JP2005169345A - Method of filling catalyst - Google Patents

Method of filling catalyst Download PDF

Info

Publication number
JP2005169345A
JP2005169345A JP2003416472A JP2003416472A JP2005169345A JP 2005169345 A JP2005169345 A JP 2005169345A JP 2003416472 A JP2003416472 A JP 2003416472A JP 2003416472 A JP2003416472 A JP 2003416472A JP 2005169345 A JP2005169345 A JP 2005169345A
Authority
JP
Japan
Prior art keywords
catalyst
reaction tube
spiral
inner diameter
filling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003416472A
Other languages
Japanese (ja)
Other versions
JP4529435B2 (en
Inventor
Yasuyuki Ogawa
寧之 小川
Shuhei Yada
修平 矢田
Teruo Saito
輝雄 斉藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP2003416472A priority Critical patent/JP4529435B2/en
Priority to PCT/JP2004/015858 priority patent/WO2005058475A1/en
Priority to CN200480000581A priority patent/CN100581644C/en
Publication of JP2005169345A publication Critical patent/JP2005169345A/en
Application granted granted Critical
Publication of JP4529435B2 publication Critical patent/JP4529435B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/0015Feeding of the particles in the reactor; Evacuation of the particles out of the reactor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/88Molybdenum
    • B01J23/887Molybdenum containing in addition other metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/8877Vanadium, tantalum, niobium or polonium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/06Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds in tube reactors; the solid particles being arranged in tubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00743Feeding or discharging of solids
    • B01J2208/00769Details of feeding or discharging
    • B01J2208/00778Kinetic energy reducing devices in the flow channel

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Devices And Processes Conducted In The Presence Of Fluids And Solid Particles (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of filling catalyst capable of minimizing the breakage or pulverization of the catalyst whose mechanical strength is not high and also carrying out the filling work efficiently. <P>SOLUTION: In this method, when filling a cylindrical reaction tube with catalyst, such a spiral body that satisfies the conditions (1)-(3) following is inserted into the reaction tube to fill the catalyst. Conditions for the spiral body: (1) The spiral body is formed by processing a linear material or a plate-shaped material, and the thickness of the linear material or the width of the plate-shaped material is smaller than the value determined by multiplying the inner diameter of the reaction tube by 0.2. (2) The outer diameter of the spiral body is smaller than the inner diameter of the reaction tube, larger than the value determined by multiplying the inner diameter of the reaction tube by 0.8, and further, the value determined by subtracting the outer diameter of the spiral body from the inner diameter of the reaction tube is smaller than any of the diameter, width, depth and height of the catalyst to be filled. (3) The pitch formed by the spiral is within a range between 1 to 8 times the inner diameter of the reaction tube, and the spiral rotation always has the same direction. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、縦型反応管に成型触媒または担持触媒を充填する方法に関するものであり、詳しくは、反応管上部より粒子状の成型触媒または担持触媒を充填する際、触媒の破損を低く抑えながら、効率的な充填作業を実現する方法に関する。   The present invention relates to a method for filling a vertical reaction tube with a molded catalyst or a supported catalyst, and more specifically, while charging a particulate shaped catalyst or a supported catalyst from the upper part of the reaction tube, while keeping the damage of the catalyst low. The present invention relates to a method for realizing an efficient filling operation.

成型触媒や担持触媒(以下、触媒と記す)を垂直方向に設置された反応管に充填する方法として、最も単純なものは、触媒粒子を反応管の上から自由落下させることである。しかし、落下時に触媒にかかる衝撃は大きく、触媒が物理的に破損(割れ、粉化)する割合も大きくなる。これは触媒の充填密度の均一性を低下させることとなる。
反応管に充填される触媒は、均一性が高いほど望ましい。例えば、プロパン、プロピレンまたはアクロレインの気相酸化によりアクリル酸を製造する酸化反応器においては、触媒の充填密度が異なることにより、反応管内のガス流れにも偏りを生じることとなる。これは破損した触媒による影響と合わさって、反応収率の低下や副生物の増大、触媒性能の低下や触媒寿命の短縮など、好ましくない問題を引き起こす。
The simplest method for filling a molded tube or a supported catalyst (hereinafter referred to as a catalyst) into a vertically installed reaction tube is to allow the catalyst particles to fall freely from the top of the reaction tube. However, the impact on the catalyst when dropped is large, and the rate at which the catalyst is physically damaged (cracked or pulverized) also increases. This will reduce the uniformity of the packing density of the catalyst.
The catalyst filled in the reaction tube is more desirable as the uniformity is higher. For example, in an oxidation reactor for producing acrylic acid by gas phase oxidation of propane, propylene or acrolein, the gas flow in the reaction tube is also biased due to the different packing density of the catalyst. This, combined with the influence of the damaged catalyst, causes undesirable problems such as a decrease in reaction yield, an increase in by-products, a decrease in catalyst performance and a shortened catalyst life.

