JPH067669A - Packing method of catalyst for synthesizing acrolein and acrylic acid - Google Patents

Packing method of catalyst for synthesizing acrolein and acrylic acid

Info

Publication number
JPH067669A
JPH067669A JP19307892A JP19307892A JPH067669A JP H067669 A JPH067669 A JP H067669A JP 19307892 A JP19307892 A JP 19307892A JP 19307892 A JP19307892 A JP 19307892A JP H067669 A JPH067669 A JP H067669A
Authority
JP
Japan
Prior art keywords
catalyst
reactor
molded
acrylic acid
shape
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19307892A
Other languages
Japanese (ja)
Inventor
Seigo Watanabe
聖午 渡辺
Hiroyuki Naito
啓幸 内藤
Toru Kuroda
徹 黒田
Motomu Okita
求 大北
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP19307892A priority Critical patent/JPH067669A/en
Publication of JPH067669A publication Critical patent/JPH067669A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/0015Feeding of the particles in the reactor; Evacuation of the particles out of the reactor
    • B01J8/003Feeding of the particles in the reactor; Evacuation of the particles out of the reactor in a downward flow

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Devices And Processes Conducted In The Presence Of Fluids And Solid Particles (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

PURPOSE:To reduce the degradation or the disintegration of a catalyst at the time of allowing a molded catalyst or carried catalyst for synthesizing acrolein and acrylic acid to fall to be packed into a fixed bed reactor. CONSTITUTION:The catalyst is allowed to fall to be packed by interposing a string like material having a shape and thickness, which does not prevent to allow the catalyst to fall into the reactor. As a result, it is not necessary for the molded catalyst or carried catalyst to have excessive mechanical strength and the restriction about catalyst design is reduced.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、アクロレイン及びアク
リル酸合成用成型触媒又は担持触媒の固定床反応器での
充填方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for packing a molded catalyst or a supported catalyst for the synthesis of acrolein and acrylic acid in a fixed bed reactor.

【0002】[0002]

【従来の技術】一般に、成型触媒又は担持触媒を固定床
反応器に上部より落下充填するに際し、落下時の物理的
衝撃による触媒の粉化・崩壊を防ぐため、触媒自体にあ
る程度以上の機械的強度を持たせるか、もしくは充填の
手法に何らかの工夫を施す必要がある。
2. Description of the Related Art Generally, when a molded catalyst or a supported catalyst is dropped and packed into a fixed bed reactor from above, the catalyst itself has a mechanical strength higher than a certain level in order to prevent the catalyst from being pulverized or broken due to a physical impact at the time of dropping. It is necessary to give strength or to devise some kind of filling method.

【0003】触媒の機械的強度は成型圧力を調節した
り、成型又は担持の操作を工夫することで、ある程度は
改善される。しかし、このような手法で機械的強度を高
くした触媒は、概して触媒の持つ比表面積が小さくなっ
たり、反応に有効な活性点の数が減少したり、反応に有
効な細孔分布が制御できない等の理由で目的生成物の収
率が低くなり実用的ではない。工業的見地から、機械的
強度の高くない成型触媒又は担持触媒の粉化・崩壊を最
小限に抑えて反応器に充填する手法が望まれている。
The mechanical strength of the catalyst can be improved to some extent by adjusting the molding pressure or devising the molding or supporting operation. However, a catalyst whose mechanical strength is increased by such a method generally has a small specific surface area of the catalyst, the number of active sites effective for the reaction is reduced, and the pore distribution effective for the reaction cannot be controlled. Due to the above reasons, the yield of the target product is low, which is not practical. From an industrial point of view, there is a demand for a method of filling a reactor with a minimized powdering / disintegration of a molded catalyst or a supported catalyst having a low mechanical strength.

【0004】[0004]

【発明が解決しようとする課題】本発明は、アクロレイ
ン及びアクリル酸合成用成型触媒又は担持触媒の反応器
での充填時に粉化・崩壊の少ない充填方法の提供を目的
としている。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a packing method which causes less powdering and disintegration when packing a molded catalyst for acrolein and acrylic acid synthesis or a supported catalyst in a reactor.

【0005】[0005]

【課題を解決するための手段】本発明は、プロピレンを
分子状酸素により気相接触酸化してアクロレイン及びア
クリル酸を合成するための成型触媒又は担持触媒を固定
床反応器に上部より落下充填するに際し、反応器内に、
実質的に触媒の落下を妨げない形状及び太さを有する少
なくとも1本のひも状物質を介在させることを特徴とす
るアクロレイン及びアクリル酸合成用成型触媒又は担持
触媒の充填方法にある。
According to the present invention, a fixed bed reactor is dropped and filled with a molded catalyst or a supported catalyst for synthesizing acrolein and acrylic acid by vapor-phase catalytic oxidation of propylene with molecular oxygen. At that time, in the reactor,
A method for filling a molded catalyst or a supported catalyst for synthesizing acrolein and acrylic acid, characterized in that at least one string-shaped substance having a shape and a thickness that do not substantially prevent the catalyst from falling is interposed.

