into the hopper at a time, and vibrated by a vibrator or the like. You may drop it in. Further, instead of using a hopper, another special catalyst supply feeder may be provided to perform the supply. The position of these tubular materials in the horizontal cross section of the reaction tube can be arbitrarily selected as long as the catalyst layer can be uniformly filled.
[0042]
By the way, during filling, it is preferable that the lower ends of these tubular objects are always above the upper surface of the packed layer in the reaction tube. If the lower end of the tubular article is lower than the upper surface of the filling layer, the filling layer is formed inside the tubular article, which is disadvantageous in that it is difficult to extract the tubular article after filling. If the shape and material of the tubular material used for filling do not affect the yield of the target product, it is not always necessary to extract after filling the catalyst. However, if a tubular substance is present in the reaction tube, it is disadvantageous in that the volume inside the reaction tube is reduced, and the amount of catalyst particles that can be filled is reduced. Is more preferred. As a specific means of keeping the lower end of the tubular material above the upper surface of the packed bed, as the packed bed surface is raised, a method of pulling up the tubular material, a predetermined amount of catalyst particles are measured in advance, and the reaction tube diameter and the catalyst particle size are measured. A method of estimating the amount of rise of the packed bed surface from the density and separately preparing a tubular material having a length such that the lower end is equal to or longer than the estimated packed bed surface, and performing filling while switching between them. In the case of using the latter method, if the number of times of switching of the tubular material is increased, the distance from the lower end to the upper surface of the packed bed can be shortened, and powdering and disintegration of the catalyst particles can be further reduced. The number of tubular objects can be reduced. Further, when the filling proceeds to some extent and the falling distance of the catalyst particles from the upper end of the reaction tube becomes shorter, the filling may not be performed using the tubular material. In the area where the falling distance is short, the falling speed of the catalyst particles is low, that is, the impact at the time of drop filling is small, so that the powdering and disintegration of the catalyst particles do not occur, or even if it occurs, the effect is small . However, the falling distance that does not require the use of a tubular object depends on the mechanical strength of the catalyst particles.
[0043]
As described above, by performing drop-filling using a tubular article having an uneven portion on the inner surface, a non-supported molded catalyst or a supported catalyst that minimizes powdering and collapse while preventing bridges in the reaction tube. Drop filling of particles can be performed.
[0044]
【Example】
Hereinafter, the present invention will be further described with reference to specific examples. In the description, “parts” means parts by mass. The average particle size and average crushing strength of the unsupported formed catalyst or the supported catalyst are the average values of 0.1% (number basis) catalyst particles randomly extracted from the produced catalyst particles. In addition, the filling and powdering rate of the unsupported molded catalyst or the supported catalyst is defined as follows. Assume that catalyst a is filled from the upper part of the tubular reactor installed in the vertical direction, and that catalyst recovered from the bottom of the reactor after filling does not pass through the 14-mesh sieve is part b.
[0045]
(Equation 1)
Figure 2004249196
The pressure loss was 3 m at a flow rate of 3 m from the upper end of the reaction tube whose lower end was opened to the atmosphere.3/ Hr was measured as the pressure at the upper end of the reaction tube at the time of inflow. In addition, "pressure, crushing strength" in the text are all gauge pressures.
[0046]
The catalyst layers in the description are counted as "first layer" and "second layer" from the lower side of the reaction tube.
[0047]
(Example 1)
The following catalyst powder was prepared as a catalyst for synthesizing methacrolein and methacrylic acid by gas-phase catalytic oxidation of isobutylene or tertiary butanol with molecular oxygen.
Mo12W0.2Bi0.5Fe2.5Ni7Cs0.5Ox
(In the formula, Mo, W, Bi, Fe, Ni, Cs, and O represent molybdenum, tungsten, bismuth, iron, nickel, cesium, and oxygen, respectively. In addition, the numbers in the lower right of the element symbol indicate the atomic ratio of each element. And x is the atomic ratio of oxygen necessary to satisfy the valence of each component.) 970 parts of the obtained catalyst powder were mixed well with 30 parts of graphite powder, and then the outer diameter was 5 mm and the height was 5 mm. It was tableted into a 5 mm cylindrical shape. The average particle diameter of the obtained shaped catalyst particles was 5.7 mm, and the average crushing strength was 2000 kPa.
