JP2012045516A - Method of manufacturing catalyst for manufacturing unsaturated aldehyde and/or unsaturated carboxylic acid and the catalyst, and method of manufacturing acrolein and/or acrylic acid using the catalyst - Google Patents

Method of manufacturing catalyst for manufacturing unsaturated aldehyde and/or unsaturated carboxylic acid and the catalyst, and method of manufacturing acrolein and/or acrylic acid using the catalyst Download PDF

Info

Publication number
JP2012045516A
JP2012045516A JP2010192137A JP2010192137A JP2012045516A JP 2012045516 A JP2012045516 A JP 2012045516A JP 2010192137 A JP2010192137 A JP 2010192137A JP 2010192137 A JP2010192137 A JP 2010192137A JP 2012045516 A JP2012045516 A JP 2012045516A
Authority
JP
Japan
Prior art keywords
catalyst
active component
carboxylic acid
manufacturing
inert carrier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010192137A
Other languages
Japanese (ja)
Other versions
JP5586382B2 (en
Inventor
Tomoatsu Kono
友厚 河野
Yasutaka Takemoto
安孝 竹本
Naohiro Fukumoto
直広 福本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Shokubai Co Ltd
Original Assignee
Nippon Shokubai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Shokubai Co Ltd filed Critical Nippon Shokubai Co Ltd
Priority to JP2010192137A priority Critical patent/JP5586382B2/en
Publication of JP2012045516A publication Critical patent/JP2012045516A/en
Application granted granted Critical
Publication of JP5586382B2 publication Critical patent/JP5586382B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Abstract

PROBLEM TO BE SOLVED: To provide a method of efficiently and stably manufacturing a catalyst having excellent mechanical strength for manufacturing respectively corresponding unsaturated aldehyde and/or unsaturated carboxylic acid by performing catalytic gas phase oxidation on propylene, isobutylene or TBA under the presence of molecular oxygen.SOLUTION: In the method of manufacturing the catalyst carrying a catalytic active component containing molybdenum, bismuth and iron as essential components by an inert carrier, powder and granular product of the catalytic active component and/or its precursor and the inert carrier are continuously supplied to a carrying treatment device used in a carrying treatment process, and the supply amount (per volume) of the powder and granular product of the catalytic active component and/or its precursor is controlled to a range of 1 to 10 times per hour relative to the volume of the carrying treatment device.

Description

本発明は、不飽和アルデヒドおよび/または不飽和カルボン酸製造用触媒の製造方法、詳しくは、プロピレン、イソブチレンまたはターシャリーブチルアルコール(以下、「TBA」と記することがある)から選ばれる少なくとも1種の化合物を原料とし、分子状酸素の存在下で接触気相酸化して対応する不飽和アルデヒドおよび/または不飽和カルボン酸を製造するに好適な触媒の製造方法、および得られた触媒を用いてこれら不飽和アルデヒドおよび/または不飽和カルボン酸を製造する方法に関する。   The present invention relates to a method for producing a catalyst for producing an unsaturated aldehyde and / or unsaturated carboxylic acid, specifically, at least one selected from propylene, isobutylene or tertiary butyl alcohol (hereinafter sometimes referred to as “TBA”). A method for producing a catalyst suitable for producing a corresponding unsaturated aldehyde and / or unsaturated carboxylic acid by catalytic gas phase oxidation in the presence of molecular oxygen in the presence of molecular oxygen as a raw material, and using the obtained catalyst The present invention relates to a process for producing these unsaturated aldehydes and / or unsaturated carboxylic acids.

従来、プロピレンを気相接触酸化してアクロレインおよび/またはアクリル酸を製造する際に用いる触媒や、イソブチレンまたはTBAを気相接触酸化してメタクロレインおよび/またはメタクリル酸を製造する際に用いる触媒の製造方法として、不活性担体に触媒活性成分を担持する数多くの提案がなされている。   Conventional catalysts used for producing acrolein and / or acrylic acid by vapor-phase catalytic oxidation of propylene, or catalysts used for producing methacrolein and / or methacrylic acid by vapor-phase catalytic oxidation of isobutylene or TBA As a production method, many proposals for supporting a catalytically active component on an inert carrier have been made.

例えば、モリブデン、鉄、およびビスマスを含有してなる未焼成の触媒原料粉末を遠心流動コーティング装置に投入し、2〜10mmの平均直径の大きさに造粒せしめたのち焼成し、その比表面積が5〜20m/g、その細孔容積が0.3〜0.9cc/gの範囲内にあり、かつ、その細孔径分布において細孔径直径が1〜10μmおよび0.1〜0.9μmの範囲にそれぞれ集中した分布を有する触媒を得る方法(特許文献1)、モリブデン、ビスマス、鉄、コバルトおよびタリウムの5つの元素が特定の原子比からなる金属酸化物で、かつ金属酸化物の比表面積が10〜20m/gなる粉末を不活性担体に被覆する方法(特許文献2)、モリブデン及びビスマスを触媒活性成分として含有し、かつ平均直径が2〜200μmの範囲である無機質繊維を触媒活性物質に対し、0.5〜50重量%の範囲で担持補助材として用いる方法(特許文献3)、触媒活性成分を担体に担持させた触媒であって、該触媒の平均粒径が4〜16mm、担体の平均粒径が3〜12mm、焼成温度が500〜600℃、触媒活性成分の担体への担持量が5〜80wt%である触媒(特許文献4)、モリブデンおよびビスマスを含有する触媒活性酸化物の元素状成分の出発化合物から乾燥混合物を製造し、150〜350℃の温度で熱処理して前駆物質とし、担体を水で湿潤させた後に前記前駆物質と接触させることにより湿潤された担体の表面上に前駆物質の層を付着、乾燥させ、最終的に400〜600℃の温度でか焼して担体が環の幾何学的寸法を有する触媒を得る方法(特許文献5)などが開示されている。 For example, an unfired catalyst raw material powder containing molybdenum, iron, and bismuth is put into a centrifugal fluidized coating apparatus, granulated to an average diameter of 2 to 10 mm, and fired. 5 to 20 m 2 / g, the pore volume is in the range of 0.3 to 0.9 cc / g, and the pore diameter distribution is 1 to 10 μm and 0.1 to 0.9 μm. A method of obtaining a catalyst having a distribution concentrated in each range (Patent Document 1), a metal oxide in which five elements of molybdenum, bismuth, iron, cobalt and thallium have a specific atomic ratio, and the specific surface area of the metal oxide In which an inert carrier is coated with a powder of 10 to 20 m 2 / g, containing molybdenum and bismuth as catalytic active components and having an average diameter of 2 to 200 μm A method of using a certain inorganic fiber as a supporting aid in the range of 0.5 to 50% by weight based on the catalytically active substance (Patent Document 3), a catalyst having a catalytically active component supported on a carrier, and an average of the catalyst A catalyst having a particle size of 4 to 16 mm, an average particle size of the support of 3 to 12 mm, a calcination temperature of 500 to 600 ° C., and a loading amount of the catalytic active component on the support of 5 to 80 wt% (Patent Document 4), molybdenum and A dry mixture is prepared from the starting compound of the elemental component of the catalytically active oxide containing bismuth, heat treated at a temperature of 150 to 350 ° C. to form a precursor, and the support is wetted with water and then contacted with the precursor A precursor layer deposited on the surface of a wet support, dried and finally calcined at a temperature of 400-600 ° C. to obtain a catalyst in which the support has a ring geometry (patent) Reference 5) It has been disclosed.

また、使用する担持処理装置として、例えば、遠心流動コーティング装置(特許文献1)、転動造粒機(特許文献4)やロッキングミキサー(特許文献5)などが知られている。   Moreover, as a carrying | support processing apparatus to be used, a centrifugal fluid coating apparatus (patent document 1), a rolling granulator (patent document 4), a rocking mixer (patent document 5), etc. are known, for example.

特開昭63−200839号公報Japanese Patent Laid-Open No. 63-200839 特開平2−25443号公報Japanese Patent Laid-Open No. 2-25443 特開平6−381号公報Japanese Patent Laid-Open No. 6-381 特開平10−28877号公報JP-A-10-28877 特表2004−515337号公報JP-T-2004-515337

しかしながら、前記した従来技術によって得られた触媒はいずれも機械的強度はある程度は改善されると推測されるものの、その触媒の製造時の歩留まりや得られる触媒の粒径分布、触媒性能の安定性までは全く考慮されていない。また、担持方法として従来の方法では、一定量の不活性担体および一定量の触媒活性成分の粉粒物を担持処理装置内へ一括して仕込み、担持処理し、その都度得られた触媒を装置より取り出すといった、いわゆるバッチ式であるため、工業的規模のような数トン〜数十トンといった量を製造するためには、仕込みから取り出しといった一連の作業を幾度も繰り返す必要があり、その生産効率が低いという問題点がある。従って、より機械的強度の高い触媒を効率よく安定して製造する方法が望まれている。   However, although all of the catalysts obtained by the above prior art are estimated to have improved mechanical strength to some extent, the yield during the production of the catalyst, the particle size distribution of the obtained catalyst, and the stability of the catalyst performance Until is not considered at all. Further, in the conventional method as a loading method, a fixed amount of inert carrier and a fixed amount of catalytically active component powder are charged all at once into a loading treatment device, loaded and treated, and the catalyst obtained each time is loaded into the device. Since it is a so-called batch system, it is necessary to repeat a series of operations from preparation to removal several times in order to produce a quantity of several tons to several tens of tons like an industrial scale. There is a problem that is low. Therefore, a method for efficiently and stably producing a catalyst having higher mechanical strength is desired.

本発明の目的は、前記従来技術の問題を解決し、プロピレン、イソブチレンまたはTBAから選ばれる少なくとも1種の化合物を原料とし、分子状酸素の存在下で接触気相酸化して対応する不飽和アルデヒドおよび/または不飽和カルボン酸を製造するに好適な触媒の製造方法、具体的には機械的強度に優れた触媒を効率よく安定して製造する方法を提供することにある。   The object of the present invention is to solve the above-mentioned problems of the prior art, and to produce at least one compound selected from propylene, isobutylene or TBA as a raw material, and subject the corresponding unsaturated aldehyde by catalytic gas phase oxidation in the presence of molecular oxygen. Another object of the present invention is to provide a method for producing a catalyst suitable for producing an unsaturated carboxylic acid, specifically, a method for efficiently and stably producing a catalyst having excellent mechanical strength.

