JPS63315148A - Catalyst of synthesis of methacrylic acid and preparation thereof showing excellent reproducibility - Google Patents

Catalyst of synthesis of methacrylic acid and preparation thereof showing excellent reproducibility

Info

Publication number
JPS63315148A
JPS63315148A JP62150111A JP15011187A JPS63315148A JP S63315148 A JPS63315148 A JP S63315148A JP 62150111 A JP62150111 A JP 62150111A JP 15011187 A JP15011187 A JP 15011187A JP S63315148 A JPS63315148 A JP S63315148A
Authority
JP
Japan
Prior art keywords
catalyst
element selected
group
suspension
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62150111A
Other languages
Japanese (ja)
Other versions
JPH0679666B2 (en
Inventor
Toru Ishii
徹 石井
Yukio Aoki
幸雄 青木
Masahiro Wada
正大 和田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Shokubai Co Ltd
Original Assignee
Nippon Shokubai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Shokubai Co Ltd filed Critical Nippon Shokubai Co Ltd
Priority to JP62150111A priority Critical patent/JPH0679666B2/en
Publication of JPS63315148A publication Critical patent/JPS63315148A/en
Publication of JPH0679666B2 publication Critical patent/JPH0679666B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

PURPOSE:To enhance methacrylic acid synthesizing activity and mechanical strength, by forming a catalyst having a specific metal oxide composition and having a specific surface area, a pore volume, pore diameter distribution and a pore diameter set to the values within specific ranges. CONSTITUTION:A unbaked catalyst raw material powder is charged in a centrifugal fluidized coating apparatus and granulated into particles having an average diameter of 2-10mm before baking. By this method, a catalyst having a specific surface area of 1.0-10m<2>/g, a pore volume of 0.10-1.0cc/g and pore diameter distributions respectively concentrated to a range of 1-10mum and a range of 0.1- below 1mum is formed. The composition of the catalyst is represented by formula I (wherein A is As, Sb or Ge, B is Cu, Fe, Cr, Ni, Pd or Rh, C is V, W or Nb and D is an alkali metal, an alkaline earth metal or Th).

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明はモリブデン、リンさらにアルカリ金属、アルカ
リ土類金属およびタリウムよりなる群から選ばれた少な
くとも1種の元素を必須成分としてなるメタクロレイン
および/またはイソブヂルアルデヒドおよび/またはイ
ソ醋酸からメタクロレンを製造するに適した酸化触媒お
よびそれを製造する方法に関する。本発明は高い活性を
有し、耐久性に優れたメタクロレン合成用触媒として、
特異な物性を賦与せしめてなるものを捉供するものであ
り、かつ当該触媒を容易に再現性よく製造する方法に関
するものである。
Detailed Description of the Invention [Industrial Application Field] The present invention provides methacrolein and The present invention relates to an oxidation catalyst suitable for producing methachlorene from isobutyraldehyde and/or isoacetic acid, and a method for producing the same. The present invention has high activity and excellent durability as a catalyst for methachlorene synthesis.
The present invention relates to a method for easily and reproducibly producing a catalyst that has unique physical properties.

[従来技術] メタクロレインの接触気相酸化反応によりメタクロレン
を効率よく製造するために種々の触媒が提案されている
。これらは主として触媒を構成する成分およびその比率
の選択にかかわるものであるが、中には触媒物性の規制
やその再現性ある製法に関するものもある。すなわち、
触媒自体の表面積、細孔容積、細孔径などの触媒物性に
ついての提案ではあるものの、その性能面においては不
十分であり、いまだ満足すべき水準にあるものは見い出
されていない。
[Prior Art] Various catalysts have been proposed for efficiently producing methacrolene through a catalytic gas phase oxidation reaction of methacrolein. These are mainly related to the selection of components constituting the catalyst and their ratios, but some of them are related to regulation of catalyst physical properties and reproducible manufacturing methods. That is,
Although there have been proposals regarding the physical properties of the catalyst itself, such as the surface area, pore volume, and pore diameter, the performance is insufficient, and no product that is at a satisfactory level has yet been found.

たとえば特開昭49−116022号公報、特開昭50
−37710号公報明細書中にはそれぞれ触媒表面積は
0.01〜5m /q10.01〜50m2/gの範囲
が好ましいと記載されているが、その特定にも拘らず反
応温度が高かったり、メタクロレンの選択率が低く工業
触媒として必ずしも十分ではない。
For example, JP-A-49-116022, JP-A-50
In the specification of Publication No. 37710, it is stated that the surface area of each catalyst is preferably in the range of 0.01 to 5 m/q10.01 to 50 m2/g. It has a low selectivity and is not necessarily sufficient as an industrial catalyst.

表面積と細孔容積に関する報告としては特公昭54−1
3876号公報があり、そこに於て表面積は4〜20T
rL 7g、細孔容積0.08〜0.5cc/g、触媒
成分はリン、モリブデン及び×(但しXはタリウム、周
期律表IA族及び■族金属の中から選ばれた少なくとも
1種の元素を表わす。)を必須成分としてなり、転勤式
造粒機で成形する方法が開示されている。しかし、この
実施内容をみるかぎり反応温度が高く工業触媒としては
不満足である。
As a report on the surface area and pore volume,
There is a publication No. 3876, in which the surface area is 4 to 20T.
rL 7g, pore volume 0.08-0.5cc/g, catalyst components are phosphorus, molybdenum, and ) as an essential component, and a method of molding using a transfer-type granulator is disclosed. However, as far as the details of this implementation are concerned, the reaction temperature is high and it is unsatisfactory as an industrial catalyst.

[発明が解決しようとする問題点] 本発明者らは触媒物性の最適化は従来技術での触媒表面
積のみ、細孔容積のみ、又は細孔径分布のみで決定され
るものではなく、触媒表面積、細孔容積、細孔径の三者
が総合されてなる物性が触媒に付与されてはじめて工業
的に優れた触媒が得られるものと考えた。ところで固定
床式或は移動床等の反応装置を用いてメタクロレイン、
イソブチルアルデヒド、イソ醋酸等の酸化或は酸化脱水
素反応を行う場合、触媒は適当な大きさのペレットとし
て用いられる場合が多い。このようなペレット触媒は打
錠成形機、押し出し成形機、製丸機、転勤造粒機等を用
いて成形されるが、触媒性能を低下せしめることなく成
形することは困難な場合が多く、且つえられる触媒の性
能には再現性の乏しい場合が大半Cある。
[Problems to be Solved by the Invention] The present inventors believe that the optimization of catalyst physical properties is not determined only by the catalyst surface area, pore volume, or pore size distribution alone as in the prior art, but by determining the catalyst surface area, We believe that an industrially superior catalyst can only be obtained if the catalyst is given physical properties that are a combination of three factors: pore volume and pore diameter. By the way, methacrolein,
When carrying out the oxidation or oxidative dehydrogenation reaction of isobutyraldehyde, isoacetic acid, etc., the catalyst is often used in the form of pellets of an appropriate size. Such pellet catalysts are molded using a tablet molding machine, an extrusion molding machine, a round machine, a transfer granulator, etc., but it is often difficult to mold them without reducing the catalyst performance. In most cases, the performance of the resulting catalyst is poor in reproducibility.

U問題を解決しようとするための手段]そこで本発明者
等は各種成形機を用いて触媒ペレットを製造Aる際に生
じる触媒性能の変化の原因を究明すべく鋭意検討した結
果、Mo,P、Δ、B、C,D、およびO(ここでMo
はモリブデン、Pはリン、△はヒ素、アンチモン、ゲル
マニウム、ビスマス、ジルコニウム、セレンがら選ばれ
た少なくとも1種の元素、Bは銅、鉄、クロム、ニッケ
ル、マンガン、コバルト、スズ、銀、亜鉛、パラジウム
、ロジウム、テルルからなる群から選ばれた少な(とも
1種の元素、Cはバナジウム、タングステン、ニオブか
らなる群から選ばれた少なくとも1種の元素、Dはアル
カリ金属、アルカリ土類金属、タリウムとからなる群か
ら選ばれた少なくとも1種の元素および0は酸素を表わ
す。)を成分元素として含む触媒原料組成物は、成形方
法次第で触媒性能の大幅な低下が起りうろこと、えられ
る触媒の性0し及び物性値がバラツクことがわかった。
Means for Solving Problem U] Therefore, the present inventors conducted extensive studies to find out the cause of the change in catalyst performance that occurs when producing catalyst pellets using various molding machines, and found that Mo, P , Δ, B, C, D, and O (where Mo
is molybdenum, P is phosphorus, △ is at least one element selected from arsenic, antimony, germanium, bismuth, zirconium, and selenium, B is copper, iron, chromium, nickel, manganese, cobalt, tin, silver, zinc, at least one element selected from the group consisting of palladium, rhodium, and tellurium; C is at least one element selected from the group consisting of vanadium, tungsten, and niobium; D is an alkali metal, an alkaline earth metal, Depending on the molding method, catalyst raw material compositions containing at least one element selected from the group consisting of thallium and 0 represents oxygen as component elements may have a large drop in catalytic performance depending on the molding method. It was found that the properties of the catalyst were zero and the physical property values varied.