【0006】本発明において成型触媒を用いる場合、そ
の形状については特に限定されるものではなく、球状、
円柱状、円筒状、星型状等通常の打錠機、押出成型機、
転動造粒機等で成型されるものが用いられる。また、担
持触媒を用いる場合、担体の種類については特に限定は
なく、シリカ、アルミナ、シリカ・アルミナ、マグネシ
ア、チタニア等の通常の担体が用いられる。また、その
形状についてもとくに限定されるものではなく、球状、
円柱状、円筒状、板状等が挙げられる。
When the molded catalyst is used in the present invention, its shape is not particularly limited, and it may be spherical,
Columnar, cylindrical, star-shaped ordinary tableting machines, extrusion molding machines,
What is molded by a rolling granulator or the like is used. When a supported catalyst is used, the type of carrier is not particularly limited, and usual carriers such as silica, alumina, silica-alumina, magnesia, titania, etc. are used. Also, the shape is not particularly limited, and spherical,
Examples thereof include a cylindrical shape, a cylindrical shape, and a plate shape.

【0007】本発明においては、固定床反応器の形態は
特に限定されるものではなく、さまざまな形態の反応器
に適用することができる。なかでも多管垂直型反応器の
ように、管径が狭く管長が長いものに適用する場合、非
常に有効な手段である。
In the present invention, the form of the fixed bed reactor is not particularly limited, and it can be applied to reactors of various forms. In particular, it is a very effective means when applied to a narrow tube diameter and long tube length such as a multi-tube vertical reactor.

【0008】本発明において、反応器内に挿入介在させ
るひも状物質の材質は特に限定はなく、落下する触媒と
の接触により破損・破断しないものであればよい。ま
た、その形状は触媒の落下を実質的に妨げない形状及び
太さであれば特に制限を設ける必要はなく、例えば棒
状、針金状、糸状、帯状、チューブ状、鎖状、板状、ら
せん状等が挙げられ、更にその各々に枝状、ブラシ毛
状、板状等のものを備えた形状のものが挙げられる。
In the present invention, the material of the string-like substance inserted and interposed in the reactor is not particularly limited as long as it does not break or break due to contact with the falling catalyst. Further, the shape is not particularly limited as long as it is a shape and thickness that does not substantially prevent the catalyst from falling, and for example, a rod shape, a wire shape, a thread shape, a band shape, a tube shape, a chain shape, a plate shape, a spiral shape. And the like, each of which includes a branch shape, a brush bristle shape, a plate shape, and the like.

【0009】反応器内に挿入介在させるひも状物質の長
さは特に限定されるものではないが、あまり短すぎると
触媒充填時の粉化・崩壊を抑制する効果が低下する。長
さとしては、反応器底部に届く程度が好ましい。ひも状
物質の使用本数には制限はなく、本数が多いほど触媒充
填時の粉化・崩壊を抑制する効果は大きい。しかし、本
数が多すぎると触媒の落下の妨げになることがあるた
め、挿入するひも状物質の形状に応じて適当な本数を選
ぶ。
The length of the string-like substance inserted and interposed in the reactor is not particularly limited, but if it is too short, the effect of suppressing pulverization and disintegration at the time of filling the catalyst is lowered. The length is preferably such that it reaches the bottom of the reactor. There is no limit to the number of strings used, and the greater the number, the greater the effect of suppressing pulverization and disintegration during catalyst filling. However, if the number is too large, it may hinder the dropping of the catalyst. Therefore, select an appropriate number according to the shape of the string-like material to be inserted.

【0010】反応器内に介在させたひも状物質は反応開
始前に除去してもよいし、しなくてもよい。用いたひも
状物質の形状及び材質が目的生成物の収率に影響を及ぼ
さないものであれば、必ずしも触媒充填後に除去する必
要はない。また、用いたひも状物質が、充填した触媒の
性能を変化させない範囲の加熱処理により、容易に燃焼
又は気化し除去できるような材質のものであれば、触媒
充填後に適当な熱処理をすることにより除去することも
できる。
The string-like substance interposed in the reactor may be removed before the reaction is started, or may not be removed. If the shape and material of the string-like substance used do not affect the yield of the target product, it is not always necessary to remove it after filling the catalyst. If the string-like substance used is a material that can be easily burned or vaporized and removed by a heat treatment in a range that does not change the performance of the filled catalyst, appropriate heat treatment after filling the catalyst can be performed. It can also be removed.