触媒の機械的強度は、触媒の成型操作または担持操作を変更することで、ある程度は高められる。しかし、このようにして機械的強度を高められた触媒は、概して反応に有効な比表面積や反応活性点が減少し、また細孔分布の制御が困難になるため、目的生成物の収率が低下するという問題点を含んでいる。
触媒充填時の破損を防ぐ方法として、特許文献1(特開平9−141084号公報)には、触媒充填に先立って反応管内に液状物を充填する方法が開示されている。また、特許文献2(特開平10−277831号公報)には、触媒充填に先立ってドライアイスを充填する方法が開示されている。しかし、これらは触媒充填後に手間がかかることや、取扱う物質によっては作業環境を整えねばならないこと等、工業的に満足のいく方法とは言い難い。
The mechanical strength of the catalyst can be increased to some extent by changing the molding or loading operation of the catalyst. However, the catalyst with enhanced mechanical strength in this way generally has a reduced specific surface area and reaction active sites effective for the reaction, and it becomes difficult to control the pore distribution. It includes the problem of lowering.
As a method for preventing breakage at the time of catalyst filling, Patent Document 1 (Japanese Patent Laid-Open No. 9-141084) discloses a method of filling a reaction tube with a liquid material prior to catalyst filling. Patent Document 2 (Japanese Patent Laid-Open No. 10-277831) discloses a method of filling dry ice prior to catalyst filling. However, it is difficult to say that these methods are industrially satisfactory, because it takes time after filling the catalyst and the working environment must be adjusted depending on the material to be handled.

特許文献3(特公昭53−6101号公報)には、触媒充填にあたり、反応管の上端から任意の形状に成型された線状鋼を挿入吊下する方法が開示されている。また、特許文献4(特開平5−31351号公報)には、触媒充填に際して、少なくとも一個の紐状物質を介在させる方法が開示されている。これらの方法は、落下する触媒が線状鋼や紐状物質と接触することにより、落下速度が低減される効果を利用したものである。しかし、触媒の落下速度は、自由落下による加速と線状鋼/紐状物質との接触による減速を繰り返す不連続なものであり、また個々の触媒粒子の速度も異なるため、挿入物を増やして触媒の落下速度を下げるほど、ブロッキングを起こしやすくなり、充填作業の効率を悪くするという問題を含んでいる。
特開平9−141084号公報 特開平10−277831号公報 特公昭53−6101号公報 特開平5−31351号公報
Patent Document 3 (Japanese Examined Patent Publication No. 53-6101) discloses a method of inserting and suspending a linear steel formed into an arbitrary shape from the upper end of a reaction tube when filling a catalyst. Further, Patent Document 4 (Japanese Patent Laid-Open No. 5-31351) discloses a method of interposing at least one string-like substance when filling a catalyst. These methods utilize the effect that the falling speed is reduced by the falling catalyst coming into contact with the linear steel or string-like substance. However, the catalyst fall speed is a discontinuous one that repeats acceleration due to free fall and deceleration due to contact with the linear steel / string-like material, and the speed of each catalyst particle is also different. As the falling speed of the catalyst is lowered, blocking is more likely to occur, and there is a problem that the efficiency of the filling operation is deteriorated.
Japanese Patent Laid-Open No. 9-141084 Japanese Patent Laid-Open No. 10-277831 Japanese Examined Patent Publication No. 53-6101 JP-A-5-31351

本発明の目的は、機械的強度の高くない触媒の割れや粉化を最小限に抑え、且つ作業を効率的に行える触媒充填方法を提供することにある。   An object of the present invention is to provide a catalyst filling method capable of minimizing cracking and pulverization of a catalyst that is not high in mechanical strength and performing work efficiently.

