WO2016147324A1 - Catalyst for production of unsaturated aldehyde and/or unsaturated carboxylic acid, method for producing same, and method for producing unsaturated aldehyde and/or unsaturated carboxylic acid - Google Patents

Catalyst for production of unsaturated aldehyde and/or unsaturated carboxylic acid, method for producing same, and method for producing unsaturated aldehyde and/or unsaturated carboxylic acid Download PDF

Info

Publication number
WO2016147324A1
WO2016147324A1 PCT/JP2015/057954 JP2015057954W WO2016147324A1 WO 2016147324 A1 WO2016147324 A1 WO 2016147324A1 JP 2015057954 W JP2015057954 W JP 2015057954W WO 2016147324 A1 WO2016147324 A1 WO 2016147324A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
producing
component
unsaturated
carboxylic acid
Prior art date
Application number
PCT/JP2015/057954
Other languages
French (fr)
Japanese (ja)
Inventor
亮 釋
小林 智明
宏之 尾上
昂一 田村
Original Assignee
日本化薬株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本化薬株式会社 filed Critical 日本化薬株式会社
Priority to PCT/JP2015/057954 priority Critical patent/WO2016147324A1/en
Publication of WO2016147324A1 publication Critical patent/WO2016147324A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/88Molybdenum
    • B01J23/883Molybdenum and nickel
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B61/00Other general methods
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/27Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C47/00Compounds having —CHO groups
    • C07C47/20Unsaturated compounds having —CHO groups bound to acyclic carbon atoms
    • C07C47/21Unsaturated compounds having —CHO groups bound to acyclic carbon atoms with only carbon-to-carbon double bonds as unsaturation
    • C07C47/22Acryaldehyde; Methacryaldehyde
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/16Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation
    • C07C51/21Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen
    • C07C51/25Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen of unsaturated compounds containing no six-membered aromatic ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C57/00Unsaturated compounds having carboxyl groups bound to acyclic carbon atoms
    • C07C57/02Unsaturated compounds having carboxyl groups bound to acyclic carbon atoms with only carbon-to-carbon double bonds as unsaturation
    • C07C57/03Monocarboxylic acids
    • C07C57/04Acrylic acid; Methacrylic acid