【0011】しかし、用いたひも状物質の形状及び材質
が前記のようなものでない場合は、反応開始前に除去す
る方が好ましい。その際、反応器への触媒の充填を終え
た後に該ひも状物質を上部より引き抜くことは著しく困
難であるため、触媒の充填と同時に上部より徐々に引き
上げる方法が好ましい。
However, when the shape and material of the string-like substance used are not as described above, it is preferable to remove them before the start of the reaction. At that time, it is extremely difficult to pull out the string-like substance from the upper portion after the filling of the catalyst into the reactor is completed. Therefore, a method of gradually raising the string material from the upper portion at the same time as filling the catalyst is preferable.

【0012】ひも状態物質を反応器内に介在させる手段
としては、反応器内に挿入し、吊下げる等適宜の方法が
採用できる。また、ひも状物質の形状、材質によっては
反応器の底部に載置してもよい。
As a means for interposing the string-like substance in the reactor, an appropriate method such as inserting it in the reactor and suspending it can be adopted. Further, depending on the shape and material of the string-like substance, it may be placed on the bottom of the reactor.

【0013】本発明は、プロピレンを分子状酸素により
気相接触酸化してアクロレイン及びアクリル酸を合成す
るための成型触媒又は担持触媒として、次の一般式で示
される組成を有する触媒が好ましく用いられる。 一般式 Moa Bib Fec d e f g Sih i (式中、Mo、Bi、Fe、Si及びOはそれぞれモリ
ブデン、ビスマス、鉄、ケイ素及び酸素を表し、Aはニ
ッケル及び/又はコバルト、Xはマグネシウム、亜鉛、
マンガン、スズ及び鉛からなる群より選ばれた少なくと
も1種の元素、Yはリン、ホウ素、イオウ、テルル、セ
レン、ゲルマニウム、タングステン及びアンチモンから
なる群より選ばれた少なくとも1種の元素、Zはカリウ
ム、ナトリウム、ルビジウム、セシウム及びタリウムか
らなる群より選ばれた少なくとも1種の元素を示す。た
だし、a、b、c、d、e、f、g、h及びiは各元素
の原子比を表し、a=12のとき、0.01≦b≦3、
0.01≦c≦5、1≦d≦12、0≦e≦5、0≦f
≦5、0.001≦g≦1、0≦h≦20であり、iは
前記各成分の原子価を満足するのに必要な酸素原子数で
ある。)
In the present invention, a catalyst having a composition represented by the following general formula is preferably used as a molding catalyst or a supported catalyst for synthesizing acrolein and acrylic acid by vapor-phase catalytic oxidation of propylene with molecular oxygen. . In the formula Mo a Bi b Fe c A d Z e Y f Z g Si h O i ( wherein, Mo, represents Bi, Fe, Si and O represent molybdenum, bismuth, iron, silicon and oxygen, A is nickel And / or cobalt, X is magnesium, zinc,
At least one element selected from the group consisting of manganese, tin and lead, Y is at least one element selected from the group consisting of phosphorus, boron, sulfur, tellurium, selenium, germanium, tungsten and antimony, and Z is At least one element selected from the group consisting of potassium, sodium, rubidium, cesium and thallium is shown. However, a, b, c, d, e, f, g, h, and i represent the atomic ratio of each element, and when a = 12, 0.01 ≦ b ≦ 3,
0.01 ≦ c ≦ 5, 1 ≦ d ≦ 12, 0 ≦ e ≦ 5, 0 ≦ f
≦ 5, 0.001 ≦ g ≦ 1, 0 ≦ h ≦ 20, and i is the number of oxygen atoms required to satisfy the valence of each component. )

【0014】上述の一般式で示される組成の触媒におい
て、触媒成分である元素の原料としては、特に限定され
るものではないが、通常は酸化物又は強熱することによ
り酸化物に成り得る塩化物、水酸化物、硫酸塩、硝酸
塩、炭酸塩、アンモニウム塩又はそれらの混合物が用い
られる。
In the catalyst having the composition represented by the above general formula, the raw material of the element which is the catalyst component is not particularly limited, but it is usually an oxide or a chloride capable of forming an oxide by igniting. Compounds, hydroxides, sulfates, nitrates, carbonates, ammonium salts or mixtures thereof are used.