本発明者らは、上記課題を解決するため鋭意検討を行った結果、プロピレン、イソブチレンまたはTBAから選ばれる少なくとも1種の化合物を原料とし、分子状酸素の存在下で接触気相酸化して対応する不飽和アルデヒドおよび/または不飽和カルボン酸を製造するためのモリブデン−ビスマス−鉄系担持触媒の製造方法において、不活性担体に触媒活性成分を担持する担持処理工程で、触媒活性成分および/またはその前駆体の粉粒物(以下、単に「触媒活性成分粉粒物」と記すことがある。)と不活性担体とを担持処理装置に連続的に供給し、その際の触媒活性成分粉粒物の供給量を特定範囲とすることで、効率よく安定して機械的強度の高い触媒を製造できることを見出した。さらに、前記担持処理工程で使用する転動造粒機などの担持処理装置に触媒活性成分粉粒物と不活性担体とを連続的に供給し、得られた担持後の触媒またはその前駆体(以下、単に「担持体」と記すことがある。)を連続的に担持処理装置から排出することによって、従来のバッチ式と比べ、触媒活性成分粉粒物と不活性担体との仕込みから担持体の取り出しといった一連の作業を大幅に軽減できることを見出し、本発明に至った。   As a result of intensive studies to solve the above problems, the present inventors have responded by catalytic vapor phase oxidation using at least one compound selected from propylene, isobutylene or TBA as a raw material in the presence of molecular oxygen. In the process for producing a molybdenum-bismuth-iron-based supported catalyst for producing an unsaturated aldehyde and / or unsaturated carboxylic acid, the catalyst active component and / or The precursor particles (hereinafter sometimes simply referred to as “catalytically active component particles”) and the inert carrier are continuously supplied to the supporting treatment apparatus, and the catalytically active component particles at that time are supplied. It was found that a catalyst having high mechanical strength can be produced efficiently and stably by setting the supply amount of the product within a specific range. Furthermore, the catalytically active component granular material and the inert carrier are continuously supplied to a supporting treatment device such as a rolling granulator used in the supporting treatment step, and the resulting supported catalyst or its precursor ( Hereinafter, it may be simply referred to as “support”.) By continuously discharging the support from the support processing apparatus, the support is made from the charging of the catalytically active component granular material and the inert carrier as compared with the conventional batch type. As a result, the present inventors have found that a series of operations such as extraction can be greatly reduced.

本発明にかかる不飽和アルデヒドおよび/または不飽和カルボン酸製造用触媒は、本発明の製造方法により製造される。   The unsaturated aldehyde and / or unsaturated carboxylic acid production catalyst according to the present invention is produced by the production method of the present invention.

さらに、本発明にかかる不飽和アルデヒドおよび/または不飽和カルボン酸の製造方法は、プロピレン、イソブチレンまたはTBAから選ばれる少なくとも1種の化合物を原料とし、分子状酸素の存在下で接触気相酸化して対応する不飽和アルデヒドおよび/または不飽和カルボン酸を製造するに際して、本発明の触媒を用いることで達成される。   Furthermore, the method for producing an unsaturated aldehyde and / or unsaturated carboxylic acid according to the present invention comprises catalytic vapor phase oxidation using at least one compound selected from propylene, isobutylene or TBA as a raw material in the presence of molecular oxygen. In the production of the corresponding unsaturated aldehyde and / or unsaturated carboxylic acid, it is achieved by using the catalyst of the present invention.

本発明によれば、プロピレン、イソブチレンまたはTBAから選ばれる少なくとも1種の化合物を原料とし、分子状酸素の存在下で接触気相酸化して対応する不飽和アルデヒドおよび/または不飽和カルボン酸を製造するための機械的強度に優れた触媒を効率よく、かつ再現性よく安定して製造することが可能となる。   According to the present invention, at least one compound selected from propylene, isobutylene or TBA is used as a raw material, and the corresponding unsaturated aldehyde and / or unsaturated carboxylic acid is produced by catalytic gas phase oxidation in the presence of molecular oxygen. Therefore, it is possible to efficiently and stably produce a catalyst having excellent mechanical strength.

以下、本発明にかかる触媒の製造方法および該方法で得られた触媒を用いた不飽和アルデヒドおよび/または不飽和カルボン酸の製造方法について詳しく説明するが、本発明の範囲はこれらの説明に拘束されることはなく、以下の例示以外についても本発明の趣旨を損なわない範囲で適宜変更し、実施することができる。   Hereinafter, although the manufacturing method of the catalyst concerning this invention and the manufacturing method of unsaturated aldehyde and / or unsaturated carboxylic acid using the catalyst obtained by this method are demonstrated in detail, the scope of the present invention is restrained by these explanations. The present invention is not limited to the following examples, and can be appropriately modified and implemented without departing from the spirit of the present invention.

本発明における不飽和アルデヒドおよび/または不飽和カルボン酸製造用触媒の製造方法は、モリブデン、ビスマスおよび鉄を必須成分として含有する触媒活性成分を不活性担体に担持する担持処理工程において、前記担持処理工程における担持処理装置に前記触媒活性成分粉粒物と前記不活性担体とを連続的に供給し、かつ、前記触媒活性成分粉粒物を容積基準で前記担持処理装置の容量に対して1時間あたり1〜10倍の範囲、好ましくは2〜8倍の範囲で供給することが重要である。ここで、担持処理装置容量とは、その処理容器の使用条件下における最大許容量のことであり、例えば、処理容器を一定の傾斜角度(水平面に対する処理容器中心軸の角度)をつけて用いる場合、その傾けた処理容器に入る水の容積に等しい。前記担持処理装置の処理容器としては、通常10〜70°、好ましくは20〜60°の傾斜角度で用いられる。   The method for producing an unsaturated aldehyde and / or unsaturated carboxylic acid production catalyst according to the present invention comprises the above-mentioned carrying treatment in a carrying treatment step of carrying a catalytically active component containing molybdenum, bismuth and iron as essential components on an inert carrier. The catalytically active component granular material and the inert carrier are continuously supplied to the supporting treatment device in the process, and the catalytically active component granular material is 1 hour relative to the capacity of the supporting processing device on a volume basis. It is important to supply in the range of 1 to 10 times, preferably 2 to 8 times. Here, the capacity of the loaded processing apparatus is the maximum allowable amount under the use conditions of the processing container. For example, when the processing container is used with a certain inclination angle (angle of the processing container central axis with respect to the horizontal plane). , Equal to the volume of water entering the inclined processing vessel. As a processing container of the said carrying | support processing apparatus, it is 10-70 degrees normally, Preferably it is used with the inclination angle of 20-60 degrees.

担持処理装置に触媒活性成分粉粒物と不活性担体とを連続的に供給することで、触媒活性成分粉粒物が不活性担体に順次担持され担持体となる。担持量が増えるに従い担持体の粒径は大きくなり、また担持処理装置の処理容器との摩擦係数が小さくなるために担持処理装置内で次第に上層へ流動し、連続的に供給される新たな触媒活性成分粉粒物や不活性担体ならびに担持量が少ないものは、粒径が小さく、摩擦係数が大きいため下層へ流動する。担持処理装置の傾き、処理容器の深さ、回転数あるいはそれらの組み合わせにより所望の担持量あるいは所望の粒径となった担持体が処理容器の堰(リム)を越えて排出され、その排出された担持体を回収することで連続的に担持体を得ることができる。つまり、本発明でいう“連続的に”とは、バッチ式でないことを意味する。   By continuously supplying the catalytically active component particles and the inert carrier to the supporting treatment apparatus, the catalytically active component particles are sequentially supported on the inert carrier to form a carrier. As the loading amount increases, the particle size of the carrier increases, and the coefficient of friction with the processing vessel of the supporting processing device decreases, so that a new catalyst that gradually flows to the upper layer in the supporting processing device and is continuously supplied. Active ingredient powders, inert carriers, and those with a small loading amount flow to the lower layer because of their small particle size and large friction coefficient. The carrier having a desired carrying amount or a desired particle size is discharged beyond the weir (rim) of the processing vessel by the inclination of the carrying processing device, the depth of the processing vessel, the number of rotations, or a combination thereof, and is discharged. The carrier can be obtained continuously by collecting the carrier. That is, “continuously” in the present invention means that it is not a batch type.

前記した1時間あたりの担持処理装置容量に対する触媒活性成分粉粒物の供給量が、1倍未満の場合、複数の担持体同士が互いに引っ付き合い一つの塊状になるなど、歩留まりが低下してしまうほか、機械的強度も低下してしまうため好ましくない。逆に10倍より多い場合、得られる担持体ひいては触媒の粒径分布が拡大したり、粉粒物が担体に担持されずに粉粒物のみで造粒された触媒(以下、「核なし」と記することがある)が発生するなど、歩留まりが低下してしまうほか、触媒の機械的強度も低下してしまうため好ましくない。   When the supply amount of the catalytically active component granular material per 1 hour of the above-described carrying processing apparatus capacity is less than 1 time, the yield is lowered, for example, a plurality of carriers are stuck together to form one lump. In addition, the mechanical strength is also lowered, which is not preferable. On the other hand, when the number is more than 10 times, the particle size distribution of the obtained support and thus the catalyst is expanded, or the catalyst in which the granular material is not supported on the carrier and is granulated only with the granular material (hereinafter referred to as “no core”). In addition, the yield decreases and the mechanical strength of the catalyst also decreases, which is not preferable.