本発明者らは、上記目的を達成するために各種の検討を行った結果、触媒を垂直方向に設置された反応管内に落下充填する際、特定の寸法を有する螺旋状の物体を反応管内に挿入することで、充填される触媒の軌跡が反応管の内壁に沿った螺旋系となり、充填時の破損が低減され、且つブロッキングも起こりにくくなることを見出した。
すなわち、本発明は以下の通りであり、これにより本発明の上記目的が達成される。
1.成型触媒または担持触媒を垂直方向に設置された円筒状反応管に充填するにあたり、反応管内部に下記(1)〜(3)の条件を満たす螺旋状物体を挿入して触媒を充填することを特徴とする触媒の充填方法。
螺旋状物体の条件
(1)螺旋状物体は、線状物質または板状物質を加工して形成されたものであり、該線状物質の太さまたは該板状物質の幅は、反応管の内径を0.2倍した値よりも小さい。
(2)螺旋状物体の外径は、反応管の内径より小さく、反応管の内径を0.8倍した値よりも大きく、かつ反応管の内径から螺旋状物体の外径を差し引いた値は、充填される触媒の直径、幅、奥行、および高さの何れよりも小さい。
(3)螺旋が形成するピッチは、反応管の内径に対して1〜8倍の範囲にあり、螺旋の回転は常に同一方向である。
2.円筒状反応管が、多管式反応器の反応管であることを特徴とする上記1に記載の触媒の充填方法。
3.成型触媒または担持触媒が、気相酸化反応に用いられるものであることを特徴とする上記1または2に記載の触媒の充填方法。
As a result of various studies to achieve the above object, the present inventors have found that when a catalyst is dropped and filled into a reaction tube installed in a vertical direction, a spiral object having a specific size is placed in the reaction tube. It has been found that by inserting, the trajectory of the catalyst to be filled becomes a spiral system along the inner wall of the reaction tube, damage during filling is reduced, and blocking is less likely to occur.
That is, the present invention is as follows, thereby achieving the above object of the present invention.
1. When filling a cylindrical reaction tube installed in a vertical direction with a molded catalyst or a supported catalyst, a spiral object satisfying the following conditions (1) to (3) is inserted into the reaction tube to fill the catalyst. A method for filling a catalyst characterized.
Conditions of the spiral object (1) The spiral object is formed by processing a linear substance or a plate-like substance, and the thickness of the linear substance or the width of the plate-like substance depends on the reaction tube. It is smaller than the value obtained by multiplying the inner diameter by 0.2.
(2) The outer diameter of the spiral object is smaller than the inner diameter of the reaction tube, larger than the value obtained by multiplying the inner diameter of the reaction tube by 0.8, and the value obtained by subtracting the outer diameter of the spiral object from the inner diameter of the reaction tube is Smaller than any of the diameter, width, depth, and height of the catalyst to be filled.
(3) The pitch formed by the spiral is in the range of 1 to 8 times the inner diameter of the reaction tube, and the rotation of the spiral is always in the same direction.
2. 2. The method for charging a catalyst according to 1 above, wherein the cylindrical reaction tube is a reaction tube of a multi-tube reactor.
3. 3. The method for filling a catalyst according to 1 or 2 above, wherein the molded catalyst or the supported catalyst is used for a gas phase oxidation reaction.

本発明の方法によれば、縦型反応管上部より粒子状の成型触媒または担持触媒を充填する際、触媒の破損を低く抑えながら、ブロッキングも防ぐことが出来るので、触媒製造時における触媒の物理強度による制約を緩和するのみならず、触媒充填時の作業効率をも大きく向上させることが可能となる。   According to the method of the present invention, when the particulate shaped catalyst or the supported catalyst is charged from the upper part of the vertical reaction tube, blocking of the catalyst can be prevented while keeping the catalyst from being damaged. Not only can the restriction due to strength be relaxed, but also the working efficiency at the time of catalyst filling can be greatly improved.

本発明において、垂直方向に設置された円筒状反応管とは、一般に工業的に用いられる固定床式反応器の触媒が充填され、反応が起こる円筒状の反応管である。   In the present invention, the cylindrical reaction tube installed in the vertical direction is a cylindrical reaction tube in which a catalyst of a fixed bed reactor generally used industrially is filled to cause a reaction.