【0015】[0015]

【実施例】以下本発明の効果を実施例により示す。実施
例及び比較例中における「部」は重量部を意味する。成
型触媒又は担持触媒の充填粉化率(%)は以下のように
定義される。すなわち、触媒a部を水平方向に対して垂
直に設置した反応器上部より充填し、充填後容器底部よ
り回収された触媒のうち、14メッシュのふるいを通過
しないものがb部であったとする。 充填粉化率(%)=(a−b/a)×100
EXAMPLES The effects of the present invention will be shown below with examples. "Parts" in Examples and Comparative Examples means parts by weight. The filling powder ratio (%) of the molded catalyst or the supported catalyst is defined as follows. That is, it is assumed that part b of the catalyst, which was filled from the upper part of the reactor vertically installed with respect to the horizontal direction of the catalyst a part and recovered from the bottom part of the container after filling, did not pass through the 14-mesh sieve. Filling powdering rate (%) = (ab / a) × 100

【0016】実施例1 下記の組成の触媒粉末を調製した。 Mo120.1 Bi0.9 Fe1.2 Ni0.5 Co4 Zn0.1
Mg0.5 0.2 Sb0.3 0.06Si5 X (式中、Mo、W、Bi、Fe、Ni、Co、Zn、M
g、B、Sb、K、Si及びOはそれぞれモリブテン、
タングステン、ビスマス、鉄、ニッケル、コバルト、亜
鉛、マグネシウム、ホウ素、アンチモン、カリウム、ケ
イ素及び酸素を表す。また、元素記号右下併記の数字は
各元素の原子比であり、xは前記各成分の原子価を満足
するのに必要な酸素原子数である(以下同じ)。)得ら
れた触媒粉末970部をグラファイト粉末30部とよく
混合した後、外径5mm、内径2mm、高さ4mmの円
筒形に打錠成型した。内径3cm、長さ5mのステンレ
ス製円筒型反応器上部より、外径1mm、長さ5mの針
金を3本挿入した。前記で得られた成型触媒2kgを反
応器上部より落下充填した。このときの充填粉化率を測
定したところ、0.9%であった。
Example 1 A catalyst powder having the following composition was prepared. Mo 12 W 0.1 Bi 0.9 Fe 1.2 Ni 0.5 Co 4 Zn 0.1
Mg 0.5 B 0.2 Sb 0.3 K 0.06 Si 5 O x (in the formula, Mo, W, Bi, Fe, Ni, Co, Zn, M
g, B, Sb, K, Si and O are molybdenum,
Represents tungsten, bismuth, iron, nickel, cobalt, zinc, magnesium, boron, antimony, potassium, silicon and oxygen. The numbers in the lower right of the element symbols are the atomic ratios of each element, and x is the number of oxygen atoms required to satisfy the valence of each component (the same applies hereinafter). ) 970 parts of the obtained catalyst powder was thoroughly mixed with 30 parts of graphite powder, and then tablet-molded into a cylindrical shape having an outer diameter of 5 mm, an inner diameter of 2 mm and a height of 4 mm. Three wires having an outer diameter of 1 mm and a length of 5 m were inserted from the upper portion of a stainless steel cylindrical reactor having an inner diameter of 3 cm and a length of 5 m. 2 kg of the molded catalyst obtained above was dropped and filled from the upper part of the reactor. The filling powder ratio at this time was measured and found to be 0.9%.

【0017】比較例1 実施例1と同様にして得られた成型触媒を実施例1と同
様の反応器に針金を挿入することなくそのまま落下充填
した。このときの充填粉化率を測定したところ4.7%
であった。
Comparative Example 1 The molded catalyst obtained in the same manner as in Example 1 was dropped and charged into the same reactor as in Example 1 without inserting a wire. The filling powder ratio at this time was measured to be 4.7%
Met.