本発明においては、触媒活性成分粉粒物と不活性担体とを連続的に供給するが、担持処理工程を開始する初期の段階では、触媒活性成分粉粒物と不活性担体との担持処理装置への供給を必ずしも同時に開始する必要はない。例えば、一部の不活性担体のみを予め担持処理装置内に仕込み、その後触媒活性成分粉粒物と残りの不活性担体との供給を開始したり、まず触媒活性成分粉粒物の供給を開始し、その後に遅れて不活性担体の供給を開始したりするなど、担持処理工程の大部分において触媒活性成分粉粒物と不活性担体とが連続的に供給されるようにすればよい。中でも、よりスムーズに担持処理を開始するには、一部の不活性担体を予め担持処理装置に仕込んだ後に触媒活性成分粉粒物と残りの不活性担体とを連続的に供給する方法が好ましい。その場合、予め担持処理装置に仕込む不活性担体の量としては、担持処理装置の容量に対して0.1〜0.9倍の容量を仕込むのが好ましい。   In the present invention, the catalytically active component granular material and the inert carrier are continuously supplied. In the initial stage of starting the supporting treatment process, the catalytically active component granular material and the inert carrier supporting treatment device It is not always necessary to start the supply to For example, only a part of the inert carrier is charged in advance in the supporting treatment apparatus, and then the supply of the catalytically active component powder and the remaining inert carrier is started, or the supply of the catalytically active component powder is started first. Then, the catalytically active component powder and the inert carrier may be continuously supplied in the majority of the supporting treatment process, such as starting the supply of the inert carrier later. Among them, in order to start the supporting treatment more smoothly, a method in which a part of the inert carrier is previously charged in the supporting treatment apparatus and then the catalytically active component powder and the remaining inert carrier are continuously supplied is preferable. . In that case, it is preferable that the amount of the inert carrier charged in the supporting treatment apparatus in advance is charged 0.1 to 0.9 times the capacity of the supporting processing apparatus.

また、触媒活性成分粉粒物と不活性担体とを連続的に供給するに際して、その供給量(容積基準)の比(触媒活性成分粉粒物の供給量:不活性担体の供給量)が1:0.3〜1:1.5とするのが好ましい。
触媒活性成分粉粒物と不活性担体の供給装置については、振動式フィーダーやベルト式フィーダーなど供給量を調節できうるものであれば特に限定されない。
Further, when the catalytically active component powder and the inert carrier are continuously supplied, the ratio of the supply amount (volume basis) (the supply amount of the catalytically active component granular material: the supply amount of the inert carrier) is 1. : 0.3 to 1: 1.5 is preferable.
The supply device for the catalytically active component granular material and the inert carrier is not particularly limited as long as the supply amount can be adjusted, such as a vibratory feeder or a belt feeder.

担持処理装置としては、本発明の方法を適用できるものであれば特に限定されないが、装置規模や取扱いの容易さから転動造粒機を用いることが好ましい。担持処理装置の容量としては、要求される生産量と担持処理装置の処理能力に合わせて設定されるものであって一概に特定できないが、工業規模では通常、数十dm〜数mの容量の担持処理装置が使用される。 The supporting treatment apparatus is not particularly limited as long as the method of the present invention can be applied, but it is preferable to use a rolling granulator from the scale of the apparatus and the ease of handling. The capacity of the supported processing apparatus is set according to the required production amount and the processing capacity of the supported processing apparatus and cannot be specified unconditionally. However, on the industrial scale, it is usually several tens of dm 3 to several m 3 . A capacity carrying processor is used.

本発明で使用するモリブデン、ビスマスおよび鉄を必須成分として含有する触媒活性成分としては、下記一般式(1)で表される複合酸化物が好適に用いられる。
Mo12BiFe (1)
(ここで、Moはモリブデン、Biはビスマス、Feは鉄、Aはコバルトおよびニッケルから選ばれる少なくとも1種の元素、Bはアルカリ金属、アルカリ土類金属およびタリウムから選ばれる少なくとも1種の元素、Cはタングステン、ケイ素、アルミニウム、ジルコニウムおよびチタンから選ばれる少なくとも1種の元素、Dはリン、テルル、アンチモン、スズ、セリウム、鉛、ニオブ、マンガン、砒素、ホウ素および亜鉛から選ばれる少なくとも1種の元素、Oは酸素であり、a、b、c、d、e、fおよびxはそれぞれBi、Fe、A、B、C、DおよびOの原子比を表し、0<a≦10、0<b≦20、2≦c≦20、0<d≦10、0≦e≦30、0≦f≦4であり、xはそれぞれの元素の酸化状態によって定まる数値である。)
本発明にかかる触媒の製造方法としては、前記した担持処理装置に触媒活性成分粉粒物と不活性担体とを連続的に供給するとともに、前記触媒活性成分粉粒物の供給量を容積基準で1時間あたり担持処理装置の容量に対して0.1〜1.0倍の範囲に制御することを除けば、公知の不飽和アルデヒドおよび/または不飽和カルボン酸製造用触媒の調製に一般に用いられている方法に準じて製造することができる。
As the catalytically active component containing molybdenum, bismuth and iron as essential components used in the present invention, a composite oxide represented by the following general formula (1) is preferably used.
Mo 12 Bi a Fe b A c B d C e D f O x (1)
(Where Mo is molybdenum, Bi is bismuth, Fe is iron, A is at least one element selected from cobalt and nickel, B is at least one element selected from alkali metals, alkaline earth metals and thallium, C is at least one element selected from tungsten, silicon, aluminum, zirconium and titanium, D is at least one element selected from phosphorus, tellurium, antimony, tin, cerium, lead, niobium, manganese, arsenic, boron and zinc The element, O is oxygen, a, b, c, d, e, f and x represent the atomic ratios of Bi, Fe, A, B, C, D and O, respectively, and 0 <a ≦ 10, 0 < b ≦ 20, 2 ≦ c ≦ 20, 0 <d ≦ 10, 0 ≦ e ≦ 30, 0 ≦ f ≦ 4, and x is a numerical value determined by the oxidation state of each element.
As a method for producing the catalyst according to the present invention, the catalytically active component granular material and the inert carrier are continuously supplied to the above-described supporting treatment apparatus, and the supply amount of the catalytically active component granular material is based on volume. It is generally used for the preparation of known unsaturated aldehyde and / or unsaturated carboxylic acid production catalysts except that it is controlled within the range of 0.1 to 1.0 times the capacity of the supported treatment apparatus per hour. It can be manufactured according to the method.

具体的には、前記一般式(1)で表される触媒活性成分の原料としては、各成分元素の酸化物、水酸化物、アンモニウム塩、硝酸塩、炭酸塩、硫酸塩、有機酸塩などの塩類やそれらの水溶液、ゾルなど、あるいは、複数の元素を含む化合物などが使用できる。   Specifically, the raw materials for the catalytically active component represented by the general formula (1) include oxides, hydroxides, ammonium salts, nitrates, carbonates, sulfates, organic acid salts and the like of each component element. A salt, an aqueous solution thereof, a sol, or a compound containing a plurality of elements can be used.

これらの原料を、例えば、水に混合して水溶液あるいは水性スラリー(以下、「出発原料混合液」と記すことがある)とする。   These raw materials are mixed with water to form an aqueous solution or an aqueous slurry (hereinafter sometimes referred to as “starting raw material mixed solution”).

次に、必要に応じて、得られた出発原料混合液を加熱や減圧など各種方法により乾燥させて触媒活性成分前駆体とする。加熱による乾燥方法としては、例えば、スプレードライヤー、ドラムドライヤー等を用いて粉末状の触媒活性成分前駆体を得ることもできるし、箱型乾燥機、トンネル型乾燥機等を用いて空気や窒素などの不活性ガスあるいはその他窒素酸化物などの気流中で加熱してブロック状またはフレーク状の触媒活性成分前駆体を得ることもできる。また、一旦、出発原料混合液を濃縮、蒸発乾固してケーキ状の固形物を得て、この固形物をさらに前記加熱処理する方法も採用できるほか、得られた前記触媒活性成分前駆体をさらに焼成して焼成物とする方法も採用できる。減圧による乾燥方法としては、例えば、真空乾燥機を用いて、ブロック状または粉末状の触媒活性成分前駆体を得ることができる。   Next, if necessary, the obtained starting material mixture is dried by various methods such as heating and decompression to obtain a catalytically active component precursor. As a drying method by heating, for example, a powdery catalytically active component precursor can be obtained using a spray dryer, a drum dryer or the like, or air or nitrogen can be used using a box-type dryer, a tunnel-type dryer or the like. It is also possible to obtain a block-like or flake-like catalytically active component precursor by heating in an inert gas or other air stream such as nitrogen oxide. In addition, once the starting material mixture is concentrated and evaporated to dryness to obtain a cake-like solid, a method of further heat-treating the solid can be adopted, and the obtained catalytically active component precursor can be used. Furthermore, the method of baking and making it into a baked product is also employable. As a drying method by reduced pressure, for example, a block or powdery catalyst active component precursor can be obtained using a vacuum dryer.

得られた触媒活性成分前駆体あるいは焼成物は、必要に応じて粉砕工程や分級工程を経て適当な粒度の粉粒物とする。このようにして得られた触媒活性成分粉粒物は、続く担持処理工程に送られ、そこで、不活性担体に担持され担持体を得る。なお、上記触媒活性成分粉粒物の粒度は、特に限定されないが、取り扱い易さ、担持物の均一性、歩留まりのよさなど担持性に優れる点で500μm以下が好ましい。   The obtained catalytically active component precursor or calcined product is made into a granular material having an appropriate particle size through a pulverization step and a classification step as necessary. The catalytically active component powder obtained in this way is sent to the subsequent supporting treatment step, where it is supported on an inert carrier to obtain a support. The particle size of the catalytically active component granular material is not particularly limited, but is preferably 500 μm or less in view of excellent handling properties such as ease of handling, uniformity of the supported material, and good yield.

不活性担体としては、アルミナ、シリカ、シリカ−アルミナ、チタニア、マグネシア、ステアタイト、コージェライト、シリカ−マグネシア、炭化ケイ素、窒化ケイ素、ゼオライト等が挙げられる。その形状についても特に制限はなく、球状、円柱状、リング状など公知の形状のものが使用できる。   Examples of the inert carrier include alumina, silica, silica-alumina, titania, magnesia, steatite, cordierite, silica-magnesia, silicon carbide, silicon nitride, zeolite, and the like. There is no restriction | limiting in particular also about the shape, A thing of well-known shapes, such as spherical shape, cylindrical shape, and ring shape, can be used.