その主な原因は成形特に触媒の細孔が規制され、そのた
めに触媒の表面積や細孔容積及び細孔径が規制されるこ
とがわかった。そこで上記成分を含有する性能の優れた
触媒を得へろく、表面積、細孔容積、細孔分布について
検討したところ、表面積1.0〜10.0TrL2/g
、その細孔容積が0.10〜1.0cc/Cl、且っ細
孔径分布が直径として1〜10μmおよび0.1〜1μ
m未満の範囲にそれぞれ集中して分布を有する三条性が
満される物性を有する必要のあることを見い出した。
It has been found that the main reason for this is that molding, particularly the pores of the catalyst, are regulated, and therefore the surface area, pore volume, and pore diameter of the catalyst are regulated. Therefore, in order to obtain a catalyst with excellent performance containing the above components, we investigated the surface area, pore volume, and pore distribution, and found that the surface area was 1.0 to 10.0 TrL2/g.
, the pore volume is 0.10 to 1.0 cc/Cl, and the pore size distribution is 1 to 10 μm and 0.1 to 1 μm in diameter.
It has been found that it is necessary to have physical properties that satisfy the three-row property where the distribution is concentrated in a range of less than m.

ここで細孔径分布について0.1〜1μm未満の範囲に
存在する細孔に占める容積は全細孔容積の10%以上、
とにく20%以上、最も好ましくは20〜60%の範囲
、1−10μmに存在する細孔の占める容積は全細孔容
積の10%以上、とくに30%以上、最も好ましくは4
5〜80%の範囲である。この条件がみたされる場合に
はこの触媒に活性、選択性ともに高い性能を与えること
がわかった。通常細孔径が小さい方の細孔は表面積や細
孔容積への寄与は大きいが、本願発明における反応や触
媒系を限定した場合、活性及び有効反応生成物への選択
性に寄与する細孔は小さい細孔径の割合が多くなるだけ
では不十分であり、1〜10μmという比較的大きい径
の細孔が共存することにより性能も向上する事がわかっ
た。そしてこの知見に基づぎ木発明者等が特定の物性を
有する触媒を製造する方法として鋭意検討を進めた結果
、造粒する前の未焼成触媒粉体を遠心流動コーティング
装置により成形すると、他の通常の触媒の成形法に比較
して、極めて再現性に優れ、かつ優れた触媒性能を示ず
触媒が得られることを見い出し本発明を完成するに至っ
た。
Here, regarding the pore size distribution, the volume occupied by pores existing in the range of 0.1 to less than 1 μm is 10% or more of the total pore volume,
Particularly 20% or more, most preferably in the range of 20 to 60%, the volume occupied by pores existing in the range of 1 to 10 μm is 10% or more of the total pore volume, especially 30% or more, most preferably 4
It ranges from 5 to 80%. It has been found that when these conditions are met, this catalyst exhibits high performance in both activity and selectivity. Normally, pores with smaller pore diameters make a large contribution to surface area and pore volume, but when the reaction and catalyst system in the present invention are limited, pores that contribute to activity and selectivity to effective reaction products are It was found that simply increasing the proportion of small pores is not sufficient, and that the coexistence of relatively large pores of 1 to 10 μm improves performance. Based on this knowledge, the inventors conducted extensive research into a method for manufacturing catalysts with specific physical properties, and found that by molding the unfired catalyst powder before granulation using a centrifugal fluid coating device, The present inventors have completed the present invention by discovering that a catalyst can be obtained with extremely high reproducibility and exhibiting excellent catalytic performance compared to conventional catalyst molding methods.

通常、触媒成形法として、球状形態を製造する場合、転
勤式造粒法、マルスライザー成形法、流動層造粒法など
があり、円柱状形態を製造する場合は、押し出し成形法
や打錠成形法が採用される。
Usually, catalyst molding methods include transfer granulation, Marsurizer molding, fluidized bed granulation, etc. when producing spherical shapes, and extrusion molding and tablet molding when producing cylindrical shapes. law is adopted.

しかしこのような成形法を採用した場合、触媒性能を低
下せしめることなく成形することは困難なことが多く、
性能にもバラツキが多く、再現性に乏しい場合が多い。
However, when such a molding method is adopted, it is often difficult to mold the catalyst without deteriorating its performance.
There is also a lot of variation in performance, and reproducibility is often poor.

これに対して、本発明で使用される遠心流動コーティン
グ装置を用いると、簡単で生産性が良く、且つ本発明で
規定する特定の表面積、細孔容積及び細孔径分布を有す
る球状或は粒状触媒を再現性よく製造できることが判明
した。更に遠心流動コーティング装置での成形では粒度
分布の狭い触媒が4qられ、その形状が粒状或は球状で
あることで触媒の機械的強度が大きく、圧損が少なく摩
耗に対する抵抗性が高く、反応装置への充填や抜き出し
が容易であるなどの利点がある。
On the other hand, the use of the centrifugal fluid coating apparatus used in the present invention is simple, has good productivity, and can produce spherical or granular catalysts having specific surface areas, pore volumes, and pore size distributions specified in the present invention. It was found that it could be manufactured with good reproducibility. Furthermore, when molded using a centrifugal fluid coating device, a catalyst with a narrow particle size distribution is produced, and the granular or spherical shape of the catalyst provides high mechanical strength, low pressure loss, and high resistance to abrasion, making it suitable for use in reaction equipment. It has the advantage of being easy to fill and remove.

ところで、遠心流動コーティング装置及びその使用法は
粉末材料の造粒法の一手法として公知である。例えば特
公昭46−10878号公報に於て医薬品の糖衣をコー
ティングする方法とその装置として開示されており、又
特公昭52−17292号公報に於ては遠心流動コーテ
ィング装置により粒状コアーを触媒及び/又は担体で被
覆することを特徴とする粒状触媒や触媒担体の製法が開
示されている。本発明はこの方法を上記で特定される物
性の酸化物触媒の製造に適用するもので、単に水等を結
合剤として用いるだけで、或は場合によっては焼成時に
燃焼又は揮発によって触媒中に細孔を与える物質を併用
して、容易に上記の如く規制された表面積、細孔容積及
び細孔径分布を有する触媒が製造可能であり、且つ物理
的強度の強い球状あるいは粒状触媒を得ることができる
のである。
Incidentally, a centrifugal fluid coating apparatus and its method of use are known as a method of granulating powder materials. For example, Japanese Patent Publication No. 46-10878 discloses a method and apparatus for coating pharmaceuticals with sugar coating, and Japanese Patent Publication No. 52-17292 discloses coating of granular cores with a catalyst and/or a centrifugal fluid coating device. Alternatively, a method for producing a granular catalyst or a catalyst carrier characterized by coating it with a carrier is disclosed. The present invention applies this method to the production of oxide catalysts with the physical properties specified above, and can be achieved by simply using water or the like as a binder, or in some cases by burning or volatilizing during calcination to form fine particles in the catalyst. By using a substance that provides pores in combination, it is possible to easily produce a catalyst having a surface area, pore volume, and pore size distribution regulated as described above, and it is also possible to obtain a spherical or granular catalyst with strong physical strength. It is.

この遠心流動コーティング装置による製造例として成形
前の未焼成酸化物組成物又は酸化物に変換していない前
段階の触媒原料組成物の粉末を遠心流動コーティング装
置に投入し熱風を送入しながら且つ水などの結合剤を散
布しなから造粒を行なわしめ、所望の大ぎさに成長した
粒子を回分式%式% あるいは連続式に取り出し次いでこれを必要に応じて乾
燥した後、200〜600℃、好ましくは300〜50
0℃の濃度で焼成することからなる方法がげられる。
As an example of production using this centrifugal fluid coating device, an unfired oxide composition before molding or a powder of a catalyst raw material composition in the previous stage that has not been converted into an oxide is put into the centrifugal fluid coating device, and while blowing hot air, Granulation is carried out without sprinkling a binder such as water, and the particles that have grown to the desired size are taken out in a batch method or a continuous method, and then dried as necessary, at 200 to 600°C. , preferably 300-50
A method is mentioned which consists of firing at a concentration of 0°C.

本発明においては触媒はそのままでも使用できるが、不
活性な担体で稀釈したり、または当該不活性担体に担持
された状態でも使用できる。造粒成形にあたっては、あ
らかじめ触媒自体を原粉体粒度の10倍程度の顆粒状に
したものを核として使用するのが好ましい。もちろんこ
の核として不活性担体も使用できる。不活性担体として
シリコンカーバイド、シリカ、α−アルミナ、グラファ
イト、その他耐火性物等の公知のものが挙げられる。粒
径を成長させるコーティング用触媒粉末は100メツシ
ユ以下に調整しておくのが好ましい。
In the present invention, the catalyst can be used as it is, but it can also be used diluted with an inert carrier or supported on the inert carrier. In granulation molding, it is preferable to use as cores the catalyst itself granulated in advance with a particle size of about 10 times the particle size of the original powder. Of course, an inert carrier can also be used as the core. Examples of the inert carrier include known ones such as silicon carbide, silica, α-alumina, graphite, and other refractory materials. It is preferable that the coating catalyst powder for growing the particle size is adjusted to 100 mesh or less.