[0048]
The reaction tube used was a stainless steel tube having an outer diameter of 30 mm, a wall thickness of 1.4 mm, and a length of 5.5 m. A hopper installed at the top of the reaction tube was used for filling the catalyst particles. The filling amount was 2 kg, and filling was performed in two layers of 1 kg each. Only the first layer is filled through the inside of a bellows-shaped hose (tubular object) inserted from the upper part of the reaction tube to a position slightly above the predicted first layer filling height, and the second layer is filled with a hopper. It was allowed to fall naturally and filled. The bellows-shaped hose used for filling is made of vinyl chloride, having an outer diameter of 24 mm, an inner diameter of 19.8 mm, a height of the uneven portion of 0.7 mm, a width of the uneven portion of 1 mm, a pitch of the uneven portion of 8.0 mm, and a length of 2.5 m. Met. At this time, the value obtained by dividing the average particle diameter by the inner diameter of the hose was 0.29. After the first filling, the bellows-shaped hose was extracted. After the filling was performed, the pressure loss of the catalyst layer and the filling powder ratio were measured. Table 1 shows the results.
[0049]
(Example 2)
The catalyst particles were filled in the same manner as in Example 1 except that a mesh hose was used instead of the bellows hose. The mesh tube used for filling was made of polypropylene and had an outer diameter of 24 mm, a wire diameter of 1 mm, a longitudinal pitch of 6 mm, a circumferential pitch of 3 mm, and a length of 2.5 m. At this time, the value obtained by dividing the average particle diameter by the inner diameter of the hose was 0.26. Table 1 shows the results.
[0050]
(Comparative Example 1)
The catalyst particles were filled in the same manner as in Example 1 except that the first layer was filled by gravity. Table 1 shows the results. By making the first-layer filling fall naturally, both the pressure loss and the filling pulverization ratio were increased.
[0051]
(Example 3)
The following catalyst powder was prepared as a catalyst for synthesizing methacrylic acid by gas phase catalytic oxidation of methacrolein with molecular oxygen.
P1.5Mo12V0.8Sb0.5Cu0.1K1Ox
(In the formula, P, Mo, V, Sb, Cu, K, and O represent phosphorus, molybdenum, vanadium, antimony, copper, potassium, and oxygen. In addition, the numbers in the lower right of the element symbols indicate the atomic ratio of each element. And x is the atomic ratio of oxygen necessary to satisfy the valence of each component.) 970 parts of the obtained catalyst powder were mixed well with 30 parts of graphite powder, and then the outer diameter was 5 mm and the height was 5 mm. Was compression molded into a cylindrical shape. The average particle diameter of the obtained shaped catalyst particles was 5.7 mm, and the average crushing strength was 1800 kPa.
[0052]
The catalyst particles were filled in the same manner as in Example 1 except that the catalyst particles obtained above were used. Table 1 shows the results. At this time, the value obtained by dividing the average particle diameter by the inner diameter of the hose was 0.29.
[0053]
(Comparative Example 2)
The catalyst particles were filled in the same manner as in Example 3 except that the first layer was filled by gravity. Table 1 shows the results. By making the first-layer filling fall naturally, both the pressure loss and the filling pulverization ratio were increased.
[0054]
(Example 4)
The following catalyst powder was prepared as a catalyst for synthesizing acrolein and acrylic acid by gas phase catalytic oxidation of propylene with molecular oxygen.
Mo12W0.3Bi1Fe1Co5K0.05Te0.1Ox
(In the formula, Mo, W, Bi, Fe, Co, K, Te, and O represent molybdenum, tungsten, bismuth, iron, cobalt, potassium, tellurium, and oxygen. And x is the atomic ratio of oxygen necessary to satisfy the valence of each of the above components.) 970 parts of the obtained catalyst powder were mixed well with 30 parts of graphite powder, and the outer diameter was 5 mm. And a tablet having a height of 5 mm. The average particle diameter of the obtained shaped catalyst particles was 5.7 mm, and the average crushing strength was 2500 kPa.
[0055]
The catalyst particles were filled in the same manner as in Example 1 except that the catalyst particles obtained above were used. Table 1 shows the results. At this time, the value obtained by dividing the average particle diameter by the inner diameter of the hose was 0.29.
[0056]
(Comparative Example 3)
The catalyst particles were filled in the same manner as in Example 4 except that the first layer was filled by gravity. Table 1 shows the results. By making the first-layer filling fall naturally, both the pressure loss and the filling pulverization ratio were increased.