担持処理工程においては、その担持状態を向上させるための担持補助剤やバインダーなどを用いることができる。具体例としては、エチレングリコール、グリセリン、プロピオン酸、マレイン酸、ベンジルアルコール、プロピルアルコール、ブチルアルコールまたはフェノール類の有機化合物や水、硝酸、硝酸アンモニウム、炭酸アンモニウムなどが挙げられる。これら担持補助剤やバインダーは、予め担持する前の不活性担体に噴霧あるいは含浸させておいてもよいし、担持処理中に装置内に噴霧あるいは吹き付けるなどして供給してもよく、両者を組み合わせてもよい。   In the supporting treatment step, a supporting aid or a binder for improving the supporting state can be used. Specific examples include organic compounds such as ethylene glycol, glycerin, propionic acid, maleic acid, benzyl alcohol, propyl alcohol, butyl alcohol or phenols, water, nitric acid, ammonium nitrate, and ammonium carbonate. These supporting aids and binders may be sprayed or impregnated in an inert carrier before supporting in advance, or may be supplied by spraying or spraying into the apparatus during the supporting process, or a combination of both. May be.

また、触媒に適度な細孔を形成させる目的で気孔形成剤や触媒の機械的強度を向上させる目的で無機質繊維などを添加してもよい。前記気孔形成剤としては、特に制限がなく、でんぷん、セルロース、尿素、ポリビニルアルコール、メラミンシアヌレートなどを使用することができ、前記無機質繊維としては、特に制限はなく、ガラス繊維、セラミック繊維、金属繊維、鉱物繊維、炭素繊維などを使用することができる。その添加方法についても、触媒活性成分中に均一に分散あるいは含有されるようにし得るものであれば、出発混合液に添加したり、触媒活性成分粉粒物と無機質繊維とを粉粒状態で混合するなど、いずれの方法も用いることができる。もちろん、前記した担持補助剤やバインダーなどに分散あるいは溶解できうるものであれば、担持補助剤やバインダーなどと共に用いることも可能である。   Further, for the purpose of forming appropriate pores in the catalyst, a pore-forming agent or inorganic fibers may be added for the purpose of improving the mechanical strength of the catalyst. The pore-forming agent is not particularly limited, and starch, cellulose, urea, polyvinyl alcohol, melamine cyanurate and the like can be used, and the inorganic fiber is not particularly limited and includes glass fiber, ceramic fiber, metal Fibers, mineral fibers, carbon fibers and the like can be used. As for the addition method, as long as it can be uniformly dispersed or contained in the catalytically active component, it can be added to the starting mixed solution, or the catalytically active component fine particles and the inorganic fibers can be mixed in the granular state. Any method can be used. Of course, as long as it can be dispersed or dissolved in the above-mentioned supporting aid or binder, it can be used together with the supporting aid or binder.

前記担持処理工程で得られた担持体は、続く乾燥工程および/または焼成工程に送られる。   The carrier obtained in the supporting treatment step is sent to the subsequent drying step and / or firing step.

乾燥工程において、担持体の乾燥は、一般的に使用される箱型乾燥機、トンネル型乾燥機等を用いて空気や窒素などの不活性ガスあるいはその他窒素酸化物などの気流中で加熱すればよく、乾燥温度としては80〜300℃、好ましくは130〜250℃、乾燥時間としては好ましくは1〜20時間である。   In the drying process, the carrier can be dried by heating in a stream of inert gas such as air or nitrogen or other nitrogen oxides using a commonly used box-type dryer, tunnel-type dryer or the like. The drying temperature is 80 to 300 ° C, preferably 130 to 250 ° C, and the drying time is preferably 1 to 20 hours.

また、焼成工程において、焼成温度としては350℃〜600℃、好ましくは400℃〜550℃、更に好ましくは420℃〜500℃、焼成時間としては好ましくは1〜20時間である。焼成雰囲気としては、酸化雰囲気であれば良いが、分子状酸素含有ガス雰囲気が好ましく、特に、分子状酸素含有ガス流通下に焼成工程を行うのが好ましい。分子状酸素含有ガスとしては空気が好適に用いられる。また、前記乾燥工程後に焼成を行ってもよく、前記したような予め焼成した触媒活性成分の粉粒物を担持に用いる場合は、必ずしも焼成工程は必要なく、乾燥工程のみでもよい。なお、焼成工程で用いる焼成炉としては特に制限はなく、一般的に使用される箱型焼成炉あるいはトンネル型焼成炉等を用いればよい。   In the firing step, the firing temperature is 350 ° C. to 600 ° C., preferably 400 ° C. to 550 ° C., more preferably 420 ° C. to 500 ° C., and the firing time is preferably 1 to 20 hours. The firing atmosphere may be an oxidizing atmosphere, but a molecular oxygen-containing gas atmosphere is preferable, and it is particularly preferable to perform the firing step under the flow of the molecular oxygen-containing gas. Air is suitably used as the molecular oxygen-containing gas. In addition, calcining may be performed after the drying step, and in the case of using the previously calcined catalytically active component particles for supporting, the calcining step is not necessarily required, and only the drying step may be performed. In addition, there is no restriction | limiting in particular as a baking furnace used by a baking process, What is necessary is just to use the box-type baking furnace or tunnel type baking furnace etc. which are generally used.

必要に応じて、前記担持処理工程後もしくは前記乾燥工程や焼成工程後に篩工程を設けても良いが、後述するリサイクルの観点から担持工程処理後に行うのが好ましい。その場合、篩い分けられた所望の担持率あるいは粒径に満たない担持体については、前記担持工程にリサイクルしても、所望の担持率あるいは粒径になるように別途担持処理しても良い。篩装置としては、特に限定はなく、例えば、網篩い、パンチングメタル、比重選別機、ローラー式選別機などを用いることができ、2つ以上の装置を組み合わせて用いても良い。   If necessary, a sieving step may be provided after the supporting treatment step or after the drying step or firing step, but it is preferably performed after the supporting step treatment from the viewpoint of recycling described later. In that case, the carrier that does not satisfy the desired loading rate or particle size that has been sieved may be recycled to the loading step or may be separately loaded so as to obtain the desired loading rate or particle size. There is no limitation in particular as a sieving apparatus, For example, a net sieve, a punching metal, a specific gravity sorter, a roller-type sorter etc. can be used, You may use combining two or more apparatuses.

本発明におけるプロピレン、イソブチレンまたはTBAを分子状酸素を用いて接触気相酸化して不飽和アルデヒドおよび/または不飽和カルボン酸を製造するのに用いられる反応器については、固定床反応器である限り特段の制限はないが、特に固定床多管式反応器が好ましい。その反応管の内径は通常15〜50mm、より好ましくは20〜40mm、さらに好ましくは22〜38mmである。   As for the reactor used for producing unsaturated aldehyde and / or unsaturated carboxylic acid by catalytic gas phase oxidation of propylene, isobutylene or TBA using molecular oxygen in the present invention, as long as it is a fixed bed reactor Although there is no particular limitation, a fixed bed multitubular reactor is particularly preferable. The inner diameter of the reaction tube is usually 15 to 50 mm, more preferably 20 to 40 mm, and still more preferably 22 to 38 mm.

固定床多管式反応器の各反応管には、必ずしも単一の触媒を充填する必要はなく、従来公知の複数種の触媒をそれぞれ層(以下、「反応帯」と記すことがある)をなすように充填することも可能である。例えば、特開平4−217932号公報のような異なる占有容積を有する複数の触媒を原料ガス入口側から出口側に向かって占有容積が小さくなるように充填する方法、あるいは特開平10−168003号公報のような担持率の異なる複数の触媒を原料ガス入口側から出口側に向かって担持率が高くなるように充填する方法、あるいは特開2005−320315号公報のような触媒の一部を不活性な担体などで希釈する方法、あるいはこれらを組み合わせる方法などを採用してもよい。この時、反応帯の数は、反応条件や反応器の規模により適宜決定されるが、反応帯の数が多すぎると触媒の充填作業が煩雑になるなどの問題が発生するため工業的には2〜6程度までが望ましい。   Each reaction tube of the fixed-bed multitubular reactor does not necessarily need to be filled with a single catalyst, and a plurality of conventionally known types of catalysts (each may be referred to as a “reaction zone”) are provided. It is also possible to fill as much as possible. For example, a method of filling a plurality of catalysts having different occupied volumes as disclosed in JP-A-4-217932 so that the occupied volume decreases from the raw material gas inlet side to the outlet side, or JP-A-10-168003 A method of filling a plurality of catalysts having different loading rates such as from the raw material gas inlet side to the outlet side so that the loading rate increases, or a part of the catalyst as disclosed in JP-A-2005-320315 is inactive. A method of diluting with a simple carrier or a combination of these may be employed. At this time, the number of reaction zones is appropriately determined depending on the reaction conditions and the scale of the reactor. However, if the number of reaction zones is too large, problems such as complicated packing of the catalyst may occur. About 2-6 is desirable.

本発明における反応条件には特に制限は無く、この種の反応に一般に用いられている条件であればいずれも実施することが可能である。例えば、原料ガスとして1〜15容量%、好ましくは4〜12容量%のプロピレン、イソブチレンまたはTBA、0.5〜25容量%、好ましくは2〜20容量%の分子状酸素、0〜30容量%、好ましくは0〜25容量%の水蒸気、残部が窒素などの不活性ガスからなる混合ガスを250〜450℃の温度範囲で0.1〜1.0MPaの圧力下、300〜5,000hr−1(標準状態)の空間速度で触媒に接触させればよい。 The reaction conditions in the present invention are not particularly limited, and any conditions generally used for this type of reaction can be used. For example, the raw material gas is 1-15% by volume, preferably 4-12% by volume propylene, isobutylene or TBA, 0.5-25% by volume, preferably 2-20% by volume molecular oxygen, 0-30% by volume. Preferably, a mixed gas consisting of 0 to 25% by volume of water vapor and the balance of an inert gas such as nitrogen is 300 to 5,000 hr −1 under a pressure of 0.1 to 1.0 MPa at a temperature range of 250 to 450 ° C. What is necessary is just to contact a catalyst with the space velocity of (standard state).

反応原料ガスとしてのグレードについては特に制限はなく、例えば、原料としてプロピレンを用いる場合、ポリマーグレードやケミカルグレードのプロピレンなどを用いることができる。また、プロパンの酸化脱水素反応によって得られるプロピレン含有の混合ガスも使用可能であり、この混合ガスに必要に応じ、空気または酸素などを添加して使用することもできる。   The grade as the reaction raw material gas is not particularly limited. For example, when propylene is used as the raw material, polymer grade or chemical grade propylene can be used. Also, a propylene-containing mixed gas obtained by propane oxidative dehydrogenation reaction can be used. If necessary, air or oxygen can be added to this mixed gas.