本発明にて規定する表面積、細孔容積及び細孔径分布を
有する触媒を再現性よく製造するには例えばポリビニー
ルアルコールやステアリン酸等の添加を触媒粉末調製時
に行ったり、成形時に触媒粉体に添加するとよい。なお
場合によって、触媒の粉化度をより少なくしたい場合に
はウィスカやガラスH&紐を加えるとよい。又粉体結合
剤として水、セルロース、硝酸アンモニウム、グラファ
イト、デンプン等の使用が可能であり、又アルコールや
アセトンなどの41機溶剤でも使用可能である。
In order to reproducibly produce a catalyst having the surface area, pore volume, and pore size distribution defined in the present invention, for example, polyvinyl alcohol, stearic acid, etc. may be added to the catalyst powder during preparation of the catalyst powder, or added to the catalyst powder during molding. Good to add. Depending on the case, if it is desired to further reduce the degree of pulverization of the catalyst, whiskers or glass H&string may be added. Further, water, cellulose, ammonium nitrate, graphite, starch, etc. can be used as a powder binder, and 41 solvents such as alcohol and acetone can also be used.

本発明に使用される触媒は下記一般式で示される。The catalyst used in the present invention is represented by the following general formula.

No(a) P(b) A(c) B(d) C(e)
 D(f) 0(X)(ここでMoはモリブデン、Pは
リン、Aはヒ素、アンチモン、ゲルマニウム、ビスマス
、ジルコニウムおよびセレンからなる群から選ばれた少
なくとも1種の元素、Bは銅、鉄、クロム、ニッケル、
マンガン、コバルト、スズ、銀、亜鉛、パラジウム、ロ
ジウムおよびテルルからなる群から選ばれた少なくとも
1種の元素、Cはバナジウム、タングステンおよびニオ
ブからなる群から選ばれた少なくとも1種の元素、Dは
アルカリ金属、アルカリ土類金属およびタリウムからな
る群から選ばれた少なくとも1種の元素およびOは酸素
を表わす。
No(a) P(b) A(c) B(d) C(e)
D(f) 0(X) (where Mo is molybdenum, P is phosphorus, A is at least one element selected from the group consisting of arsenic, antimony, germanium, bismuth, zirconium, and selenium, and B is copper, iron , chromium, nickel,
At least one element selected from the group consisting of manganese, cobalt, tin, silver, zinc, palladium, rhodium and tellurium; C is at least one element selected from the group consisting of vanadium, tungsten and niobium; D is At least one element selected from the group consisting of alkali metals, alkaline earth metals and thallium and O represent oxygen.

またa、b、c、d、e、f、xはそれぞれMo。Further, a, b, c, d, e, f, and x are each Mo.

P、A、B、C,DおよびOの原子比を表わし、a−1
2のときb=0.5〜4、c=0〜5、d−〇〜3、e
−O〜4、f−0,01〜4および×はそれぞれの元素
の酸化状態によって定まる数値である。) 本発明による接触気相酸化反応は原料ガス組成として1
.0〜10容量%のメタクロレイン、イソブチルアルデ
ヒドあるいはイソ醋酸といった原料化合物、これらの原
料化合物に対する容量比で1〜10の範囲の分子状酸素
および稀釈剤として不活性ガスたとえば窒素、炭酸ガス
、水蒸気(特に水蒸気の使用は副生成物の生成をおさえ
、目的生成物の収寧向上には右利である。)などからな
る混合ガスを前記のように調製された触媒上に200〜
400℃の温度範囲および常圧〜10気圧の圧力下、空
間速度100〜5000hr−1(STP)で導入する
ことによって遂行される。なお原料としてメタクロレイ
ンを選ぶ場合、メタクロレインは必ずしも純粋である必
要はなく、イソブチレンまたはターシャリ−ブタノール
を接触的に反応せしめて得られるメタクロレイン含有ガ
スを用いることもでき、工業的プロセスにおいてはとく
に推奨される。
Represents the atomic ratio of P, A, B, C, D and O, a-1
2, b=0.5~4, c=0~5, d-〇~3, e
-O~4, f-0, 01~4 and x are numerical values determined by the oxidation state of each element. ) The catalytic gas phase oxidation reaction according to the present invention has a raw material gas composition of 1
.. A raw material compound such as methacrolein, isobutyraldehyde or isoacetic acid in an amount of 0 to 10% by volume, molecular oxygen in a volume ratio of 1 to 10 with respect to the raw material compound, and an inert gas such as nitrogen, carbon dioxide, or water vapor as a diluent. In particular, the use of steam is advantageous in suppressing the formation of by-products and improving the yield of the desired product.
It is carried out by introducing at a temperature range of 400° C. and a pressure of normal pressure to 10 atmospheres at a space velocity of 100 to 5000 hr −1 (STP). When methacrolein is selected as a raw material, methacrolein does not necessarily have to be pure; methacrolein-containing gas obtained by catalytically reacting isobutylene or tertiary-butanol can also be used. Recommended.

次に実施例及び比較例によって本発明をさらに詳細に説
明するが、本発明はこれら実施例に限定されるものでは
ない。本明細書における転化率、選択率および単流収率
は以下の通り定義される。
Next, the present invention will be explained in more detail with reference to Examples and Comparative Examples, but the present invention is not limited to these Examples. Conversion rate, selectivity and single stream yield in this specification are defined as follows.

転化率(%)− 選択率(%)− 単流収率(%)= 例■ (触媒原料懸濁液の調製) 加熱したイオン交換水40j!にパラモリブデン酸アン
モニウム88300とメタバナジン酸アンモニウム53
0Qを加え撹拌溶解した。
Conversion rate (%) - Selectivity (%) - Single flow yield (%) = Example■ (Preparation of catalyst raw material suspension) 40j of heated ion-exchanged water! ammonium paramolybdate 88300 and ammonium metavanadate 53
0Q was added and dissolved with stirring.

この溶液にピリジン2030GとリンM(85重量%>
5240を加えつづいて硝酸(比重1.38)41さら
に硝酸セシウム812gを51イオン交換水に溶した溶
液を加え加熱撹拌して閘濁液を得た(これを懸濁液−八
とする)。
Add pyridine 2030G and phosphorus M (85% by weight) to this solution.
5240 was added thereto, 41 nitric acid (specific gravity 1.38), and a solution of 812 g of cesium nitrate dissolved in 51 ion-exchanged water was added and stirred with heating to obtain a suspension (this was referred to as suspension 8).

例■−1−1(遠心流動コーティング法)懸濁液−Aの
一部を用い加熱濃縮し得られたスラリー状物質を250
℃で15時間乾燥し約100メツシユに粉砕し、粉体を
得た。
Example ■-1-1 (Centrifugal fluid coating method) A slurry material obtained by heating and concentrating a part of suspension-A was heated to 250 ml.
The mixture was dried at ℃ for 15 hours and ground into about 100 meshes to obtain a powder.

まず、平均1#φのα−アルミナ粒子を遠心流動コーテ
ィング装置に投入し、続いて上記の粉体を90℃の熱風
を通しながら投入し、結合剤として蒸留水を添加しつつ
平均直径5 mmの球状に造粒した。かくして得られた
球状粒子を窒素気流中430℃で3時間焼成し、つづい
て空気中400℃= 16− で3時間焼成した。この触媒酸化物の元素組成は原子比
で(酸素を除く、以下同じ) M O12P 1.09 V 1. o9 CS 1.
0であった。
First, α-alumina particles with an average size of 1 #φ were put into a centrifugal fluid coating device, and then the above powder was put in while passing hot air at 90°C, and while distilled water was added as a binder, the powder was coated with an average diameter of 5 mm. It was granulated into spherical shapes. The spherical particles thus obtained were calcined in a nitrogen stream at 430°C for 3 hours, and then in air at 400°C = 16- for 3 hours. The elemental composition of this catalyst oxide is as follows in atomic ratio (excluding oxygen, the same applies hereinafter): M O12P 1.09 V 1. o9 CS 1.
It was 0.

例l−1−2(遠心流動コーティング法)側倒l−1−
1における結合剤として水のかわりに40重量%の硝酸
アンモニウム水溶液を用いた以外は全く同様の調製を行
い、触媒(I−1−2)をえた。
Example 1-1-2 (centrifugal fluid coating method) side-down l-1-
A catalyst (I-1-2) was prepared in exactly the same manner as in Example 1 except that a 40% by weight aqueous ammonium nitrate solution was used instead of water as the binder.

例l−2−1,l−2−2(打錠成形法)懸濁液−Aの
一部を加熱撹拌蒸発乾固せしめてブロック状とし250
℃で15時間乾燥し、この乾燥ブロックを100メツシ
ユ以下に粉砕した。
Examples 1-2-1, 1-2-2 (Tablet molding method) A part of Suspension-A was heat-stirred and evaporated to dryness to form a block shape of 250
The dried block was dried for 15 hours at 0.degree. C. and ground to less than 100 meshes.

この粉末にカーボン粉末を2重量%となるように加え、
5sφ×5#Hに打錠成形し、これを窒素気流中430
℃で3時間焼成し、つづいて空気流中400℃で3時間
焼成し触媒(I−1−1)を調製した。同様の操作をく
り返して触媒(I−2−2)を調製した。
Add carbon powder to this powder to make it 2% by weight,
Formed into a 5sφ×5#H tablet and heated at 430°C in a nitrogen stream.
A catalyst (I-1-1) was prepared by calcining at 30° C. for 3 hours and then at 400° C. for 3 hours in an air stream. A catalyst (I-2-2) was prepared by repeating the same operation.