【0018】実施例2 下記の組成の触媒粉末を調製した。 Mo120.2 Bi1 Fe1.1 Co4.5 Mn0.1 Tl0.04
0.15Si10X (式中、Mo、W、Bi、Fe、Co、Mn、Tl、
P、Si及びOはそれぞれモリブデン、タングステン、
ビスマス、鉄、コバルト、マンガン、タリウム、リン、
ケイ素及び酸素を表す。)得られた触媒粉末970部を
グラファイト粉末30部とよく混合した後、直径5m
m、高さ4mmの円柱形に打錠成型した。内径3cm、
長さ5mのステンレス製円筒型反応器上部より、幅1c
m、長さ4.6mのナイロン製リボンを1本挿入した。
前記で得られた成型触媒2kgを、100g充填するご
とにリボンを15cm上部に引き上げる要領で、反応器
上部より落下充填した。このときの充填粉化率を測定し
たところ、0.5%であった。
Example 2 A catalyst powder having the following composition was prepared. Mo 12 W 0.2 Bi 1 Fe 1.1 Co 4.5 Mn 0.1 Tl 0.04
P 0.15 Si 10 O x (in the formula, Mo, W, Bi, Fe, Co, Mn, Tl,
P, Si and O are molybdenum, tungsten,
Bismuth, iron, cobalt, manganese, thallium, phosphorus,
Represents silicon and oxygen. ) After thoroughly mixing 970 parts of the obtained catalyst powder with 30 parts of graphite powder, the diameter was 5 m.
It was tablet-molded into a cylindrical shape of m and a height of 4 mm. Inner diameter 3 cm,
Width 1c from the top of the stainless steel cylindrical reactor with a length of 5 m
One nylon ribbon having a length of m and a length of 4.6 m was inserted.
2 kg of the molded catalyst obtained above was dropped and filled from the upper part of the reactor in a manner that the ribbon was pulled up to 15 cm above every 100 g. The filling powder ratio at this time was measured and found to be 0.5%.

【0019】比較例2 実施例2と同様にして得られた成型触媒を実施例2と同
様の反応器にリボンを挿入することなくそのまま落下充
填した。このときの充填粉化率を測定したところ2.4
%であった。
Comparative Example 2 The molded catalyst obtained in the same manner as in Example 2 was dropped and packed in the same reactor as in Example 2 without inserting a ribbon. The filling powder ratio at this time was measured to be 2.4.
%Met.

【0020】実施例3 下記の組成の触媒粉末を調製した。 Mo120.2 Bi1 Fe0.9 Ni4 Zn0.2 Pb0.2
0.1 Se0.010.04Na0.02X (式中、Mo、W、Bi、Fe、Ni、Zn、Pb、T
e、Se、K、Na及びOはそれぞれモリブデン、タン
グステン、ビスマス、鉄、ニッケル、亜鉛、鉛、テル
ル、セレン、カリウム、ナトリウム及び酸素を表す。)
得られた触媒粉末200部を直径4mmの球状アルミナ
担体800部に担持した。内径3cm、長さ5mのステ
ンレス製円筒型反応器上部より、羊毛製で長さ1cmの
ブラシ毛を備えた直径0.8mm、長さ4.8mの針金
を1本挿入した。前記で得られた担持触媒2kgを、1
00g充填するごとにブラシ毛付き針金を15cm上部
に引き上げる要領で、反応器上部より落下充填した。こ
のときの充填粉化率を測定したところ、0.2%であっ
た。
Example 3 A catalyst powder having the following composition was prepared. Mo 12 W 0.2 Bi 1 Fe 0.9 Ni 4 Zn 0.2 Pb 0.2 T
e 0.1 Se 0.01 K 0.04 Na 0.02 O x (in the formula, Mo, W, Bi, Fe, Ni, Zn, Pb, T
e, Se, K, Na and O represent molybdenum, tungsten, bismuth, iron, nickel, zinc, lead, tellurium, selenium, potassium, sodium and oxygen, respectively. )
200 parts of the obtained catalyst powder was supported on 800 parts of a spherical alumina carrier having a diameter of 4 mm. From the upper portion of the stainless steel cylindrical reactor having an inner diameter of 3 cm and a length of 5 m, one wire having a diameter of 0.8 mm and a length of 4.8 m, which was made of wool and provided with brush hair having a length of 1 cm, was inserted. 2 kg of the supported catalyst obtained above is
Every time it was filled with 00 g, the wire with brush bristles was dropped from the upper part of the reactor in a manner of pulling it up to 15 cm. The filling powder ratio at this time was measured and found to be 0.2%.

【0021】比較例3 実施例3と同様にして得られた担持触媒を実施例3と同
様の反応器にブラシ毛付き針金を挿入することなくその
まま落下充填した。このときの充填粉化率を測定したと
ころ1.2%であった。
Comparative Example 3 The supported catalyst obtained in the same manner as in Example 3 was dropped and filled in the same reactor as in Example 3 as it was without inserting a wire with brush bristles. The filling powder ratio at this time was measured and found to be 1.2%.