[0057]
(Example 5)
The following catalyst powder was prepared as a catalyst for synthesizing acrylic acid by subjecting acrolein to gas phase contact oxidation with molecular oxygen.
Mo12V3Si4Na0.7Fe0.5Co0.5Ox
(In the formula, Mo, V, Si, Na, Fe, Co, and O represent molybdenum, vanadium, silicon, sodium, iron, cobalt, and oxygen. In addition, the numbers in the lower right of the element symbols indicate the atomic ratio of each element. And x is the atomic ratio of oxygen necessary to satisfy the valence of each component.) 970 parts of the obtained catalyst powder were mixed well with 30 parts of graphite powder, and then the outer diameter was 5 mm and the height was 5 mm. Was compression molded into a cylindrical shape. The average particle diameter of the obtained shaped catalyst particles was 5.7 mm, and the average crushing strength was 2400 kPa.
[0058]
The catalyst particles were filled in the same manner as in Example 1 except that the catalyst particles obtained above were used. Table 1 shows the results. At this time, the value obtained by dividing the average particle diameter by the inner diameter of the hose was 0.29.
[0059]
(Comparative Example 4)
The catalyst particles were filled in the same manner as in Example 5 except that the first layer was filled by gravity. Table 1 shows the results. By making the first-layer filling fall naturally, both the pressure loss and the filling pulverization ratio were increased.
[0060]
(Example 6)
The catalyst particles shown in Example 1 were prepared as a catalyst for synthesizing methacrolein and methacrylic acid by gas-phase catalytic oxidation of isobutylene or tertiary butanol with molecular oxygen.
[0061]
The reaction tube used was a stainless steel tube having an outer diameter of 60 mm, a wall thickness of 3.0 mm, and a length of 5.5 m. A hopper installed at the top of the reaction tube was used for filling the catalyst particles. The filling amount was set to 8 kg, and filling was performed in two layers of 4 kg each. Only the first layer was filled using a hose, and the second layer was naturally dropped from the hopper. For filling, three hoses made of vinyl chloride, having an outer diameter of 24 mm, an inner diameter of 19.8 mm, a height of the uneven portion of 0.7 mm, a width of the uneven portion of 1 mm, a pitch of the uneven portion of 8.0 mm, and a length of 2.5 m are used. Using. At this time, the value obtained by dividing the average particle diameter by the inner diameter of the hose was 0.29. After the first filling, the hose was pulled out. After the filling was performed, the pressure loss of the catalyst layer and the filling powder ratio were measured. Table 1 shows the results.
[0062]
(Example 7)
The catalyst particles are divided into a first layer of 0.5 kg, a second layer of 0.5 kg, and a third layer of 1 kg, and the length of the hose used for filling is 3.7 m for the first layer and 2.5 m for the second layer. The eyes were filled with the catalyst particles in the same manner as in Example 1 except that the filling was performed by natural fall. Table 1 shows the results.
[0063]
(Comparative Example 5)
When filling the first and second layers, without using a bellows-like hose, a 1 mm-diameter piano wire is made into a spiral shape with an inner diameter of 5 mm and a pitch of 3 mm, and a wire steel whose spiral direction is inverted every 20 mm reacts. The catalyst particles were filled in the same manner as in Example 1 except that the wire was inserted into a tube, the catalyst particles were filled along the outside of the wire steel, and the wire steel was pulled up as the height of the packed bed increased. Table 1 shows the results.
[0064]
[Table 1]
Figure 2004249196
As described above, it can be seen that the use of a tubular material having an uneven portion on the inner surface at the time of filling the catalyst particles can reduce the pressure loss of the catalyst layer and the powdering rate of the packing while suppressing the generation of the bridge of the catalyst particles.
[Brief description of the drawings]
FIG. 1 shows a specific structure of a vertical heat exchange reactor as an example of a tubular vessel used in the present invention.
FIG. 2 shows an example of a bellows-like tubular article used in the present invention.
FIG. 3 shows an example of a reticulated tubular article used in the present invention.
FIG. 4 is an enlarged view of a mesh portion of a net-like tubular object used in the present invention.
[Explanation of symbols]
1: Reaction material gas inlet
2: Reaction gas outlet
3: Heat medium inlet
4: Heat medium outlet
5: Reaction tube
6: Baffle plate
7: Outer diameter of bellows-like tubular object
8: Inside diameter of bellows-like tubular object
9: uneven pitch
10: Uneven part width
11: Height of uneven part
12: Outer diameter of reticulated tubular object
13: Wire diameter
14: Longitudinal pitch
15: Circumferential pitch