本発明で用いられる螺旋状物体は、反応管上端から充填される触媒を、反応管内で螺旋形の軌跡を描きながら落下させる働きを有する。
螺旋状物体は、線状物質または板状物質を加工して形成されたものであり、該線状物体の太さまたは該板状物質の幅は、反応管の内径に対して0.2倍未満である(条件1)。 即ち、螺旋状物体の線幅は、反応管の内径に対して0.2倍未満である。これ以上線幅が大であると、螺旋状物体の上で滞留する触媒が生じ、ブロッキングを起こし易くなる。
螺旋状物体と反応管内壁の隙間が大きいと、そこから触媒が落下したり、そこに触媒が挟まったりして、触媒の螺旋運動を阻害するので望ましくない。即ち、螺旋状物体の外径は、反応管の内径に対して0.8倍以上であり、かつ反応管の内径から螺旋状物体の外径を差し引いた値は、充填される触媒の直径・幅・奥行・高さの何れよりも小さい(条件2)。触媒の直径・幅・奥行・高さは、触媒の大きさを示す尺度であり、触媒が球形または楕円体に擬せられる場合、直径が用いられる。楕円体の場合、中心を通る任意の断面における楕円の短軸が直径に相当する。触媒が円柱状に擬せられる場合、直径および高さが用いられる。触媒が直方体に擬せられる場合、幅、奥行、および高さが用いられる。
The spiral object used in the present invention has a function of dropping the catalyst filled from the upper end of the reaction tube while drawing a spiral trajectory in the reaction tube.
The helical object is formed by processing a linear substance or a plate substance, and the thickness of the linear object or the width of the plate substance is 0.2 times the inner diameter of the reaction tube. (Condition 1). That is, the line width of the spiral object is less than 0.2 times the inner diameter of the reaction tube. If the line width is larger than this, a catalyst staying on the spiral object is generated, and blocking tends to occur.
If the gap between the spiral object and the inner wall of the reaction tube is large, the catalyst falls from there, or the catalyst is sandwiched there, and this hinders the spiral movement of the catalyst. That is, the outer diameter of the spiral object is 0.8 times or more the inner diameter of the reaction tube, and the value obtained by subtracting the outer diameter of the spiral object from the inner diameter of the reaction tube is the diameter of the catalyst to be filled. It is smaller than any of width, depth, and height (condition 2). The diameter, width, depth, and height of the catalyst are scales indicating the size of the catalyst. When the catalyst is imitated as a sphere or an ellipsoid, the diameter is used. In the case of an ellipsoid, the minor axis of the ellipse in an arbitrary cross section passing through the center corresponds to the diameter. If the catalyst is modeled like a cylinder, the diameter and height are used. When the catalyst is modeled as a cuboid, width, depth, and height are used.

挿入される螺旋状物体は、充填される触媒に螺旋運動を強いるものであるから、そのピッチは適切な範囲、具体的には反応管の内径に対して1〜8倍である(条件3)。ピッチが短すぎると、触媒が螺旋状物体の上で停滞し、ブロッキングを起こし易くなり、また、ピッチが長すぎると、鉛直方向への触媒の落下速度が増大し、触媒の破損が大きくなるため、望ましくない。   Since the helical object to be inserted forces the loaded catalyst to have a helical motion, its pitch is in an appropriate range, specifically 1 to 8 times the inner diameter of the reaction tube (Condition 3). . If the pitch is too short, the catalyst will stagnate on the spiral object, making it easy to cause blocking, and if the pitch is too long, the falling rate of the catalyst in the vertical direction will increase and the damage of the catalyst will increase. Is not desirable.

反応管に挿入される螺旋状物体は、一つの連続した固体でもよく、また複数に分割されたものでもよい。挿入される個所は、反応管の下端から上端までの全体でもよく、また、一つないし複数の限定された範囲でもよい。
挿入される螺旋状物体が形成する螺旋の回転方向は、左右どちらに巻いたものでも構わないが、同一の反応管に挿入される螺旋状物体においては、全ての回転方向が等しいことが望ましい。螺旋の回転方向が反応管の途中で反転すると、落下する触媒の運動が不連続となり、それより下方で触媒が螺旋に沿った運動をしにくくなる。
The spiral object inserted into the reaction tube may be one continuous solid or may be divided into a plurality of parts. The part to be inserted may be the whole from the lower end to the upper end of the reaction tube, or may be one or more limited ranges.
The direction of rotation of the spiral formed by the helical object to be inserted may be wound on either the left or right side, but it is desirable that all the rotation directions be equal in the helical object inserted into the same reaction tube. When the rotation direction of the spiral is reversed in the middle of the reaction tube, the movement of the falling catalyst becomes discontinuous, and it becomes difficult for the catalyst to move along the spiral below.