【0022】実施例4 下記の組成の触媒粉末を調製した。 Mo12Bi1.1 Fe1 Co4 Zn0.5 Sn0.5 0.03
0.1 Sb0.1 Cs0.02Rb0.02X (式中、Mo、Bi、Fe、Co、Zn、Sn、S、G
e、Sb、Cs、Rb及びOはそれぞれモリブデン、ビ
スマス、鉄、コバルト、亜鉛、スズ、イオウ、ゲルマニ
ウム、アンチモン、セシウム、ルビジウム及び酸素を表
す。)得られた触媒粉末に少量の水を加え、よく混合し
た後、押出成型機により、直径4mm、高さ5mmの円
柱形に成型した。内径3cm、長さ5mのステンレス製
円筒型反応器上部より、外径6mm、内径3mm、長さ
4.8mのポリテトラフルオロエチレン製チューブを2
本挿入した。前記で得られた成型触媒2kgを、100
g充填するごとにチューブを15cm上部に引き上げる
要領で、反応器上部より落下充填した。このときの充填
粉化率を測定したところ、0.5%であった。
Example 4 A catalyst powder having the following composition was prepared. Mo 12 Bi 1.1 Fe 1 Co 4 Zn 0.5 Sn 0.5 S 0.03 G
e 0.1 Sb 0.1 Cs 0.02 Rb 0.02 O X (in the formula, Mo, Bi, Fe, Co, Zn, Sn, S, G
e, Sb, Cs, Rb and O represent molybdenum, bismuth, iron, cobalt, zinc, tin, sulfur, germanium, antimony, cesium, rubidium and oxygen, respectively. ) A small amount of water was added to the obtained catalyst powder, mixed well, and then molded into a cylindrical shape having a diameter of 4 mm and a height of 5 mm by an extruder. From the upper part of the stainless steel cylindrical reactor having an inner diameter of 3 cm and a length of 5 m, 2 tubes of polytetrafluoroethylene having an outer diameter of 6 mm, an inner diameter of 3 mm and a length of 4.8 m were provided.
I inserted a book. 2 kg of the molded catalyst obtained above is mixed with 100
Each time g was charged, the tube was dropped from the upper part of the reactor in such a manner that the tube was pulled up to 15 cm above. The filling powder ratio at this time was measured and found to be 0.5%.

【0023】比較例4 実施例4と同様にして得られた成型触媒を実施例4と同
様の反応器にポリテトラフルオロエチレン製チューブを
挿入することなくそのまま落下充填した。このときの充
填粉化率を測定したところ1.9%であった。
Comparative Example 4 A molded catalyst obtained in the same manner as in Example 4 was dropped and charged into the same reactor as in Example 4 without inserting a polytetrafluoroethylene tube. The filling powder ratio at this time was measured and found to be 1.9%.

【0024】実施例5 下記の組成の触媒粉末を調製した。 Mo12Bi1 Fe1 Co4 0.05X (式中、Mo、Bi、Fe、Co、K及びOはそれぞれ
モリブデン、ビスマス、鉄、コバルト、カリウム及び酸
素を表す。)得られた触媒粉末に少量の水を加え、よく
混合した後、押出成型機により、外径5mm、内径2m
m、高さ3mmの円筒形に成型した。内径3cm、長さ
5mのステンレス製円筒型反応器上部より、横幅8m
m、長さ4.9mの樹脂製鎖を2本挿入した。前記で得
られた成型触媒2kgを、100g充填するごとに樹脂
製鎖を15cm上部に引き上げる要領で、反応器上部よ
り落下充填した。このときの充填粉化率を測定したとこ
ろ、0.6%であった。
Example 5 A catalyst powder having the following composition was prepared. Mo 12 Bi 1 Fe 1 Co 4 K 0.05 O x (wherein Mo, Bi, Fe, Co, K and O represent molybdenum, bismuth, iron, cobalt, potassium and oxygen, respectively). After adding a small amount of water and mixing well, use an extruder to make an outer diameter of 5 mm and an inner diameter of 2 m.
m and a height of 3 mm were formed into a cylindrical shape. 8m in width from the upper part of the stainless steel cylindrical reactor with an inner diameter of 3cm and a length of 5m
Two resin chains having a length of m and a length of 4.9 m were inserted. 2 kg of the molded catalyst obtained above was dropped and filled from the upper part of the reactor in such a manner that the resin chain was pulled up to 15 cm above every 100 g. The filling powder ratio at this time was measured and found to be 0.6%.

【0025】比較例5 実施例5と同様にして得られた成型触媒を実施例5と同
様の反応器に樹脂製鎖を挿入することなくそのまま落下
充填した。このときの充填粉化率を測定したところ2.
3%であった。
Comparative Example 5 The molded catalyst obtained in the same manner as in Example 5 was dropped and packed in the same reactor as in Example 5 without inserting a resin chain. The filling powder ratio at this time was measured.
It was 3%.