Claims (14)

鉛直上方に開口を有する容器の内部に、該開口から粒子状物質を落下充填するにあたり、内表面に凹凸部を有する管状物を1本以上該容器内に挿入し、該管状物の内部を通して粒子状物質を落下充填することを特徴とする粒子状物質の充填方法。When the particulate matter is dropped and filled from the opening into the inside of the container having the opening vertically above, one or more tubular objects having an uneven portion on the inner surface are inserted into the container, and the particles pass through the inside of the tubular object. A method for filling particulate matter, characterized by drop-filling particulate matter. 前記管状物の凹凸部が蛇腹状で、かつ該凹凸部の高さが0.1〜20mmであり、幅が0.1〜20mmであり、ピッチが1〜200mmである請求項1記載の方法。The method according to claim 1, wherein the irregularities of the tubular article are bellows, and the height of the irregularities is 0.1 to 20 mm, the width is 0.1 to 20 mm, and the pitch is 1 to 200 mm. . 前記粒子状物質の粒子径を、前記管状物の内径で割った値が、0.05〜0.5である請求項1または2記載の方法。The method according to claim 1, wherein a value obtained by dividing a particle diameter of the particulate matter by an inner diameter of the tubular object is 0.05 to 0.5. 前記管状物の凹凸部が網状で、かつ線径が0.1〜5mmであり、長手方向ピッチが0.5〜100mmであり、円周方向ピッチが0.5〜100mmである請求項1記載の方法。The unevenness | corrugation part of the said tubular thing is mesh-like, and a wire diameter is 0.1-5 mm, a longitudinal pitch is 0.5-100 mm, and a circumferential pitch is 0.5-100 mm. the method of. 前記粒子状物質の粒子径を、前記管状物の内径で割った値が、0.05〜0.5である請求項4記載の方法。The method according to claim 4, wherein a value obtained by dividing a particle diameter of the particulate matter by an inner diameter of the tubular object is 0.05 to 0.5. 前記粒子状物質が、非担持成形触媒または担持触媒である請求項1〜5の何れか一項記載の方法。The method according to any one of claims 1 to 5, wherein the particulate matter is an unsupported shaped catalyst or a supported catalyst. 前記粒子状物質が、イソブチレンもしくは第三級ブタノールを分子状酸素により気相接触酸化してメタクロレイン及びメタクリル酸を合成するための非担持成形触媒もしくは担持触媒である請求項6記載の方法。The method according to claim 6, wherein the particulate matter is an unsupported shaped catalyst or a supported catalyst for synthesizing methacrolein and methacrylic acid by gas phase catalytic oxidation of isobutylene or tertiary butanol with molecular oxygen. 前記粒子状物質が、メタクロレインを分子状酸素により気相接触酸化してメタクリル酸を合成するための非担持成形触媒もしくは担持触媒である請求項6記載の方法。The method according to claim 6, wherein the particulate matter is an unsupported shaped catalyst or a supported catalyst for synthesizing methacrylic acid by gas phase catalytic oxidation of methacrolein with molecular oxygen. 前記粒子状物質が、プロピレンを分子状酸素により気相接触酸化してアクロレイン及びアクリル酸を合成するための非担持成形触媒もしくは担持触媒である請求項6記載の方法。The method according to claim 6, wherein the particulate matter is an unsupported shaped catalyst or a supported catalyst for synthesizing acrolein and acrylic acid by subjecting propylene to gas-phase catalytic oxidation with molecular oxygen. 前記粒子状物質が、アクロレインを分子状酸素により気相接触酸化してアクリル酸を合成するための非担持成形触媒もしくは担持触媒である請求項6記載の方法。The method according to claim 6, wherein the particulate matter is an unsupported shaped catalyst or a supported catalyst for synthesizing acrylic acid by subjecting acrolein to gas-phase catalytic oxidation with molecular oxygen. 前記容器が管状容器であり、該管状容器の一つの開口端部が鉛直上方に位置する請求項1〜10の何れか一項記載の方法。The method according to any one of claims 1 to 10, wherein the container is a tubular container, and one open end of the tubular container is located vertically above. 前記管状容器が、粒子状物質が充填されてなる固定床を形成するための領域を有する垂直管型反応器である請求項11記載の方法。The method according to claim 11, wherein the tubular vessel is a vertical tubular reactor having an area for forming a fixed bed filled with particulate matter. 前記垂直管型反応器が熱交換式反応器である請求項12記載の方法。13. The method of claim 12, wherein said vertical tube reactor is a heat exchange reactor. 請求項12または13記載の方法によって粒子状物質が充填されてなる固定床。A fixed bed filled with particulate matter by the method according to claim 12.
JP2003041224A 2003-02-19 2003-02-19 Particulate material filling method and fixed bed Pending JP2004249196A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003041224A JP2004249196A (en) 2003-02-19 2003-02-19 Particulate material filling method and fixed bed