螺旋状物体は、充填される触媒と共に反応管内に残してもよく、また触媒の充填時、触媒の充填量に応じて順次引き上げていくことで、反応管への触媒充填が完了した際、反応管内に螺旋状物体が残らないようにしてもよい。触媒充填後に反応管内に螺旋状物体が残される場合、該物体を構成する物質は、充填された触媒が用いられる反応条件下で、物理的・化学的に安定であり、かつ触媒反応に悪影響を及ぼさない材質である必要がある。
触媒充填の際、螺旋状物体は実質的に上下方向には動かないことが望ましい。螺旋物体の上下動は、落下する触媒の螺旋運動を阻害するからである。
以下、本発明を実施例により説明する。
The spiral object may be left in the reaction tube together with the catalyst to be filled, and when the catalyst is filled, the reaction is performed when the catalyst filling into the reaction tube is completed by sequentially raising the catalyst according to the amount of catalyst filling. The spiral object may not be left in the tube. When a spiral object is left in the reaction tube after the catalyst is filled, the substance constituting the object is physically and chemically stable under the reaction conditions in which the packed catalyst is used, and has an adverse effect on the catalyst reaction. The material must not reach.
When filling the catalyst, it is desirable that the spiral object does not move substantially vertically. This is because the vertical movement of the spiral object obstructs the spiral movement of the falling catalyst.
Hereinafter, the present invention will be described with reference to examples.

(a)触媒の製造
アクロレインを分子状酸素の存在下、アクリル酸に酸化させる以下の触媒を製造した(特開平12−169420号公報参照)。
塩基性炭酸ニッケル(NiCO3・2Ni(OH)2・4H2O) 228g(ただし、含水率76%の塩基性炭酸ニッケルに換算した量を使用した。)を純水300mlに分散させ、これにシリカ(シオノギ製薬(株)製カーフレックス#67)50gおよび三酸化アンチモン150gを加えて充分に攪拌した。このスラリー液を加熱濃縮し、乾燥した。次に、得られた個体をマッフル炉にて800℃で3時間焼成し、これを粉砕して、60メッシュ以下とした(Sb−Ni−Si−Oの酸化物粉末)。
純水540mlを約80℃に加熱し、パラモリブデン酸アンモニウム63.9g、メタバナジウム酸アンモニウム8.4g、水酸化ニオブ4.6g、硝酸鉛10.2g、および硫酸銅21.2gを攪拌しながら順次加えて溶解し、次に、上記Sb−Ni−Si−O粉末をこの溶液に加え、充分攪拌混合した。このスラリーを80〜100℃に加熱濃縮し、この乾燥品を粉砕して24メッシュ以下とし、1.5重量%のグラファイトを添加混合した。次に、小型打錠成型機にて5φ×4mmに成型した。これをマッフル炉にて400℃で5時間焼成して、触媒とした。ここで得られた触媒の組成は、原子比で下記の通りであった。
Mo:V:Nb:Sb:Pb:Ni:Cu:Si=35:7:3:100:3:43:9:80
(A) Production of catalyst The following catalyst was produced for oxidizing acrolein to acrylic acid in the presence of molecular oxygen (see JP-A-12-169420).
228 g of basic nickel carbonate (NiCO 3 .2Ni (OH) 2 .4H 2 O) (however, an amount converted to basic nickel carbonate having a water content of 76% was used) was dispersed in 300 ml of pure water. 50 g of silica (Carflex # 67 manufactured by Shionogi Pharmaceutical Co., Ltd.) and 150 g of antimony trioxide were added and sufficiently stirred. The slurry was concentrated by heating and dried. Next, the obtained solid was fired at 800 ° C. for 3 hours in a muffle furnace, and pulverized to 60 mesh or less (oxide powder of Sb—Ni—Si—O).
While heating 540 ml of pure water to about 80 ° C., stirring 63.9 g of ammonium paramolybdate, 8.4 g of ammonium metavanadate, 4.6 g of niobium hydroxide, 10.2 g of lead nitrate, and 21.2 g of copper sulfate. Next, the Sb—Ni—Si—O powder was added to this solution and mixed with sufficient stirring. This slurry was heated and concentrated to 80 to 100 ° C., the dried product was pulverized to 24 mesh or less, and 1.5% by weight of graphite was added and mixed. Next, it shape | molded in 5phi * 4mm with the small tableting molding machine. This was calcined at 400 ° C. for 5 hours in a muffle furnace to obtain a catalyst. The composition of the catalyst obtained here was as follows in terms of atomic ratio.
Mo: V: Nb: Sb: Pb: Ni: Cu: Si = 35: 7: 3: 100: 3: 43: 9: 80