例l−3−1およびl−3−2(押し出し成形法)懸濁
液−への一部を加熱濃縮しえられたスラリー状物質を2
50℃で15時間乾燥し、粉砕後成形助剤として水を加
え5MφX 5 mm Hとなるように押し出し成形し
た。この成形品を窒素気流中430℃で3時間焼成し、
つづいて空気中400℃で3時間焼成し触媒(I−3−
1)を得た。同様の操作を繰り返して触媒(I−12)
を得た。
Examples 1-3-1 and 1-3-2 (Extrusion molding method) A slurry material obtained by heating and concentrating a part of the suspension into 2
The mixture was dried at 50° C. for 15 hours, and after pulverization, water was added as a molding aid and extrusion molded to a size of 5 Mφ×5 mm H. This molded product was fired at 430°C for 3 hours in a nitrogen stream,
Subsequently, the catalyst (I-3-
1) was obtained. Repeat the same operation to prepare the catalyst (I-12)
I got it.

例■−4(マルスライザー成形法) 懸濁液−への一部を加熱濃縮し、えられたスラリー状物
質を250℃で15時間乾燥し、粉砕後成形助剤として
水を加え6mmφ×4〜7 s Lに成形後、マルメラ
イザーにかけて3mm×5tnmの隔置形とせしめた。
Example ■-4 (Marslizer molding method) Heat and concentrate a portion of the suspension, dry the resulting slurry material at 250°C for 15 hours, and add water as a molding aid after crushing to form a 6 mmφ x 4 After molding to ~7 s L, it was placed in a marmerizer to form a spaced shape of 3 mm x 5 tnm.

ついでこれを窒素気流中430℃で3時間焼成し、つづ
いて空気流中400℃で3時間焼成し触媒(I−4)を
得た。
This was then calcined in a nitrogen stream at 430°C for 3 hours, and then in an air stream at 400°C for 3 hours to obtain a catalyst (I-4).

例■−5(転勤造粒法) 懸濁液−への一部を用い加熱濃縮し得られたスラリー状
物質を250℃で15時間乾燥し約100メツシユに粉
砕し粉体を得た。転勤造粒機にまず平均1 mm中のα
−アルミナ粒子を投入し、続いて上記の粉体を投入し8
0℃の熱風と結合剤として蒸留水を用いて平均径5#φ
の球状に造粒した。
Example 5-5 (Transfer Granulation Method) A slurry material obtained by heating and concentrating a portion of the suspension was dried at 250° C. for 15 hours and pulverized into about 100 meshes to obtain a powder. First, α in an average of 1 mm is applied to the transfer granulator.
- Pour the alumina particles, then the above powder, 8
The average diameter is 5#φ using 0℃ hot air and distilled water as a binder.
It was granulated into spherical shapes.

これを窒素気流中430℃で3時間焼成し、つづいて空
気中400℃で3時間焼成し触媒(I−5)を19だ。
This was calcined in a nitrogen stream at 430°C for 3 hours, and then in air at 400°C for 3 hours to obtain catalyst (I-5).

例I−6(@ll丸洗法 懸濁液−への一部を加熱濃縮し、400℃焼成での飛散
物重量が50重量%である泥状物を得た。
A portion of Example I-6 (@ll washing method suspension) was concentrated by heating to obtain a slurry having a weight of scattered matter of 50% by weight when fired at 400°C.

この泥状物質を通常の製丸機にて平均直径5#φの形状
に造粒した。この球状物を窒素気流中430℃で3時間
焼成した。次に空気中400℃で3時間焼成を行い触媒
(I−6)を調製した。
This slurry material was granulated into a shape with an average diameter of 5#φ using a conventional rounding machine. This spherical material was fired at 430° C. for 3 hours in a nitrogen stream. Next, the catalyst (I-6) was prepared by calcining in air at 400° C. for 3 hours.

例■(反応テスト) 上記で得られた触媒台100−をそれぞれ直径25、4
 mm中の鋼鉄製反応管に充填しイソブチレンをモリブ
デン、コバルト、タングステン、鉄酸化物多元系触媒の
存在下に接触気相酸化して得られた混合ガスを導入し反
応温度270℃、空間速度1200hr−1で反応を遂
行した。上記混合ガスの平均組成は次の通りであった。
Example ■ (Reaction test) The catalyst platform 100 obtained above was
A mixed gas obtained by catalytic gas phase oxidation of isobutylene in the presence of a molybdenum, cobalt, tungsten, and iron oxide multi-component catalyst was introduced into a steel reaction tube of 1.5 mm in diameter at a reaction temperature of 270°C and a space velocity of 1200 hr. The reaction was carried out at −1. The average composition of the mixed gas was as follows.

メタクロレイン     3.5容量%イソブチレン 
     0.04  〃メタクロレン十酢酸    
0.24ツノ水  蒸  気          20
酸     素           9.0そ  の
  他           67.2(窒素、炭酸ガ
スを主 体とする不活性ガス〉 反応結果および各触媒の物性値は表−1にまとめた。
Methacrolein 3.5% by volume isobutylene
0.04 〃Metachlorolenedecaacetic acid
0.24 horn water steam 20
Oxygen 9.0 Others 67.2 (Inert gas mainly consisting of nitrogen and carbon dioxide) The reaction results and physical property values of each catalyst are summarized in Table-1.

例■(触媒の調製とその再現性) 例■で調製したと同様の懸濁液を調製し、4等分して4
バツチ分とした。この4バツチ分は各種成形法に適した
原料用として粉体或は粘土状物質を調製し、例l−1−
6シリーズと同一成形法で、それぞれ成形し性能の比較
を行い、同−成形法内での再現性の確認を行った。但し
同一成形法については全く同一手順、同一条件で4バツ
チの触媒を独立に成形調製した。又性能試験法は例l−
1−6での方法に従った。その結果を表−2に示す。
Example ■ (Preparation of catalyst and its reproducibility) A suspension similar to that prepared in Example ■ was prepared and divided into four equal parts.
It was divided into batches. These four batches were used to prepare powder or clay-like materials as raw materials suitable for various molding methods.
They were molded using the same molding method as the 6 series, and their performance was compared, and reproducibility within the same molding method was confirmed. However, regarding the same molding method, four batches of catalysts were independently molded and prepared using exactly the same procedure and under the same conditions. Also, the performance test method is as shown in Example 1-
1-6 was followed. The results are shown in Table-2.

表−2から明らかな様に、遠心流動コーティング法によ
り成形した場合には物性値の振れ巾が小さく且つ触媒の
性能の点でも高活性であり、且つその振れ巾が狭い事よ
り再現性よく触媒が調製されている事がわかる。一方、
他の成形法で成形した触媒に於いては全く同一の条件に
て成形しているにも拘らず、バッチによっては本発明に
規定する表面積、細孔容積、細孔径分布を右さないもの
ができる。しかし触媒性能に優れ且つ再現性よく触媒を
得る方法としては本発明の規定する遠心流動コーティン
グ法による成形法が最も好ましいことがわかる。
As is clear from Table 2, when molded using the centrifugal fluid coating method, the range of physical properties is small and the catalyst performance is highly active. It can be seen that it is being prepared. on the other hand,
Catalysts molded using other molding methods may not meet the surface area, pore volume, and pore size distribution specified in the present invention depending on the batch, even though they are molded under exactly the same conditions. can. However, as a method for obtaining a catalyst with excellent catalytic performance and good reproducibility, it is found that the molding method using the centrifugal fluid coating method defined in the present invention is the most preferable.

例■(触媒の調製) モリブデン酸アンモニウム4770Clを18j!の水
に溶解した。別に85%オルトリン酸261Qを水13
50mの水に稀釈し、そこへ硝酸銅162g及び亜ヒ酸
171gを溶解し、上記モリブデン酸アミモニウム水溶
液に加え加熱しながら十分撹拌し熟成を行った。また別
に85%オルトリンM261qを1350dの水に稀釈
し、そこへ五酸化バナジウム207qを加え、加熱撹拌
しながら水分を蒸発させてゆくと黄色の錯体を形成した
。この錯体を上記リン、モリブデン、銅およびヒ素の反
応沈澱物に加え最後に水酸化カリウム1260を水13
50−に溶した溶液を加え懸濁液としたく懸濁液−Bと
する。)。
Example ■ (Preparation of catalyst) 18j! of ammonium molybdate 4770Cl! dissolved in water. Separately, add 261Q of 85% orthophosphoric acid to 13% of water.
The mixture was diluted with 50 ml of water, and 162 g of copper nitrate and 171 g of arsenite were dissolved therein, and the mixture was added to the above aqueous ammonium molybdate solution and thoroughly stirred while heating for aging. Separately, 85% Orthorin M261q was diluted in 1350 d of water, 207 q of vanadium pentoxide was added thereto, and water was evaporated while stirring with heating to form a yellow complex. This complex was added to the reaction precipitate of phosphorus, molybdenum, copper and arsenic, and finally 1260 g of potassium hydroxide was added to 13 g of water.
Add the solution dissolved in 50- to make a suspension, which will be referred to as suspension-B. ).

例■(遠心流動コーティング法) 懸濁液−Bの一部を例1−1−1と同様の方法で処理し
触媒化した。但し、造粒後200℃で4時間乾燥後、こ
れを空気流通下400℃で5時間焼成した。この触媒の
組成は酸素を除いた原子比rMo12P2 CIJo、
3 KI VI A80.5であった。
Example (1) (Centrifugal fluid coating method) A portion of suspension-B was treated and catalyzed in the same manner as in Example 1-1-1. However, after drying at 200° C. for 4 hours after granulation, this was calcined at 400° C. for 5 hours under air circulation. The composition of this catalyst is the atomic ratio rMo12P2 CIJo excluding oxygen,
3 KI VI A was 80.5.