以下に、実施例を挙げて本発明を具体的に説明するが、本発明はこれにより何ら限定されるものではない。なお、以下では、便宜上、「質量部」を単に「部」、と記すことがある。実施例および比較例における転化率および収率は、次式によって求めた。
転化率[モル%]
=(反応した出発原料のモル数)/(供給した原料のモル数)×100
選択率[モル%]
=(生成した不飽和アルデヒドおよび生成した不飽和カルボン酸の合計モル数)/(反応した出発原料のモル数)×100
収率[モル%]
=(生成した不飽和アルデヒドおよび生成した不飽和カルボン酸の合計モル数)/(供給した出発原料のモル数)×100
[活性成分粉粒物および不活性担体の嵩比重]
100mlメスシリンダーに触媒活性成分および/またはその前駆体あるいは不活性担体を充填し、ゴム製のクッション材の上でその容量の変化がなくなるまでタッピングする。その時のメスシリンダー内に充填された触媒活性成分および/またはその前駆体あるいは不活性担体の容量と質量を測定し、嵩密度(g/ml)を求めた。
[触媒の機械的強度測定]
内径25mm、長さ5000mmのステンレス製反応管を鉛直方向に設置し、該反応管の下端を厚さ1mmのステンレス製受け板で塞ぐ。約50gの触媒を該反応管の上端から反応管内に落下させた後、反応管下端のステンレス製受け板を外し、反応管から触媒を静かに抜き出す。抜き出した触媒を目開き5mmの篩で篩い、篩上に残った触媒の質量を計量した。
触媒の機械的強度[質量%]
=篩上に残った触媒の質量/反応管上端から落下させた触媒の質量×100
<実施例1>
〔触媒調製〕
蒸留水4000部にパラモリブデン酸アンモニウム1000部および硝酸カリウム2.9部および20質量%シリカゾル340部を溶解した(A液)。別に蒸留水600部に65重量%硝酸50部を添加し、硝酸ビスマス252部、硝酸コバルト879部、硝酸鉄238部および硝酸ニッケル275部を溶解した(B液)。得られたA液にB液を添加し、30分攪拌し続けた。その後、アルミナ133部を添加し、さらに1時間攪拌し続けスラリーを得た。得られたスラリーを加熱攪拌してケーキ状の固形物とし、得られた固形物を空気雰囲気下220℃で約3時間乾燥し、乾燥物を得た。得られた乾燥物を500μm以下に粉砕し、触媒活性成分前駆体の粉体を得た。
Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited thereto. Hereinafter, for convenience, “parts by mass” may be simply referred to as “parts”. The conversion rates and yields in the examples and comparative examples were determined by the following equations.
Conversion rate [mol%]
= (Mole number of reacted starting material) / (Mole number of supplied raw material) × 100
Selectivity [mol%]
= (Total number of moles of unsaturated aldehyde formed and unsaturated carboxylic acid formed) / (Number of moles of reacted starting material) × 100
Yield [mol%]
= (Total number of moles of unsaturated aldehyde produced and unsaturated carboxylic acid produced) / (Number of moles of starting material fed) x 100
[Bulk specific gravity of active ingredient powder and inert carrier]
A 100 ml graduated cylinder is filled with a catalytically active component and / or a precursor thereof or an inert carrier, and tapped on a rubber cushion until there is no change in the volume. The volume and mass of the catalytically active component and / or its precursor or inert carrier filled in the graduated cylinder at that time were measured to determine the bulk density (g / ml).
[Measuring mechanical strength of catalyst]
A stainless steel reaction tube having an inner diameter of 25 mm and a length of 5000 mm is installed in the vertical direction, and the lower end of the reaction tube is closed with a stainless steel receiving plate having a thickness of 1 mm. About 50 g of the catalyst is dropped into the reaction tube from the upper end of the reaction tube, the stainless steel receiving plate at the lower end of the reaction tube is removed, and the catalyst is gently extracted from the reaction tube. The extracted catalyst was sieved with a sieve having an opening of 5 mm, and the mass of the catalyst remaining on the sieve was weighed.
Mechanical strength of catalyst [mass%]
= Mass of catalyst remaining on sieve / mass of catalyst dropped from top of reaction tube x 100
<Example 1>
(Catalyst preparation)
In 4000 parts of distilled water, 1000 parts of ammonium paramolybdate, 2.9 parts of potassium nitrate, and 340 parts of 20% by mass silica sol were dissolved (solution A). Separately, 50 parts of 65% by weight nitric acid was added to 600 parts of distilled water to dissolve 252 parts of bismuth nitrate, 879 parts of cobalt nitrate, 238 parts of iron nitrate and 275 parts of nickel nitrate (Liquid B). B liquid was added to the obtained A liquid, and stirring was continued for 30 minutes. Thereafter, 133 parts of alumina was added, and stirring was further continued for 1 hour to obtain a slurry. The obtained slurry was heated and stirred to obtain a cake-like solid, and the obtained solid was dried at 220 ° C. for about 3 hours in an air atmosphere to obtain a dried product. The obtained dried product was pulverized to 500 μm or less to obtain a powder of a catalytically active component precursor.

直径1.3m、堰高さ500mm、傾斜角度55°とした転動造粒装置(最大許容量=0.059m)に平均粒径4.0mmのシリカ−アルミナ球形担体約40kgを仕込んだ。回転数15rpmで回転させつつ、結合剤として15質量%の硝酸アンモニウム水溶液を噴霧しながら触媒活性成分前駆体の粉体をベルト式フィーダーを用いて0.56m/hrの供給量で連続投入した。同時に、予め装置に仕込んだ担体と同じ担体をベルト式フィーダーを用いて0.21m/hrの供給量で連続投入した。この条件下で約8時間に渡り連続的に担持処理を行った。転動造粒装置の堰(リム)を越えて排出された担持体を比重選別機を用いて選別した後、空気雰囲気下470℃で約6時間焼成して触媒1を得た。この触媒1の担持率は約145質量%、歩留まりは92質量%、酸素を除く金属元素組成は次のとおりであった。
触媒1:Mo12Bi1.1Co6.4Fe1.25NiSi2.4Al5.50.06
なお、担持率および歩留まりは、下記式により求めた。
担持率[質量%]
=(得られた触媒の質量−用いた担体の質量)/用いた担体の質量×100
歩留まり[質量%]
=得られた担持体の質量/(用いた触媒活性成分の質量+用いた担体の質量)×100
各条件および得られた触媒1の機械的強度を表1に示す。
〔反応器〕
全長3000mm、内径25mmのステンレス製反応管およびこれを覆う熱媒体を流すためのシェルからなる反応器を鉛直方向に用意した。反応管上部より得られた触媒1を落下させて、層長が2800mmとなるように充填した。
〔酸化反応〕
触媒を充填した反応管下部より、プロピレン7.5容量%、酸素14容量%、水蒸気6容量%、残部が窒素等の不活性ガス混合からなる混合ガスを空間速度2000hr−1(標準状態)で導入し、プロピレン酸化反応を行った。その際、プロピレン転化率が約97モル%となるように熱媒体温度(反応温度)を調節した。その結果を表2に示す。
<実施例2>
実施例1において、転動造粒装置の回転数を10rpm、触媒活性成分の粉体の供給量を0.093m/hr、担体の供給量を0.026m/hrに変更した以外は、同様に調製し、触媒2を得た。この触媒2の担持率は約165質量%、歩留まりは89質量%、酸素を除く金属元素組成は触媒1と同じであった。各条件および得られた触媒2の機械的強度を表1に示す。
About 40 kg of a silica-alumina spherical carrier having an average particle size of 4.0 mm was charged into a rolling granulator (maximum allowable amount = 0.059 m 3 ) having a diameter of 1.3 m, a weir height of 500 mm, and an inclination angle of 55 °. While rotating at a rotation speed of 15 rpm, the powder of the catalytically active component precursor was continuously charged at a supply rate of 0.56 m 3 / hr using a belt-type feeder while spraying a 15% by mass ammonium nitrate aqueous solution as a binder. At the same time, the same carrier as that previously charged in the apparatus was continuously fed using a belt-type feeder at a supply rate of 0.21 m 3 / hr. Under this condition, the supporting treatment was continuously performed for about 8 hours. The carrier discharged beyond the weir (rim) of the rolling granulator was sorted using a specific gravity sorter, and then calcined at 470 ° C. for about 6 hours in an air atmosphere to obtain catalyst 1. The catalyst 1 was supported at a rate of about 145 mass%, the yield was 92 mass%, and the metal element composition excluding oxygen was as follows.
Catalyst 1: Mo 12 Bi 1.1 Co 6.4 Fe 1.25 Ni 2 Si 2.4 Al 5.5 K 0.06
The carrying rate and yield were obtained from the following formula.
Loading rate [mass%]
= (Mass of catalyst obtained-mass of carrier used) / mass of carrier used x 100
Yield [mass%]
= Mass of the obtained support / (mass of the catalytically active component used + mass of the carrier used) × 100
Table 1 shows the mechanical strength of each condition and the obtained catalyst 1.
[Reactor]
A reactor made of a stainless steel reaction tube having a total length of 3000 mm and an inner diameter of 25 mm and a shell for flowing a heat medium covering the same was prepared in the vertical direction. The catalyst 1 obtained from the upper part of the reaction tube was dropped and filled so that the layer length was 2800 mm.
[Oxidation reaction]
From the lower part of the reaction tube filled with the catalyst, a mixed gas consisting of 7.5% by volume of propylene, 14% by volume of oxygen, 6% by volume of water vapor and the balance of an inert gas such as nitrogen at a space velocity of 2000 hr −1 (standard state). The propylene oxidation reaction was carried out. At that time, the heat medium temperature (reaction temperature) was adjusted so that the propylene conversion was about 97 mol%. The results are shown in Table 2.
<Example 2>
In Example 1, the rotational speed of the rolling granulator was changed to 10 rpm, the supply amount of the powder of the catalytically active component was changed to 0.093 m 3 / hr, and the supply amount of the carrier was changed to 0.026 m 3 / hr. In the same manner, Catalyst 2 was obtained. The supported rate of the catalyst 2 was about 165% by mass, the yield was 89% by mass, and the metal element composition excluding oxygen was the same as that of the catalyst 1. Table 1 shows each condition and the mechanical strength of the obtained catalyst 2.