(b)充填評価装置
無色透明なアクリル樹脂製のパイプ(内径27mm×2m)を鉛直方向に固定し、下端はアクリル製樹脂の板により閉鎖した。この管内に太さ3mmの鋼線を加工して製作した螺旋状の物体(外径25mm、ピッチ100mm、高さ1.8m)を、下端が底面に着くまで挿入した。
パイプの上部に10°傾けた状態でロートを設置し、ここより先の方法で製造した触媒を充填層高が1mになるまで充填した。ロートより充填された触媒は、パイプの中心部分を自由落下することなく、鋼線に沿って螺旋の軌跡を描きながら、落下していった。
触媒の充填が完了した後、パイプを固定台から外して傾け、底部の板をずらすことで、触媒を静かに抜出した。抜出した触媒は、7.5メッシュの篩により粉を分離し、更に残った触媒から、割れて体積が2/3以下となった割れ品を分離した。充填に用いた全触媒重量に対する粉の重量の割合、及び割れ品の重量の割合を各々、粉化率と割れ率として求めた。この時の粉化率は0.2%、割れ率は1.0%であった。
〔比較例1〕
(B) Filling evaluation apparatus A colorless and transparent acrylic resin pipe (inner diameter 27 mm × 2 m) was fixed in the vertical direction, and the lower end was closed with an acrylic resin plate. A spiral object (outer diameter 25 mm, pitch 100 mm, height 1.8 m) produced by processing a steel wire having a thickness of 3 mm was inserted into the tube until the lower end reached the bottom surface.
A funnel was installed at an angle of 10 ° on the upper part of the pipe, and the catalyst produced by the above method was filled until the packed bed height reached 1 m. The catalyst filled from the funnel dropped while drawing a spiral trajectory along the steel wire, without free-falling the central part of the pipe.
After the catalyst filling was completed, the pipe was removed from the fixed base, tilted, and the bottom plate was shifted to gently extract the catalyst. The extracted catalyst was separated from the powder with a 7.5 mesh sieve, and further, a cracked product having a volume of 2/3 or less was separated from the remaining catalyst. The ratio of the weight of the powder to the total catalyst weight used for filling and the ratio of the weight of the cracked product were determined as the powdering rate and the cracking rate, respectively. The powdering rate at this time was 0.2%, and the cracking rate was 1.0%.
[Comparative Example 1]

実施例1と同じようにして、ただしパイプには螺旋状物体を挿入することなく、触媒の充填を行った。触媒はパイプ内に滞ることなく、垂直に落下していった。この時の粉化率は2.6%、割れ率は8.2%であった。
〔比較例2〕
The catalyst was filled in the same way as in Example 1, but without inserting a helical object into the pipe. The catalyst fell vertically without stagnation in the pipe. The powdering rate at this time was 2.6%, and the cracking rate was 8.2%.
[Comparative Example 2]

実施例1と同じように、ただし挿入する螺旋状物体の形状を外径20mm、ピッチ120mmに変更して、触媒の充填を行った。落下する触媒は不規則な軌跡を描いた。触媒の充填作業中にブロッキングが3回起こり、その都度充填を一旦停止し、螺旋状物体を上下動させることで、触媒を落下させた。この時の粉化率は0.8%、割れ率は3.5%であった。
〔比較例3〕
As in Example 1, the shape of the helical object to be inserted was changed to an outer diameter of 20 mm and a pitch of 120 mm, and the catalyst was filled. The falling catalyst drew an irregular trajectory. During the filling operation of the catalyst, blocking occurred three times. Each time, the filling was temporarily stopped, and the catalyst was dropped by moving the spiral object up and down. The powdering rate at this time was 0.8%, and the cracking rate was 3.5%.
[Comparative Example 3]