この触媒をlll−1とする。This catalyst is designated as lll-1.

例111−2’−1,l−2−2(打錠成形法)懸濁液
−Bの一部を例I−2の方法に従って処理し触媒化した
。但し成形後200℃で4時間乾燥後、これを空気流通
下400℃で5時間焼成した。これら触媒をI[r−2
−1,m−2−2とする。
Example 111-2'-1, l-2-2 (Tablet Forming Method) A portion of Suspension-B was treated and catalyzed according to the method of Example I-2. However, after drying at 200° C. for 4 hours after molding, this was fired at 400° C. for 5 hours under air circulation. These catalysts are I[r-2
-1, m-2-2.

例■(反応テスト) 反応は例工におけると同様に行い、例1[[−1−2で
得た各触媒性能をテストした。但し、反応温度は290
℃とした。
Example ■ (Reaction test) The reaction was carried out in the same manner as in Example 1, and the performance of each catalyst obtained in Example 1 [[-1-2] was tested. However, the reaction temperature is 290
℃.

例■(触媒の調製) モリブデン酸アンモニウム5088Gを純水101に溶
解した水溶液に85%リンM553.2C]を加え、つ
いで硝酸セシウム936qを水3.6.i!に溶解した
ものを加え、さらに硝酸ビスマス582Qと五酸化アン
チモン194.40を粉体のまま= 27− 加え、最後に無水クロム酸120qと二酸化セレン13
3.2(7を水3.61に溶解したものを加え、懸濁液
を得た(懸濁液−Cとする。)。
Example (Preparation of catalyst) 85% phosphorus M553.2C] was added to an aqueous solution of ammonium molybdate 5088G dissolved in 101 g of pure water, and then 936 q of cesium nitrate was added to 3.6 g of water. i! Then add bismuth nitrate 582Q and antimony pentoxide 194.40 as powder = 27-, and finally add chromic anhydride 120q and selenium dioxide 13
A solution of 3.2 (7) in 3.61 parts of water was added to obtain a suspension (referred to as suspension-C).

例■−1(遠心流動コーティング法) 懸濁液−Cの一部を例l−1−1と同様の方法で処理し
触媒化した。但し、造粒後450℃で2時間熱処理した
。この触Is酸化物の組成は原子比でMo12P2 B
 i O,5S bO,5C62,OCro、5S e
 o、 5であった。この触媒をIV−1とする。
Example 1-1 (Centrifugal fluid coating method) A part of suspension-C was treated and catalyzed in the same manner as in Example 1-1-1. However, after granulation, heat treatment was performed at 450°C for 2 hours. The composition of this catalytic Is oxide is Mo12P2B in atomic ratio.
i O,5S bO,5C62,OCro,5S e
It was o, 5. This catalyst is designated as IV-1.

例rV−2−1,IV〜2−2(押し出し成形法)懸濁
液−〇の一部を例I−3に従って触媒化した。但し、焼
成は450℃で2時間熱処理した。
Examples rV-2-1, IV-2-2 (Extrusion process) A portion of suspension-0 was catalyzed according to Example I-3. However, the firing was performed at 450° C. for 2 hours.

これらの触媒をIV−2’−1,IV−2−2とする。These catalysts are designated as IV-2'-1 and IV-2-2.

例■(反応テスト) 例IV−1−2で得た各触媒を用い、例■におけると同
様に反応に供した。但し反応温度は290℃を採用した
Example (2) (Reaction test) Each of the catalysts obtained in Example IV-1-2 was subjected to a reaction in the same manner as in Example (2). However, the reaction temperature was 290°C.

例V(触媒調製) 三酸化モリブデン4000q、五酸化バナジウム252
.8Q、酸化銅4.4.、2 g、酸化鉄44.lJ、
酸化スズ41.8gをイオン交換水401に分散させた
。これを約3時間加熱撹拌後、水酸化カリウム15.6
0をこの溶液に添加後更に約3時間煮沸下還流し、懸濁
液を得た(懸濁液−〇とする)。
Example V (Catalyst Preparation) Molybdenum trioxide 4000q, vanadium pentoxide 252
.. 8Q, copper oxide 4.4. , 2 g, iron oxide 44. lJ,
41.8 g of tin oxide was dispersed in 401 g of ion-exchanged water. After heating and stirring this for about 3 hours, potassium hydroxide 15.6
After adding 0 to this solution, the solution was further refluxed under boiling for about 3 hours to obtain a suspension (referred to as suspension -).

例v−1(遠心流動コーティング法) 懸濁液−りの一部を例l−1−1と同様方法で処理し触
媒化した。但し、焼成は350℃空気流通下で2時間焼
成した。この触媒酸化物の組成は原子比でMo12PI
 VI Ko、I CLJo、2 Fe0.2S n 
o、 1であった。この触媒をV−1とする。
Example v-1 (centrifugal fluid coating method) A portion of the suspension was treated and catalyzed in the same manner as in Example l-1-1. However, the firing was carried out at 350°C for 2 hours under air circulation. The composition of this catalyst oxide is Mo12PI in atomic ratio.
VI Ko, I CLJo, 2 Fe0.2S n
It was o, 1. This catalyst is designated as V-1.

例V−2−1,V−2−2(マルスライザー法)懸濁液
−Dの一部を例I−4に従って触媒化した。但し焼成は
350℃空気流通下で2時間焼成した。これらの触媒を
V−2−1、V−2−2とする。
Examples V-2-1, V-2-2 (Marslizer process) A portion of Suspension-D was catalyzed according to Example I-4. However, the firing was carried out at 350°C for 2 hours under air circulation. These catalysts are designated as V-2-1 and V-2-2.

例V(反応テスト) 例V−1−2で得た各触媒を用い、例■にお番プると同
様に反応に供した。但し反応温度は300℃であった。
Example V (Reaction Test) Each of the catalysts obtained in Example V-1-2 was subjected to a reaction in the same manner as in Example (2). However, the reaction temperature was 300°C.

例■(触媒の調製) 例■において触媒調製規模を半分にし、硝酸セシウムの
代りに硝酸バリウム272gを使用する以外は同様の調
製で行い懸濁液を得た(懸濁液−Eとする。)。
Example (2) (Preparation of catalyst) A suspension was obtained in the same manner as in Example (2) except that the catalyst preparation scale was halved and 272 g of barium nitrate was used instead of cesium nitrate (suspension-E). ).

例■−1(遠心流動コーティング法) 懸濁液−Eの一部を例l−1−1に従って触媒化した。Example ■-1 (Centrifugal flow coating method) A portion of Suspension-E was catalyzed according to Example 1-1-1.

尚、焼成法も例l−1−1に従った。この触媒酸化物の
組成は原子比でM O12P 1.09 Vl、 09
 B a 0.5であった。この触媒をVl−1とする
Incidentally, the firing method was also in accordance with Example 1-1-1. The composition of this catalyst oxide is M O12P 1.09 Vl, 09
B a was 0.5. This catalyst is designated as Vl-1.

例Vr−2−1,Vl−2−2(転勤造粒法)懸濁液−
「の一部を例■−5に従って触媒化した。これらの触媒
をVl−2−1、Vl−2’−2とす−3〇 − る。
Example Vr-2-1, Vl-2-2 (transfer granulation method) suspension-
A part of the catalyst was catalyzed according to Example 1-5. These catalysts are designated as Vl-2-1 and Vl-2'-2.

例■ (反応テスト) 例VT−1−2で得た各触媒を用い、例工におけると同
様に反応に供した。
Example (2) (Reaction test) Each catalyst obtained in Example VT-1-2 was subjected to a reaction in the same manner as in Example.

例■ (触媒の調製) 例l−1−1に於いて硝酸セシウムを添加する時期に酸
化ゲルマニウム、硝酸ジルコニル及び硝酸コバルトをそ
れぞれ130.7o、222.7C]および121.3
CI添加し懸濁液を1qた(懸濁液−Fとする。)。
Example ■ (Preparation of catalyst) In Example 1-1-1, germanium oxide, zirconyl nitrate, and cobalt nitrate were added at 130.7°C, 222.7°C] and 121.3°C, respectively, at the time of adding cesium nitrate.
CI was added to make 1 q of suspension (referred to as suspension-F).

例V’N−1(遠心流動コーティング法)懸濁液−Fの
一部を例l−1−1と同様の方法で処理し触媒化した。
Example V'N-1 (Centrifugal Fluid Coating Method) A portion of Suspension-F was treated and catalyzed in the same manner as in Example 1-1-1.

この触媒酸化物の組成は原子比で(酸素を除< ) M
 O12P 1.09 V 1.09 Csto Ge
o、3Z ro、2Coo、1であった。この触媒をV
l−1とする。
The composition of this catalyst oxide is expressed in atomic ratio (excluding oxygen < ) M
O12P 1.09 V 1.09 Csto Ge
o, 3Z ro, 2Coo, 1. This catalyst is V
Let it be l-1.

例■−2−1,■−2−2(製丸機成形法)懸濁液−「
を例I−6に従って触媒化した。これらの触媒を■−2
−1、■−2−2とする。
Example ■-2-1, ■-2-2 (round machine forming method) Suspension - "
was catalyzed according to Example I-6. These catalysts ■-2
-1, ■-2-2.