得られた触媒2を実施例1と同様に反応器に充填し、同条件で酸化反応を行った。その結果を表2に示す。
<比較例1>
実施例2において、触媒活性成分の粉体の供給量を0.80m/hr、担体の供給量を0.22m/hrに変更した以外は、同様に調製し、触媒3を得た。この触媒3の担持率は約145質量%、歩留まりは69質量%、酸素を除く金属元素組成は触媒1と同じであった。各条件および得られた触媒3の機械的強度を表1に示す。触媒活性成分の粉体が担体に担持されずに粉体のみで造粒される核なしが多く発生し、歩留まりが著しく低い結果となった。また、粒径のバラツキが大きく機械的強度も低い結果であった。
The obtained catalyst 2 was charged into a reactor in the same manner as in Example 1, and an oxidation reaction was performed under the same conditions. The results are shown in Table 2.
<Comparative Example 1>
In Example 2, except for changing the supply amount of the powder of catalytically active component 0.80 m 3 / hr, the feed rate of the carrier to 0.22 m 3 / hr similarly to yield the catalyst 3. The supported rate of the catalyst 3 was about 145% by mass, the yield was 69% by mass, and the metal element composition excluding oxygen was the same as that of the catalyst 1. Table 1 shows the mechanical strength of each condition and the obtained catalyst 3. The powder of the catalytically active component was not supported on the carrier and many nuclei were granulated only with the powder, resulting in a significantly low yield. Further, the particle size variation was large and the mechanical strength was low.

得られた触媒3を実施例1と同様に反応器に充填し、同条件で酸化反応を行った。その結果を表2に示す。機械的強度が低いことから燃焼活性が高く、低収率であった。
<実施例3>
〔触媒調製〕
蒸留水4000部にパラモリブデン酸アンモニウム1000部および硝酸カリウム3.8部および20質量%シリカゾル425部を溶解した(A液)。別に蒸留水600部に65重量%硝酸50部を添加し、硝酸ビスマス275部、硝酸コバルト550部、硝酸鉄267部および硝酸ニッケル412部を溶解した(B液)。得られたA液にB液を添加し、1時間攪拌し続けスラリーを得た。得られたスラリーを加熱攪拌してケーキ状の固形物とし、得られた固形物を空気雰囲気下200℃で約2時間乾燥した後、空気雰囲気下470℃で約6時間焼成して焼成物を得た。得られた焼成物を500μm以下に粉砕し、触媒活性成分の粉体を得た。直径1.3m、堰高さ500mm、傾斜角度60°とした転動造粒装置(最大許容量=0.045m)に平均粒径4.0mmのシリカ−アルミナ球形担体約40kgを仕込んだ。回転数15rpmで回転させつつ、結合剤として15質量%の硝酸アンモニウム水溶液を噴霧しながら触媒活性成分の粉体をベルト式フィーダーを用いて0.25m/hrの供給量で投入した。触媒活性成分の投入してから10分後に、予め装置に仕込んだ担体と同じ担体をベルト式フィーダーを用いて0.37m/hrの供給量で投入した。この条件下で約8時間に渡り連続的に担持処理を行った。転動造粒装置の堰(リム)を越えて排出された担持体を比重選別機を用いて選別した後、空気雰囲気下220℃で約3時間乾燥して触媒4を得た。この触媒4の担持率は約35質量%、歩留まりは95質量%、酸素を除く金属元素組成は次のとおりであった。
触媒4:Mo12Bi1.2CoFe1.4NiSi0.08
各条件および得られた触媒4の機械的強度を表1に示す。
The obtained catalyst 3 was charged into a reactor in the same manner as in Example 1, and an oxidation reaction was performed under the same conditions. The results are shown in Table 2. Since the mechanical strength was low, the combustion activity was high and the yield was low.
<Example 3>
(Catalyst preparation)
1000 parts of ammonium paramolybdate, 3.8 parts of potassium nitrate, and 425 parts of 20% by mass silica sol were dissolved in 4000 parts of distilled water (A liquid). Separately, 65 parts by weight of 65% by weight nitric acid was added to 600 parts of distilled water to dissolve 275 parts of bismuth nitrate, 550 parts of cobalt nitrate, 267 parts of iron nitrate and 412 parts of nickel nitrate (Liquid B). B liquid was added to the obtained A liquid, and it stirred for 1 hour, and obtained the slurry. The obtained slurry is heated and stirred to obtain a cake-like solid. The obtained solid is dried at 200 ° C. for about 2 hours in an air atmosphere, and then fired at 470 ° C. for about 6 hours in an air atmosphere to obtain a fired product. Obtained. The obtained fired product was pulverized to 500 μm or less to obtain a powder of a catalytically active component. About 40 kg of a silica-alumina spherical carrier having an average particle size of 4.0 mm was charged into a rolling granulator (maximum allowable amount = 0.045 m 3 ) having a diameter of 1.3 m, a weir height of 500 mm, and an inclination angle of 60 °. While rotating at a rotation speed of 15 rpm, the powder of the catalytically active component was charged at a supply rate of 0.25 m 3 / hr using a belt-type feeder while spraying a 15% by mass aqueous ammonium nitrate solution as a binder. Ten minutes after the introduction of the catalytically active component, the same carrier as that previously charged in the apparatus was introduced using a belt feeder at a supply rate of 0.37 m 3 / hr. Under this condition, the supporting treatment was continuously performed for about 8 hours. The carrier discharged beyond the weir (rim) of the rolling granulator was sorted using a specific gravity sorter, and then dried at 220 ° C. for about 3 hours in an air atmosphere to obtain catalyst 4. The catalyst 4 loading was about 35% by mass, the yield was 95% by mass, and the composition of metal elements excluding oxygen was as follows.
Catalyst 4: Mo 12 Bi 1.2 Co 4 Fe 1.4 Ni 3 Si 3 K 0.08
Table 1 shows the mechanical strength of each condition and the catalyst 4 obtained.

得られた触媒4を実施例1と同様に反応器に充填し、同条件で酸化反応を行った。その結果を表2に示す。
<実施例4>
実施例3において、転動造粒装置の回転数を12rpm、触媒活性成分の粉体の供給量を0.33m/hr、担体の供給量を0.25m/hrに変更した以外は、同様に調製し、触媒5を得た。この触媒5の担持率は約70質量%、歩留まりは94質量%、酸素を除く金属元素組成は触媒4と同じであった。各条件および得られた触媒5の機械的強度を表1に示す。
The obtained catalyst 4 was charged into a reactor in the same manner as in Example 1, and an oxidation reaction was performed under the same conditions. The results are shown in Table 2.
<Example 4>
In Example 3, except for changing the rotational speed of the tumbling granulator 12 rpm, the supply amount of the powder of catalytically active component 0.33 m 3 / hr, the feed rate of the carrier to 0.25 m 3 / hr, In the same manner, Catalyst 5 was obtained. The supported rate of the catalyst 5 was about 70% by mass, the yield was 94% by mass, and the metal element composition excluding oxygen was the same as that of the catalyst 4. Table 1 shows each condition and the mechanical strength of the obtained catalyst 5.

得られた触媒5を実施例1と同様に反応器に充填し、同条件で酸化反応を行った。その結果を表2に示す。
<比較例2>
実施例3において、触媒活性成分の粉体の供給量を0.041m/hr、担体の供給量を0.026m/hrに変更した以外は、同様に調製し、触媒6を得た。この触媒6の担持率は約70質量%、歩留まりは66質量%、酸素を除く金属元素組成は触媒4と同じであった。各条件および得られた触媒6の機械的強度を表1に示す。複数の担持体同士が互いに引っ付き合い一つの塊状となった触媒が多く発生し歩留まりが低い結果となった。また、粒径のバラツキが大きく機械的強度も低い結果であった。
The obtained catalyst 5 was charged into a reactor in the same manner as in Example 1, and an oxidation reaction was performed under the same conditions. The results are shown in Table 2.
<Comparative example 2>
In Example 3, except for changing the supply amount of the powder of catalytically active component 0.041m 3 / hr, the feed rate of the carrier to 0.026 3 / hr similarly to yield the catalyst 6. The loading ratio of the catalyst 6 was about 70% by mass, the yield was 66% by mass, and the metal element composition excluding oxygen was the same as that of the catalyst 4. Table 1 shows each condition and the mechanical strength of the obtained catalyst 6. A large number of catalysts in which a plurality of carriers were stuck together to form one lump were generated, resulting in a low yield. Further, the particle size variation was large and the mechanical strength was low.