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003041224A JP2004249196A (en) 2003-02-19 2003-02-19 Particulate material filling method and fixed bed

Publications (1)

Publication Number Publication Date
JP2004249196A true JP2004249196A (en) 2004-09-09

Family

ID=33024868

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003041224A Pending JP2004249196A (en) 2003-02-19 2003-02-19 Particulate material filling method and fixed bed

Country Status (1)

Country Link
JP (1) JP2004249196A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006142288A (en) * 2005-11-01 2006-06-08 Sumitomo Chemical Co Ltd Fixed bed multitubular reactor
JP2006218434A (en) * 2005-02-14 2006-08-24 Mitsubishi Rayon Co Ltd Method for re-filling with molded body
JP2011102249A (en) * 2009-11-10 2011-05-26 Nippon Shokubai Co Ltd Method of producing acrylic acid
JP2016501807A (en) * 2012-10-17 2016-01-21 イエフペ エネルジ ヌヴェルIfp Energies Nouvelles Steam reforming exchanger-a system using a removable helical element that densely charges the bayonet tube for the reactor
CN109499488A (en) * 2018-11-08 2019-03-22 鄂尔多斯市瀚博科技有限公司 A kind of catalyst transfer device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006218434A (en) * 2005-02-14 2006-08-24 Mitsubishi Rayon Co Ltd Method for re-filling with molded body
JP2006142288A (en) * 2005-11-01 2006-06-08 Sumitomo Chemical Co Ltd Fixed bed multitubular reactor
JP2011102249A (en) * 2009-11-10 2011-05-26 Nippon Shokubai Co Ltd Method of producing acrylic acid
JP2016501807A (en) * 2012-10-17 2016-01-21 イエフペ エネルジ ヌヴェルIfp Energies Nouvelles Steam reforming exchanger-a system using a removable helical element that densely charges the bayonet tube for the reactor
CN109499488A (en) * 2018-11-08 2019-03-22 鄂尔多斯市瀚博科技有限公司 A kind of catalyst transfer device

Similar Documents

Publication Publication Date Title
JP5403843B2 (en) Method for producing composite metal oxide catalyst, method for producing unsaturated aldehyde and / or carboxylic acid, and belt-type calcination apparatus
US7129195B2 (en) Heterogenically catalysed gas-phase partial oxidation method for precursor compounds of (meth)acrylic acid
TW572884B (en) Process for producing acrolein and acrylic acid
JPH10309457A (en) Reactor apparatus and treatment for fluid material
JP2011026351A (en) Method for long term operation of heterogeneously catalysed gas phase partial oxidation of propene in order to form acrolein
CN110709163A (en) Catalyst and process for preparing same
RU2715605C1 (en) Catalyst, method of producing acrylic acid and method of producing catalyst
JP2004249196A (en) Particulate material filling method and fixed bed
JP2002306953A (en) Fixed bed multitubular reactor and its usage
JP4279038B2 (en) Solid catalyst filling method
JP4989857B2 (en) Method for refilling molded body
JP2005325044A (en) Method for conducting pilot test of multitubular reactor
JP6482518B2 (en) Method for producing ring catalyst for production of acrolein and acrylic acid, and method for producing acrolein and acrylic acid using catalyst
JP2819078B2 (en) Method for filling molybdenum-containing oxide catalyst
JP5500775B2 (en) Fixed bed reactor
JP4572573B2 (en) Method for producing (meth) acrolein or (meth) acrylic acid
JPH067669A (en) Packing method of catalyst for synthesizing acrolein and acrylic acid
JP5451271B2 (en) Method for producing unsaturated aldehyde or unsaturated carboxylic acid
JP5112849B2 (en) Fixed bed reactor and method for producing unsaturated carboxylic acid
JPH0597730A (en) Packing of catalyst for methacrolein and methacrylic acid synthesis
JP4465957B2 (en) Method of filling catalyst while removing powdered and disintegrated catalyst
WO2020203049A1 (en) Granulated substance loading method
JP4529435B2 (en) Catalyst filling method
JPH1133393A (en) Fixed bed reactor and production of unsaturated carboxylic acid
JP2003340266A (en) Method for packing solid catalyst