例■ (反応テスト) 例■−1−2で得られた各触媒を用い、例■におけると
同様に反応に供した。
Example (2) (Reaction test) Each catalyst obtained in Example (1)-1-2 was subjected to a reaction in the same manner as in Example (2).

例■ (触媒の調製) 例Tに於いて硝酸セシウムを添加する時期に二酸化テル
ル、硝酸マンガン、硝酸ニッケルをそれぞれ199.5
g、239.20および242.3G添加し懸濁液を得
た(懸濁液−Gとする。)。
Example ■ (Preparation of catalyst) In Example T, tellurium dioxide, manganese nitrate, and nickel nitrate were added at 199.5% each at the time of adding cesium nitrate.
g, 239.20 and 242.3G were added to obtain a suspension (referred to as suspension-G).

例■−1(遠心流動コーティング法) 懸濁液−Gの一部を例ニー1−1と同様の方法で処理し
、触媒化した。この触媒酸化物の酸素を除く組成比は原
子比r M O12P 1.09 V 1. o9 C
Sto Teo、s Mno、2N i 0.2であっ
た。この触媒を例■−1とする。
Example 1-1 (Centrifugal fluid coating method) A portion of Suspension-G was treated in the same manner as in Example 1-1 to catalyze it. The composition ratio of this catalyst oxide excluding oxygen is the atomic ratio r M O12P 1.09 V 1. o9 C
Sto Teo, s Mno, 2N i 0.2. This catalyst is referred to as Example ①-1.

例■−2−1,■−2−2(打錠成形法)懸濁液−Gの
一部を例I−2に従って触媒化した。これらの触媒を■
−2−1、■−2−2とする。
Examples 1-2-1, 2-2-2 (Tablet forming method) A portion of Suspension-G was catalyzed according to Example I-2. These catalysts
-2-1, ■-2-2.

例■ (反応テス1〜) 例■−1−2で得られた各触媒を用い、例■におけると
同様に反応に供した。
Example (1) (Reaction test 1~) Using each catalyst obtained in Example (1)-1-2, the reaction was carried out in the same manner as in Example (2).

例■ (触媒の調製) 例■に於て硝酸セシウムを添加する時期にタングステン
酸アンモニウム、硝酸亜鉛、硝酸銀をそれぞれ561.
6Q、247.9 gおよび70.]J添加し懸濁液を
得た(懸濁液−Hとする。)。
Example ■ (Preparation of catalyst) In Example ■, when adding cesium nitrate, ammonium tungstate, zinc nitrate, and silver nitrate were added at 561% each.
6Q, 247.9 g and 70. ]J was added to obtain a suspension (referred to as suspension-H).

例■−1(遠心流動コーティング法) 懸濁液−1」の一部を例l−1−1と同様の方法で処理
し触媒化した。この触媒酸化物の酸素を除く組成比は原
子比でM 012 P 1.09 V 1.09 Cs
 t 。
Example 1-1 (Centrifugal fluid coating method) A part of "Suspension 1" was treated and catalyzed in the same manner as in Example 1-1-1. The composition ratio of this catalyst oxide excluding oxygen is M 012 P 1.09 V 1.09 Cs in atomic ratio
t.

Wo、5 Z nO,2A Qo、1であった。この触
媒を■一1とする。
Wo, 5 Z nO, 2A Qo, 1. This catalyst is designated as ■-1.

例lX−2−1,lX−2−2(押し出し成形法)懸濁
液−Hの一部を例I−3に従った触媒化した。これらの
触媒を例■−1−1、lX−2−2とする。
Examples IX-2-1, IX-2-2 (Extrusion process) A portion of Suspension-H was catalyzed according to Example I-3. These catalysts are referred to as Examples 1-1-1 and 1X-2-2.

例■ (反応テスト) 例−1−2で得た各触媒を用い、例■におけると同様に
反応に供した。
Example (2) (Reaction test) Each catalyst obtained in Example-1-2 was subjected to a reaction in the same manner as in Example (2).

例■ (触媒の調製) 例■に於いて硝酸セシウムを添加する時期に硝酸タリウ
ム、五酸化ニオブ、硝酸ストロンチウム及び硝酸パラジ
ウムをそれぞれ555.Oq、332.3CI、440
.90および96.OQ添加し、懸濁液を得た(懸濁液
−■とする。)。
Example ■ (Preparation of catalyst) In Example ■, at the time of adding cesium nitrate, 555% of each of thallium nitrate, niobium pentoxide, strontium nitrate, and palladium nitrate was added. Oq, 332.3CI, 440
.. 90 and 96. OQ was added to obtain a suspension (referred to as suspension -■).

例X−1(遠心流動コーティング法) 懸濁液−Iの一部を例l−1−1と同様の方法で処理し
触媒化した。この触Is酸化物の酸素を除く組成比は原
子比テM O12P 1.09 V 1.09 Cs 
t 。
Example X-1 (Centrifugal fluid coating method) A portion of Suspension-I was treated and catalyzed in the same manner as in Example 1-1-1. The composition ratio of this catalytic Is oxide excluding oxygen is the atomic ratio TeM O12P 1.09 V 1.09 Cs
t.

Ij!o、s Sro、5Zso、s PcJo、1で
あった。この触媒をX−1とする。
Ij! o, s Sro, 5Zso, s PcJo, 1. This catalyst is designated as X-1.

例>I2−1.X−2−2(マルタライザー法〉懸濁液
−Iの一部を例I−4に従って触媒化した。これらの触
媒をX−11、X−2−2とする。
Example>I2-1. X-2-2 (Multalizer method) A portion of suspension-I was catalyzed according to Example I-4. These catalysts are designated as X-11 and X-2-2.

例X (反応テスト) 例X−1−2で得た各触媒を用い、例ニにおけると同様
に反応に供した。但し反応温度は290℃で行った。
Example X (Reaction test) Each catalyst obtained in Example X-1-2 was subjected to a reaction in the same manner as in Example 2. However, the reaction temperature was 290°C.

例XI(触媒の調製) 例■に於いて硝酸セシウムを添加する時期に硝酸ルビジ
ウム、硝酸カルシウム、そして硝酸ロジウムをそれぞれ
240.6Q、196.8(]、および52、90添加
し、懸濁液を得た(懸濁液−Jとする。)。
EXAMPLE was obtained (referred to as suspension-J).

例xI−1(遠心流動コーティング装置法)懸濁液−J
の一部を例l−1−1と同様の方法で処理し触媒化した
。この触媒酸化物の酸素を除く組成比は原子比でM O
12P 1.09 V 1.09 CS 1.0Rbo
、5Cao、2Kha、1であった。この触媒をxT−
1とする。
Example xI-1 (Centrifugal fluid coating device method) Suspension-J
A portion of was treated and catalyzed in the same manner as in Example 1-1-1. The composition ratio of this catalyst oxide excluding oxygen is M O
12P 1.09 V 1.09 CS 1.0Rbo
, 5Cao, 2Kha, and 1. This catalyst is
Set to 1.

例Xl−1−1,X[−2−2(転勤造粒法)懸濁液−
Jを例I−5に従って触媒化した。これらの触媒をXl
−2−1、Xl−2−2とする。
Example Xl-1-1, X[-2-2 (Transfer Granulation Method) Suspension-
J was catalyzed according to Example I-5. These catalysts
-2-1 and Xl-2-2.

例XI(反応テスト) 例Xl−1−2でえた各触媒を用い、例■にお【プると
同様に反応に供した。但し、反応温度は290℃で行っ
た。
Example XI (Reaction Test) Using each of the catalysts obtained in Example Xl-1-2, the reaction was carried out in the same manner as in Example (2). However, the reaction temperature was 290°C.

例Xll  (触媒の調製) 三酸化モリブデン4320G、五酸化バナジウム228
gおよび85%オルトリン酸439.5 Qを水15J
に加え、24時間加熱還流した。そこへ粉末状の酸化セ
リウム214.5gおよび硝酸カリウム379.5g及
び粉末状酸化銅40.5C)を加え、懸濁液を得たく懸
濁液−にとする。)。
Example Xll (Preparation of catalyst) Molybdenum trioxide 4320G, vanadium pentoxide 228
g and 439.5 Q of 85% orthophosphoric acid to 15 J of water
and heated under reflux for 24 hours. 214.5 g of powdered cerium oxide, 379.5 g of potassium nitrate, and 40.5 g of powdered copper oxide are added thereto to obtain a suspension. ).

例■−1(遠心流動コーティング法) 懸濁液−にの一部を例l−1−1に従って触媒化した。Example ■-1 (Centrifugal flow coating method) A portion of the suspension was catalyzed according to Example 1-1-1.

この触媒酸化物の酸素を除く組成の原子比はMo12V
I Pl、5 K1.5 CUo、2 Ceo、5であ
った。この触媒をX[I−1とする。
The atomic ratio of the composition of this catalyst oxide excluding oxygen is Mo12V
I Pl, 5 K1.5 CUo, 2 Ceo, 5. This catalyst is designated as X[I-1.

例X1l−2−1,X1l−2−2(製丸機法)懸濁液
−Kを例I−6に従って触媒化した。こレラノ触媒ヲX
[1−2−1、Xll−1−2とする。
Examples X11-2-1, X11-2-2 (round machine method) Suspension-K was catalyzed according to Example I-6. Korerano Catalyst WoX
[1-2-1, Xll-1-2.