実施例1と同じように、ただし挿入する螺旋状物体の螺旋が60cm毎に反転する形状を有するものを用いて触媒の充填を行った。パイプ上部60cmでは、触媒は螺旋に沿って落下したが、その下では不規則な軌跡を描いて落下した。最下部の60cmでは、一部の触媒が螺旋の軌跡を描いたが、それ以外は不規則な落下となった。この時の粉化率は0.7%、割れ率は3.1%であった。   In the same manner as in Example 1, however, the catalyst was filled using a spiral object to be inserted having a shape in which the spiral of the spiral object is inverted every 60 cm. In the upper 60 cm of the pipe, the catalyst fell along the spiral, but below it fell in an irregular locus. At the lowermost 60 cm, some catalysts drew a spiral trajectory, but others fell irregularly. The powdering rate at this time was 0.7%, and the cracking rate was 3.1%.

Claims (3)

成型触媒または担持触媒を垂直方向に設置された円筒状反応管に充填するにあたり、該円筒状反応管内部に下記(1)〜(3)の条件を満たす螺旋状物体を挿入して触媒を充填することを特徴とする触媒の充填方法。
螺旋状物体の条件
(1)螺旋状物体は、線状物質または板状物質を加工して形成されたものであり、該線状物質の太さまたは該板状物質の幅は、反応管の内径を0.2倍した値よりも小さい。
(2)螺旋状物体の外径は、反応管の内径より小さく、反応管の内径を0.8倍した値よりも大きく、かつ反応管の内径から螺旋状物体の外径を差し引いた値は、充填される触媒の直径、幅、奥行、および高さの何れよりも小さい。
(3)螺旋が形成するピッチは、反応管の内径に対して1〜8倍の範囲にあり、螺旋の回転は常に同一方向である。
When filling a cylindrical reaction tube installed in the vertical direction with a molded catalyst or a supported catalyst, a spiral object satisfying the following conditions (1) to (3) is inserted into the cylindrical reaction tube to fill the catalyst. And a method for filling the catalyst.
Conditions of the spiral object (1) The spiral object is formed by processing a linear substance or a plate-like substance, and the thickness of the linear substance or the width of the plate-like substance depends on the reaction tube. It is smaller than the value obtained by multiplying the inner diameter by 0.2.
(2) The outer diameter of the spiral object is smaller than the inner diameter of the reaction tube, larger than the value obtained by multiplying the inner diameter of the reaction tube by 0.8, and the value obtained by subtracting the outer diameter of the spiral object from the inner diameter of the reaction tube is Smaller than any of the diameter, width, depth, and height of the catalyst to be filled.
(3) The pitch formed by the spiral is in the range of 1 to 8 times the inner diameter of the reaction tube, and the rotation of the spiral is always in the same direction.
円筒状反応管が、多管式反応器の反応管であることを特徴とする請求項1に記載の触媒の充填方法。   The method for charging a catalyst according to claim 1, wherein the cylindrical reaction tube is a reaction tube of a multi-tube reactor. 成型触媒または担持触媒が、気相酸化反応に用いられるものであることを特徴とする請求項1または2に記載の触媒の充填方法。   3. The catalyst filling method according to claim 1, wherein the molded catalyst or the supported catalyst is used for a gas phase oxidation reaction.
JP2003416472A 2003-12-15 2003-12-15 Catalyst filling method Expired - Lifetime JP4529435B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2003416472A JP4529435B2 (en) 2003-12-15 2003-12-15 Catalyst filling method
PCT/JP2004/015858 WO2005058475A1 (en) 2003-12-15 2004-10-20 Catalyst filling method
CN200480000581A CN100581644C (en) 2003-12-15 2004-10-20 Catalyst filling method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003416472A JP4529435B2 (en) 2003-12-15 2003-12-15 Catalyst filling method

Publications (2)

Publication Number Publication Date
JP2005169345A true JP2005169345A (en) 2005-06-30
JP4529435B2 JP4529435B2 (en) 2010-08-25

Family

ID=34696997

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003416472A Expired - Lifetime JP4529435B2 (en) 2003-12-15 2003-12-15 Catalyst filling method