得られた触媒6を実施例1と同様に反応器に充填し、同条件で酸化反応を行った。その結果を表2に示す。機械的強度が低いことから燃焼活性が高く、低収率であった。
<実施例5>
〔触媒調製〕
蒸留水5000部にパラモリブデン酸アンモニウム1000部および硝酸カリウム2.4部を溶解した(A液)。別に蒸留水600部に65重量%硝酸50部を添加し、硝酸ビスマス366部、硝酸コバルト783部および硝酸鉄191部を溶解した(B液)。得られたA液にB液を添加し、30分攪拌し続けた。その後、酸化タングステン164部およびアルミナ120部を添加し、さらに1時間攪拌し続けスラリーを得た。得られたスラリーを加熱攪拌してケーキ状の固形物とし、得られた固形物を空気雰囲気下160℃で約5時間乾燥し、乾燥物を得た。得られた乾燥物を500μm以下に粉砕し、触媒活性成分前駆体の粉体を得た。直径1.3m、堰高さ500mm、傾斜角度55°とした転動造粒装置に平均粒径4.0mmのシリカ−アルミナ球形担体約40kgを仕込んだ。回転数10rpmで回転させつつ、結合剤として15質量%の硝酸アンモニウム水溶液を噴霧しながら触媒活性成分前駆体の粉体をベルト式フィーダーを用いて0.17m/hrの供給量で連続投入した。同時に、予め装置に仕込んだ担体と同じ担体をベルト式フィーダーを用いて0.11m/hrの供給量で連続投入した。この条件下で約8時間に渡り連続的に担持処理を行った。転動造粒装置の堰(リム)を越えて排出された担持体を比重選別機を用いて選別した後、空気雰囲気下470℃で約6時間焼成して触媒7を得た。この触媒7の担持率は約100質量%、歩留まりは93質量%、酸素を除く金属元素組成は次のとおりであった。
触媒7:Mo12Bi1.6Co5.7Fe1.01.5Al5.00.05
各条件および得られた触媒7の機械的強度を表1に示す。
The obtained catalyst 6 was charged into a reactor in the same manner as in Example 1, and an oxidation reaction was performed under the same conditions. The results are shown in Table 2. Since the mechanical strength was low, the combustion activity was high and the yield was low.
<Example 5>
(Catalyst preparation)
1000 parts of ammonium paramolybdate and 2.4 parts of potassium nitrate were dissolved in 5000 parts of distilled water (solution A). Separately, 65 parts by weight of 65% by weight nitric acid was added to 600 parts of distilled water to dissolve 366 parts of bismuth nitrate, 783 parts of cobalt nitrate and 191 parts of iron nitrate (Liquid B). B liquid was added to the obtained A liquid, and stirring was continued for 30 minutes. Thereafter, 164 parts of tungsten oxide and 120 parts of alumina were added, and the mixture was further stirred for 1 hour to obtain a slurry. The obtained slurry was heated and stirred to obtain a cake-like solid, and the obtained solid was dried at 160 ° C. for about 5 hours in an air atmosphere to obtain a dried product. The obtained dried product was pulverized to 500 μm or less to obtain a powder of a catalytically active component precursor. About 40 kg of a silica-alumina spherical carrier having an average particle size of 4.0 mm was charged into a rolling granulator having a diameter of 1.3 m, a weir height of 500 mm, and an inclination angle of 55 °. While rotating at a rotational speed of 10 rpm, the powder of the catalytically active component precursor was continuously charged at a supply rate of 0.17 m 3 / hr using a belt-type feeder while spraying a 15% by mass ammonium nitrate aqueous solution as a binder. At the same time, the same carrier as that previously charged in the apparatus was continuously fed using a belt feeder at a supply rate of 0.11 m 3 / hr. Under this condition, the supporting treatment was continuously performed for about 8 hours. The carrier discharged beyond the weir (rim) of the rolling granulator was sorted using a specific gravity sorter, and then calcined at 470 ° C. for about 6 hours in an air atmosphere to obtain catalyst 7. The catalyst 7 was supported at a rate of about 100% by mass, the yield was 93% by mass, and the metal element composition excluding oxygen was as follows.
Catalyst 7: Mo 12 Bi 1.6 Co 5.7 Fe 1.0 W 1.5 Al 5.0 K 0.05
Table 1 shows each condition and the mechanical strength of the catalyst 7 obtained.

得られた触媒7を実施例1と同様に反応器に充填し、同条件で酸化反応を行った。その結果を表2に示す。
<実施例6>
実施例5において、転動造粒装置の回転数を15rpm、触媒活性成分前駆体の粉体の供給量を0.50m/hr、担体の供給量を0.18m/hrに変更した以外は、同様に調製し、触媒8を得た。この触媒8の担持率は約190質量%、歩留まりは92質量%、酸素を除く金属元素組成は触媒7と同じであった。各条件および得られた触媒8の機械的強度を表1に示す。
The obtained catalyst 7 was charged into a reactor in the same manner as in Example 1, and an oxidation reaction was performed under the same conditions. The results are shown in Table 2.
<Example 6>
In Example 5, the rotational speed of the rolling granulator was changed to 15 rpm, the supply amount of the catalyst active component precursor powder was changed to 0.50 m 3 / hr, and the supply amount of the carrier was changed to 0.18 m 3 / hr. Was prepared in the same manner to obtain Catalyst 8. The loading ratio of the catalyst 8 was about 190% by mass, the yield was 92% by mass, and the metal element composition excluding oxygen was the same as that of the catalyst 7. Table 1 shows each condition and the mechanical strength of the catalyst 8 obtained.

得られた触媒8を実施例1と同様に反応器に充填し、同条件で酸化反応を行った。その結果を表2に示す。   The obtained catalyst 8 was charged into a reactor in the same manner as in Example 1, and an oxidation reaction was performed under the same conditions. The results are shown in Table 2.

Figure 2012045516
Figure 2012045516

Figure 2012045516
Figure 2012045516

Claims (7)

モリブデン、ビスマスおよび鉄を必須成分として含有する触媒活性成分を不活性担体に担持してなる不飽和アルデヒドおよび/または不飽和カルボン酸製造用触媒の製造方法であって、不活性担体に触媒活性成分および/またはその前駆体の粉粒物を担持する担持処理工程において、当該担持処理工程で使用する担持処理装置に前記触媒活性成分および/またはその前駆体の粉粒物と前記不活性担体とを連続的に供給するとともに、前記触媒活性成分および/またはその前駆体の粉粒物を前記担持処理装置容量に対して1時間あたり1〜10倍(容積基準)の範囲で供給することを特徴とする不飽和アルデヒドおよび/または不飽和カルボン酸製造用触媒の製造方法。   A method for producing an unsaturated aldehyde and / or unsaturated carboxylic acid production catalyst comprising a catalytically active component containing molybdenum, bismuth and iron as essential components on an inert carrier, wherein the catalytically active component is provided on the inert carrier. And / or in the supporting treatment step for supporting the precursor particles, the catalyst active component and / or the precursor particles and the inert carrier are added to the supporting treatment apparatus used in the supporting treatment step. The catalyst active component and / or precursor particles thereof are supplied in a range of 1 to 10 times (volume basis) per hour with respect to the capacity of the supported processing apparatus while being continuously supplied. To produce an unsaturated aldehyde and / or unsaturated carboxylic acid production catalyst. 前記担持処理工程で得られた担持後の触媒またはその前駆体を連続的に担持処理装置から排出することを特徴とする請求項1に記載の不飽和アルデヒドおよび/または不飽和カルボン酸製造用触媒の製造方法。   The catalyst for producing an unsaturated aldehyde and / or unsaturated carboxylic acid according to claim 1, wherein the supported catalyst or precursor thereof obtained in the supporting treatment step is continuously discharged from the supporting treatment apparatus. Manufacturing method. 前記担持処理工程において、不活性担体の少なくとも一部を予め担持処理装置に仕込んだ後に担持処理装置への触媒活性成分および/またはその前駆体の粉粒物と残りの不活性担体との供給を開始する請求項1または2に記載の不飽和アルデヒドおよび/または不飽和カルボン酸製造用触媒の製造方法。   In the supporting treatment step, after supplying at least a part of the inert carrier to the supporting treatment device in advance, supply of the catalytically active component and / or precursor particles and the remaining inert carrier to the supporting treatment device. The manufacturing method of the catalyst for unsaturated aldehyde and / or unsaturated carboxylic acid manufacture of Claim 1 or 2 which starts. 前記担持処理装置内へ連続的に供給する触媒活性成分および/またはその前駆体の粉粒物と不活性担体との供給量(容積基準)の比(触媒活性成分および/またはその前駆体の粉粒物の供給量:不活性担体の供給量)が1:0.3〜1:1.5である請求項1から3のいずれか1項に記載の製造方法。   Ratio of supply amount (volume basis) of catalytically active component and / or precursor powder and inert carrier continuously supplied into the supporting treatment apparatus (catalytic active component and / or precursor powder thereof) The production method according to any one of claims 1 to 3, wherein a supply amount of the granules: a supply amount of the inert carrier is 1: 0.3 to 1: 1.5. 前記触媒活性成分が、下記一般式(1)で表されるものである請求項1から4のいずれか1項に記載の製造方法。
Mo12BiFe (1)
(ここで、Moはモリブデン、Biはビスマス、Feは鉄、Aはコバルトおよびニッケルから選ばれる少なくとも1種の元素、Bはアルカリ金属、アルカリ土類金属およびタリウムから選ばれる少なくとも1種の元素、Cはタングステン、ケイ素、アルミニウム、ジルコニウムおよびチタンから選ばれる少なくとも1種の元素、Dはリン、テルル、アンチモン、スズ、セリウム、鉛、ニオブ、マンガン、砒素、ホウ素および亜鉛から選ばれる少なくとも1種の元素、Oは酸素であり、a、b、c、d、e、fおよびxはそれぞれBi、Fe、A、B、C、DおよびOの原子比を表し、0<a≦10、0<b≦20、2≦c≦20、0<d≦10、0≦e≦30、0≦f≦4であり、xはそれぞれの元素の酸化状態によって定まる数値である。)
The manufacturing method according to any one of claims 1 to 4, wherein the catalytically active component is represented by the following general formula (1).
Mo 12 Bi a Fe b A c B d C e D f O x (1)
(Where Mo is molybdenum, Bi is bismuth, Fe is iron, A is at least one element selected from cobalt and nickel, B is at least one element selected from alkali metals, alkaline earth metals and thallium, C is at least one element selected from tungsten, silicon, aluminum, zirconium and titanium, D is at least one element selected from phosphorus, tellurium, antimony, tin, cerium, lead, niobium, manganese, arsenic, boron and zinc The element, O is oxygen, a, b, c, d, e, f and x represent the atomic ratios of Bi, Fe, A, B, C, D and O, respectively, and 0 <a ≦ 10, 0 < b ≦ 20, 2 ≦ c ≦ 20, 0 <d ≦ 10, 0 ≦ e ≦ 30, 0 ≦ f ≦ 4, and x is a numerical value determined by the oxidation state of each element.
請求項1から5のいずれか1項に記載の方法で製造された不飽和アルデヒドおよび/または不飽和カルボン酸製造用触媒。   A catalyst for producing an unsaturated aldehyde and / or an unsaturated carboxylic acid produced by the method according to any one of claims 1 to 5. プロピレン、イソブチレンまたはターシャリーブチルアルコールから選ばれる少なくとも1種の化合物を原料とし、分子状酸素の存在下で接触気相酸化して対応する不飽和アルデヒドおよび/または不飽和カルボン酸を製造するにあたり、請求項6に記載の触媒を用いることを特徴とする不飽和アルデヒドおよび/または不飽和カルボン酸の製造方法。   In producing a corresponding unsaturated aldehyde and / or unsaturated carboxylic acid by using catalytic at least one compound selected from propylene, isobutylene or tertiary butyl alcohol as a raw material, and catalytic vapor phase oxidation in the presence of molecular oxygen. A method for producing an unsaturated aldehyde and / or an unsaturated carboxylic acid, wherein the catalyst according to claim 6 is used.
JP2010192137A 2010-08-30 2010-08-30 Method for producing catalyst for producing unsaturated aldehyde and / or unsaturated carboxylic acid, catalyst therefor, and method for producing acrolein and / or acrylic acid using the catalyst Active JP5586382B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010192137A JP5586382B2 (en) 2010-08-30 2010-08-30 Method for producing catalyst for producing unsaturated aldehyde and / or unsaturated carboxylic acid, catalyst therefor, and method for producing acrolein and / or acrylic acid using the catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010192137A JP5586382B2 (en) 2010-08-30 2010-08-30 Method for producing catalyst for producing unsaturated aldehyde and / or unsaturated carboxylic acid, catalyst therefor, and method for producing acrolein and / or acrylic acid using the catalyst