Definitions

  • the present invention relates to the production of a corresponding unsaturated aldehyde and / or unsaturated carboxylic acid by subjecting an alkene to gas phase catalytic partial oxidation with molecular oxygen or a molecular oxygen-containing gas in the presence of a catalyst containing molybdenum and bismuth.
  • the present invention relates to a catalyst used and a method for producing the same, and a method for producing an unsaturated aldehyde and / or an unsaturated carboxylic acid using the catalyst.
  • Patent Document 1 prepares a plurality of types of catalysts having different occupied volumes and calcination temperatures and / or types and / or amounts of alkali metal elements, and multitubular oxidation reaction. Describes a method of suppressing the hot spot temperature by filling the tube so that the activity increases from the source gas inlet toward the outlet in the direction of the tube axis of the vessel. This method is intended to suppress excessive heat generation by filling a catalyst with reduced activity on the inlet side where a high-concentration source gas is introduced.
  • the size of the occupied volume of the catalyst is limited by the diameter of the reaction tube, so that a sufficient effect may not be obtained, or the reaction field designed by uniformly filling the catalyst may not be achieved. It may not be realized and sufficient catalyst performance may not be exhibited.
  • Patent Document 2 Japanese Patent Laid-Open No. 6-192144
  • the hot spot temperature at the raw material gas inlet side is increased by increasing the amount of catalyst supported from the raw material gas inlet side to the outlet side to rank the catalyst activity.
  • the outlet side filled with a highly active catalyst a gas phase catalytic partial oxidation reaction is reached up to the conversion rate of the raw material required for the process.
  • the catalyst on the raw material gas inlet side which has a low loading amount, has a short life, while the catalyst on the raw material gas outlet side has a large amount of active component, so the reaction heat is stored in the catalyst by thickening the layer of the catalytic active component.
  • selectivity is lowered.
  • Patent Document 3 a method is described in which a hot spot temperature can be suppressed and a reaction under a high load condition can be handled by using a ring-shaped catalyst.
  • ring-shaped catalysts are difficult to pack uniformly due to the characteristics of the shape when packed into a multi-tubular oxidation reactor, and because of the low mechanical strength due to the characteristics of the molding method, the catalyst collapses. It is a big problem that not only the reaction performance tube is clogged but also the catalytic activity is not sufficiently exhibited due to the catalyst active component falling off.
  • Patent Document 4 a catalyst in which the amount of bismuth and iron is changed in a reaction zone provided by dividing the catalyst layer in each reaction tube into two or more layers in the tube axis direction.
  • JP 2001-226302 A JP-A-6-192144 Special table 2007-511565 gazette JP 2001-048817 A
  • the yield of the target product is lowered, which is problematic in terms of long-term use.
  • by improving the activity of the catalyst it is possible to lower the reaction bath temperature, lower the running cost, extend the life of the catalyst, and improving the yield of the target product can greatly reduce the production cost. It becomes possible.
  • the catalyst can be When filling the oxidation reactor, the inside of the multi-tubular oxidation reactor is clogged due to catalyst pulverization and separation of the catalytically active component, leading to an abnormal pressure increase.
  • a catalyst having high mechanical strength is required in order to exhibit the excellent activity and selectivity inherent in the catalyst.
  • a highly active catalyst is required in order to lower the reaction bath temperature.
  • the selectivity of the catalyst is greatly reduced due to the high activation of the catalyst, a highly active catalyst maintaining high selectivity is required.
  • the catalyst used for the production of the unsaturated aldehyde and / or unsaturated carboxylic acid by the gas-phase catalytic partial oxidation of the alkene has room for improvement in terms of catalytic activity and mechanical strength.
  • the present invention provides a technique capable of producing an unsaturated aldehyde and / or an unsaturated carboxylic acid, preferably acrolein and / or acrylic acid, methacrolein and / or methacrylic acid in a high yield. For the purpose.
  • the present invention relates to the following inventions.
  • a catalyst for producing an unsaturated aldehyde and / or unsaturated carboxylic acid having molybdenum and bismuth as essential catalytic active components wherein the composition of the catalytic active component is represented by the following general formula (I)
  • a catalyst for producing an unsaturated aldehyde and / or an unsaturated carboxylic acid wherein the turbidity of a mixture of ammonium molybdate and water used is 30 NTU or less.
  • Mo 12 Bi a U b X c Y d Z e O f (I) (Where Mo, Bi, and O represent molybdenum, bismuth, and oxygen, U is at least one element selected from cobalt, nickel, and iron, and X is magnesium (Mg), calcium (Ca), manganese ( Mn), copper (Cu), zinc (Zn), cerium (Ce), and samarium (Sm), at least one element selected from the group consisting of boron (B), phosphorus (P), arsenic (Y) As), antimony (Sb), tungsten (W), silicon (Si) and at least one element selected from the group consisting of aluminum (Al), and Z is sodium (Na), potassium (K), rubidium ( Rb) and at least one element selected from the group consisting of cesium (Cs) are shown respectively, wherein (a) to (e) represent the atomic ratio of each component, and 0 a ⁇ 10,0 ⁇ b ⁇ 40,0
  • a mixture of ammonium molybdate and water is prepared under conditions of 0 ° C. to 60 ° C., then the mixture, the bismuth component raw material, and, if necessary, the U component, X component in the general formula (I),
  • the manufacturing method of the catalyst for unsaturated aldehyde and / or unsaturated carboxylic acid manufacture as described in (1) or (2) containing this.
  • a firing step includes a preliminary firing step of firing the dried powder to obtain a pre-fired powder, a molding step of molding the preliminary fired powder to obtain a molded body, and a main firing step of firing the molded body.
  • the catalyst for producing an unsaturated aldehyde and / or unsaturated carboxylic acid in the present invention is a catalyst containing molybdenum and bismuth as essential components, and has catalytic activity.
  • the composition of the component can be represented by the following general formula (I). Mo 12 Bi a U b X c Y d Z e O f (I)
  • Mo, Bi, and O represent molybdenum, bismuth, and oxygen, respectively.
  • U is at least one element selected from cobalt, nickel and iron, and
  • X is magnesium (Mg), calcium (Ca), manganese (Mn), copper (Cu), zinc (Zn), cerium (Ce).
  • (a) to (e) represent the atomic ratio of each component, and 0 ⁇ a ⁇ 10, 0 ⁇ b ⁇ 40, 0 ⁇ c ⁇ 10, 0 ⁇ d ⁇ 10, 0 ⁇ e ⁇ 6, and f is a numerical value determined by the degree of oxidation of the catalyst component.
  • the catalyst of the present invention is a catalyst obtained using ammonium molybdate having a turbidity of 30 NTU or less as a mixture of molybdenum raw material and water.
  • the turbidity represents the degree of turbidity of water, and is classified into visual turbidity, transmitted light turbidity, scattered light turbidity, and integrating sphere turbidity.
  • JIS K0101 Industrial water
  • Test methods For the turbidity in the present invention, NTU based on a formazine solution is used as a measure of turbidity.
  • NTU Nephelometric Turbidity Units
  • the turbidity (NTU) described in the present invention is 2.3% of purified water with respect to 1 part by weight of ammonium molybdate in a mixture of ammonium molybdate and water in which the concentration of ammonium molybdate is 30% by weight. After adding parts by weight and stirring at 23 ° C. for 15 minutes, it is a numerical value measured with a turbidimeter using purified water as a reference solution (though not particularly limited, it is preferable to use 2020e manufactured by LaMote).
  • the catalyst of the present invention is a catalyst for producing an unsaturated aldehyde and / or an unsaturated carboxylic acid, and is obtained by further mixing a bismuth component raw material with a mixture of ammonium molybdate and water having a turbidity of 30 NTU or less.
  • the bismuth component raw material will be described later as an explanation of the production method.
  • the bismuth component raw material to be mixed is adjusted to an amount such that 0 ⁇ a ⁇ 10 at an atomic ratio corresponding to (a) in the general formula (I).
  • the catalyst of the present invention has an element corresponding to U, X, Y and Z in the general formula (I) at an atomic ratio corresponding to (b) to (e) in the general formula (I), and 0 ⁇ b ⁇ 40, 0 ⁇ c ⁇ 10, 0 ⁇ d ⁇ 10, 0 ⁇ e ⁇ 6 may be included.
  • the catalyst of the present invention contains at least one element selected from cobalt (Co), nickel (Ni), and iron (Fe), which are U components, among the elements corresponding to U, X, Y, and Z. It is preferably obtained by mixing the compounds.
  • the catalyst of the present invention may be composed of only a catalytically active component, but may be supported on a carrier as necessary.
  • the carrier can carry a catalytically active component, and is preferably an inert carrier that is inert under the target catalytic reaction conditions.
  • the method for supporting the catalytically active component on the carrier and the optional components will be described in the catalyst production method of the present invention described later.
  • a mixture of ammonium molybdate and water is prepared under the conditions of 0 ° C. to 60 ° C., and then the mixture, the bismuth component raw material, and if necessary, in the general formula (I)
  • the raw material adjustment step is referred to as “step (a)”, and the drying step is referred to as “step (b)”.
  • a baking process consists of a preliminary baking process, a shaping
  • the catalyst is produced by steps (c) to (e) in the calcination step. For example, when a support is not used, two steps of steps (c) to (d) are performed. It may be.
  • a mixture of ammonium molybdate and water is prepared under conditions of 0 ° C. to 60 ° C., and then the mixture, the bismuth component raw material, and, if necessary, general
  • one or more component raw materials selected from the group consisting of raw materials of U component, X component, Y component and Z component in formula (I) and water are mixed to obtain a liquid raw material mixture.
  • the “liquid raw material mixture” means a mixture containing a solvent, and is a concept including not only a solution but also a slurry or a viscosity.
  • the starting material of each element other than molybdenum constituting the catalyst of the present invention is not particularly limited.
  • ammonium molybdate having a turbidity of 30 NTU or less is used.
  • the definition of turbidity is as described above.
  • the ammonium molybdate includes a plurality of types of compounds such as ammonium dimolybdate, ammonium tetramolybdate, and ammonium heptamolybdate. Among them, ammonium heptamolybdate is preferably used.
  • bismuth component raw material bismuth salts such as bismuth nitrate, bismuth carbonate, bismuth sulfate and bismuth acetate, bismuth trioxide, metal bismuth, etc. can be used. There is a tendency to be obtained.
  • the amount of the bismuth component raw material used is the atomic ratio corresponding to (a) in the general formula (I) so that 0 ⁇ a ⁇ 10.
  • a suitable preparation method is to prepare a mixture of ammonium molybdate and water of 30 NTU or less under the conditions of 0 ° C. to 60 ° C., and then the mixture and the bismuth component raw material, if necessary, in the general formula (I) A compound containing elements corresponding to U, X, Y and Z is mixed.
  • a high performance catalyst can be obtained by mixing ammonium molybdate with water at 0 ° C. to 60 ° C., preferably 20 ° C. to 60 ° C.
  • Ammonium molybdate may be mixed with water under conditions of 0 ° C to 60 ° C, and once the mixture of ammonium molybdate and water is prepared, the temperature of the mixture is adjusted to 0 ° C to 60 ° C. You may do it. When the temperature of the water to be mixed exceeds 60 ° C., ammonia that forms a complex is easily detached from the mixture of ammonium molybdate, and the catalyst performance may deteriorate. On the other hand, even if the temperature is too low, the solubility of ammonium molybdate may decrease and the catalyst performance may decrease. Further, since it takes time to dissolve ammonium molybdate, the production efficiency of the catalyst is lowered, which is not preferable.
  • a suitable adjustment method is to mix the above-mentioned ammonium molybdate and water with water containing a U component raw material in a desired ratio at a temperature of 10 ° C. to 80 ° C. Or the mixture of the Z component raw material in place of the U component raw material, after heating and stirring for about 1 hour under the condition of 20 ° C. to 90 ° C., and a mixture of the bismuth component raw material and the necessary Accordingly, the X component raw material and the Y component raw material are added to obtain a mixture containing the catalyst component.
  • U component (Co, Ni, Fe), X component (Mg, Ca, Mn, Cu, Zn, Ce, Sm), Y component (B, P, As, Sb, W, Si, Al) and Z component (Na , K, Rb, Cs) are usually oxides, nitrates, carbonates, organic acid salts, hydroxides, etc. that can be converted into oxides by heat, or mixtures thereof.
  • the amount of raw materials used for the U component, X component, Y component, and Z component is determined by changing the elements corresponding to U, X, Y, and Z at the atomic ratio corresponding to (b) to (e) in the general formula (I). 0 ⁇ b ⁇ 40, 0 ⁇ c ⁇ 10, 0 ⁇ d ⁇ 10, and 0 ⁇ e ⁇ 6.
  • preparation liquid (A) the liquid mixture prepared by the above method is referred to as a preparation liquid (A).
  • the preparation liquid (A) does not necessarily contain all the catalyst constituent elements, and a part of the elements or a part of the preparation elements may be added in a step after preparation.
  • the amount of water mixed with each component raw material, and when adding an acid such as sulfuric acid, nitric acid, hydrochloric acid, tartaric acid or acetic acid for mixing the raw material dissolves. If the acid concentration in the mixture is not suitable within the range of 5% to 99% by weight, for example, the composition (A) may form a clay-like mass, which is an excellent catalyst. Must not.
  • a mixture is preferable as an excellent catalyst.
  • Step (b): Drying step Step (b) is a step of drying the preparation liquid (A) obtained in step (a) to obtain a dry powder.
  • the drying method is not particularly limited as long as the preparation liquid (A) can be completely dried, and examples thereof include drum drying, freeze drying, spray drying, and evaporation to dryness.
  • spray drying which can be dried from the mixture into powder or granules in a short time is particularly preferable.
  • the drying temperature of spray drying varies depending on the concentration of the mixture, the feeding speed, etc., but the temperature at the outlet of the dryer is generally 70 ° C. to 150 ° C. Further, it is preferable to dry so that the average particle size of the dry powder obtained at this time is 10 ⁇ m to 700 ⁇ m. A dry powder (B) is thus obtained.
  • Step (c): Pre-baking step Step (c) is a step of obtaining the pre-baked powder (C) by (pre-) baking the dried powder (B).
  • the dry powder (B) tends to improve the moldability, mechanical strength, and catalyst performance of the catalyst by firing at 200 ° C. to 600 ° C., preferably 300 ° C. to 600 ° C. under air flow.
  • the firing time is preferably 1 to 12 hours.
  • the pre-fired powder (C) is obtained.
  • Step (d): The molding step (d) is a step of molding the pre-fired powder (C) to obtain a molded body (D).
  • a method using a tableting molding machine, an extrusion molding machine or the like is preferable when molding into a cylindrical shape or a ring shape. More preferably, it is a case of forming into a spherical shape, and the pre-fired powder (C) may be formed into a sphere with a molding machine, but the pre-fired powder (C) (including a molding aid and a strength improver if necessary). Is preferably supported on an inert carrier such as a ceramic inert to the target catalytic reaction.
  • the loading method a rolling granulation method, a method using a centrifugal fluid coating apparatus, a wash coating method, and the like are widely known, so long as the method can uniformly support the pre-fired powder (C) on a carrier.
  • a carrier charged in the above is vigorously stirred by repeating the rotation and revolution of the carrier itself, and the powder is obtained by adding the pre-fired powder (C) and, if necessary, a molding aid and / or a strength improver.
  • a method of supporting the components on a carrier is preferred.
  • a binder at the time of carrying.
  • the binder that can be used include water, ethanol, methanol, propanol, polyhydric alcohol, polyvinyl alcohol as a polymer binder, and an aqueous silica sol solution of an inorganic binder.
  • ethanol, methanol, propanol, and polyhydric alcohol are preferable, and diols such as ethylene glycol and triols such as glycerin are more preferable.
  • the moldability becomes good and a high-performance catalyst with high mechanical strength is obtained.
  • an aqueous solution having a glycerin concentration of 5% by weight or more it is particularly high. There is a tendency to obtain a high performance catalyst.
  • the amount of these binders used is usually 2 to 80 parts by weight with respect to 100 parts by weight of the pre-fired powder (C).
  • the inert carrier is usually about 2 to 8 mm, on which the pre-fired powder (C) is supported.
  • the amount of the pre-fired powder (C) supported is determined in consideration of the conditions for using the catalyst, for example, the reaction conditions such as the space velocity of the reaction raw material and the raw material concentration, and is usually 20 to 80% by weight.
  • the supporting rate is expressed by the following formula (i).
  • Formula (i) Loading rate (% by weight) [weight of pre-fired powder (C) used for molding / (weight of pre-fired powder (C) used for molding + weight of inert carrier used for molding)] ⁇ 100
  • Step (e): Main firing step Step (e) is a step of firing (main firing) the molded body (D) obtained in step (d).
  • the molded body (D) tends to improve catalytic activity and selectivity by firing at a temperature of 200 ° C. to 600 ° C. for about 1 to 12 hours.
  • the baking temperature is preferably 400 ° C. or higher and 600 ° C. or lower, and more preferably 500 ° C. or higher and 600 ° C. or lower.
  • the optimal calcination temperature of the catalyst with different atomic ratios is different, when the atomic ratio of the catalyst is changed, there is a tendency that a catalyst having excellent performance is obtained when calcination is performed at the optimal temperature at the atomic ratio.
  • gas to be circulated air is simple and preferable.
  • nitrogen, carbon dioxide, nitrogen oxide-containing gas, ammonia-containing gas, hydrogen gas, and mixtures thereof can be used as the inert gas.
  • the catalyst in which the catalytically active component obtained in step (e) is supported on a carrier is referred to as catalyst (E).
  • the mechanical strength of the catalyst (E) is greatly influenced by the atomic ratio of the catalyst composition, that is, the kind of the compound produced by adjusting the atomic ratio and the phase structure of the crystal structure are different even in the same compound. receive.
  • the diameter of the composite metal oxide particles produced in the preparation process and the drying process, the geometrical structure of the particles, and the aggregation form thereof change, the micro physical properties such as the strength of the compound crystals in the composite metal oxide It is also affected by macroscopic physical property changes such as the particle size distribution of the pre-fired powder.
  • the combined physical properties including not only the preparation method of each step but also the influence of the atomic ratio determine the mechanical strength of the catalyst finally prepared.
  • alkene catalytic gas phase oxidation reaction In the presence of the catalyst of the present invention described above, unsaturated aldehydes and / or unsaturated carboxylic acids, preferably acrolein and / or acrylic acid, methacrolein and / or methacrylic acid are obtained in high yield by catalytic vapor phase oxidation of alkenes. Can be manufactured.
  • the catalytic gas phase oxidation reaction of the target alkene is not particularly limited, but one preferred embodiment is an embodiment in which acrolein and / or acrylic acid is produced from propylene.
  • the catalytic gas phase oxidation reaction of the alkene using the catalyst of the present invention may be performed under any conditions that can produce an unsaturated aldehyde and / or an unsaturated carboxylic acid. Suitable reaction conditions include 1% by volume as a raw material gas composition. Mixture consisting of ⁇ 10% alkene, 5% ⁇ 18% molecular oxygen, 0% ⁇ 60% water vapor and 20% ⁇ 70% inert gas such as nitrogen, carbon dioxide, etc. the gas, under pressure of said manner on the catalyst prepared in 250 ° C.-450 ° C. temperature and normal pressure to 10 atmospheres, introducing supply load alkene at a space velocity of 60 hr -1 ⁇ 200 hr -1 Reaction conditions.
  • the alkene space velocity (SV 0 ) means a raw material load.
  • the alkene space velocity (SV 0 ) is introduced at 100 hr ⁇ 1 , the alkene is 100 times the unit catalyst volume per hour (standard state conversion).
  • the alkene includes alcohols that generate alkene in the intramolecular dehydration reaction, such as tertiary butanol.
  • Example 1 Production of Catalyst 1 1000 g of ammonium heptamolybdate having a turbidity of 6 NTU was mixed with 3800 g of pure water heated to 50 ° C. to obtain a mixture (solution). Next, 4.5 g of potassium nitrate was mixed with 51.2 g of pure water and added to the above mixture (solution). Next, 333.7 g of ferric nitrate, 714.3 g of cobalt nitrate, and 384.3 g of nickel nitrate were dissolved in 759.1 ml of pure water heated to 60 ° C. These solutions were mixed gradually with stirring.
  • nitric acid 50% by weight
  • 382.4 g of bismuth nitrate was added and completely dissolved.
  • the solution was stirred and mixed to obtain a liquid raw material mixture.
  • the obtained liquid raw material mixture was dried by a spray drying method, and the obtained dry powder was pre-fired at a maximum temperature of 440 ° C. for 6 hours to obtain a pre-fired powder.
  • the diameter is 4 based on silica and alumina.
  • a spherical shaped support was formed on a 5 mm inert spherical carrier so that the supported amount was 50% by weight to obtain a molded body.
  • calcination was performed at 510 ° C. for 4 hours to obtain a spherical catalyst 1 having an average particle diameter of 5.2 mm of the present invention.
  • the catalytically active component in the catalyst 1 calculated from the charged raw materials was a composite metal oxide having the following atomic ratio.
  • Mo: Bi: Fe: Co: Ni: K 12: 1.7: 1.8: 5.2: 2.8: 0.1
  • Comparative Example 1 Production of Catalyst 2 A comparative catalyst 2 was obtained in the same manner as in Example 1 except that the turbidity of the mixture of ammonium heptamolybdate and water in Catalyst 1 was 47 NTU.
  • Comparative Example 2 Production of Catalyst 3 A comparative catalyst 3 was obtained in the same manner as in Example 1 except that the turbidity of the mixture of ammonium heptamolybdate and water in Catalyst 1 was 105 NTU.
  • Example 2 In a jacket for causing alumina powder to flow by air as a heat medium, 68 ml of catalyst 1 was filled in a stainless steel reactor having an inner diameter of 22.2 mm, and the reaction bath temperature was 327 ° C.
  • a gas in which the supply amounts of propylene, air, and water were set so that the raw material molar ratio was propylene: oxygen: nitrogen: water 1: 1.7: 6.4: 3.0 at a space velocity of 862 h ⁇ 1
  • Table 1 shows the results of introduction into the oxidation reactor and determination of the acrolein yield and acrylic acid yield.
  • Table 1 shows the results of carrying out the oxidation reaction of propylene in the same manner as in Example 2 except that the catalyst was changed to the catalyst 2, and obtaining the acrolein yield and the acrylic acid yield.
  • Table 1 shows the results of carrying out the oxidation reaction of propylene in the same manner as in Example 2 except that the catalyst 3 was changed to the acrolein yield and acrylic acid yield.

Abstract

Provided are: a catalyst which is capable of producing an unsaturated aldehyde and/or an unsaturated carboxylic acid, preferably acrolein and/or acrylic acid, or methacrolein and/or methacrylic acid with high yield; and a method for producing an unsaturated aldehyde and/or an unsaturated carboxylic acid, which uses this catalyst. The inventors of the present invention have found that an unsaturated aldehyde and/or an unsaturated carboxylic acid can be obtained with higher yield by using, as a catalyst for producing an unsaturated aldehyde and/or an unsaturated carboxylic acid, a catalyst that contains molybdenum and bismuth as essential components, while setting the turbidity of a mixture of water and ammonium molybdate, which is used as a molybdenum starting material, to 30 NTU or less.

Description

不飽和アルデヒドおよび/または不飽和カルボン酸製造用触媒およびその製造方法ならびに不飽和アルデヒドおよび/または不飽和カルボン酸の製造方法Catalyst for producing unsaturated aldehyde and / or unsaturated carboxylic acid, method for producing the same, and method for producing unsaturated aldehyde and / or unsaturated carboxylic acid
 本発明は、アルケンをモリブデンおよびビスマスを含む触媒の存在下に分子状酸素又は分子状酸素含有ガスにより気相接触部分酸化して対応する不飽和アルデヒドおよび/または不飽和カルボン酸を製造する際に用いる触媒およびその製造方法ならびに、その触媒を使用した不飽和アルデヒドおよび/または不飽和カルボン酸の製造方法に関する。 The present invention relates to the production of a corresponding unsaturated aldehyde and / or unsaturated carboxylic acid by subjecting an alkene to gas phase catalytic partial oxidation with molecular oxygen or a molecular oxygen-containing gas in the presence of a catalyst containing molybdenum and bismuth. The present invention relates to a catalyst used and a method for producing the same, and a method for producing an unsaturated aldehyde and / or an unsaturated carboxylic acid using the catalyst.
 プロピレンを分子状酸素により気相接触部分酸化して、アクロレイン及びアクリル酸を工業的に製造する場合、種々の問題が生じる。その一つとして、複合金属酸化物触媒(以下、「触媒」と表記)がさらされる温度が高くなるにつれて触媒の劣化が加速することが知られている。また、過剰な酸化反応が起こり、目的生成物の収率が低下することも広く知られている。そこで、目的生成物の生産性を上げるためには、原料の濃度や空間速度を増大させ、それに伴って、反応浴温度を上昇させる必要がある。しかし、前述のとおり反応浴温度が高いと触媒寿命が短くなってしまう問題がある。さらにプロピレンなどの気相接触部分酸化は発熱反応であるため、触媒層に局所的な高温部(ホットスポット)が発生し、触媒劣化および収率低下が顕著になる。 Various problems arise when acrolein and acrylic acid are industrially produced by subjecting propylene to gas phase contact partial oxidation with molecular oxygen. As one of them, it is known that the deterioration of the catalyst accelerates as the temperature to which the composite metal oxide catalyst (hereinafter referred to as “catalyst”) is exposed increases. It is also widely known that an excessive oxidation reaction occurs and the yield of the target product is lowered. Therefore, in order to increase the productivity of the target product, it is necessary to increase the concentration of the raw material and the space velocity, and accordingly increase the reaction bath temperature. However, as described above, when the reaction bath temperature is high, there is a problem that the catalyst life is shortened. Furthermore, since the gas phase partial oxidation of propylene or the like is an exothermic reaction, a local high temperature portion (hot spot) is generated in the catalyst layer, and the catalyst deterioration and the yield reduction become remarkable.
 これらの課題に対し、従来技術ではさまざまな提案がなされている。例えば、特開2001-226302号公報(特許文献1)には、占有容積と焼成温度、および/またはアルカリ金属元素の種類および/または量とが異なる複数種の触媒を準備し多管式酸化反応器の管軸方向に原料ガス入口から出口に向かって活性が高くなるよう充填することでホットスポット温度を抑制する方法が記載されている。この方法は、高濃度の原料ガスを導入する入口側において活性を抑えた触媒を充填することで過剰な発熱を抑えることを目的としている。しかし、占有容積による活性調節では、反応管径によって触媒の占有容積の大きさが制限されるため十分な効果が得られない場合がある、もしくは触媒が均一に充填されないことで設計した反応場が実現されず十分な触媒性能が発揮されない可能性がある。  In response to these issues, various proposals have been made in the prior art. For example, Japanese Patent Application Laid-Open No. 2001-226302 (Patent Document 1) prepares a plurality of types of catalysts having different occupied volumes and calcination temperatures and / or types and / or amounts of alkali metal elements, and multitubular oxidation reaction. Describes a method of suppressing the hot spot temperature by filling the tube so that the activity increases from the source gas inlet toward the outlet in the direction of the tube axis of the vessel. This method is intended to suppress excessive heat generation by filling a catalyst with reduced activity on the inlet side where a high-concentration source gas is introduced. However, in the activity adjustment based on the occupied volume, the size of the occupied volume of the catalyst is limited by the diameter of the reaction tube, so that a sufficient effect may not be obtained, or the reaction field designed by uniformly filling the catalyst may not be achieved. It may not be realized and sufficient catalyst performance may not be exhibited. *
 また、特開平6-192144号公報(特許文献2)では、原料ガス入口側から出口側へ向かって触媒の担持量を多くして触媒活性に序列をつけることによって原料ガス入口側におけるホットスポット温度を抑制し、高活性な触媒が充填されている出口側においてはプロセス上必要とされる原料の転化率まで気相接触部分酸化反応を到達させるという方法が記載されている。しかしながら、低い担持量である原料ガス入口側の触媒は寿命が短く、一方で原料ガス出口側の触媒は活性成分量が多いため触媒活性成分の層が厚くなることで反応熱が触媒内に蓄熱され選択性が低下する課題がある。 Further, in Japanese Patent Laid-Open No. 6-192144 (Patent Document 2), the hot spot temperature at the raw material gas inlet side is increased by increasing the amount of catalyst supported from the raw material gas inlet side to the outlet side to rank the catalyst activity. In the outlet side filled with a highly active catalyst, a gas phase catalytic partial oxidation reaction is reached up to the conversion rate of the raw material required for the process. However, the catalyst on the raw material gas inlet side, which has a low loading amount, has a short life, while the catalyst on the raw material gas outlet side has a large amount of active component, so the reaction heat is stored in the catalyst by thickening the layer of the catalytic active component. However, there is a problem that selectivity is lowered.
 また、特表2007-511565号公報(特許文献3)によれば、リング形状触媒を使用することで、ホットスポット温度を抑制し、高負荷の状況下における反応に対応できる方法が記載されている。しかし、リング形状触媒は、多管式酸化反応器へ充填するときに形状の特性上、均一に充填することが困難であり、また成型方法の特性上、機械的強度が低いために触媒が崩れ粉化が起こり、反応管が詰まるだけでなく、触媒活性成分が抜け落ちてしまうことで触媒性能が十分に発揮されないことも大きな課題である。 In addition, according to Japanese Patent Publication No. 2007-511565 (Patent Document 3), a method is described in which a hot spot temperature can be suppressed and a reaction under a high load condition can be handled by using a ring-shaped catalyst. . However, ring-shaped catalysts are difficult to pack uniformly due to the characteristics of the shape when packed into a multi-tubular oxidation reactor, and because of the low mechanical strength due to the characteristics of the molding method, the catalyst collapses. It is a big problem that not only the reaction performance tube is clogged but also the catalytic activity is not sufficiently exhibited due to the catalyst active component falling off.
 さらに、特開2001-048817号公報(特許文献4)では、各反応管内の触媒層を管軸方向に2層以上に分割して設けた反応帯に、ビスマスおよび鉄の量を変更した触媒を、原料ガス入口から出口に向かってビスマスおよび鉄の総量が少なくなるように充填することで、モリブデン成分の昇華を抑制して、長期にわたり安定して、かつ高収率でアクロレインおよびアクリル酸を製造する技術が開示されている。 Furthermore, in Japanese Patent Application Laid-Open No. 2001-048817 (Patent Document 4), a catalyst in which the amount of bismuth and iron is changed in a reaction zone provided by dividing the catalyst layer in each reaction tube into two or more layers in the tube axis direction. By filling the raw material gas inlet to the outlet so that the total amount of bismuth and iron decreases, the sublimation of the molybdenum component is suppressed, and acrolein and acrylic acid are produced in a stable and high yield over a long period of time. Techniques to do this are disclosed.
特開2001-226302号公報JP 2001-226302 A 特開平6-192144号公報JP-A-6-192144 特表2007-511565号公報Special table 2007-511565 gazette 特開2001-048817号公報JP 2001-048817 A
 アルケンの気相接触部分酸化反応により対応する不飽和アルデヒドおよび/または不飽和カルボン酸を製造する方法は既に一部工業化されているものもあるが、さらなる触媒の性能や使用方法の改良が求められている。
多管式酸化反応器を使用してアルケンから対応する不飽和アルデヒドおよび/またはカルボン酸を多く製造しようとする際には、単位触媒体積に対するアルケンの供給負荷が高くなり、反応浴温度を上げる必要が生じる。反応浴温度を上げると結果的に触媒層内の温度を上げることになり、経時的な触媒活性および/または選択性の低下をもたらす。その結果、目的生成物の収率が低下するため、長期間の使用という観点で問題となる。これに対し、触媒の活性を向上させることにより、反応浴温度の低下、ランニングコストの低下、触媒の長寿命化を可能にし、目的生成物の収率向上は製造コストを大幅に低下させることが可能となる。
Some of the processes for producing the corresponding unsaturated aldehydes and / or unsaturated carboxylic acids by the gas-phase catalytic partial oxidation reaction of alkenes have already been partially industrialized, but further improvements in catalyst performance and usage are required. ing.
When using a multi-tubular oxidation reactor to produce a large amount of the corresponding unsaturated aldehyde and / or carboxylic acid from the alkene, the supply load of the alkene per unit catalyst volume is increased, and the reaction bath temperature must be increased. Occurs. Increasing the reaction bath temperature results in an increase in the temperature in the catalyst layer, resulting in a decrease in catalyst activity and / or selectivity over time. As a result, the yield of the target product is lowered, which is problematic in terms of long-term use. On the other hand, by improving the activity of the catalyst, it is possible to lower the reaction bath temperature, lower the running cost, extend the life of the catalyst, and improving the yield of the target product can greatly reduce the production cost. It becomes possible.
 また、この気相接触部分酸化反応に用いられる触媒の成型方法が打錠成型、押し出し成型、コーティング成型その他いかなる方法であっても機械的強度が結果的に低い場合には、触媒を多管式酸化反応器へ充填するときに触媒の粉化および触媒活性成分の剥離により多管式酸化反応器内が詰まり、異常な圧力上昇を招くことになる。つまり、触媒本来の優れた活性および選択性を発揮させるためには機械的強度の高い触媒が必要となる。
 さらに、反応浴温度を低下させるためには高活性な触媒が必要であるが、従来技術では触媒の高活性化によって大幅な選択性の低下が伴うため、高選択性を維持した高活性触媒を製造し、それらを効果的に組み合わせ目的生成物を製造する技術に課題がある。とりわけ、高活性な触媒は使用方法を十分に検討した上で使用しなければホットスポット温度が高くなり過ぎてしまい収率低下を引き起こし、さらには暴走反応を引き起こしかねない。
In addition, if the mechanical strength of the catalyst used in the gas phase catalytic partial oxidation reaction is low, as a result of the compression molding, extrusion molding, coating molding or any other method, the catalyst can be When filling the oxidation reactor, the inside of the multi-tubular oxidation reactor is clogged due to catalyst pulverization and separation of the catalytically active component, leading to an abnormal pressure increase. In other words, a catalyst having high mechanical strength is required in order to exhibit the excellent activity and selectivity inherent in the catalyst.
Furthermore, in order to lower the reaction bath temperature, a highly active catalyst is required. However, in the prior art, since the selectivity of the catalyst is greatly reduced due to the high activation of the catalyst, a highly active catalyst maintaining high selectivity is required. There are challenges in the technology of producing and combining them effectively to produce the desired product. In particular, if a highly active catalyst is not used after a thorough examination of the method of use, the hot spot temperature will be too high, leading to a decrease in yield, and may cause a runaway reaction.
 このように、アルケンの気相接触部分酸化による不飽和アルデヒドおよび/または不飽和カルボン酸を製造に用いられる触媒には、触媒活性や機械的強度等の点で改良の余地が残されていた。
 かかる状況下、本発明は、不飽和アルデヒドおよび/または不飽和カルボン酸、好ましくはアクロレインおよび/またはアクリル酸、メタクロレインおよび/またはメタクリル酸を高収率で製造することが可能な技術を提供することを目的とする。
As described above, the catalyst used for the production of the unsaturated aldehyde and / or unsaturated carboxylic acid by the gas-phase catalytic partial oxidation of the alkene has room for improvement in terms of catalytic activity and mechanical strength.
Under such circumstances, the present invention provides a technique capable of producing an unsaturated aldehyde and / or an unsaturated carboxylic acid, preferably acrolein and / or acrylic acid, methacrolein and / or methacrylic acid in a high yield. For the purpose.
 すなわち、本発明は、以下の発明に係るものである。
(1) モリブデン及びビスマスを必須の触媒活性成分とする不飽和アルデヒドおよび/または不飽和カルボン酸製造用触媒であって、触媒活性成分の組成が下記一般式(I)で表され、モリブデン原料として使用するモリブデン酸アンモニウムと水の混合物の濁度が30NTU以下であることを特徴とする不飽和アルデヒドおよび/または不飽和カルボン酸製造用触媒。
  Mo12 Bi U X Y Z O (I)
(ここで、Mo、Bi、Oはそれぞれ、モリブデン、ビスマスおよび酸素を示し、Uはコバルト、ニッケル及び鉄から選ばれる少なくとも1種の元素、Xはマグネシウム(Mg)、カルシウム(Ca)、マンガン(Mn)、銅(Cu)、亜鉛(Zn)、セリウム(Ce)及びサマリウム(Sm)からなる群から選ばれる少なくとも1種の元素であり、Yはホウ素(B)、リン(P)、砒素(As)、アンチモン(Sb)、タングステン(W)、ケイ素(Si)及びアルミニウム(Al)からなる群から選ばれる少なくとも1種の元素であり、Zはナトリウム(Na)、カリウム(K)、ルビジウム(Rb)及びセシウム(Cs)からなる群より選ばれる少なくとも1種の元素をそれぞれ示す。(a)から(e)は各成分の原子比率を表し、0<a≦10、0≦b≦40、0≦c≦10、0≦d≦10、0≦e≦6であり、fは触媒成分の酸化度で決定される数値である。)
(2) 前記触媒活性成分が、不活性担体に担持されてなる(1)に記載の触媒。
(3) モリブデン酸アンモニウムと水との混合物を0℃~60℃の条件下で調製し、次いで前記混合物と、ビスマス成分原料と、必要に応じて一般式(I)におけるU成分、X成分、Y成分及びZ成分の原料からなる群から選択される1種以上の成分原料及び水と、を混合し、液状原料混合物を得る原料調整工程と、
 得られた液状原料混合物を乾燥して乾燥粉体を得る乾燥工程と、
 得られた乾燥粉体を焼成する焼成工程と、
を含む(1)または(2)に記載の不飽和アルデヒドおよび/または不飽和カルボン酸製造用触媒の製造方法。
(4) モリブデン酸アンモニウムと水との混合物の調製を、20℃~60℃の条件下で行う(3)に記載の触媒の製造方法。
(5) 焼成工程が、前記乾燥紛体を焼成して予備焼成紛体を得る予備焼成工程と、当該予備焼成紛体を成型して成型体を得る成型工程と、当該成型体を焼成する本焼成工程と、からなる(3)または(4)に記載の触媒の製造方法。
(6) 前記予備焼成工程において、乾燥紛体を200℃~600℃で焼成する(5)に記載の触媒の製造方法。
(7) 前記成型工程において、予備焼成紛体と不活性担体とを混合して成型する(5)または(6)に記載の触媒の製造方法。
(8) 前記本焼成工程において、200℃~600℃で焼成を行う(5)から(7)のいずれかに記載の触媒の製造方法。
(9) (1)または(2)に記載の触媒の存在下、アルケンを気相接触酸化する不飽和アルデヒドおよび/または不飽和カルボン酸の製造方法。
That is, the present invention relates to the following inventions.
(1) A catalyst for producing an unsaturated aldehyde and / or unsaturated carboxylic acid having molybdenum and bismuth as essential catalytic active components, wherein the composition of the catalytic active component is represented by the following general formula (I), A catalyst for producing an unsaturated aldehyde and / or an unsaturated carboxylic acid, wherein the turbidity of a mixture of ammonium molybdate and water used is 30 NTU or less.
Mo 12 Bi a U b X c Y d Z e O f (I)
(Where Mo, Bi, and O represent molybdenum, bismuth, and oxygen, U is at least one element selected from cobalt, nickel, and iron, and X is magnesium (Mg), calcium (Ca), manganese ( Mn), copper (Cu), zinc (Zn), cerium (Ce), and samarium (Sm), at least one element selected from the group consisting of boron (B), phosphorus (P), arsenic (Y) As), antimony (Sb), tungsten (W), silicon (Si) and at least one element selected from the group consisting of aluminum (Al), and Z is sodium (Na), potassium (K), rubidium ( Rb) and at least one element selected from the group consisting of cesium (Cs) are shown respectively, wherein (a) to (e) represent the atomic ratio of each component, and 0 a ≦ 10,0 ≦ b ≦ 40,0 ≦ c ≦ 10,0 a ≦ d ≦ 10,0 ≦ e ≦ 6, f is a numerical value determined by degree of oxidation of the catalyst component.)
(2) The catalyst according to (1), wherein the catalytically active component is supported on an inert carrier.
(3) A mixture of ammonium molybdate and water is prepared under conditions of 0 ° C. to 60 ° C., then the mixture, the bismuth component raw material, and, if necessary, the U component, X component in the general formula (I), A raw material adjusting step of mixing one or more component raw materials selected from the group consisting of the raw materials of the Y component and the Z component and water to obtain a liquid raw material mixture;
A drying step of drying the obtained liquid raw material mixture to obtain a dry powder;
A firing step of firing the obtained dry powder;
The manufacturing method of the catalyst for unsaturated aldehyde and / or unsaturated carboxylic acid manufacture as described in (1) or (2) containing this.
(4) The method for producing a catalyst according to (3), wherein the mixture of ammonium molybdate and water is prepared at 20 ° C. to 60 ° C.
(5) A firing step includes a preliminary firing step of firing the dried powder to obtain a pre-fired powder, a molding step of molding the preliminary fired powder to obtain a molded body, and a main firing step of firing the molded body. The method for producing a catalyst according to (3) or (4), comprising:
(6) The method for producing a catalyst according to (5), wherein in the preliminary calcination step, the dried powder is calcined at 200 ° C. to 600 ° C.
(7) The method for producing a catalyst according to (5) or (6), wherein in the molding step, the pre-fired powder and an inert carrier are mixed and molded.
(8) The method for producing a catalyst according to any one of (5) to (7), wherein in the main calcination step, calcination is performed at 200 ° C. to 600 ° C.
(9) A process for producing an unsaturated aldehyde and / or an unsaturated carboxylic acid, wherein the alkene is subjected to gas phase catalytic oxidation in the presence of the catalyst according to (1) or (2).
 本発明の触媒を使用することによって、アルケンの気相接触部分酸化による不飽和アルデヒドおよび/または不飽和カルボン酸の製造において、不飽和アルデヒドおよび/または不飽和カルボン酸を高収率で製造することができる。 Production of unsaturated aldehyde and / or unsaturated carboxylic acid in high yield in the production of unsaturated aldehyde and / or unsaturated carboxylic acid by gas phase catalytic partial oxidation of alkene by using catalyst of the present invention Can do.
 以下、本発明にかかる不飽和アルデヒドおよび/または不飽和カルボン酸製造用触媒およびその製法について詳しく説明するが、本発明の範囲はこれらの説明に拘束されることなく、以下の例示以外についても本発明の趣旨を損なわない範囲で適宜変更し、実施することができる。なお、本明細書において、「~」とはその前後の数値を含む表現として用いるものとする。 Hereinafter, the unsaturated aldehyde and / or unsaturated carboxylic acid production catalyst and the production method thereof according to the present invention will be described in detail. However, the scope of the present invention is not limited to these explanations, and the present invention is not limited to the following examples. The present invention can be changed and implemented as appropriate without departing from the spirit of the invention. In the present specification, “to” is used as an expression including numerical values before and after.
 本発明における不飽和アルデヒドおよび/または不飽和カルボン酸製造用の触媒(以下、「本発明の触媒」と記載する場合がある。)は、必須成分としてモリブデンおよびビスマスを含む触媒であり、触媒活性成分の組成は下記一般式(I)で表すことができる。
  Mo12 Bi U X Y Z O (I)
The catalyst for producing an unsaturated aldehyde and / or unsaturated carboxylic acid in the present invention (hereinafter sometimes referred to as “the catalyst of the present invention”) is a catalyst containing molybdenum and bismuth as essential components, and has catalytic activity. The composition of the component can be represented by the following general formula (I).
Mo 12 Bi a U b X c Y d Z e O f (I)
 一般式(I)において、Mo、Bi、Oはそれぞれ、モリブデン、ビスマスおよび酸素を示す。また、Uはコバルト、ニッケル及び鉄から選ばれる少なくとも1種の元素とし、Xはマグネシウム(Mg)、カルシウム(Ca)、マンガン(Mn)、銅(Cu)、亜鉛(Zn)、セリウム(Ce)及びサマリウム(Sm)からなる群から選ばれる少なくとも1種の元素であり、Yはホウ素(B)、リン(P)、砒素(As)、アンチモン(Sb)、タングステン(W)、ケイ素(Si)及びアルミニウム(Al)からなる群から選ばれる少なくとも1種の元素であり、Zはナトリウム(Na)、カリウム(K)、ルビジウム(Rb)及びセシウム(Cs)からなる群より選ばれる少なくとも1種の元素をそれぞれ示す。
 また、一般式(I)において、(a)から(e)は各成分の原子比率を表し、0<a≦10、0≦b≦40、0≦c≦10、0≦d≦10、0≦e≦6であり、fは触媒成分の酸化度で決定される数値である。)
In the general formula (I), Mo, Bi, and O represent molybdenum, bismuth, and oxygen, respectively. U is at least one element selected from cobalt, nickel and iron, and X is magnesium (Mg), calcium (Ca), manganese (Mn), copper (Cu), zinc (Zn), cerium (Ce). And at least one element selected from the group consisting of samarium (Sm), Y is boron (B), phosphorus (P), arsenic (As), antimony (Sb), tungsten (W), silicon (Si) And at least one element selected from the group consisting of aluminum (Al), and Z is at least one element selected from the group consisting of sodium (Na), potassium (K), rubidium (Rb), and cesium (Cs) Each element is shown.
In the general formula (I), (a) to (e) represent the atomic ratio of each component, and 0 <a ≦ 10, 0 ≦ b ≦ 40, 0 ≦ c ≦ 10, 0 ≦ d ≦ 10, 0 ≦ e ≦ 6, and f is a numerical value determined by the degree of oxidation of the catalyst component. )
 さらに、本発明の触媒は、モリブデンの原料と水の混合物としての濁度が30NTU以下のモリブデン酸アンモニウムを用いて得られた触媒である。
 ここで、濁度とは水の濁りの程度を表すもので、視覚濁度、透過光濁度、散乱光濁度及び積分球濁度に区分し表示するものであり、JIS K0101(「工業用水試験方法」)に定めがある。本発明おける濁度は、ホルマジン溶液を基準としたNTUを濁度の尺度として用いる。なお、NTUとは(Nephelometric Turbidity Units)比濁計濁度単位であり、ホルマジンを標準液として、散乱光を測定した場合の測定単位である。
 本発明に記載する濁度(NTU)は、モリブデン酸アンモニウムと水の混合物において、モリブデン酸アンモニウムの濃度を30重量%にした混合物、すなわち、モリブデン酸アンモニウム1重量部に対し、精製水2.3重量部を加え23℃において15分間撹拌した後、基準液として精製水を用いた濁度計(特に限定はしないがLaMotte社製2020eを使用するのが好ましい)にて測定した数値である。
Furthermore, the catalyst of the present invention is a catalyst obtained using ammonium molybdate having a turbidity of 30 NTU or less as a mixture of molybdenum raw material and water.
Here, the turbidity represents the degree of turbidity of water, and is classified into visual turbidity, transmitted light turbidity, scattered light turbidity, and integrating sphere turbidity. JIS K0101 (“industrial water” There are provisions in "Test methods"). For the turbidity in the present invention, NTU based on a formazine solution is used as a measure of turbidity. NTU (Nephelometric Turbidity Units) is a turbidimetric turbidity unit, and is a unit of measurement when scattered light is measured using formazine as a standard solution.
The turbidity (NTU) described in the present invention is 2.3% of purified water with respect to 1 part by weight of ammonium molybdate in a mixture of ammonium molybdate and water in which the concentration of ammonium molybdate is 30% by weight. After adding parts by weight and stirring at 23 ° C. for 15 minutes, it is a numerical value measured with a turbidimeter using purified water as a reference solution (though not particularly limited, it is preferable to use 2020e manufactured by LaMote).
 本発明の触媒は、不飽和アルデヒドおよび/または不飽和カルボン酸製造用の触媒であり、濁度が30NTU以下であるモリブデン酸アンモニウムと水の混合物に、さらにビスマス成分原料を混合して得られる。ビスマス成分原料については、製造方法の説明として後述する。混合するビスマス成分原料は、一般式(I)における(a)に対応する原子比率で、0<a≦10となるような量に調整される。
 なお、濁度が30NTUを超えるモリブデン酸アンモニウムを用いると、モリブデンおよびビスマスを含む触媒中にモリブデンが均一に配置されず、優れた性能の触媒が得られなくなると推察される。
The catalyst of the present invention is a catalyst for producing an unsaturated aldehyde and / or an unsaturated carboxylic acid, and is obtained by further mixing a bismuth component raw material with a mixture of ammonium molybdate and water having a turbidity of 30 NTU or less. The bismuth component raw material will be described later as an explanation of the production method. The bismuth component raw material to be mixed is adjusted to an amount such that 0 <a ≦ 10 at an atomic ratio corresponding to (a) in the general formula (I).
When ammonium molybdate having a turbidity exceeding 30 NTU is used, it is presumed that molybdenum is not uniformly arranged in the catalyst containing molybdenum and bismuth, and a catalyst having excellent performance cannot be obtained.
 また、本発明の触媒は、一般式(I)におけるU、X、Y及びZに対応する元素を、一般式(I)における(b)から(e)に対応する原子比率で、0≦b≦40、0≦c≦10、0≦d≦10、0≦e≦6となるように含んでいてもよい。
 本発明の触媒は、前記U、X、Y及びZに対応する元素の中でも、U成分であるコバルト(Co)、ニッケル(Ni)及び鉄(Fe)から選ばれる少なくとも1種の元素を含有する化合物を混合して得られることが好ましい。
In addition, the catalyst of the present invention has an element corresponding to U, X, Y and Z in the general formula (I) at an atomic ratio corresponding to (b) to (e) in the general formula (I), and 0 ≦ b ≦ 40, 0 ≦ c ≦ 10, 0 ≦ d ≦ 10, 0 ≦ e ≦ 6 may be included.
The catalyst of the present invention contains at least one element selected from cobalt (Co), nickel (Ni), and iron (Fe), which are U components, among the elements corresponding to U, X, Y, and Z. It is preferably obtained by mixing the compounds.
 本発明の触媒は、触媒活性成分のみから構成されていてもよいが、必要に応じて担体に担持させていてもよい。担体は触媒活性成分を担持することができ、目的とする触媒反応条件において不活性な不活性担体であることが好ましい。触媒活性成分の担体への担持方法や任意成分については、後述する本発明の触媒の製造方法にて説明する。 The catalyst of the present invention may be composed of only a catalytically active component, but may be supported on a carrier as necessary. The carrier can carry a catalytically active component, and is preferably an inert carrier that is inert under the target catalytic reaction conditions. The method for supporting the catalytically active component on the carrier and the optional components will be described in the catalyst production method of the present invention described later.
 以下、本発明の触媒の製造方法について説明する。
 本発明の触媒の製造方法は、モリブデン酸アンモニウムと水との混合物を0℃~60℃の条件下で調製し、次いで前記混合物と、ビスマス成分原料と、必要に応じて一般式(I)におけるU成分、X成分、Y成分及びZ成分の原料からなる群から選択される1種以上の成分原料及び水と、を混合し、液状原料混合物を得る原料調整工程と、得られた液状原料混合物を乾燥して乾燥粉体を得る乾燥工程と、得られた乾燥粉体を焼成する焼成工程と、を含む。
 以下に本発明の触媒の製造方法の好適な態様についての説明において、原料調整工程を「工程(a)」、乾燥工程を「工程(b)」と記載する。また、好適な態様において、焼成工程は、予備焼成工程、成型工程、本焼成工程からなり、それぞれ「工程(c)」、「工程(d)」、「工程(e)」と記載する。なお、以下に説明する好適な態様では、焼成工程を工程(c)~(e)で触媒を製造するが、例えば、担体を使用しない場合等には工程(c)~(d)の2工程であってもよい。
Hereinafter, the manufacturing method of the catalyst of this invention is demonstrated.
In the method for producing the catalyst of the present invention, a mixture of ammonium molybdate and water is prepared under the conditions of 0 ° C. to 60 ° C., and then the mixture, the bismuth component raw material, and if necessary, in the general formula (I) A raw material adjusting step of mixing one or more component raw materials selected from the group consisting of raw materials of U component, X component, Y component and Z component and water to obtain a liquid raw material mixture, and the obtained liquid raw material mixture A drying step of drying the powder to obtain a dry powder, and a baking step of baking the obtained dry powder.
In the following description of preferred embodiments of the method for producing a catalyst of the present invention, the raw material adjustment step is referred to as “step (a)”, and the drying step is referred to as “step (b)”. Moreover, in a suitable aspect, a baking process consists of a preliminary baking process, a shaping | molding process, and a main baking process, and describes as "process (c)", "process (d)", and "process (e)", respectively. In the preferred embodiment described below, the catalyst is produced by steps (c) to (e) in the calcination step. For example, when a support is not used, two steps of steps (c) to (d) are performed. It may be.
工程(a):原料調整工程
 工程(a)は、モリブデン酸アンモニウムと水との混合物を0℃~60℃の条件下で調製し、次いで前記混合物と、ビスマス成分原料と、必要に応じて一般式(I)におけるU成分、X成分、Y成分及びZ成分の原料からなる群から選択される1種以上の成分原料及び水と、を混合し、液状原料混合物を得る工程である。
 なお、「液状原料混合物」は、溶媒を含んだ状態の混合物を意味し、溶液のみならず、スラリー状のものや、粘度状のものを含む概念である。また、本発明の触媒を構成するモリブデン以外の各元素の出発原料は特に制限されるものではない。
Step (a): Raw material adjustment step In step (a), a mixture of ammonium molybdate and water is prepared under conditions of 0 ° C. to 60 ° C., and then the mixture, the bismuth component raw material, and, if necessary, general In this step, one or more component raw materials selected from the group consisting of raw materials of U component, X component, Y component and Z component in formula (I) and water are mixed to obtain a liquid raw material mixture.
The “liquid raw material mixture” means a mixture containing a solvent, and is a concept including not only a solution but also a slurry or a viscosity. Moreover, the starting material of each element other than molybdenum constituting the catalyst of the present invention is not particularly limited.
 モリブデン成分原料としては、濁度が30NTU以下のモリブデン酸アンモニウムを用いる。濁度の規定は上述の通りである。
 このモリブデン酸アンモニウムにはジモリブデン酸アンモニウム、テトラモリブデン酸アンモニウム、ヘプタモリブデン酸アンモニウム等、複数種類の化合物が存在するが、その中でもヘプタモリブデン酸アンモニウムを使用することが好ましい。
As the molybdenum component raw material, ammonium molybdate having a turbidity of 30 NTU or less is used. The definition of turbidity is as described above.
The ammonium molybdate includes a plurality of types of compounds such as ammonium dimolybdate, ammonium tetramolybdate, and ammonium heptamolybdate. Among them, ammonium heptamolybdate is preferably used.
 ビスマス成分原料としては硝酸ビスマス、次炭酸ビスマス、硫酸ビスマス、酢酸ビスマスなどのビスマス塩、三酸化ビスマス、金属ビスマスなどを用いることができるが、好ましくは硝酸ビスマスを使用した場合に高性能な触媒が得られる傾向がある。ビスマス成分原料の使用量は一般式(I)における(a)対応する原子比率で、0<a≦10となるようにする。 As the bismuth component raw material, bismuth salts such as bismuth nitrate, bismuth carbonate, bismuth sulfate and bismuth acetate, bismuth trioxide, metal bismuth, etc. can be used. There is a tendency to be obtained. The amount of the bismuth component raw material used is the atomic ratio corresponding to (a) in the general formula (I) so that 0 <a ≦ 10.
 好適な調整方法は、30NTU以下であるモリブデン酸アンモニウムと水との混合物を0℃~60℃の条件下で調製し、次いで該混合物とビスマス成分原料、必要に応じて、一般式(I)におけるU、X、Y及びZに対応する元素を含む化合物を混合する。
 モリブデン酸アンモニウムと水を混合する際、モリブデン酸アンモニウムを0℃~60℃、好ましくは20℃~60℃の水と混合すると高性能な触媒が得られる。なお、モリブデン酸アンモニウムを0℃~60℃の条件下にて水と混合しても良いし、いったんモリブデン酸アンモニウムと水との混合物を調製してから混合物の温度を0℃~60℃に調整しても良い。混合する水の温度が60℃を超えるとモリブデン酸アンモニウムの混合物から錯体を形成するアンモニアが脱離しやすくなり、触媒性能が低下する場合がある。逆に温度が低すぎても、モリブデン酸アンモニウムの溶解度が下がり、触媒性能が低下する場合がある。また、モリブデン酸アンモニウムの溶解に時間を要するため触媒の製造効率が低下し、好ましくない。
A suitable preparation method is to prepare a mixture of ammonium molybdate and water of 30 NTU or less under the conditions of 0 ° C. to 60 ° C., and then the mixture and the bismuth component raw material, if necessary, in the general formula (I) A compound containing elements corresponding to U, X, Y and Z is mixed.
When mixing ammonium molybdate and water, a high performance catalyst can be obtained by mixing ammonium molybdate with water at 0 ° C. to 60 ° C., preferably 20 ° C. to 60 ° C. Ammonium molybdate may be mixed with water under conditions of 0 ° C to 60 ° C, and once the mixture of ammonium molybdate and water is prepared, the temperature of the mixture is adjusted to 0 ° C to 60 ° C. You may do it. When the temperature of the water to be mixed exceeds 60 ° C., ammonia that forms a complex is easily detached from the mixture of ammonium molybdate, and the catalyst performance may deteriorate. On the other hand, even if the temperature is too low, the solubility of ammonium molybdate may decrease and the catalyst performance may decrease. Further, since it takes time to dissolve ammonium molybdate, the production efficiency of the catalyst is lowered, which is not preferable.
 なお、好適な調整方法は、上記モリブデン酸アンモニウムと水の混合物に、U成分原料を所望の比率で10℃~80℃の条件下にて水に混合させたもの、U成分原料にZ成分原料を加えたもの、又はU成分の原料に変えてZ成分原料を混合したものを、20℃~90℃の条件下にて1時間程度加熱撹拌した後、ビスマス成分原料を混合した混合物と、必要に応じX成分原料、Y成分原料とを添加して触媒成分を含有する混合物を得る方法である。 A suitable adjustment method is to mix the above-mentioned ammonium molybdate and water with water containing a U component raw material in a desired ratio at a temperature of 10 ° C. to 80 ° C. Or the mixture of the Z component raw material in place of the U component raw material, after heating and stirring for about 1 hour under the condition of 20 ° C. to 90 ° C., and a mixture of the bismuth component raw material and the necessary Accordingly, the X component raw material and the Y component raw material are added to obtain a mixture containing the catalyst component.
 U成分(Co,Ni,Fe)、X成分(Mg,Ca,Mn,Cu,Zn,Ce,Sm)、Y成分(B,P,As,Sb,W,Si,Al)及びZ成分(Na,K,Rb,Cs)の原料としては通常は酸化物あるいは熱によって酸化物になり得る硝酸塩、炭酸塩、有機酸塩、水酸化物等又はそれらの混合物を用いることができる。
 U成分、X成分、Y成分及びZ成分の原料の使用量は、U、X、Y及びZに対応する元素を、一般式(I)における(b)から(e)に対応する原子比率で、0≦b≦40、0≦c≦10、0≦d≦10、0≦e≦6となるようにする。
U component (Co, Ni, Fe), X component (Mg, Ca, Mn, Cu, Zn, Ce, Sm), Y component (B, P, As, Sb, W, Si, Al) and Z component (Na , K, Rb, Cs) are usually oxides, nitrates, carbonates, organic acid salts, hydroxides, etc. that can be converted into oxides by heat, or mixtures thereof.
The amount of raw materials used for the U component, X component, Y component, and Z component is determined by changing the elements corresponding to U, X, Y, and Z at the atomic ratio corresponding to (b) to (e) in the general formula (I). 0 ≦ b ≦ 40, 0 ≦ c ≦ 10, 0 ≦ d ≦ 10, and 0 ≦ e ≦ 6.
 以降、上記方法で調整した液状混合物を、調合液(A)と称する。 Hereinafter, the liquid mixture prepared by the above method is referred to as a preparation liquid (A).
 ここで、調合液(A)は必ずしもすべての触媒構成元素を含有する必要はなく、その一部の元素または一部の量を調合より後の工程で添加してもよい。また、調合液(A)を調合する際に各成分原料を混合する水の量や、混合のために硫酸や硝酸、塩酸、酒石酸、酢酸などの酸を加える場合には、原料が溶解するのに十分な混合物中の酸濃度が例えば5重量%~99重量%の範囲の中で適していないと調合液(A)の形態が粘土状の塊となる場合があり、これは優れた触媒にはならない。調合液(A)の形態としては混合物が優れた触媒として好ましい。 Here, the preparation liquid (A) does not necessarily contain all the catalyst constituent elements, and a part of the elements or a part of the preparation elements may be added in a step after preparation. In addition, when preparing the preparation liquid (A), the amount of water mixed with each component raw material, and when adding an acid such as sulfuric acid, nitric acid, hydrochloric acid, tartaric acid or acetic acid for mixing, the raw material dissolves. If the acid concentration in the mixture is not suitable within the range of 5% to 99% by weight, for example, the composition (A) may form a clay-like mass, which is an excellent catalyst. Must not. As the form of the preparation liquid (A), a mixture is preferable as an excellent catalyst.
工程(b):乾燥工程
工程(b)は、工程(a)で得られた調合液(A)を乾燥し、乾燥粉体を得る工程である。乾燥方法は、調合液(A)を完全に乾燥できる方法であれば特に制限はないが、例えばドラム乾燥、凍結乾燥、噴霧乾燥、蒸発乾固等が挙げられる。これらのうち本発明においては、混合物から短時間に粉体又は顆粒に乾燥することができる噴霧乾燥が特に好ましい。噴霧乾燥の乾燥温度は混合物の濃度、送液速度等によって異なるが概ね乾燥機の出口における温度が70℃~150℃である。また、この際得られる乾燥紛体の平均粒径が10μm~700μmとなるよう乾燥するのが好ましい。こうして乾燥粉体(B)を得る。
Step (b): Drying step Step (b) is a step of drying the preparation liquid (A) obtained in step (a) to obtain a dry powder. The drying method is not particularly limited as long as the preparation liquid (A) can be completely dried, and examples thereof include drum drying, freeze drying, spray drying, and evaporation to dryness. Among these, in the present invention, spray drying which can be dried from the mixture into powder or granules in a short time is particularly preferable. The drying temperature of spray drying varies depending on the concentration of the mixture, the feeding speed, etc., but the temperature at the outlet of the dryer is generally 70 ° C. to 150 ° C. Further, it is preferable to dry so that the average particle size of the dry powder obtained at this time is 10 μm to 700 μm. A dry powder (B) is thus obtained.
工程(c):予備焼成工程
工程(c)は、乾燥紛体(B)を(予備)焼成して予備焼成紛体(C)を得る工程である。乾燥紛体(B)は空気流通下で200℃~600℃で、好ましくは300℃~600℃で焼成することで触媒の成型性、機械的強度、触媒性能が向上する傾向がある。焼成時間は1時間~12時間が好ましい。こうして予備焼成紛体(C)を得る。
Step (c): Pre-baking step Step (c) is a step of obtaining the pre-baked powder (C) by (pre-) baking the dried powder (B). The dry powder (B) tends to improve the moldability, mechanical strength, and catalyst performance of the catalyst by firing at 200 ° C. to 600 ° C., preferably 300 ° C. to 600 ° C. under air flow. The firing time is preferably 1 to 12 hours. Thus, the pre-fired powder (C) is obtained.
工程(d):成型工程
工程(d)は、予備焼成紛体(C)を成型して、成型体(D)を得る工程である。
 成型方法に特に制限はないが円柱状、リング状に成型する際には打錠成型機、押し出し成型機などを用いた方法が好ましい。さらに好ましくは、球状に成型する場合であり、成型機で予備焼成紛体(C)を球形に成型しても良いが、予備焼成紛体(C)(必要により成型助剤、強度向上剤を含む)を、目的とする触媒反応に対して不活性なセラミック等の不活性担体に担持させる方法が好ましい。
Step (d): The molding step (d) is a step of molding the pre-fired powder (C) to obtain a molded body (D).
Although there is no particular limitation on the molding method, a method using a tableting molding machine, an extrusion molding machine or the like is preferable when molding into a cylindrical shape or a ring shape. More preferably, it is a case of forming into a spherical shape, and the pre-fired powder (C) may be formed into a sphere with a molding machine, but the pre-fired powder (C) (including a molding aid and a strength improver if necessary). Is preferably supported on an inert carrier such as a ceramic inert to the target catalytic reaction.
 ここで担持方法としては、転動造粒法、遠心流動コーティング装置を用いる方法、ウォッシュコート方法等が広く知られており、予備焼成紛体(C)を担体に均一に担持できる方法で有れば特に限定されない。触媒の製造効率や調製される触媒の性能を考慮した場合、より好ましくは固定円筒容器の底部に、平らな、あるいは凹凸のある円盤を有する装置で、円盤を高速で回転させることにより、容器内にチャージされた担体を、担体自体の自転運動と公転運動の繰り返しにより激しく撹拌させ、ここに予備焼成紛体(C)並びに必要により、成型助剤及び/または強度向上剤を添加することにより粉体成分を担体に担持させる方法が好ましい。 Here, as the loading method, a rolling granulation method, a method using a centrifugal fluid coating apparatus, a wash coating method, and the like are widely known, so long as the method can uniformly support the pre-fired powder (C) on a carrier. There is no particular limitation. When considering the production efficiency of the catalyst and the performance of the catalyst to be prepared, it is more preferable to rotate the disk at a high speed with a device having a flat or uneven disk at the bottom of the fixed cylindrical container. The carrier charged in the above is vigorously stirred by repeating the rotation and revolution of the carrier itself, and the powder is obtained by adding the pre-fired powder (C) and, if necessary, a molding aid and / or a strength improver. A method of supporting the components on a carrier is preferred.
 なお、担持に際して、バインダーを使用するのが好ましい。用いうるバインダーの具体例としては、水やエタノール、メタノール、プロパノール、多価アルコール、高分子系バインダーのポリビニルアルコール、無機系バインダーのシリカゾル水溶液等が挙げられる。この中でも、エタノール、メタノール、プロパノール、多価アルコールが好ましく、エチレングリコール等のジオールやグリセリン等のトリオール等がより好ましい。
特に、グリセリン水溶液を適量使用することにより成型性が良好となり、機械的強度の高い、高性能な触媒が得られ、具体的にはグリセリンの濃度5重量%以上の水溶液を使用した場合に特に高性能な触媒が得られる傾向がある。
In addition, it is preferable to use a binder at the time of carrying. Specific examples of the binder that can be used include water, ethanol, methanol, propanol, polyhydric alcohol, polyvinyl alcohol as a polymer binder, and an aqueous silica sol solution of an inorganic binder. Among these, ethanol, methanol, propanol, and polyhydric alcohol are preferable, and diols such as ethylene glycol and triols such as glycerin are more preferable.
In particular, by using an appropriate amount of an aqueous glycerin solution, the moldability becomes good and a high-performance catalyst with high mechanical strength is obtained. Specifically, when an aqueous solution having a glycerin concentration of 5% by weight or more is used, it is particularly high. There is a tendency to obtain a high performance catalyst.
 これらバインダーの使用量は、予備焼成紛体(C)100重量部に対して通常2~80重量部である。 The amount of these binders used is usually 2 to 80 parts by weight with respect to 100 parts by weight of the pre-fired powder (C).
 不活性担体は、通常2~8mm程度のものを使用し、これに予備焼成紛体(C)を担持させる。予備焼成紛体(C)の担持量は触媒使用条件、たとえば反応原料の空間速度、原料濃度などの反応条件を考慮して決定されるものであるが、通常、20重量%~80重量%である。ここで担持率は以下の式(i)で表記される。
 式(i)  
担持率(重量%) = [成型に使用した予備焼成紛体(C)の重量/(成型に使用した予備焼成紛体(C)の重量+成型に使用した不活性担体の重量)] ×100
The inert carrier is usually about 2 to 8 mm, on which the pre-fired powder (C) is supported. The amount of the pre-fired powder (C) supported is determined in consideration of the conditions for using the catalyst, for example, the reaction conditions such as the space velocity of the reaction raw material and the raw material concentration, and is usually 20 to 80% by weight. . Here, the supporting rate is expressed by the following formula (i).
Formula (i)
Loading rate (% by weight) = [weight of pre-fired powder (C) used for molding / (weight of pre-fired powder (C) used for molding + weight of inert carrier used for molding)] × 100
工程(e):本焼成工程
工程(e)は、工程(d)で得られた成型体(D)を焼成(本焼成)する工程である。
 成型体(D)は200℃~600℃の温度で1~12時間程度焼成することで触媒活性、選択性が向上する傾向にある。焼成温度は400℃以上600℃以下が好ましく、500℃以上600℃以下がより好ましい。なお、原子比率が異なる触媒の最適な焼成温度は異なるため、触媒の原子比率を変更した場合には、その原子比率において最適な温度で焼成すると優れた性能の触媒が得られる傾向がある。
Step (e): Main firing step Step (e) is a step of firing (main firing) the molded body (D) obtained in step (d).
The molded body (D) tends to improve catalytic activity and selectivity by firing at a temperature of 200 ° C. to 600 ° C. for about 1 to 12 hours. The baking temperature is preferably 400 ° C. or higher and 600 ° C. or lower, and more preferably 500 ° C. or higher and 600 ° C. or lower. In addition, since the optimal calcination temperature of the catalyst with different atomic ratios is different, when the atomic ratio of the catalyst is changed, there is a tendency that a catalyst having excellent performance is obtained when calcination is performed at the optimal temperature at the atomic ratio.
 流通させるガスとしては空気が簡便で好ましいが、その他に不活性ガスとして窒素、二酸化炭素、窒素酸化物含有ガス、アンモニア含有ガス、水素ガスおよびそれらの混合物を使用することも可能である。 As the gas to be circulated, air is simple and preferable. In addition, nitrogen, carbon dioxide, nitrogen oxide-containing gas, ammonia-containing gas, hydrogen gas, and mixtures thereof can be used as the inert gas.
 以下、工程(e)で得られる触媒活性成分が担体に担持された触媒を触媒(E)と称す。触媒(E)の機械的強度は、触媒組成の原子比率によっても大きく影響され、すなわち原子比率を調節することにより生成される化合物の種類や同じ化合物でも結晶構造の相形態が異なることに影響を受ける。
 また、調合工程や乾燥工程で生成される複合金属酸化物粒子の直径や粒子の幾何学的構造、その凝集形態が変化するため、複合金属酸化物中の化合物結晶の強度のようなミクロな物性や例えば予備焼成紛体の粒度分布のようなマクロな物性の変化によっても影響を受ける。各工程の調製方法だけでなく原子比率の影響も含めて総括された物性が最終的に調製される触媒の機械的強度を決定する。
Hereinafter, the catalyst in which the catalytically active component obtained in step (e) is supported on a carrier is referred to as catalyst (E). The mechanical strength of the catalyst (E) is greatly influenced by the atomic ratio of the catalyst composition, that is, the kind of the compound produced by adjusting the atomic ratio and the phase structure of the crystal structure are different even in the same compound. receive.
In addition, since the diameter of the composite metal oxide particles produced in the preparation process and the drying process, the geometrical structure of the particles, and the aggregation form thereof change, the micro physical properties such as the strength of the compound crystals in the composite metal oxide It is also affected by macroscopic physical property changes such as the particle size distribution of the pre-fired powder. The combined physical properties including not only the preparation method of each step but also the influence of the atomic ratio determine the mechanical strength of the catalyst finally prepared.
(アルケンの接触気相酸化反応)
 上述した本発明の触媒の存在下、アルケンの接触気相酸化反応によって不飽和アルデヒドおよび/または不飽和カルボン酸、好ましくはアクロレインおよび/またはアクリル酸、メタクロレインおよび/またはメタクリル酸を高収率で製造することができる。
 対象となるアルケンの接触気相酸化反応は特に制限されないが、好適な態様のひとつは、プロピレンからアクロレインおよび/またはアクリル酸を製造する態様が挙げられる。
 本発明の触媒を使用するアルケンの接触気相酸化反応は、不飽和アルデヒドおよび/または不飽和カルボン酸が製造できる条件であればよいが、好適な反応条件としては、原料ガス組成として1容量%~10容量%のアルケン、5容量%~18容量%の分子状酸素、0容量%~60容量%の水蒸気及び20容量%~70容量%の不活性ガス、例えば窒素、炭酸ガスなどからなる混合ガスを、前記のようにして調製された触媒上に250℃~450℃の温度範囲及び常圧~10気圧の圧力下、アルケンの供給負荷を60hr-1~200hr-1の空間速度で導入する反応条件である。
(Alkene catalytic gas phase oxidation reaction)
In the presence of the catalyst of the present invention described above, unsaturated aldehydes and / or unsaturated carboxylic acids, preferably acrolein and / or acrylic acid, methacrolein and / or methacrylic acid are obtained in high yield by catalytic vapor phase oxidation of alkenes. Can be manufactured.
The catalytic gas phase oxidation reaction of the target alkene is not particularly limited, but one preferred embodiment is an embodiment in which acrolein and / or acrylic acid is produced from propylene.
The catalytic gas phase oxidation reaction of the alkene using the catalyst of the present invention may be performed under any conditions that can produce an unsaturated aldehyde and / or an unsaturated carboxylic acid. Suitable reaction conditions include 1% by volume as a raw material gas composition. Mixture consisting of ~ 10% alkene, 5% ~ 18% molecular oxygen, 0% ~ 60% water vapor and 20% ~ 70% inert gas such as nitrogen, carbon dioxide, etc. the gas, under pressure of said manner on the catalyst prepared in 250 ° C.-450 ° C. temperature and normal pressure to 10 atmospheres, introducing supply load alkene at a space velocity of 60 hr -1 ~ 200 hr -1 Reaction conditions.
 また、本発明をより効果的に発揮するには100hr-1~200hr-1の空間速度とするのが好ましく、さらには120hr-1~200hr-1の空間速度で実行するのがより好ましい。ここで、アルケン空間速度(SV)とは原料負荷を意味し、例えばアルケン空間速度(SV)100hr-1で導入するとは、1時間あたり単位触媒体積の100倍(標準状態換算)のアルケンを供給し気相接触酸化反応を実行することである。本発明において、アルケンとは、その分子内脱水反応においてアルケンを生じるアルコール類、例えばターシャリーブタノールも含めたものとする。 Also, to more effectively exhibit the present invention is preferably a space velocity of 100 hr -1 ~ 200 hr -1, more is more preferable to perform at a space velocity of 120hr -1 ~ 200hr -1. Here, the alkene space velocity (SV 0 ) means a raw material load. For example, when the alkene space velocity (SV 0 ) is introduced at 100 hr −1 , the alkene is 100 times the unit catalyst volume per hour (standard state conversion). And performing a gas phase catalytic oxidation reaction. In the present invention, the alkene includes alcohols that generate alkene in the intramolecular dehydration reaction, such as tertiary butanol.
 以下、具体例を挙げて実施例を示したが、本発明はその趣旨を逸脱しない限り実施例に限定されるものではない。 Hereinafter, examples have been shown with specific examples, but the present invention is not limited to the examples without departing from the gist thereof.
実施例1:触媒1の製造
 濁度が6NTUであるヘプタモリブデン酸アンモニウム1000gを50℃に加温した純水3800gに混合させ、混合物(溶液)とした。次に、硝酸カリウム4.5gを純水51.2gに混合させて、上記混合物(溶液)に加えた。次に、硝酸第二鉄333.7g、硝酸コバルト714.3g及び硝酸ニッケル384.3gを60℃に加温した純水759.1mlに溶解させた。これらの溶液を、撹拌しながら徐々に混合した。続いて純水323.1mlに硝酸(60重量%)97.4gを加えて硝酸ビスマス382.4gを加え完全溶解させた溶液を上記溶液に加え、撹拌混合し、液状原料混合物を得た。
 得られた液状原料混合物をスプレードライ法にて乾燥し、得られた乾燥紛体を最高温度440℃で6時間予備焼成し、予備焼成紛体を得た。
 予備焼成紛体に対して5重量%分の結晶性セルロースを添加し、十分混合した後、転動造粒法にてバインダーとして33重量%グリセリン溶液を用い、シリカ、アルミナを主成分とした直径4.5mmの不活性な球状担体に、担持量が50重量%となるように球状に担持成型し、成型体を得た。次に510℃で4時間焼成を行って、本発明の平均粒径5.2mmの球状の触媒1を得た。
 仕込み原料から計算される触媒1における触媒活性成分は、次の原子比率を有する複合金属酸化物であった。
 Mo:Bi:Fe:Co:Ni:K=12:1.7:1.8:5.2:2.8:0.1
Example 1 Production of Catalyst 1 1000 g of ammonium heptamolybdate having a turbidity of 6 NTU was mixed with 3800 g of pure water heated to 50 ° C. to obtain a mixture (solution). Next, 4.5 g of potassium nitrate was mixed with 51.2 g of pure water and added to the above mixture (solution). Next, 333.7 g of ferric nitrate, 714.3 g of cobalt nitrate, and 384.3 g of nickel nitrate were dissolved in 759.1 ml of pure water heated to 60 ° C. These solutions were mixed gradually with stirring. Subsequently, 97.4 g of nitric acid (60% by weight) was added to 323.1 ml of pure water, and 382.4 g of bismuth nitrate was added and completely dissolved. The solution was stirred and mixed to obtain a liquid raw material mixture.
The obtained liquid raw material mixture was dried by a spray drying method, and the obtained dry powder was pre-fired at a maximum temperature of 440 ° C. for 6 hours to obtain a pre-fired powder.
After adding 5% by weight of crystalline cellulose to the pre-fired powder and mixing well, using a 33% by weight glycerin solution as a binder by the tumbling granulation method, the diameter is 4 based on silica and alumina. A spherical shaped support was formed on a 5 mm inert spherical carrier so that the supported amount was 50% by weight to obtain a molded body. Next, calcination was performed at 510 ° C. for 4 hours to obtain a spherical catalyst 1 having an average particle diameter of 5.2 mm of the present invention.
The catalytically active component in the catalyst 1 calculated from the charged raw materials was a composite metal oxide having the following atomic ratio.
Mo: Bi: Fe: Co: Ni: K = 12: 1.7: 1.8: 5.2: 2.8: 0.1
比較例1:触媒2の製造
 触媒1におけるヘプタモリブデン酸アンモニウムと水の混合物の濁度が47NTUのものを使用した以外は、実施例1と同様にして比較用の触媒2を得た。
Comparative Example 1 Production of Catalyst 2 A comparative catalyst 2 was obtained in the same manner as in Example 1 except that the turbidity of the mixture of ammonium heptamolybdate and water in Catalyst 1 was 47 NTU.
比較例2:触媒3の製造
 触媒1におけるヘプタモリブデン酸アンモニウムと水の混合物の濁度が105NTUのものを使用した以外は、実施例1と同様にして比較用の触媒3を得た。
Comparative Example 2 Production of Catalyst 3 A comparative catalyst 3 was obtained in the same manner as in Example 1 except that the turbidity of the mixture of ammonium heptamolybdate and water in Catalyst 1 was 105 NTU.
実施例2
 熱媒体としてアルミナ粉末を空気により流動させるためのジャケットにおいて、内径22.2mmのステンレス製反応器に触媒1を68ml充填し、反応浴温度を327℃にした。ここに原料モル比がプロピレン:酸素:窒素:水=1:1.7:6.4:3.0となるようにプロピレン、空気、水の供給量を設定したガスを空間速度862h-1で酸化反応器内へ導入を実施し、アクロレイン収率、アクリル酸収率を求めた結果を表1に示す。
Example 2
In a jacket for causing alumina powder to flow by air as a heat medium, 68 ml of catalyst 1 was filled in a stainless steel reactor having an inner diameter of 22.2 mm, and the reaction bath temperature was 327 ° C. Here, a gas in which the supply amounts of propylene, air, and water were set so that the raw material molar ratio was propylene: oxygen: nitrogen: water = 1: 1.7: 6.4: 3.0 at a space velocity of 862 h −1 Table 1 shows the results of introduction into the oxidation reactor and determination of the acrolein yield and acrylic acid yield.
比較例3
 実施例2において触媒2へ変更した以外は同様にプロピレンの酸化反応を実施し、アクロレイン収率、アクリル酸収率を求めた結果を表1に示す。
Comparative Example 3
Table 1 shows the results of carrying out the oxidation reaction of propylene in the same manner as in Example 2 except that the catalyst was changed to the catalyst 2, and obtaining the acrolein yield and the acrylic acid yield.
比較例4
 実施例2において触媒3へ変更した以外は同様にプロピレンの酸化反応を実施し、アクロレイン収率、アクリル酸収率を求めた結果を表1に示す。
Comparative Example 4
Table 1 shows the results of carrying out the oxidation reaction of propylene in the same manner as in Example 2 except that the catalyst 3 was changed to the acrolein yield and acrylic acid yield.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 このように、本発明の技術を用いることによって不飽和アルデヒドおよび/または不飽和カルボン酸を製造する方法において、不飽和アルデヒドおよび/または不飽和カルボン酸を高収率で製造することが可能となる。 Thus, in the method for producing an unsaturated aldehyde and / or unsaturated carboxylic acid by using the technique of the present invention, it becomes possible to produce the unsaturated aldehyde and / or unsaturated carboxylic acid in a high yield. .

Claims (9)

  1.  モリブデン及びビスマスを必須の触媒活性成分とする不飽和アルデヒドおよび/または不飽和カルボン酸製造用触媒であって、触媒活性成分の組成が下記一般式(I)で表され、モリブデン原料として使用するモリブデン酸アンモニウムと水の混合物の濁度が30NTU以下であることを特徴とする不飽和アルデヒドおよび/または不飽和カルボン酸製造用触媒。
      Mo12 Bi U X Y Z O (I)
    (ここで、Mo、Bi、Oはそれぞれ、モリブデン、ビスマスおよび酸素を示し、Uはコバルト、ニッケル及び鉄から選ばれる少なくとも1種の元素、Xはマグネシウム(Mg)、カルシウム(Ca)、マンガン(Mn)、銅(Cu)、亜鉛(Zn)、セリウム(Ce)及びサマリウム(Sm)からなる群から選ばれる少なくとも1種の元素であり、Yはホウ素(B)、リン(P)、砒素(As)、アンチモン(Sb)、タングステン(W)、ケイ素(Si)及びアルミニウム(Al)からなる群から選ばれる少なくとも1種の元素であり、Zはナトリウム(Na)、カリウム(K)、ルビジウム(Rb)及びセシウム(Cs)からなる群より選ばれる少なくとも1種の元素をそれぞれ示す。(a)から(e)は各成分の原子比率を表し、0<a≦10、0≦b≦40、0≦c≦10、0≦d≦10、0≦e≦6であり、fは触媒成分の酸化度で決定される数値である。)
    Molybdenum, which is a catalyst for producing unsaturated aldehydes and / or unsaturated carboxylic acids having molybdenum and bismuth as essential catalytic active components, wherein the composition of the catalytic active components is represented by the following general formula (I) and used as a molybdenum raw material A catalyst for producing an unsaturated aldehyde and / or an unsaturated carboxylic acid, wherein the turbidity of a mixture of ammonium ammonium and water is 30 NTU or less.
    Mo 12 Bi a U b X c Y d Z e O f (I)
    (Where Mo, Bi, and O represent molybdenum, bismuth, and oxygen, U is at least one element selected from cobalt, nickel, and iron, and X is magnesium (Mg), calcium (Ca), manganese ( Mn), copper (Cu), zinc (Zn), cerium (Ce), and samarium (Sm), at least one element selected from the group consisting of boron (B), phosphorus (P), arsenic (Y) As), antimony (Sb), tungsten (W), silicon (Si) and at least one element selected from the group consisting of aluminum (Al), and Z is sodium (Na), potassium (K), rubidium ( Rb) and at least one element selected from the group consisting of cesium (Cs) are shown respectively, wherein (a) to (e) represent the atomic ratio of each component, and 0 a ≦ 10,0 ≦ b ≦ 40,0 ≦ c ≦ 10,0 a ≦ d ≦ 10,0 ≦ e ≦ 6, f is a numerical value determined by degree of oxidation of the catalyst component.)
  2.  前記触媒活性成分が、不活性担体に担持されてなる請求項1に記載の触媒。 The catalyst according to claim 1, wherein the catalytically active component is supported on an inert carrier.
  3.  モリブデン酸アンモニウムと水との混合物を0℃~60℃の条件下で調製し、次いで前記混合物と、ビスマス成分原料と、必要に応じて一般式(I)におけるU成分、X成分、Y成分及びZ成分の原料からなる群から選択される1種以上の成分原料及び水と、を混合し、液状原料混合物を得る原料調整工程と、
     得られた液状原料混合物を乾燥して乾燥粉体を得る乾燥工程と、
     得られた乾燥粉体を焼成する焼成工程と、
    を含むことを特徴とする請求項1または2に記載の不飽和アルデヒドおよび/または不飽和カルボン酸製造用触媒の製造方法。
    A mixture of ammonium molybdate and water is prepared under conditions of 0 ° C. to 60 ° C., and then the mixture, the bismuth component raw material, and, if necessary, the U component, X component, Y component in the general formula (I), and A raw material adjustment step of mixing one or more component raw materials selected from the group consisting of Z component raw materials and water to obtain a liquid raw material mixture;
    A drying step of drying the obtained liquid raw material mixture to obtain a dry powder;
    A firing step of firing the obtained dry powder;
    The method for producing an unsaturated aldehyde and / or unsaturated carboxylic acid production catalyst according to claim 1 or 2, characterized by comprising:
  4.  モリブデン酸アンモニウムと水との混合物の調製を、20℃~60℃の条件下で行う請求項3に記載の触媒の製造方法。 The method for producing a catalyst according to claim 3, wherein the mixture of ammonium molybdate and water is prepared at 20 ° C to 60 ° C.
  5.  焼成工程が、前記乾燥紛体を焼成して予備焼成紛体を得る予備焼成工程と、当該予備焼成紛体を成型して成型体を得る成型工程と、当該成型体を焼成する本焼成工程と、からなる請求項3に記載の触媒の製造方法。 The firing step includes a preliminary firing step of firing the dried powder to obtain a pre-fired powder, a molding step of molding the pre-fired powder to obtain a molded body, and a main firing step of firing the molded body. A method for producing the catalyst according to claim 3.
  6.  前記予備焼成工程において、乾燥紛体を200℃~600℃で焼成する請求項5に記載の触媒の製造方法。 The method for producing a catalyst according to claim 5, wherein in the preliminary calcination step, the dried powder is calcined at 200 ° C to 600 ° C.
  7.  前記成型工程において、予備焼成紛体と不活性担体とを混合して成型する請求項5に記載の触媒の製造方法。 The method for producing a catalyst according to claim 5, wherein in the molding step, the pre-fired powder and an inert carrier are mixed and molded.
  8.  前記本焼成工程において、200℃~600℃で焼成を行う請求項5から7のいずれかに記載の触媒の製造方法。 The method for producing a catalyst according to any one of claims 5 to 7, wherein in the main calcination step, calcination is performed at 200 ° C to 600 ° C.
  9.  請求項1に記載の触媒の存在下、アルケンを気相接触酸化することを特徴とする不飽和アルデヒドおよび/または不飽和カルボン酸の製造方法。 A process for producing an unsaturated aldehyde and / or an unsaturated carboxylic acid, characterized by subjecting an alkene to gas phase catalytic oxidation in the presence of the catalyst according to claim 1.
PCT/JP2015/057954 2015-03-17 2015-03-17 Catalyst for production of unsaturated aldehyde and/or unsaturated carboxylic acid, method for producing same, and method for producing unsaturated aldehyde and/or unsaturated carboxylic acid WO2016147324A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/057954 WO2016147324A1 (en) 2015-03-17 2015-03-17 Catalyst for production of unsaturated aldehyde and/or unsaturated carboxylic acid, method for producing same, and method for producing unsaturated aldehyde and/or unsaturated carboxylic acid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/057954 WO2016147324A1 (en) 2015-03-17 2015-03-17 Catalyst for production of unsaturated aldehyde and/or unsaturated carboxylic acid, method for producing same, and method for producing unsaturated aldehyde and/or unsaturated carboxylic acid

Publications (1)

Publication Number Publication Date
WO2016147324A1 true WO2016147324A1 (en) 2016-09-22

Family

ID=56919736

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/057954 WO2016147324A1 (en) 2015-03-17 2015-03-17 Catalyst for production of unsaturated aldehyde and/or unsaturated carboxylic acid, method for producing same, and method for producing unsaturated aldehyde and/or unsaturated carboxylic acid

Country Status (1)

Country Link
WO (1) WO2016147324A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019141534A1 (en) 2018-01-19 2019-07-25 Basf Se Multi-metal oxide materials containing mo, bi, fe and cu
WO2024037905A1 (en) 2022-08-16 2024-02-22 Basf Se Method for producing bulk catalyst shaped bodies for gas-phase oxidation of an alkene and/or an alcohol to form an a,b-unsaturated aldehyde and/or an a,b-unsaturated carboxylic acid

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000169149A (en) * 1998-12-03 2000-06-20 Basf Ag Multiple metal oxide material, its production, its use, catalyst containing the same, and use method of catalyst
JP2010517761A (en) * 2007-02-05 2010-05-27 サウディ ベーシック インダストリーズ コーポレイション Catalysts for the oxidation of saturated and unsaturated aldehydes to unsaturated carboxylic acids and methods for their production and use
JP2013023414A (en) * 2011-07-21 2013-02-04 Sumitomo Metal Mining Co Ltd Easily soluble molybdenum trioxide
WO2015008815A1 (en) * 2013-07-18 2015-01-22 日本化薬株式会社 Method for producing unsaturated aldehyde and/or unsaturated carboxylic acid

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000169149A (en) * 1998-12-03 2000-06-20 Basf Ag Multiple metal oxide material, its production, its use, catalyst containing the same, and use method of catalyst
JP2010517761A (en) * 2007-02-05 2010-05-27 サウディ ベーシック インダストリーズ コーポレイション Catalysts for the oxidation of saturated and unsaturated aldehydes to unsaturated carboxylic acids and methods for their production and use
JP2013023414A (en) * 2011-07-21 2013-02-04 Sumitomo Metal Mining Co Ltd Easily soluble molybdenum trioxide
WO2015008815A1 (en) * 2013-07-18 2015-01-22 日本化薬株式会社 Method for producing unsaturated aldehyde and/or unsaturated carboxylic acid

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019141534A1 (en) 2018-01-19 2019-07-25 Basf Se Multi-metal oxide materials containing mo, bi, fe and cu
DE102018200841A1 (en) 2018-01-19 2019-07-25 Basf Se Mo, Bi, Fe and Cu-containing multimetal oxide materials
US10682631B2 (en) 2018-01-19 2020-06-16 Basf Se Multimetal oxide compositions comprising Mo, Bi, Fe and Cu
WO2024037905A1 (en) 2022-08-16 2024-02-22 Basf Se Method for producing bulk catalyst shaped bodies for gas-phase oxidation of an alkene and/or an alcohol to form an a,b-unsaturated aldehyde and/or an a,b-unsaturated carboxylic acid

Similar Documents

Publication Publication Date Title
JP6294883B2 (en) Process for producing unsaturated aldehyde and / or unsaturated carboxylic acid
JP5951121B2 (en) Catalyst for producing unsaturated aldehyde and / or unsaturated carboxylic acid, method for producing the same, and method for producing unsaturated aldehyde and / or unsaturated carboxylic acid
JP6674441B2 (en) Catalyst for producing unsaturated aldehyde and / or unsaturated carboxylic acid, method for producing the same, and method for producing unsaturated aldehyde and / or unsaturated carboxylic acid
KR101819465B1 (en) Method for manufacturing unsaturated aldehyde and/or unsaturated carboxylic acid
JP6472107B2 (en) Catalyst for synthesizing unsaturated aldehyde and / or unsaturated carboxylic acid, and method for producing unsaturated aldehyde and / or unsaturated carboxylic acid using the catalyst
JP6694884B2 (en) Process for producing unsaturated aldehyde and / or unsaturated carboxylic acid
JP5388897B2 (en) Catalyst for producing unsaturated aldehyde and / or unsaturated carboxylic acid, and method for producing unsaturated aldehyde and / or unsaturated carboxylic acid using the catalyst
WO2016147324A1 (en) Catalyst for production of unsaturated aldehyde and/or unsaturated carboxylic acid, method for producing same, and method for producing unsaturated aldehyde and/or unsaturated carboxylic acid
JP2016168588A (en) Catalyst for manufacturing methacrylic acid
JP6238354B2 (en) Catalyst for producing unsaturated aldehyde and / or unsaturated carboxylic acid, method for producing the same, and method for producing unsaturated aldehyde and / or unsaturated carboxylic acid
JP6487242B2 (en) Method for producing acrylic acid production catalyst, catalyst therefor, and method for producing acrylic acid using the catalyst
JP2011102247A (en) Method of producing acrolein and/or acrylic acid

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15885420

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 15885420

Country of ref document: EP

Kind code of ref document: A1