【0026】[0026]

【発明の効果】本発明による方法で、アクロレイン及び
アクリル酸合成用成型触媒又は担持触媒を固定床反応器
に充填すると、落下時の物理的衝撃による触媒の粉化・
崩壊が著しく少なくなる。このため充填時における触媒
の粉化等を懸念して触媒の機械的強度を過剰に高くする
必要がなくなる。したがって、触媒設計上の制限が少な
くなり、幅広い条件での触媒調製が可能となる。
EFFECTS OF THE INVENTION When a fixed bed reactor is filled with a molded catalyst for acrolein and acrylic acid synthesis or a supported catalyst by the method of the present invention, pulverization of the catalyst due to physical impact during dropping
Collapse is significantly reduced. Therefore, it is not necessary to excessively increase the mechanical strength of the catalyst because of concern about powdering of the catalyst during filling. Therefore, restrictions on catalyst design are reduced, and catalyst preparation under a wide range of conditions becomes possible.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 大北 求 広島県大竹市御幸町20番1号 三菱レイヨ ン株式会社中央研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Satoshi Ohkita 20-1 Miyukicho, Otake City, Hiroshima Prefecture Mitsubishi Rayon Co., Ltd. Central Research Laboratory

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 プロピレンを分子状酸素により気相接触
酸化してアクロレイン及びアクリル酸を合成するための
成型触媒又は担持触媒を固定床反応器に上部より落下充
填するに際し、反応器内に、実質的に触媒の落下を妨げ
ない形状及び太さを有する少なくとも1個のひも状物質
を介在させることを特徴とするアクロレイン及びアクリ
ル酸合成用触媒の充填方法。
1. When a molded catalyst or a supported catalyst for synthesizing acrolein and acrylic acid by vapor-phase catalytic oxidation of propylene with molecular oxygen is dropped into a fixed-bed reactor from above, the reaction is substantially performed in the reactor. A method for filling a catalyst for synthesizing acrolein and acrylic acid, characterized in that at least one string-like substance having a shape and a thickness that does not hinder the catalyst from falling is interposed.
【請求項2】 成型触媒又は担持触媒が一般式 Moa Bib Fec d e f g Sih i (式中、Mo、Bi、Fe、Si及びOはそれぞれモリ
ブデン、ビスマス、鉄、ケイ素及び酸素を表し、Aはニ
ッケル及び/又はコバルト、Xはマグネシウム、亜鉛、
マンガン、スズ及び鉛からなる群より選ばれた少なくと
も1種の元素、Yはリン、ホウ素、イオウ、テルル、セ
レン、ゲルマニウム、タングステン及びアンチモンから
なる群より選ばれた少なくとも1種の元素、Zはカリウ
ム、ナトリウム、ルビジウム、セシウム及びタリウムか
らなる群より選ばれた少なくとも1種の元素を示す。た
だし、a、b、c、d、e、f、g、h及びiは各元素
の原子比を表し、a=12のとき、0.01≦b≦3、
0.01≦c≦5、1≦d≦12、0≦e≦5、0≦f
≦5、0.001≦g≦1、0≦h≦20であり、iは
前記各成分の原子価を満足するのに必要な酸素原子数で
ある。)で示される組成を有することを特徴とする請求
項1の触媒の充填方法。
2. A molded catalyst or a supported catalyst having a general formula of Mo a Bi b Fe c A d X e Y f Z g Si h O i (wherein Mo, Bi, Fe, Si and O are molybdenum, bismuth, Represents iron, silicon and oxygen, A is nickel and / or cobalt, X is magnesium, zinc,
At least one element selected from the group consisting of manganese, tin and lead, Y is at least one element selected from the group consisting of phosphorus, boron, sulfur, tellurium, selenium, germanium, tungsten and antimony, and Z is At least one element selected from the group consisting of potassium, sodium, rubidium, cesium and thallium is shown. However, a, b, c, d, e, f, g, h, and i represent the atomic ratio of each element, and when a = 12, 0.01 ≦ b ≦ 3,
0.01 ≦ c ≦ 5, 1 ≦ d ≦ 12, 0 ≦ e ≦ 5, 0 ≦ f
≦ 5, 0.001 ≦ g ≦ 1, 0 ≦ h ≦ 20, and i is the number of oxygen atoms required to satisfy the valence of each component. ) The method of packing a catalyst according to claim 1, wherein the method has a composition shown in FIG.
JP19307892A 1992-06-26 1992-06-26 Packing method of catalyst for synthesizing acrolein and acrylic acid Pending JPH067669A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19307892A JPH067669A (en) 1992-06-26 1992-06-26 Packing method of catalyst for synthesizing acrolein and acrylic acid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19307892A JPH067669A (en) 1992-06-26 1992-06-26 Packing method of catalyst for synthesizing acrolein and acrylic acid

Publications (1)