例■ (反応テスト) 例X1l−1−2でえた各触媒を用い、例■におけると
同様に反応に供した。但し、反応温度は270℃を採用
した。以上の結束を表−3に示した。
Example (2) (Reaction test) Each of the catalysts obtained in Example X1l-1-2 was subjected to a reaction in the same manner as in Example (2). However, the reaction temperature was 270°C. The above binding is shown in Table 3.

= 37− 例XI(長期反応テスト) 例l−1−1なる触媒を用いて8000時間連続テスト
反応を行った。反応テスト法は例Tに同じである。反応
開始時反応温度は280℃であり、8000時間後には
ほぼ同一メタクロレイン転化率を得るに反応温度は8℃
あげるだけで十分であった。8000時間後の反応結果
は反応温度280℃、メタクロレイン転化率82.9%
、メタクロレン選択率84.0%であった。
= 37- Example XI (Long Term Reaction Test) A continuous test reaction was carried out for 8000 hours using the catalyst named Example 1-1-1. The reaction test method is the same as in Example T. The reaction temperature at the start of the reaction was 280°C, and after 8000 hours, the reaction temperature was 8°C to obtain almost the same methacrolein conversion rate.
It was enough just to give. The reaction results after 8000 hours were a reaction temperature of 280°C and a methacrolein conversion rate of 82.9%.
, the methachlorene selectivity was 84.0%.

例W−1(反応テスト) 例I−1〜1の触媒を使用しイソ酪酸の酸化脱水反応を
行った。反応テストは次の様にして実施した。
Example W-1 (Reaction Test) The oxidative dehydration reaction of isobutyric acid was carried out using the catalysts of Examples I-1 and I-1. The reaction test was conducted as follows.

例l−1−1触1600mを直径25.4 mmφの鋼
鉄製反応管に充填し、イソ酪酸:酸素:水蒸気:窒素−
5,0:10:10ニア5容量比の混合ガスを空間速度
2000hr’で導入し反応温度275℃で反応を実施
した。結果はイソ酪酸転化率100%、メタクロレン選
択率76.2%であった。
Example 1-1-1 A steel reaction tube with a diameter of 25.4 mm was filled with 1,600 m of 1,600 m of isobutyric acid: oxygen: water vapor: nitrogen.
A mixed gas having a near-5 volume ratio of 5,0:10:10 was introduced at a space velocity of 2000 hr', and the reaction was carried out at a reaction temperature of 275°C. The results were an isobutyric acid conversion rate of 100% and a methachlorolene selectivity of 76.2%.

例yI!−2 夏−1の反応において触媒として例I−2’−1を使用
した。その結果、メタクロレイン転化率100%でメタ
クロレンの選択率は72.8%であり、遠心流動コーテ
ィング装置で造粒した触媒の方が性能が好ましい事がわ
かる。
ExampleyI! -2 Example I-2'-1 was used as a catalyst in the summer-1 reaction. As a result, the selectivity of methacrolene was 72.8% at a methacrolein conversion rate of 100%, indicating that the catalyst granulated using a centrifugal fluid coating device had better performance.

V−1 例l−1−1の触媒を使用し、イソブチルアルデヒドの
酸化脱水素反応を行った。反応テストは次の様にして実
施した。
V-1 Using the catalyst of Example 1-1-1, oxidative dehydrogenation reaction of isobutyraldehyde was carried out. The reaction test was conducted as follows.

例l−1−1の触媒1000dを直径25.4 sφの
鋼鉄製反応管に充填し、イソブチルアルデヒド:酸素:
水蒸気:窒素−5,0:12.5:10ニア2.5容量
比の混合ガスを空間速度880hr’で導入し反応温度
275℃で反応を行った。その結果、イソブチルアルデ
ヒド転化率100%、メタクリルFli選択率68.9
%、メタクロレイン選択−41= 率15.2%であった。
A steel reaction tube with a diameter of 25.4 sφ was filled with 1000 d of the catalyst of Example 1-1-1, and a reaction mixture of isobutyraldehyde:oxygen:
A mixed gas of water vapor:nitrogen-5,0:12.5:10 near 2.5 volume ratio was introduced at a space velocity of 880 hr', and the reaction was carried out at a reaction temperature of 275°C. As a result, the isobutyraldehyde conversion rate was 100% and the methacryl Fli selectivity was 68.9.
%, methacrolein selection -41 = 15.2%.

例XV−2 XV−1の反応において触媒として例l−3−1を使用
した。その結果、イソブチルアルデヒド転化率100%
でメタクロレンの選択率65.1%、メタクロレイン選
択率14.6%であり、遠心流動コーティング装置で造
粒した触媒の方が性能が好ましい事がわかる。
Example XV-2 Example 1-3-1 was used as catalyst in the reaction of XV-1. As a result, the isobutyraldehyde conversion rate was 100%.
The methacrolene selectivity was 65.1% and the methacrolein selectivity was 14.6%, indicating that the catalyst granulated using a centrifugal fluid coating device had better performance.

Claims (2)

【特許請求の範囲】[Claims] (1)比表面積が1.0〜10.0m^2/g、細孔容
積が0.10〜1.0cc/gおよび細孔径分布におい
て細孔径直径が1〜10μmおよび0.1〜1μm未満
の範囲にそれぞれ集中して分布を有する触媒でありかつ
触媒活性物質が下記の一般式で示されることを特徴とす
る、接触気相酸化によりメタクリル酸を製造するために
用いる触媒。 Ho(a)P(b)A(c)B(d)C(e)D(f)
O(x)(ここでMoはモリブデン、Pはリン、Aはヒ
素、アンチモン、ゲルマニウム、ビスマス、ジルコニウ
ムおよびセレンからなる群から選ばれた少なくとも1種
の元素、Bは銅、鉄、クロム、ニッケル、マンガン、コ
バルト、スズ、銀、亜鉛、パラジウム、ロジウムおよび
テルルからなる群から選ばれた少なくとも1種の元素、
Cはバナジウム、タングステンおよびニオブからなる群
から選ばれた少なくとも1種の元素、Dはアルカリ金属
、アルカリ土類金属およびタリウムからなる群から選ば
れた少なくとも1種の元素およびOは酸素を表わす。ま
たa、b、c、d、e、f、xはそれぞれMo、P、A
、B、C、DおよびOの原子比を表わし、a=12のと
きb=0.5〜4、c=0〜5、d=0〜3、e=0〜
4、f=0.01〜4およびxはそれぞれの元素の酸化
状態によって定まる数値である。)
(1) Specific surface area is 1.0 to 10.0 m^2/g, pore volume is 0.10 to 1.0 cc/g, and pore size distribution is 1 to 10 μm and 0.1 to less than 1 μm. A catalyst used for producing methacrylic acid by catalytic gas phase oxidation, characterized in that the catalyst has a distribution concentrated in the following range, and the catalytically active substance is represented by the following general formula. Ho(a)P(b)A(c)B(d)C(e)D(f)
O(x) (where Mo is molybdenum, P is phosphorus, A is at least one element selected from the group consisting of arsenic, antimony, germanium, bismuth, zirconium, and selenium, and B is copper, iron, chromium, and nickel. , at least one element selected from the group consisting of manganese, cobalt, tin, silver, zinc, palladium, rhodium and tellurium,
C represents at least one element selected from the group consisting of vanadium, tungsten and niobium; D represents at least one element selected from the group consisting of alkali metals, alkaline earth metals and thallium; and O represents oxygen. Also, a, b, c, d, e, f, x are Mo, P, A, respectively.
, represents the atomic ratio of B, C, D and O, and when a=12, b=0.5-4, c=0-5, d=0-3, e=0-
4, f=0.01 to 4 and x are numerical values determined by the oxidation state of each element. )
(2)メタクロレンおよび/またはイソブチルアルデヒ
ドおよび/またはイソ酪酸からメタクリル酸を接触気相
酸化反応により製造するための下記一般式で示される触
媒活性物質を有する触媒を調製するに際し、未焼成の触
媒原料粉末を遠心流動コーティング装置に投入し2〜1
0mmの平均直径の大きさに造粒せしめたのちこれを焼
成し、その比表面積が1.0〜10.0m^2/g)そ
の細孔容積が0.10〜1.0cc/gおよび細孔径分
布において細孔径直径が1〜10μmおよび0.1〜1
μm未満の範囲にそれぞれ集中して分布を有する触媒を
えることを特徴とする再現性に優れたメタクリル酸製造
用触媒の製造方法。 Ho(a)P(b)A(c)B(d)C(e)D(f)
O(x)(ここでMoはモリブデン、Pはリン、Aはヒ
素、アンチモン、ゲルマニウム、ビスマス、ジルコニウ
ムおよびセレンからなる群から選ばれた少なくとも1種
の元素、Bは銅、鉄、クロム、ニッケル、マンガン、コ
バルト、スズ、銀、亜鉛、パラジウム、ロジウムおよび
テルルからなる群から選ばれた少なくとも1種の元素、
Cはバナジウム、タングステンおよびニオブからなる群
から選ばれた少なくとも1種の元素、Dはアルカリ金属
、アルカリ土類金属およびタリウムからなる群から選ば
れた少なくとも1種の元素およびOは酸素を表わす。ま
たa、b、c、d、e、f、xはそれぞれMo、P、A
、B、C、DおよびOの原子比を表わし、a=12のと
きb=0.5〜4、c=0〜5、d=0〜3、e=0〜
4、f=0.01〜4およびxはそれぞれの元素の酸化
状態によつて定まる数値である。)
(2) When preparing a catalyst having a catalytically active substance represented by the following general formula for producing methacrylic acid from methachlorene and/or isobutyraldehyde and/or isobutyric acid by catalytic gas phase oxidation reaction, unfired catalyst raw materials are used. Pour the powder into a centrifugal fluid coating device and process 2-1.
After granulating it to an average diameter of 0 mm, it is fired, and the specific surface area is 1.0 to 10.0 m^2/g), and the pore volume is 0.10 to 1.0 cc/g. In the pore size distribution, the pore size diameter is 1 to 10 μm and 0.1 to 1
A method for producing a catalyst for producing methacrylic acid with excellent reproducibility, characterized by obtaining a catalyst having a distribution concentrated in a range of less than μm. Ho(a)P(b)A(c)B(d)C(e)D(f)
O(x) (where Mo is molybdenum, P is phosphorus, A is at least one element selected from the group consisting of arsenic, antimony, germanium, bismuth, zirconium, and selenium, and B is copper, iron, chromium, and nickel. , at least one element selected from the group consisting of manganese, cobalt, tin, silver, zinc, palladium, rhodium and tellurium,
C represents at least one element selected from the group consisting of vanadium, tungsten and niobium; D represents at least one element selected from the group consisting of alkali metals, alkaline earth metals and thallium; and O represents oxygen. Also, a, b, c, d, e, f, x are Mo, P, A, respectively.
, represents the atomic ratio of B, C, D and O, and when a=12, b=0.5-4, c=0-5, d=0-3, e=0-
4, f=0.01 to 4 and x are numerical values determined by the oxidation state of each element. )
JP62150111A 1987-06-18 1987-06-18 Catalyst for methacrylic acid synthesis and its production method with excellent reproducibility Expired - Fee Related JPH0679666B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62150111A JPH0679666B2 (en) 1987-06-18 1987-06-18 Catalyst for methacrylic acid synthesis and its production method with excellent reproducibility