Publications (2)

Publication Number Publication Date
JP2012045516A true JP2012045516A (en) 2012-03-08
JP5586382B2 JP5586382B2 (en) 2014-09-10

Family

ID=45901028

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010192137A Active JP5586382B2 (en) 2010-08-30 2010-08-30 Method for producing catalyst for producing unsaturated aldehyde and / or unsaturated carboxylic acid, catalyst therefor, and method for producing acrolein and / or acrylic acid using the catalyst

Country Status (1)

Country Link
JP (1) JP5586382B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013161703A1 (en) * 2012-04-23 2013-10-31 日本化薬株式会社 Method for producing molded catalyst and method for producing diene or unsaturated aldehyde and/or unsaturated carboxylic acid using said molded catalyst
JP2015085265A (en) * 2013-10-31 2015-05-07 株式会社日本触媒 Cleaning method of deposition unit, method comprising cleaning method-based cleaning step and being used for producing catalyst for producing unsaturated aldehyde and unsaturated carboxylic acid, catalyst produced thereby, and production method of unsaturated aldehyde and unsaturated carboxylic acid
TWI511784B (en) * 2012-09-28 2015-12-11 Asahi Kasei Chemicals Corp Oxide catalysts and methods for their manufacture, and methods for producing unsaturated aldehydes, diolefins and unsaturated nitriles
US9604199B2 (en) 2012-04-23 2017-03-28 Nipponkayaku Kabushikikaisha Catalyst for production of butadiene, process for producing the catalyst, and process for producing butadiene using the catalyst
JP2017124384A (en) * 2016-01-15 2017-07-20 三菱ケミカル株式会社 Manufacturing method of composite oxide catalyst
JP2017537781A (en) * 2014-12-03 2017-12-21 中国石油化工股▲ふん▼有限公司 Catalyst, method for preparing the same, and method for preparing isobutylene by using the catalyst

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6295141A (en) * 1985-10-18 1987-05-01 Daicel Chem Ind Ltd Preparation of coated catalyst
JPS63200839A (en) * 1987-02-17 1988-08-19 Nippon Shokubai Kagaku Kogyo Co Ltd Propylene oxidizing catalyst and its production with excellent reproducibility
JPH0664916A (en) * 1992-05-15 1994-03-08 Tosoh Corp Fine spherical zeolite molding and its production
JP2004508931A (en) * 2000-09-21 2004-03-25 ビーエーエスエフ アクチェンゲゼルシャフト Method for producing composite metal oxide catalyst, method for producing unsaturated aldehyde and / or carboxylic acid, and belt-type calcination apparatus
JP2004136267A (en) * 2002-08-20 2004-05-13 Nippon Shokubai Co Ltd Method of manufacturing catalyst

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6295141A (en) * 1985-10-18 1987-05-01 Daicel Chem Ind Ltd Preparation of coated catalyst
JPS63200839A (en) * 1987-02-17 1988-08-19 Nippon Shokubai Kagaku Kogyo Co Ltd Propylene oxidizing catalyst and its production with excellent reproducibility
JPH0664916A (en) * 1992-05-15 1994-03-08 Tosoh Corp Fine spherical zeolite molding and its production
JP2004508931A (en) * 2000-09-21 2004-03-25 ビーエーエスエフ アクチェンゲゼルシャフト Method for producing composite metal oxide catalyst, method for producing unsaturated aldehyde and / or carboxylic acid, and belt-type calcination apparatus
JP2004136267A (en) * 2002-08-20 2004-05-13 Nippon Shokubai Co Ltd Method of manufacturing catalyst

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013161703A1 (en) * 2012-04-23 2013-10-31 日本化薬株式会社 Method for producing molded catalyst and method for producing diene or unsaturated aldehyde and/or unsaturated carboxylic acid using said molded catalyst
CN104245127A (en) * 2012-04-23 2014-12-24 日本化药株式会社 Method for producing molded catalyst and method for producing diene or unsaturated aldehyde and/or unsaturated carboxylic acid using said molded catalyst
JPWO2013161703A1 (en) * 2012-04-23 2015-12-24 日本化薬株式会社 Process for producing molded catalyst and process for producing diene or unsaturated aldehyde and / or unsaturated carboxylic acid using the molded catalyst
CN104245127B (en) * 2012-04-23 2016-03-30 日本化药株式会社 The manufacture method of formed catalyst and use the diene of this formed catalyst or the manufacture method of unsaturated aldehyde and/or unsaturated carboxylic acid
US9573127B2 (en) 2012-04-23 2017-02-21 Nipponkayaku Kabushikikaisha Process for producing shaped catalyst and process for producing diene or unsaturated aldehyde and/or unsaturated carboxylic acid using the shaped catalyst
US9604199B2 (en) 2012-04-23 2017-03-28 Nipponkayaku Kabushikikaisha Catalyst for production of butadiene, process for producing the catalyst, and process for producing butadiene using the catalyst
TWI511784B (en) * 2012-09-28 2015-12-11 Asahi Kasei Chemicals Corp Oxide catalysts and methods for their manufacture, and methods for producing unsaturated aldehydes, diolefins and unsaturated nitriles
US9364817B2 (en) 2012-09-28 2016-06-14 Asahi Kasei Chemicals Corporation Oxide catalyst and method for producing the same, and methods for producing unsaturated aldehyde, diolefin, and unsaturated nitrile
JP2015085265A (en) * 2013-10-31 2015-05-07 株式会社日本触媒 Cleaning method of deposition unit, method comprising cleaning method-based cleaning step and being used for producing catalyst for producing unsaturated aldehyde and unsaturated carboxylic acid, catalyst produced thereby, and production method of unsaturated aldehyde and unsaturated carboxylic acid
JP2017537781A (en) * 2014-12-03 2017-12-21 中国石油化工股▲ふん▼有限公司 Catalyst, method for preparing the same, and method for preparing isobutylene by using the catalyst
US10792642B2 (en) 2014-12-03 2020-10-06 China Petroleum & Chemical Corporation Catalyst and preparation method thereof, and method for preparing isobutylene by applying the same
JP2017124384A (en) * 2016-01-15 2017-07-20 三菱ケミカル株式会社 Manufacturing method of composite oxide catalyst

Also Published As

Publication number Publication date
JP5586382B2 (en) 2014-09-10

Similar Documents

Publication Publication Date Title
JP5845337B2 (en) Method for producing acrylic acid using a fixed bed multitubular reactor
JP5628930B2 (en) Catalyst for producing unsaturated aldehyde and / or unsaturated carboxylic acid, and method for producing unsaturated aldehyde and / or unsaturated carboxylic acid using the catalyst
US7927555B2 (en) Charging of a reactor
JP5586382B2 (en) Method for producing catalyst for producing unsaturated aldehyde and / or unsaturated carboxylic acid, catalyst therefor, and method for producing acrolein and / or acrylic acid using the catalyst
JP2018111720A (en) Method for producing unsaturated carboxylic acid and supported catalyst
JP7354563B2 (en) catalyst
JP4242597B2 (en) Unsaturated aldehyde synthesis catalyst, production method thereof, and production method of unsaturated aldehyde using the catalyst
KR20160002815A (en) Catalyst for producing unsaturated aldehyde and/or unsaturated carboxylic acid, method for producing catalyst, and method for producing unsaturated aldehyde and/or unsaturated carboxylic acid using catalyst
JP5388897B2 (en) Catalyst for producing unsaturated aldehyde and / or unsaturated carboxylic acid, and method for producing unsaturated aldehyde and / or unsaturated carboxylic acid using the catalyst
JP5845338B2 (en) Method for producing acrolein and acrylic acid using fixed bed multitubular reactor
JP2008264766A (en) Oxide catalyst, manufacturing method of acrolein or acrylic acid and manufacturing method of water-absorptive resin using acrylic acid
JP5628936B2 (en) Unsaturated carboxylic acid production catalyst and method for producing unsaturated carboxylic acid using the catalyst
JP2004002209A (en) Method for producing unsaturated aldehyde
JP5448331B2 (en) Acrylic acid production catalyst and method for producing acrylic acid using the catalyst
JPS63315148A (en) Catalyst of synthesis of methacrylic acid and preparation thereof showing excellent reproducibility
JP6033027B2 (en) Method for producing catalyst for producing unsaturated aldehyde and unsaturated carboxylic acid, catalyst therefor, and method for producing unsaturated aldehyde and unsaturated carboxylic acid
JP6207346B2 (en) Method for cleaning supported treatment apparatus, method for producing unsaturated aldehyde and unsaturated carboxylic acid production catalyst having washing step by the washing method, catalyst therefor, and method for producing unsaturated aldehyde and unsaturated carboxylic acid
JP2021069962A (en) Method for producing catalyst for producing unsaturated aldehyde and/or unsaturated carboxylic acid, and method for producing unsaturated aldehyde and/or unsaturated carboxylic acid using the catalyst
JP7347282B2 (en) Method for producing catalyst for unsaturated carboxylic acid synthesis
JP7468291B2 (en) Method for producing catalyst for synthesizing unsaturated aldehydes and unsaturated carboxylic acids
JP7468292B2 (en) Method for producing catalyst for synthesizing unsaturated aldehydes and unsaturated carboxylic acids
WO2023100856A1 (en) Catalyst, and method for producing compound using same
JP2004002323A (en) Method for producing unsaturated aldehyde
JP2022067387A (en) Method for producing catalyst for synthesizing unsaturated aldehyde and unsaturated carboxylic acid
JP2022067427A (en) Method for producing catalyst for synthesizing unsaturated aldehyde and unsaturated carboxylic acid

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130405

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140128

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140326

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140701

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140722

R150 Certificate of patent or registration of utility model

Ref document number: 5586382

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150