Country Status (3)

Country Link
JP (1) JP4529435B2 (en)
CN (1) CN100581644C (en)
WO (1) WO2005058475A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016501807A (en) * 2012-10-17 2016-01-21 イエフペ エネルジ ヌヴェルIfp Energies Nouvelles Steam reforming exchanger-a system using a removable helical element that densely charges the bayonet tube for the reactor
US11975318B2 (en) 2019-03-29 2024-05-07 Mitsubishi Chemical Corporation Granule loading method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015068640A1 (en) * 2013-11-07 2015-05-14 株式会社日本触媒 Packing for reaction tube, reaction tube, and reaction method using same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS536101B2 (en) * 1975-06-27 1978-03-04
JPH067669A (en) * 1992-06-26 1994-01-18 Mitsubishi Rayon Co Ltd Packing method of catalyst for synthesizing acrolein and acrylic acid
JP2003126679A (en) * 2001-08-07 2003-05-07 Haldor Topsoe As Method and apparatus for packing catalyst

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0545394A (en) * 1991-08-09 1993-02-23 Fujitsu Ltd Testing device of hysteresis comparator

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS536101B2 (en) * 1975-06-27 1978-03-04
JPH067669A (en) * 1992-06-26 1994-01-18 Mitsubishi Rayon Co Ltd Packing method of catalyst for synthesizing acrolein and acrylic acid
JP2003126679A (en) * 2001-08-07 2003-05-07 Haldor Topsoe As Method and apparatus for packing catalyst

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016501807A (en) * 2012-10-17 2016-01-21 イエフペ エネルジ ヌヴェルIfp Energies Nouvelles Steam reforming exchanger-a system using a removable helical element that densely charges the bayonet tube for the reactor
US11975318B2 (en) 2019-03-29 2024-05-07 Mitsubishi Chemical Corporation Granule loading method

Also Published As

Publication number Publication date
CN100581644C (en) 2010-01-20
JP4529435B2 (en) 2010-08-25
CN1697688A (en) 2005-11-16
WO2005058475A1 (en) 2005-06-30

Similar Documents

Publication Publication Date Title
EP3769838B1 (en) Catalyst
US8517180B2 (en) Process for charging a reactor with a fixed catalyst bed which comprises at least annular shaped catalyst bodies K
US9169188B2 (en) Process for preparing an unsaturated aldehyde and/or an unsaturated carboxylic acid
JP4529435B2 (en) Catalyst filling method
JP2010131575A (en) Method of producing catalyst for synthesizing acrylonitrile, and method of producing acrylonitrile
EP3445488A1 (en) Heterogeneous catalyst process and nickel catalyst
JP2009220052A (en) Manufacturing method of catalyst for acrylonitrile synthesis, and manufacturing method of acrylonitrile
JP2012045516A (en) Method of manufacturing catalyst for manufacturing unsaturated aldehyde and/or unsaturated carboxylic acid and the catalyst, and method of manufacturing acrolein and/or acrylic acid using the catalyst
JP2019001775A (en) Manufacturing method of compound
CN109206344B (en) The manufacturing method of unsaturated nitrile
CA2123125A1 (en) Conveyor trough apparatus for loading catalyst pellets into vertical, tubular reactors
JP2022128485A (en) Method for producing unsaturated nitrile
JP2010131576A (en) Method of producing catalyst for synthesizing acrylonitrile, and method of producing acrylonitrile
JP4279038B2 (en) Solid catalyst filling method
JP2819078B2 (en) Method for filling molybdenum-containing oxide catalyst
JPH067669A (en) Packing method of catalyst for synthesizing acrolein and acrylic acid
JP2004249196A (en) Particulate material filling method and fixed bed
JP4604607B2 (en) Catalyst regeneration method
JP2006255689A (en) Manufacturing method of molybdenum-containing solid molded catalyst
RU2732413C1 (en) Method of producing unsaturated nitrile
JP2010188276A (en) Catalyst for producing methacrolein and methacrylic acid
RU2776481C2 (en) Catalyst
JPS602098B2 (en) Close-packing orienting device for granular materials
WO2020203049A1 (en) Granulated substance loading method
WO2005018805A1 (en) Method of regenerating catalyst

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060425

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060704

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20071127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091014

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091207

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100518

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100531

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4529435

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130618

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term