Publication Number Publication Date
JPH067669A true JPH067669A (en) 1994-01-18

Family

ID=16301853

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19307892A Pending JPH067669A (en) 1992-06-26 1992-06-26 Packing method of catalyst for synthesizing acrolein and acrylic acid

Country Status (1)

Country Link
JP (1) JPH067669A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003057653A1 (en) * 2001-12-28 2003-07-17 Mitsubishi Chemical Corporation Method for vapor phase catalytic oxidation
JP2004505753A (en) * 2000-08-10 2004-02-26 トタル、フイナ、エルフ、フランス A new method for homogeneously charging solid particles in a container
WO2005053833A1 (en) * 2003-12-01 2005-06-16 Mitsubishi Rayon Co., Ltd. Method of solid catalyst filling
JP2005169345A (en) * 2003-12-15 2005-06-30 Mitsubishi Chemicals Corp Method of filling catalyst
WO2010001732A1 (en) 2008-06-30 2010-01-07 株式会社日本触媒 Method of packing solid particulate substance into fixed-bed multitubular reactor
JP2020163373A (en) * 2019-03-29 2020-10-08 三菱ケミカル株式会社 Granule filling method

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004505753A (en) * 2000-08-10 2004-02-26 トタル、フイナ、エルフ、フランス A new method for homogeneously charging solid particles in a container
WO2003057653A1 (en) * 2001-12-28 2003-07-17 Mitsubishi Chemical Corporation Method for vapor phase catalytic oxidation
US7528281B2 (en) 2001-12-28 2009-05-05 Mitsubishi Chemical Corporation Method for vapor phase catalytic oxidation
US7667072B2 (en) 2001-12-28 2010-02-23 Mitsubishi Chemical Corporation Method for vapor phase catalytic oxidation
WO2005053833A1 (en) * 2003-12-01 2005-06-16 Mitsubishi Rayon Co., Ltd. Method of solid catalyst filling
JP2005169345A (en) * 2003-12-15 2005-06-30 Mitsubishi Chemicals Corp Method of filling catalyst
WO2005058475A1 (en) * 2003-12-15 2005-06-30 Mitsubishi Chemical Corporation Catalyst filling method
JP4529435B2 (en) * 2003-12-15 2010-08-25 三菱化学株式会社 Catalyst filling method
WO2010001732A1 (en) 2008-06-30 2010-01-07 株式会社日本触媒 Method of packing solid particulate substance into fixed-bed multitubular reactor
JP2020163373A (en) * 2019-03-29 2020-10-08 三菱ケミカル株式会社 Granule filling method

Similar Documents

Publication Publication Date Title
US5276178A (en) Process for producing methacrolein and methacrylic acid
KR100591048B1 (en) Process for producing acrolein and acrylic acid
EP1055662B1 (en) A process for producing acrylic acid
JP3272745B2 (en) Method for producing methacrolein and methacrylic acid
EP1682474B1 (en) Method for long term operation of a heterogeneously catalysed gas phase partial oxidation of propene in order to form acrolein
KR20010105296A (en) A process for producing unsaturated aldehydes and unsaturated carboxylic acids
JPH067669A (en) Packing method of catalyst for synthesizing acrolein and acrylic acid
KR101004590B1 (en) A process for producing methacrylic acid
JPH0597730A (en) Packing of catalyst for methacrolein and methacrylic acid synthesis
JP4279038B2 (en) Solid catalyst filling method
JP3272925B2 (en) Filling method of solid catalyst
JPH0531351A (en) Catalyst packing method
JP3260185B2 (en) Catalyst for synthesis of unsaturated aldehyde and unsaturated carboxylic acid and use thereof
JP3523455B2 (en) Fixed bed reactor and method for producing unsaturated carboxylic acid
JP2819078B2 (en) Method for filling molybdenum-containing oxide catalyst
JPH0549938A (en) Catalyst for synthesizing acrolein and acrylic acid and its manufacture
DE102006057631A1 (en) Conducting an exothermic heterogeneously catalyzed partial gas phase oxidation of a starting compound e.g. propylene to a target compound e.g. acrylic acid, comprises conducting a reaction gas starting mixture through a solid bed catalyst
JP2003012589A (en) Method of producing acrolein and acrylic acid
JP2004249196A (en) Particulate material filling method and fixed bed
JP4529435B2 (en) Catalyst filling method
JPH0679666B2 (en) Catalyst for methacrylic acid synthesis and its production method with excellent reproducibility
JP2006218434A (en) Method for re-filling with molded body
JP2003261501A (en) Method for vapor-phase catalytic oxidation
JPH10277381A (en) Method for filling solid catalyst
KR100694950B1 (en) Method for producing methacrylic acid