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62150111A JPH0679666B2 (en) 1987-06-18 1987-06-18 Catalyst for methacrylic acid synthesis and its production method with excellent reproducibility

Publications (2)

Publication Number Publication Date
JPS63315148A true JPS63315148A (en) 1988-12-22
JPH0679666B2 JPH0679666B2 (en) 1994-10-12

Family

ID=15489728

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62150111A Expired - Fee Related JPH0679666B2 (en) 1987-06-18 1987-06-18 Catalyst for methacrylic acid synthesis and its production method with excellent reproducibility

Country Status (1)

Country Link
JP (1) JPH0679666B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0386242A (en) * 1989-08-29 1991-04-11 Nippon Shokubai Kagaku Kogyo Co Ltd Catalyst for production of methacrylic acid and its production
WO1992022378A1 (en) * 1991-06-12 1992-12-23 Mitsubishi Rayon Co., Ltd. Process for preparing catalyst for producing methacrylic acid
US6333293B1 (en) 1999-06-15 2001-12-25 Nippon Shokubai Co., Ltd. Process for preparing a catalyst for use in production of methacrylic acid and process of preparing methacrylic acid
JP2008535784A (en) * 2005-02-25 2008-09-04 エルジー・ケム・リミテッド Process for producing unsaturated aldehyde and / or unsaturated acid
JP2008272626A (en) * 2007-04-26 2008-11-13 Mitsubishi Rayon Co Ltd Catalyst for manufacturing methacrylic acid, manufacturing method thereof and manufacturing method of methacrylic acid
WO2010001539A1 (en) * 2008-07-04 2010-01-07 日揮株式会社 Catalyst for catalytic partial oxidation of hydrocarbon and process for producing synthesis gas
JP2011246384A (en) * 2010-05-26 2011-12-08 Mitsubishi Rayon Co Ltd Method for producing unsaturated aldehyde and unsaturated carboxylic acid

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5827255A (en) * 1981-08-12 1983-02-17 Hitachi Ltd Controlling system of file used for plural electronic computers in common
JPS5829289A (en) * 1981-08-13 1983-02-21 Matsushita Electric Ind Co Ltd Loudspeaker device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5827255A (en) * 1981-08-12 1983-02-17 Hitachi Ltd Controlling system of file used for plural electronic computers in common
JPS5829289A (en) * 1981-08-13 1983-02-21 Matsushita Electric Ind Co Ltd Loudspeaker device

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0386242A (en) * 1989-08-29 1991-04-11 Nippon Shokubai Kagaku Kogyo Co Ltd Catalyst for production of methacrylic acid and its production
WO1992022378A1 (en) * 1991-06-12 1992-12-23 Mitsubishi Rayon Co., Ltd. Process for preparing catalyst for producing methacrylic acid
US5422326A (en) * 1991-06-12 1995-06-06 Mitsubishi Rayon Co., Ltd. Process for preparing a catalyst for producing methacrylic acid
US6333293B1 (en) 1999-06-15 2001-12-25 Nippon Shokubai Co., Ltd. Process for preparing a catalyst for use in production of methacrylic acid and process of preparing methacrylic acid
US6498270B1 (en) 1999-06-15 2002-12-24 Nippon Shokubai Co., Ltd. Process for preparing a catalyst for use in production of methacrylic acid and process of preparing methacrylic acid
JP2008535784A (en) * 2005-02-25 2008-09-04 エルジー・ケム・リミテッド Process for producing unsaturated aldehyde and / or unsaturated acid
JP2008272626A (en) * 2007-04-26 2008-11-13 Mitsubishi Rayon Co Ltd Catalyst for manufacturing methacrylic acid, manufacturing method thereof and manufacturing method of methacrylic acid
WO2010001539A1 (en) * 2008-07-04 2010-01-07 日揮株式会社 Catalyst for catalytic partial oxidation of hydrocarbon and process for producing synthesis gas
AU2009264892B2 (en) * 2008-07-04 2011-04-14 Jgc Corporation Catalyst for catalytic partial oxidation of hydrocarbon and process for producing synthesis gas
US8318633B2 (en) 2008-07-04 2012-11-27 Jgc Corporation Catalyst for catalytic partial oxidation of hydrocarbon and process for producing synthesis gas
JP2011246384A (en) * 2010-05-26 2011-12-08 Mitsubishi Rayon Co Ltd Method for producing unsaturated aldehyde and unsaturated carboxylic acid

Also Published As

Publication number Publication date
JPH0679666B2 (en) 1994-10-12

Similar Documents

Publication Publication Date Title
KR101642163B1 (en) Method for producing geometric catalyst moulded bodies
JP3786297B2 (en) Catalyst production method
KR920005085B1 (en) Catalyst for oxidation of olefin or tertiary alcohol and process for production thereof
CN105612141B (en) The manufacture method and supported catalyst of unsaturated carboxylic acid
KR100986898B1 (en) Multi-metal oxide catalyst and method for producing methacrylic acid by using the same
JPH0570502B2 (en)
EP2842626A1 (en) Method for producing molded catalyst and method for producing diene or unsaturated aldehyde and/or unsaturated carboxylic acid using said molded catalyst
JPS6112488B2 (en)
KR102122285B1 (en) Catalyst for producing unsaturated aldehyde and/or unsaturated carboxylic acid, method for producing catalyst, and method for producing unsaturated aldehyde and/or unsaturated carboxylic acid using catalyst
US20120283088A1 (en) Mixed Oxide Catalysts Made of Hollow Shapes
JP4242597B2 (en) Unsaturated aldehyde synthesis catalyst, production method thereof, and production method of unsaturated aldehyde using the catalyst
EP1987877A2 (en) Oxide catalyst, process for producing acrolein or acrylic acid and process for producing water-absorbent resin
JP5586382B2 (en) Method for producing catalyst for producing unsaturated aldehyde and / or unsaturated carboxylic acid, catalyst therefor, and method for producing acrolein and / or acrylic acid using the catalyst
TWI417138B (en) Oxide catalyst, process for producing acrylic acid and process for producing water-absorbent resin
JPH067924B2 (en) Propylene oxidation catalyst and method for producing the same with excellent reproducibility
JPS63315148A (en) Catalyst of synthesis of methacrylic acid and preparation thereof showing excellent reproducibility
JP2742413B2 (en) Catalyst for synthesizing methacrolein and its production method with excellent reproducibility
JP3288197B2 (en) Method for producing catalyst for synthesizing methacrolein and methacrylic acid
JP3690939B2 (en) Catalyst for synthesizing methacrylic acid and method for producing methacrylic acid
WO2005056185A1 (en) Process for producing composite oxide catalyst
JPH08238433A (en) Preparation of supported catalyst for synthesis of methacrolein and methacrylic acid
JP3523455B2 (en) Fixed bed reactor and method for producing unsaturated carboxylic acid
WO2016147324A1 (en) Catalyst for production of unsaturated aldehyde and/or unsaturated carboxylic acid, method for producing same, and method for producing unsaturated aldehyde and/or unsaturated carboxylic acid
JP2004160342A (en) Catalyst and method for producing acrylic acid
JP6033027B2 (en) Method for producing catalyst for producing unsaturated aldehyde and unsaturated carboxylic acid, catalyst therefor, and method for producing unsaturated aldehyde and unsaturated carboxylic acid

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees