JP6487242B2 - Method for producing acrylic acid production catalyst, catalyst therefor, and method for producing acrylic acid using the catalyst - Google Patents

Method for producing acrylic acid production catalyst, catalyst therefor, and method for producing acrylic acid using the catalyst Download PDF

Info

Publication number
JP6487242B2
JP6487242B2 JP2015055374A JP2015055374A JP6487242B2 JP 6487242 B2 JP6487242 B2 JP 6487242B2 JP 2015055374 A JP2015055374 A JP 2015055374A JP 2015055374 A JP2015055374 A JP 2015055374A JP 6487242 B2 JP6487242 B2 JP 6487242B2
Authority
JP
Japan
Prior art keywords
catalyst
acrylic acid
mass
acrolein
producing acrylic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015055374A
Other languages
Japanese (ja)
Other versions
JP2016174999A (en
Inventor
徳彦 井口
徳彦 井口
俊哉 西口
俊哉 西口
昌秀 島
昌秀 島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Shokubai Co Ltd
Original Assignee
Nippon Shokubai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Shokubai Co Ltd filed Critical Nippon Shokubai Co Ltd
Priority to JP2015055374A priority Critical patent/JP6487242B2/en
Publication of JP2016174999A publication Critical patent/JP2016174999A/en
Application granted granted Critical
Publication of JP6487242B2 publication Critical patent/JP6487242B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明はプロパンおよび/またはアクロレインを分子状酸素または分子状酸素含有ガスの存在下で接触気相酸化してアクリル酸を製造するのに好適な触媒の製造方法とその触媒、ならびに該触媒を用いたアクリル酸の製造に関する。   The present invention relates to a method for producing a catalyst suitable for producing acrylic acid by catalytic gas phase oxidation of propane and / or acrolein in the presence of molecular oxygen or a molecular oxygen-containing gas, and the catalyst, and the catalyst. Related to the production of acrylic acid.

アクリル酸は、各種合成樹脂、塗料、可塑剤の原料として工業的に重要であり、近年では特に、吸水性樹脂の原料としてその重要性が高まっている。一般的にアクリル酸は、プロピレンを分子状酸素、または分子状酸素含有ガスの存在下で接触気相酸化してアクロレインを製造し、さらに得られたアクロレインを分子状酸素、または分子状酸素含有ガスの存在下で接触気相酸化してアクリル酸とする二段酸化方法で製造される。   Acrylic acid is industrially important as a raw material for various synthetic resins, paints, and plasticizers, and in recent years, its importance as a raw material for water-absorbing resins is increasing. Generally, acrylic acid is produced by catalytic vapor phase oxidation of propylene in the presence of molecular oxygen or a molecular oxygen-containing gas to produce acrolein, and the resulting acrolein is converted to molecular oxygen or a molecular oxygen-containing gas. It is produced by a two-stage oxidation method in which it is subjected to catalytic gas phase oxidation to acrylic acid in the presence of.

また、他の製法として、アクリル酸の製造コストを下げることを目的に、近年では、プロピレンよりも安価なプロパンを原料とする方法も開発が進んでおり、プロパンを分子状酸素、または分子状酸素含有ガスの存在下、一段で接触気相酸化してアクリル酸とする方法についても、種々の提案がなされている。   As another production method, in order to reduce the production cost of acrylic acid, in recent years, a method using propane, which is cheaper than propylene, as a raw material has been developed, and propane is molecular oxygen or molecular oxygen. Various proposals have also been made for a method of catalytic vapor phase oxidation to acrylic acid in a single step in the presence of a contained gas.

このような、プロパンおよび/またはアクロレインを分子状酸素、または分子状酸素含有ガスの存在下で接触気相酸化してアクリル酸を製造するための触媒として、モリブデン−バナジウム系を中心とした複合酸化物触媒およびその製造方法の検討がなされているが、目的とするアクリル酸の選択率と収率等の触媒性能は必ずしも充分なものではなく、触媒性能の改善を目的として各社から様々な提案がされている。   As a catalyst for producing acrylic acid by catalytic gas phase oxidation of propane and / or acrolein in the presence of molecular oxygen or molecular oxygen-containing gas, composite oxidation centered on molybdenum-vanadium system However, catalyst performance such as selectivity and yield of the target acrylic acid is not always satisfactory, and various proposals have been made by various companies for the purpose of improving the catalyst performance. Has been.

例えば、特許文献1では、出発原料混合液を噴霧乾燥し、次いで400℃で焼成した焼成体を、液状結合剤として、水20〜90重量%及び、常圧での沸点又は昇華温度が100℃より高い有機化合物10〜80重量%からなる溶液を使用して担体に担持させる方法が開示されている。   For example, in Patent Document 1, the starting material mixture is spray-dried and then calcined at 400 ° C., and the liquid binder is 20 to 90% by weight of water, and the boiling point or sublimation temperature at normal pressure is 100 ° C. A method of supporting a carrier using a solution composed of 10 to 80% by weight of a higher organic compound is disclosed.

特許文献2では、触媒活性元素またはこれらの化合物を含有する水溶液または水分散体を乾燥し、得られた乾燥粉体を焼成し、得られた触媒活性成分の粉体を、ジオール類またはトリオール類をバインダーとして用いて転動造粒機により担体に担持させる方法が開示されている。   In Patent Document 2, an aqueous solution or aqueous dispersion containing a catalytically active element or a compound thereof is dried, the obtained dry powder is fired, and the obtained powder of the catalytically active component is converted into diols or triols. A method is disclosed in which the carrier is supported on a carrier by a rolling granulator using the binder as a binder.

特許文献3では、各成分元素の供給源化合物を水性媒体系にて有機酸の存在下に一体化させ、得られる一体化物の水溶液又は分散液を乾燥して粉体を調製し、該粉末を成形した成形物を焼成する方法が開示されている。   In Patent Document 3, a source compound of each component element is integrated in the presence of an organic acid in an aqueous medium system, and an aqueous solution or dispersion of the resulting integrated product is dried to prepare a powder. A method for firing the molded article is disclosed.

特開平8−252464号公報JP-A-8-252464 特開平8−299797号公報JP-A-8-299797 特開2005−305421号公報JP-A-2005-305421

アクリル酸は全世界で現在数百万トン/年の規模で生産されており、たとえ0.1%でも工業的規模で収率が向上すれば経済的に非常に大きなメリットがもたらされる。故に、工業的実用触媒として、更なるアクリル酸収率の向上や高生産性が望まれている。   Acrylic acid is currently produced on a scale of millions of tons / year worldwide, and even if it is 0.1%, if the yield is improved on an industrial scale, a very large economic advantage is brought about. Therefore, further improvement in acrylic acid yield and high productivity are desired as industrial practical catalysts.

かくして、本発明の目的は、プロパンおよび/またはアクロレインからアクリル酸を製造するに際し、触媒活性、選択性等の触媒性能および触媒寿命に優れたアクリル酸を製造するのに好適な触媒の製造方法とその触媒、ならびに該触媒を用いたアクリル酸の製造方法を提供することにある。   Thus, an object of the present invention is to provide a catalyst production method suitable for producing acrylic acid excellent in catalyst performance such as catalyst activity and selectivity and catalyst life when producing acrylic acid from propane and / or acrolein. An object of the present invention is to provide a catalyst and a method for producing acrylic acid using the catalyst.

本発明者らは、上記課題を解決すべく鋭意検討を行った結果、モリブデンおよびバナジウムを必須成分として含有するプロパンおよび/またはアクロレインを分子状酸素または分子状酸素含有ガスの存在下で接触気相酸化してアクリル酸を製造するための触媒の製造方法であって、アミノ酸を添加することで、上記課題が容易に解決できることを見出し、本発明に至った。   As a result of intensive studies to solve the above-mentioned problems, the inventors of the present invention have developed propane and / or acrolein containing molybdenum and vanadium as essential components in the presence of molecular oxygen or a molecular oxygen-containing gas. A method for producing a catalyst for producing acrylic acid by oxidation, and it has been found that the above problems can be easily solved by adding an amino acid, and the present invention has been achieved.

本発明によれば、上記課題の解決により、プロパンおよび/またはアクロレインを分子状酸素により接触気相酸化してアクリル酸を製造する際に、長期間にわたり安定して高収率で製造できる触媒を提供することができ、該触媒を用いてアクリル酸を長期間、高収率で製造することができる。   According to the present invention, by solving the above problems, a catalyst that can be stably produced in a high yield over a long period of time when producing acrylic acid by catalytic gas phase oxidation of propane and / or acrolein with molecular oxygen is provided. Acrylic acid can be produced in a high yield over a long period of time using the catalyst.

以下、本発明にかかる触媒の製造方法および該触媒を用いたアクリル酸の製造方法について詳しく説明するが、本発明の範囲はこれらの説明に拘束されることはなく、以下の例示以外についても本発明の趣旨を損なわない範囲で適宜変更し、実施することができる。   Hereinafter, although the manufacturing method of the catalyst concerning this invention and the manufacturing method of acrylic acid using this catalyst are demonstrated in detail, the scope of the present invention is not restrained by these description, and it is not limited to the following illustrations. The present invention can be changed and implemented as appropriate without departing from the spirit of the invention.

本発明で製造されるアクリル酸を製造するための触媒は、その触媒活性成分の組成としては、下記一般式(1)で表わされるものが好ましい。
MoaVbWcAdBeCfDgOh(1)
(式中、Moはモリブデン、Vはバナジウム、Wはタングステン、Aはアンチモン、スズから選ばれる少なくとも1種の元素、Bはクロム、マンガン、鉄、コバルト、ニッケル、銅、亜鉛、ビスマス、テルルおよびニオブから選ばれる少なくとも1種の元素、Cはアルカリ金属およびアルカリ土類金属から選ばれる少なくとも1種の元素、Dはシリコン、アルミニウム、チタン、ジルコニウムおよびセリウムから選ばれる少なくとも1種の元素、そしてOは酸素であり、a、b、c、d、e、f、gおよびhは、Mo、V、W、A、B、C、DおよびOの原子数を表し、a=12のとき、2≦b≦14、0≦c≦10、0≦d≦5、0≦e≦12、0≦f≦5、0≦g≦50であり、hは各々の元素の酸化状態によって定まる数値である)
上記触媒活性成分は、この種の調製に一般に用いられている原料を用いることができ、例えば、各元素の酸化物、水酸化物、アンモニウム塩、硝酸塩、炭酸塩、硫酸塩、有機酸塩などの塩類や、それらの水溶液、ゾルなど、あるいは、複数の元素を含む化合物などを用いることもできる。
The catalyst for producing acrylic acid produced in the present invention is preferably represented by the following general formula (1) as the composition of the catalytically active component.
MoaVbWcAdBeCfDgOh (1)
(Wherein Mo is molybdenum, V is vanadium, W is tungsten, A is at least one element selected from antimony and tin, B is chromium, manganese, iron, cobalt, nickel, copper, zinc, bismuth, tellurium and At least one element selected from niobium, C is at least one element selected from alkali metals and alkaline earth metals, D is at least one element selected from silicon, aluminum, titanium, zirconium and cerium, and O Is oxygen, a, b, c, d, e, f, g and h represent the number of atoms of Mo, V, W, A, B, C, D and O, and when a = 12, 2 ≤ b ≤ 14, 0 ≤ c ≤ 10, 0 ≤ d ≤ 5, 0 ≤ e ≤ 12, 0 ≤ f ≤ 5, 0 ≤ g ≤ 50, and h is a numerical value determined by the oxidation state of each element. )
As the catalytic active component, raw materials generally used for this kind of preparation can be used. For example, oxides, hydroxides, ammonium salts, nitrates, carbonates, sulfates, organic acid salts of the respective elements, etc. These salts, aqueous solutions or sols thereof, or compounds containing a plurality of elements can also be used.

これら出発原料を、水等の溶媒に溶解あるいは懸濁させることにより、出発原料混合液を調製する(以後、「原料混合液調製工程」と称する場合がある)。その際の調製方法は、上記出発原料を順次水に混合する方法や、出発原料の種類に応じて複数の水溶液または水性スラリーを調製し、これらを順次混合する方法など、この種の触媒製造に一般的に用いられる方法により調製すればよい。出発原料の混合順序、温度、圧力、pH等については特に制限はなく、出発原料に応じて適宜選択できる。また、適宜、硝酸、アンモニア、硝酸アンモニウム、炭酸アンモニウムなどの含窒素化合物を加えて、pHは4〜10の範囲内で制御するのが好ましい。   A starting material mixture is prepared by dissolving or suspending these starting materials in a solvent such as water (hereinafter, referred to as “raw material mixture preparation step”). The preparation method at that time is for the production of this type of catalyst, such as a method of sequentially mixing the above starting materials into water or a method of preparing a plurality of aqueous solutions or aqueous slurries according to the type of starting materials and sequentially mixing them. What is necessary is just to prepare by the method generally used. There is no restriction | limiting in particular about the mixing order of starting materials, temperature, pressure, pH, etc., According to a starting material, it can select suitably. Moreover, it is preferable to control pH within the range of 4-10, adding nitrogen-containing compounds, such as nitric acid, ammonia, ammonium nitrate, and ammonium carbonate suitably.

次に、得られた出発原料混合液を乾燥させて乾燥物(以下、「触媒前駆体」ともいう)を得る(以後、「原料混合液乾燥工程」と称する場合がある)。具体的には、スプレードライヤー、ドラムドライヤー等を用いて粉末状の乾燥物を得る方法、箱型乾燥機、トンネル型乾燥機等を用いて気流中で加熱してブロック状またはフレーク状の乾燥物を得る方法、一旦、出発原料混合液を濃縮、蒸発乾固してケーキ状の固形物を得て、この固形物をさらに上記加熱処理する方法等が挙げられる。また、減圧による乾燥方法として、例えば、真空乾燥機を用いて、ブロック状または粉末状の乾燥物を得ることもできる。   Next, the obtained starting raw material mixture is dried to obtain a dried product (hereinafter also referred to as “catalyst precursor”) (hereinafter, sometimes referred to as “raw material mixture drying step”). Specifically, a method of obtaining a powdery dried product using a spray dryer, a drum dryer or the like, a block-type or flake-type dried product heated in an air stream using a box-type dryer, a tunnel-type dryer or the like And a method of once concentrating the starting raw material mixture and evaporating to dryness to obtain a cake-like solid, and further subjecting this solid to the above heat treatment. Moreover, as a drying method by reduced pressure, for example, using a vacuum dryer, a block or powdery dried product can be obtained.

得られた乾燥物は、必要に応じて適当な粒度の粉体を得るための粉砕工程や分級工程を経て、続く成形工程に送られる。その際の前記乾燥物の粉体粒度は、特に限定されないが、成形性に優れる点で500μm以下、好ましくは200μm以下、更には100μm以下が好ましい。   The obtained dried product is sent to a subsequent molding step through a pulverization step and a classification step for obtaining a powder having an appropriate particle size as required. The powder particle size of the dried product at that time is not particularly limited, but is preferably 500 μm or less, preferably 200 μm or less, and more preferably 100 μm or less in terms of excellent moldability.

乾燥物を成形する成形工程(以後、単に「成形工程」と称する場合がある)では、その成形方法として、打錠成形機や押出し成形機により一定の形状とする成形法や、一定の形状を有する任意の不活性担体上に担持する造粒法が挙げられる。他にも、出発原料混合液を乾燥させずに液状で用い、長時間かけて加熱しながら所望の担体に吸収あるいは塗布して乾燥担持させる蒸発乾固法により製造することもできる。これらの中でも特に、特開昭63−200839号公報に記載の遠心流動コーティング法や、さらには特開2004−136267号公報に記載のロッキングミキサー法を用いて不活性担体に担持する造粒法が好ましい。   In a molding process for molding a dried product (hereinafter, sometimes simply referred to as “molding process”), as a molding method, a molding method in which a fixed shape is formed by a tableting molding machine or an extrusion molding machine, or a certain shape is used. Examples thereof include a granulation method in which the particles are supported on an arbitrary inert carrier. In addition, the starting raw material mixture can be used in a liquid state without being dried, and can be produced by an evaporation-drying method in which the starting material mixture is absorbed or applied to a desired carrier while being heated for a long time and dried. Among these, a granulation method for supporting on an inert carrier using a centrifugal fluidized coating method described in JP-A-63-200249 or a rocking mixer method described in JP-A-2004-136267 is particularly preferred. preferable.

打錠成形機や押出し成形機による成形法の場合、その形状に特に制限はなく、球状、円柱状、リング状、不定形などのいずれの形状でもよい。もちろん球状の場合、真球である必要はなく実質的に球状であればよく、円柱状およびリング状についても同様である。   In the case of a molding method using a tableting machine or an extrusion molding machine, the shape is not particularly limited, and may be any shape such as a spherical shape, a cylindrical shape, a ring shape, and an indeterminate shape. Of course, in the case of a spherical shape, it does not need to be a true sphere, and may be substantially spherical, and the same applies to a cylindrical shape and a ring shape.

造粒法や蒸発乾固法の場合に使用できる不活性担体としては、アルミナ、シリカ、シリカ−アルミナ、チタニア、マグネシア、ステアタイト、コージェライト、シリカ−マグネシア、炭化ケイ素、窒化ケイ素、ゼオライト等が挙げられる。その形状においても特に制限はなく、球状、円柱状、リング状など公知の形状のものが使用できる。
これら上記の成形工程においては、乾燥物の成形性を向上させるための成形補助剤やバインダー、触媒に適度な細孔を形成させるための気孔形成剤など、一般に触媒の製造においてこれらの効果を目的として使用される物質(以後、「補助物質」という場合もある)を用いることができ、中でも、造粒法においてはバインダーを使用するのが好ましい。
Examples of inert carriers that can be used in the granulation method and evaporation to dryness method include alumina, silica, silica-alumina, titania, magnesia, steatite, cordierite, silica-magnesia, silicon carbide, silicon nitride, and zeolite. Can be mentioned. There is no restriction | limiting in particular also in the shape, The thing of well-known shapes, such as spherical shape, cylinder shape, and ring shape, can be used.
In these molding processes, molding aids and binders for improving the moldability of the dried product, pore forming agents for forming appropriate pores in the catalyst, etc. are generally aimed at producing these effects. (Hereinafter sometimes referred to as “auxiliary substance”) can be used, and among these, it is preferable to use a binder in the granulation method.

前記補助物質の具体例としては、水、メタノール、プロピルアルコール、エチレングリコール、グリセリン、エリトリトール、ベンジルアルコール、ブチルアルコール、フェノールなどの炭素数1から7までのアルコール類、シュウ酸、プロピオン酸、マレイン酸、安息香酸、乳酸などの炭素数1から7までの有機酸類、硝酸、アンモニア、硝酸アンモニウム、尿素、炭酸アンモニウムなどの含窒素化合物などが挙げられる。これらは1種のみで用いてもよいが、2種以上を併用するのが好ましく、特に水との混合溶液として用いるのが好適である。   Specific examples of the auxiliary substances include water, methanol, propyl alcohol, ethylene glycol, glycerin, erythritol, benzyl alcohol, butyl alcohol, phenol and other alcohols having 1 to 7 carbon atoms, oxalic acid, propionic acid, maleic acid. And organic acids having 1 to 7 carbon atoms such as benzoic acid and lactic acid, and nitrogen-containing compounds such as nitric acid, ammonia, ammonium nitrate, urea and ammonium carbonate. These may be used alone, but two or more are preferably used in combination, and particularly preferably used as a mixed solution with water.

なお、これらの補助物質は、成形工程に限らず、例えば、原料混合液調製工程や原料混合液乾燥工程で用いることもできる。具体的には、前記原料混合液調製工程において出発原料混合液に添加する手法や、前記原料混合液乾燥工程において、乾燥前あるいは乾燥途中の出発原料混合液や、得られた乾燥物に添加する手法が挙げられる。   These auxiliary substances are not limited to the molding step, and can be used, for example, in the raw material mixture preparation step and the raw material mixture drying step. Specifically, it is added to the starting material mixture in the starting material mixture preparation step, or to the starting material mixture before drying or in the middle of drying in the starting material mixture drying step, or to the obtained dried product. A method is mentioned.

また、補助物質とは別に触媒の機械的強度を向上させる目的で、補強剤を用いることもできる。具体例としては、補強剤として一般的に知られているシリカ、アルミナ、セラミック繊維、ガラス繊維、炭素繊維、鉱物繊維、金属繊維、炭化ケイ素や窒化ケイ素などの各種ウィスカ、などが挙げられ、その結晶構造も多結晶質でも単結晶質でも非晶質でもよい。また、触媒の形状や機械的強度に応じて、繊維径、繊維長、材質等の異なる複数の補強剤を用いてもよい。補強剤は、出発原料混合液に添加しておいてもよいし、成形工程時に配合してもよい。   In addition to the auxiliary substance, a reinforcing agent can be used for the purpose of improving the mechanical strength of the catalyst. Specific examples include silica, alumina, ceramic fiber, glass fiber, carbon fiber, mineral fiber, metal fiber, various whiskers such as silicon carbide and silicon nitride, which are generally known as reinforcing agents, and the like. The crystal structure may be polycrystalline, monocrystalline or amorphous. A plurality of reinforcing agents having different fiber diameters, fiber lengths, materials, and the like may be used depending on the shape and mechanical strength of the catalyst. The reinforcing agent may be added to the starting raw material mixture, or may be blended during the molding process.

上記成形工程で得られた成形体あるいは担持体は、続く焼成工程に送られる。焼成温度は360℃〜440℃、更に好ましくは380℃〜420℃である。焼成時間としては1〜24時間が好適であり、更に好ましくは1〜10時間である。焼成炉については、特に制限はなく、一般的に使用される箱型焼成炉あるいはトンネル型焼成炉等を用いればよい。   The molded body or carrier obtained in the molding process is sent to the subsequent firing process. The firing temperature is 360 ° C to 440 ° C, more preferably 380 ° C to 420 ° C. The firing time is preferably 1 to 24 hours, more preferably 1 to 10 hours. The firing furnace is not particularly limited, and a generally used box-type firing furnace or tunnel-type firing furnace may be used.

本発明は、前記した触媒の製造方法において、アミノ酸を添加することを特徴とする。アミノ酸を添加する箇所については特に限定はないが、好ましくは、前記した原料混合液調製工程、原料混合液乾燥工程および成型工程のいずれかにおいて添加することが好ましい。   The present invention is characterized in that an amino acid is added in the above-described catalyst production method. There are no particular restrictions on the location where the amino acid is added, but it is preferably added in any of the raw material mixture preparation step, raw material mixture drying step and molding step described above.

アミノ酸を添加することで、焼成工程において、触媒性能の向上に寄与する焼成雰囲気形成に何らかの影響を及ぼしているものと推測される。そのため、焼成工程の開始時において、添加したアミノ酸は触媒成形体あるいは担持体に十分に残存していることが好ましい。なお、前記した補助物質においても、アミノ酸と同様に焼成工程開始前の触媒成形体や担持体に残存していてもよい。   By adding an amino acid, it is presumed that in the calcination step, it has some influence on the formation of the calcination atmosphere that contributes to the improvement of the catalyst performance. Therefore, it is preferable that the added amino acid remains sufficiently in the catalyst molded body or the support body at the start of the firing step. In addition, also in the above-mentioned auxiliary substance, like the amino acid, it may remain in the catalyst molded body or the support before the start of the calcination step.

アミノ酸の好適な添加条件としては、アミノ酸の種類や濃度、触媒活性成分に対する量、焼成工程における昇温速度、炉内の酸素濃度等に左右される複合的な因子であるため、一概には規定できないが、概ね以下の通りである。
触媒の製造工程において添加するアミノ酸については、グルタミン酸、リシン、アルギニン等が挙げられる。特に、炭素数が2〜4のアミノ酸が好適であり、その具体例としては、グリシン、アラニン、トレオニンなどが挙げられる。
The preferred amino acid addition conditions are complex factors that depend on the type and concentration of the amino acid, the amount to the catalytically active component, the heating rate in the firing process, the oxygen concentration in the furnace, etc. Although it is not possible, it is as follows.
Examples of the amino acid added in the production process of the catalyst include glutamic acid, lysine, arginine and the like. In particular, amino acids having 2 to 4 carbon atoms are suitable, and specific examples thereof include glycine, alanine, threonine and the like.

前記したアミノ酸の添加方法としては、例えば、出発原料混合液に直接添加したり、アミノ酸をいったん液体に溶解させてアミノ酸溶液として各工程で添加することができるが、成型工程において使用される補助物質の溶液にアミノ酸を添加して、補助物質と一緒にアミノ酸を添加する方法が好適である。   The amino acid can be added directly to the starting material mixture, for example, or the amino acid can be dissolved once in the liquid and added as an amino acid solution in each step, but the auxiliary substance used in the molding step A method in which an amino acid is added to the solution and the amino acid is added together with the auxiliary substance is preferable.

これらアミノ酸含有液のアミノ酸濃度としては、好ましくは0.5〜25質量%、より好ましくは1〜20質量%の濃度が好適である。また、焼成後の触媒活性成分の理論質量(酸化物換算)に対するアミノ酸の添加質量割合として、0.01〜10質量%が好ましく、さらには0.05〜5質量%の範囲が好ましい。   The amino acid concentration of these amino acid-containing liquids is preferably 0.5 to 25% by mass, more preferably 1 to 20% by mass. Moreover, 0.01-10 mass% is preferable as an addition mass ratio of the amino acid with respect to the theoretical mass (oxide conversion) of the catalytically active component after baking, Furthermore, the range of 0.05-5 mass% is preferable.

また、焼成工程における昇温速度は0.1℃/分以上、15℃/分以下が好ましく、一般的には1℃/分程度が好ましい。昇温速度が15℃/分以上の場合、アミノ酸が急激に発熱分解するため、その発熱による触媒の熱劣化により、性能が低下する傾向にある。昇温速度が0.1℃/分以下の場合、昇温時間が長くなり、アミノ酸の気化、分解が遅くなり適度な焼成雰囲気形成が困難となるため、触媒性能も低下する傾向にある。酸素濃度は、20容量%以下の低酸素濃度領域で焼成することが好ましく、前述のアミノ酸含有液のアミノ酸濃度が低い場合、より低い酸素濃度領域が好ましい傾向である。   Further, the rate of temperature rise in the firing step is preferably 0.1 ° C./min to 15 ° C./min, and generally about 1 ° C./min. When the rate of temperature increase is 15 ° C./min or more, amino acids are rapidly exothermic and decomposed, so that the performance tends to decrease due to thermal degradation of the catalyst due to the heat generation. When the rate of temperature increase is 0.1 ° C./min or less, the temperature increase time becomes long, the vaporization and decomposition of amino acids become slow, and it becomes difficult to form an appropriate calcination atmosphere, so that the catalyst performance tends to decrease. The oxygen concentration is preferably calcined in a low oxygen concentration region of 20% by volume or less, and when the amino acid concentration of the amino acid-containing liquid is low, a lower oxygen concentration region tends to be preferable.

なお、成形工程で使用される乾燥物は、減量率が5〜40質量%にある事が好ましい。ここで、乾燥物の減量率は、試料を300℃の空気雰囲気下において、質量変化が無くなるまで加熱し、加熱前後の質量変化に基づき、下式から算出される。
減量率(質量%)=〔(乾燥物の加熱前の質量(g)−乾燥物の加熱後の質量(g))/乾燥物の加熱前の質量(g)〕×100
本発明のアクリル酸製造用触媒を用いてプロパンおよび/またはアクロレインを分子状酸素により接触気相酸化してアクリル酸を製造するのに用いられる反応器については特段の制限はなく、固定床反応器、流動床反応器、移動床反応器のいずれも用いることができるが、通常、固定床反応器が用いられる。
In addition, it is preferable that the dry matter used at a formation process has a weight loss rate in 5-40 mass%. Here, the weight loss rate of the dried product is calculated from the following equation based on the mass change before and after heating, by heating the sample in an air atmosphere at 300 ° C. until there is no mass change.
Weight loss (mass%) = [(mass before heating dried product (g) −mass after heating dried product (g)) / mass before heating dried product (g)] × 100
The reactor used for producing acrylic acid by catalytic gas phase oxidation of propane and / or acrolein with molecular oxygen using the catalyst for producing acrylic acid of the present invention is not particularly limited, and is a fixed bed reactor. Either a fluidized bed reactor or a moving bed reactor can be used, but a fixed bed reactor is usually used.

触媒を反応器に充填する場合には、単一な触媒である必要はなく、例えば、活性の異なる複数種の触媒を用い、これらを活性の異なる順に充填したり、触媒の一部を不活性担体などで希釈したりしてもよい。   When the catalyst is charged into the reactor, it is not necessary to be a single catalyst. For example, a plurality of types of catalysts having different activities can be used and charged in the order of different activities, or a part of the catalyst can be inactivated. It may be diluted with a carrier or the like.

また、本発明における反応条件には特に制限は無く、この種の反応に一般に用いられている条件であればいずれも実施することが可能である。例えば、原料ガスとして1〜15容量%、好ましくは4〜12容量%のプロパンおよび/またはアクロレイン、0.5〜25容量%、好ましくは2〜20容量%の分子状酸素、0〜30容量%、好ましくは0〜25容量%の水蒸気、残部が窒素などの不活性ガスからなる混合ガスを200〜400℃の温度範囲で0.1〜1.0MPaの圧力下、300〜8,000h−1(STP)の空間速度で酸化触媒に接触させればよい。
反応ガスとしては、プロパンおよび/またはアクロレイン、分子状酸素および不活性ガスからなる混合ガスはもちろんのこと、グリセリンの脱水反応や、プロピレンの酸化反応によって得られるアクロレイン含有の混合ガスも使用可能である。また、この混合ガスに必要に応じ、空気または酸素などを添加することもできる。
In addition, the reaction conditions in the present invention are not particularly limited, and any conditions that are generally used for this type of reaction can be used. For example, the raw material gas is 1-15% by volume, preferably 4-12% by volume propane and / or acrolein, 0.5-25% by volume, preferably 2-20% by volume molecular oxygen, 0-30% by volume. Preferably, a mixed gas consisting of 0 to 25% by volume of water vapor and the balance of an inert gas such as nitrogen is 300 to 8,000 h −1 under a pressure of 0.1 to 1.0 MPa in a temperature range of 200 to 400 ° C. What is necessary is just to contact an oxidation catalyst with the space velocity of (STP).
As the reaction gas, not only a mixed gas composed of propane and / or acrolein, molecular oxygen and an inert gas, but also an acrolein-containing mixed gas obtained by a dehydration reaction of glycerin or an oxidation reaction of propylene can be used. . In addition, air or oxygen can be added to the mixed gas as necessary.

以下に、実施例を挙げて本発明を具体的に説明するが、本発明はこれにより何ら限定されるものではない。なお、以下では便宜上、「質量部」を「部」と記すことがある。実施例および比較例におけるアクロレイン転化率、アクリル酸選択率およびアクリル酸収率は次式によって求めた。
アクロレイン転化率(モル%)
=(反応したアクロレインのモル数)/(供給したアクロレインのモル数)×100
アクリル酸選択率(モル%)
=(生成したアクリル酸のモル数)/(反応したアクロレインのモル数)×100
アクリル酸収率(モル%)
=(生成したアクリル酸のモル数)/(供給したアクロレインのモル数)×100
<実施例1>
[触媒調製]
純水1000部を加熱攪拌しながら、そのなかにパラモリブデン酸アンモニウム100部、メタバナジン酸アンモニウム24.3部、パラタングステン酸アンモニウム19.1部を溶解した。別に純水100部を加熱撹拌しながら、硝酸銅20.5部を溶解した。得られた2つの溶液を混合し、さらに三酸化アンチモン5.5部および酸化アルミニウム7.2部を添加して、出発原料混合液を得た。この出発原料混合液を噴霧乾燥させた後、得られた乾燥物を250μm以下に篩分けし、触媒前駆体の粉体を得た。遠心流動コーティング装置に平均粒径4mmのα−アルミナ球形担体300部を投入し、次いで濃度5質量%のグリシン水溶液6.7部を担体に含浸させてから、触媒前駆体の粉末を担体に担持させた後、約90℃の熱風で乾燥して担持物を得た。得られた担持物をルツボに入れ、酸素濃度を10容量%に合わせた箱型焼成炉で室温から2℃/分で昇温し、400℃で6時間焼成して触媒1を得た。
この触媒1の担持率は30質量%であり、酸素を除く金属元素組成は以下の通りであった。
触媒組成:Mo124.4Sb0.81.5Cu1.8Al3.0
なお、担持率は下記式により求めた。
担持率(質量%)=(担持された触媒粉体の質量(g))/(用いた担体の質量(g))×100
[酸化反応]
全長300mm、内径18mmのSUS製U字反応管に、層長が100mmとなるように触媒1を充填し、アクロレイン2容量%、酸素3容量%、水蒸気10容量%、窒素85容量%の混合ガスを空間速度5000hr−1(STP)で導入し、アクロレイン酸化反応を行った。反応温度はアクロレインの転化率が93.5%前後となるように調節した。その反応結果を表1に示す。
Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited thereto. Hereinafter, for convenience, “parts by mass” may be referred to as “parts”. The acrolein conversion, acrylic acid selectivity and acrylic acid yield in the examples and comparative examples were determined by the following formulas.
Acrolein conversion (mol%)
= (Mole number of reacted acrolein) / (Mole number of supplied acrolein) × 100
Acrylic acid selectivity (mol%)
= (Number of moles of acrylic acid produced) / (number of moles of reacted acrolein) × 100
Acrylic acid yield (mol%)
= (Number of moles of acrylic acid produced) / (number of moles of acrolein supplied) × 100
<Example 1>
[Catalyst preparation]
While heating and stirring 1000 parts of pure water, 100 parts of ammonium paramolybdate, 24.3 parts of ammonium metavanadate, and 19.1 parts of ammonium paratungstate were dissolved therein. Separately, 20.5 parts of copper nitrate was dissolved while heating and stirring 100 parts of pure water. The obtained two solutions were mixed, and 5.5 parts of antimony trioxide and 7.2 parts of aluminum oxide were further added to obtain a starting material mixture. After this starting material mixture was spray-dried, the resulting dried product was sieved to 250 μm or less to obtain catalyst precursor powder. 300 parts of an α-alumina spherical carrier having an average particle diameter of 4 mm is put into a centrifugal fluid coating apparatus, and then 6.7 parts of a glycine aqueous solution having a concentration of 5% by mass is impregnated on the carrier, and then the catalyst precursor powder is supported on the carrier. And dried with hot air at about 90 ° C. to obtain a supported product. The obtained supported product was put in a crucible, heated at 2 ° C./min from room temperature in a box-type calcination furnace in which the oxygen concentration was adjusted to 10% by volume, and calcined at 400 ° C. for 6 hours to obtain Catalyst 1.
The supported rate of the catalyst 1 was 30% by mass, and the metal element composition excluding oxygen was as follows.
Catalyst composition: Mo 12 V 4.4 Sb 0.8 W 1.5 Cu 1.8 Al 3.0
The loading rate was determined by the following formula.
Support rate (mass%) = (mass of supported catalyst powder (g)) / (mass of used carrier (g)) × 100
[Oxidation reaction]
A SUS U-shaped reaction tube with a total length of 300 mm and an inner diameter of 18 mm is filled with catalyst 1 so that the layer length is 100 mm, and a mixed gas of 2% by volume of acrolein, 3% by volume of oxygen, 10% by volume of water vapor, and 85% by volume of nitrogen. Was introduced at a space velocity of 5000 hr −1 (STP) to carry out acrolein oxidation reaction. The reaction temperature was adjusted so that the conversion rate of acrolein was about 93.5%. The reaction results are shown in Table 1.

<実施例2>
実施例1において、濃度5質量%のグリシン水溶液6.7部の代わりに、濃度10質量%のグリシン水溶液7.1部を用いること以外は実施例1と同様に調製し、触媒2を得た。この触媒2の担持率、および酸素を除く触媒活性成分の金属元素組成は触媒1と同じであった。触媒2を用いて、実施例1と同様にしてアクロレイン酸化反応を行った。その結果を表1に示す。
<Example 2>
A catalyst 2 was obtained in the same manner as in Example 1 except that 7.1 parts of a 10% by mass glycine aqueous solution was used instead of 6.7 parts of a 5% by mass glycine aqueous solution in Example 1. . The supporting rate of the catalyst 2 and the metal element composition of the catalytically active component excluding oxygen were the same as those of the catalyst 1. Using catalyst 2, the acrolein oxidation reaction was carried out in the same manner as in Example 1. The results are shown in Table 1.

<実施例3>
実施例1において、濃度5質量%のグリシン水溶液6.7部の代わりに、濃度20質量%のグリシン水溶液8部を用いること以外は実施例1と同様に調製し、触媒3を得た。この触媒3の担持率、および酸素を除く触媒活性成分の金属元素組成は触媒1と同じであった。触媒3を用いて、実施例1と同様にしてアクロレイン酸化反応を行った。その結果を表1に示す。
<Example 3>
In Example 1, a catalyst 3 was obtained in the same manner as in Example 1 except that 8 parts of a 20 mass% glycine aqueous solution was used instead of 6.7 parts of a 5 mass% glycine aqueous solution. The supporting rate of the catalyst 3 and the metal element composition of the catalytically active component excluding oxygen were the same as those of the catalyst 1. Using catalyst 3, an acrolein oxidation reaction was performed in the same manner as in Example 1. The results are shown in Table 1.

<実施例4>
実施例1において、濃度5質量%のグリシン水溶液6.7部の代わりに、濃度5質量%のアラニン水溶液6.7部を用いること以外は実施例1と同様に調製し、触媒4を得た。この触媒4の担持率、および酸素を除く触媒活性成分の金属元素組成は触媒1と同じであった。触媒4を用いて、実施例1と同様にしてアクロレイン酸化反応を行った。その結果を表1に示す。
<Example 4>
A catalyst 4 was obtained in the same manner as in Example 1 except that 6.7 parts of an alanine aqueous solution having a concentration of 5% by mass was used instead of 6.7 parts of an aqueous glycine solution having a concentration of 5% by mass in Example 1. . The supporting rate of the catalyst 4 and the metal element composition of the catalytically active component excluding oxygen were the same as those of the catalyst 1. Using catalyst 4, the acrolein oxidation reaction was performed in the same manner as in Example 1. The results are shown in Table 1.

<実施例5>
実施例1において、濃度5質量%のグリシン水溶液6.7部の代わりに、濃度10質量%のアラニン水溶液7.1部を用いること以外は実施例1と同様に調製し、触媒5を得た。この触媒5の担持率、および酸素を除く触媒活性成分の金属元素組成は触媒1と同じであった。触媒5を用いて、実施例1と同様にしてアクロレイン酸化反応を行った。その結果を表1に示す。
<Example 5>
In Example 1, catalyst 5 was obtained in the same manner as in Example 1 except that 7.1 parts of an alanine aqueous solution having a concentration of 10% by mass was used instead of 6.7 parts of an aqueous glycine solution having a concentration of 5% by mass. . The supporting rate of the catalyst 5 and the metal element composition of the catalytically active component excluding oxygen were the same as those of the catalyst 1. Using catalyst 5, the acrolein oxidation reaction was carried out in the same manner as in Example 1. The results are shown in Table 1.

<実施例6>
実施例1において、濃度5質量%のグリシン水溶液6.7部の代わりに、濃度20質量%のトレオニン水溶液8部を用いること以外は実施例1と同様に調製し、触媒6を得た。この触媒6の担持率、および酸素を除く触媒活性成分の金属元素組成は触媒1と同じであった。触媒6を用いて、実施例1と同様にしてアクロレイン酸化反応を行った。その結果を表1に示す。
<Example 6>
A catalyst 6 was prepared in the same manner as in Example 1 except that 8 parts of a threonine aqueous solution having a concentration of 20% by mass was used instead of 6.7 parts of an aqueous glycine solution having a concentration of 5% by mass in Example 1. The supporting rate of the catalyst 6 and the metal element composition of the catalytically active component excluding oxygen were the same as those of the catalyst 1. Using catalyst 6, the acrolein oxidation reaction was carried out in the same manner as in Example 1. The results are shown in Table 1.

<比較例1>
実施例1において、濃度5質量%のグリシン水溶液6.7部の代わりに、水7.5部を用いること以外は実施例1と同様に調製し、触媒7を得た。この触媒7の担持率、および酸素を除く触媒活性成分の金属元素組成は触媒1と同じであった。触媒7を用いて、実施例1と同様にしてアクロレイン酸化反応を行った。その結果を表1に示す。
<Comparative Example 1>
In Example 1, catalyst 7 was prepared in the same manner as in Example 1 except that 7.5 parts of water was used instead of 6.7 parts of an aqueous glycine solution having a concentration of 5% by mass. The supporting rate of the catalyst 7 and the metal element composition of the catalytically active component excluding oxygen were the same as those of the catalyst 1. Using catalyst 7, an acrolein oxidation reaction was carried out in the same manner as in Example 1. The results are shown in Table 1.

<比較例2>
実施例1において、濃度5質量%のグリシン水溶液6.7部の代わりに、濃度0.5質量%の乳酸水溶液7.5部を用いること以外は実施例1と同様に調製し、触媒8を得た。この触媒8の担持率、および酸素を除く触媒活性成分の金属元素組成は触媒1と同じであった。触媒8を用いて、実施例1と同様にしてアクロレイン酸化反応を行った。その結果を表1に示す。
<Comparative example 2>
A catalyst 8 was prepared in the same manner as in Example 1 except that 7.5 parts of a 0.5% by mass lactic acid aqueous solution was used instead of 6.7 parts of a 5% by mass glycine aqueous solution in Example 1. Obtained. The supporting rate of the catalyst 8 and the metal element composition of the catalytically active component excluding oxygen were the same as those of the catalyst 1. Using catalyst 8, the acrolein oxidation reaction was performed in the same manner as in Example 1. The results are shown in Table 1.

<比較例3>
実施例1において、濃度5質量%のグリシン水溶液6.7部の代わりに、濃度25質量%の乳酸水溶液7.5部を用いること以外は実施例1と同様に調製し、触媒9を得た。この触媒9の担持率、および酸素を除く触媒活性成分の金属元素組成は触媒1と同じであった。触媒9を用いて、実施例1と同様にしてアクロレイン酸化反応を行った。その結果を表1に示す。
<Comparative Example 3>
A catalyst 9 was obtained in the same manner as in Example 1 except that 7.5 parts of a lactic acid aqueous solution having a concentration of 25% by mass was used instead of 6.7 parts of a glycine aqueous solution having a concentration of 5% by mass in Example 1. . The supporting rate of the catalyst 9 and the metal element composition of the catalytically active component excluding oxygen were the same as those of the catalyst 1. Using catalyst 9, the acrolein oxidation reaction was performed in the same manner as in Example 1. The results are shown in Table 1.

Figure 0006487242
Figure 0006487242

<実施例7>
実施例2で調製された触媒について、全長3200mm、内径25mmのSUS製反応管およびこれを覆う熱媒体を流すためのシェルからなる反応器を用いて、層長が2200mmとなるように充填した。触媒を充填した反応管に、アクロレイン7容量%、酸素8容量%、水蒸気15容量%、窒素74容量%の混合ガスを空間速度2500hr−1(STP)で導入し、アクロレイン酸化反応を行った。アクロレイン転化率がほぼ一定になるように反応温度を変更しつつ、4000時間継続して行った。その結果を表2に示す。
<Example 7>
The catalyst prepared in Example 2 was packed so as to have a layer length of 2200 mm using a reactor composed of a SUS reaction tube having a total length of 3200 mm and an inner diameter of 25 mm and a shell for flowing a heat medium covering the SUS reaction tube. Acrolein oxidation reaction was performed by introducing a mixed gas of 7% by volume of acrolein, 8% by volume of oxygen, 15% by volume of water vapor, and 74% by volume of nitrogen into the reaction tube filled with the catalyst at a space velocity of 2500 hr −1 (STP). The reaction was continued for 4000 hours while changing the reaction temperature so that the acrolein conversion was almost constant. The results are shown in Table 2.

<比較例4>
比較例1で調製された触媒について、実施例7と同様に、アクロレイン酸化反応を行った。その結果を表2に示す。

<Comparative example 4>
The catalyst prepared in Comparative Example 1 was subjected to an acrolein oxidation reaction in the same manner as in Example 7. The results are shown in Table 2.

Figure 0006487242
Figure 0006487242

Claims (4)

モリブデンおよびバナジウムを必須成分として含有するプロパンおよび/またはアクロレインを分子状酸素または分子状酸素含有ガスの存在下で接触気相酸化してアクリル酸を製造するための触媒の製造方法であって、アミノ酸を添加することを特徴とするアクリル酸製造用触媒の製造方法。   A process for producing a catalyst for producing acrylic acid by catalytic gas phase oxidation of propane and / or acrolein containing molybdenum and vanadium as essential components in the presence of molecular oxygen or a molecular oxygen-containing gas, A process for producing a catalyst for producing acrylic acid, characterized in that 請求項1の触媒の製造方法であって、原料混合液調製工程、原料混合液乾燥工程および成型工程を含むとともに、それら工程の少なくとも1つにおいてアミノ酸を添加する製造方法。   The method for producing a catalyst according to claim 1, comprising a raw material mixture preparation step, a raw material mixture drying step and a molding step, and adding an amino acid in at least one of these steps. 前記アミノ酸の炭素数が2〜4である請求項1又は2に記載の製造方法。   The method according to claim 1 or 2, wherein the amino acid has 2 to 4 carbon atoms. 請求項1〜3のいずれかに記載の製造方法により得られるアクリル酸製造用触媒を用いることを特徴とするアクリル酸の製造方法。 The manufacturing method of acrylic acid using the catalyst for acrylic acid manufacturing obtained by the manufacturing method in any one of Claims 1-3 .
JP2015055374A 2015-03-18 2015-03-18 Method for producing acrylic acid production catalyst, catalyst therefor, and method for producing acrylic acid using the catalyst Active JP6487242B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015055374A JP6487242B2 (en) 2015-03-18 2015-03-18 Method for producing acrylic acid production catalyst, catalyst therefor, and method for producing acrylic acid using the catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015055374A JP6487242B2 (en) 2015-03-18 2015-03-18 Method for producing acrylic acid production catalyst, catalyst therefor, and method for producing acrylic acid using the catalyst

Publications (2)

Publication Number Publication Date
JP2016174999A JP2016174999A (en) 2016-10-06
JP6487242B2 true JP6487242B2 (en) 2019-03-20

Family

ID=57068923

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015055374A Active JP6487242B2 (en) 2015-03-18 2015-03-18 Method for producing acrylic acid production catalyst, catalyst therefor, and method for producing acrylic acid using the catalyst

Country Status (1)

Country Link
JP (1) JP6487242B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112547082B (en) * 2019-09-25 2023-08-29 中国石油化工股份有限公司 Catalyst for preparing acrylic acid by acrolein oxidation and preparation method and application thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000317309A (en) * 1999-05-17 2000-11-21 Toagosei Co Ltd Production of catalyst for producing acrylic acid
JP2005305421A (en) * 2004-03-23 2005-11-04 Mitsubishi Chemicals Corp Method of producing compound oxide catalyst
JP2006130373A (en) * 2004-11-02 2006-05-25 Nippon Kayaku Co Ltd Method for manufacturing compound metal oxide catalyst and catalyst
JP4601420B2 (en) * 2004-12-27 2010-12-22 三菱レイヨン株式会社 Method for producing a catalyst for methacrylic acid production
JP5261231B2 (en) * 2009-03-04 2013-08-14 三菱レイヨン株式会社 Method for producing catalyst for synthesis of unsaturated carboxylic acid

Also Published As

Publication number Publication date
JP2016174999A (en) 2016-10-06

Similar Documents

Publication Publication Date Title
JP5845337B2 (en) Method for producing acrylic acid using a fixed bed multitubular reactor
KR101513300B1 (en) / method for producing unsaturated aldehyde and/or unsaturated carboxylic acid
KR102422025B1 (en) Catalyst for manufacturing unsaturated aldehyde and/or unsaturated carboxylic acid and manufacturing method of same, and manufacturing method of unsaturated aldehyde and/or unsaturated carboxylic acid
TWI444230B (en) Catalyst for producing of acrylic acid, method for producing acrylic acid using the catalyst and method for producing water-absorbent resin using the acrylic acid
KR20160004252A (en) Method for producing catalyst for use in production of unsaturated aldehyde and/or unsaturated carboxylic acid, and method for producing unsaturated aldehyde and/or unsaturated carboxylic acid
KR101776796B1 (en) Catalyst for manufacturing unsaturated aldehyde and/or unsaturated carboxylic acid, method for manufacturing same, and method for manufacturing unsaturated aldehyde and/or unsaturated carboxylic acid
KR102612311B1 (en) Method for producing acrolein, methacrolein, acrylic acid or methacrylic acid
JP5388897B2 (en) Catalyst for producing unsaturated aldehyde and / or unsaturated carboxylic acid, and method for producing unsaturated aldehyde and / or unsaturated carboxylic acid using the catalyst
JP5448561B2 (en) Catalyst for producing acrylic acid, method for producing acrylic acid using the catalyst, and method for producing a water-absorbing resin using the acrylic acid
JP2018521851A (en) Method for producing mixed metal oxide catalyst containing molybdenum and bismuth
JP6504774B2 (en) Catalyst for producing acrylic acid and method for producing acrylic acid using the catalyst
JP5845338B2 (en) Method for producing acrolein and acrylic acid using fixed bed multitubular reactor
JP5582708B2 (en) Catalyst for producing acrolein and method for producing acrolein and / or acrylic acid using the catalyst
JP6487242B2 (en) Method for producing acrylic acid production catalyst, catalyst therefor, and method for producing acrylic acid using the catalyst
JP2004002209A (en) Method for producing unsaturated aldehyde
JP5448331B2 (en) Acrylic acid production catalyst and method for producing acrylic acid using the catalyst
JP2015120133A (en) Catalyst for producing acrylic acid, and method for producing acrylic acid by using catalyst
JP4970986B2 (en) Method for producing composite oxide catalyst and method for producing unsaturated aldehyde and / or unsaturated carboxylic acid using the catalyst
WO2016147324A1 (en) Catalyst for production of unsaturated aldehyde and/or unsaturated carboxylic acid, method for producing same, and method for producing unsaturated aldehyde and/or unsaturated carboxylic acid
JP6238354B2 (en) Catalyst for producing unsaturated aldehyde and / or unsaturated carboxylic acid, method for producing the same, and method for producing unsaturated aldehyde and / or unsaturated carboxylic acid
JP6628661B2 (en) Method for producing catalyst for acrylic acid production, its catalyst, and method for producing acrylic acid using the catalyst
JP5582709B2 (en) Catalyst for producing acrylic acid and method for producing acrylic acid using the catalyst
JP6534328B2 (en) Method of producing catalyst for producing acrylic acid, catalyst therefor, and method of producing acrylic acid using the catalyst
JP2011102247A (en) Method of producing acrolein and/or acrylic acid
JP2011102248A (en) Method of producing acrylic acid

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171205

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181105

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181225

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190108

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190129

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190221

R150 Certificate of patent or registration of utility model

Ref document number: 6487242

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150