JP2011102248A - Method of producing acrylic acid - Google Patents

Method of producing acrylic acid Download PDF

Info

Publication number
JP2011102248A
JP2011102248A JP2009256895A JP2009256895A JP2011102248A JP 2011102248 A JP2011102248 A JP 2011102248A JP 2009256895 A JP2009256895 A JP 2009256895A JP 2009256895 A JP2009256895 A JP 2009256895A JP 2011102248 A JP2011102248 A JP 2011102248A
Authority
JP
Japan
Prior art keywords
catalyst
acrylic acid
acrolein
vanadium
producing acrylic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009256895A
Other languages
Japanese (ja)
Inventor
Michio Tanimoto
道雄 谷本
Nobuyuki Hakozaki
伸幸 箱崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Shokubai Co Ltd
Original Assignee
Nippon Shokubai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Shokubai Co Ltd filed Critical Nippon Shokubai Co Ltd
Priority to JP2009256895A priority Critical patent/JP2011102248A/en
Publication of JP2011102248A publication Critical patent/JP2011102248A/en
Pending legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of producing acrylic acid by the gas-phase catalytic oxidation of acrolein, capable of stably producing acrylic acid at a high yield for a long period of time. <P>SOLUTION: Upon packing reaction tubes of a fixed bed reactor of a heat exchanging type with a catalyst comprising molybdenum and vanadium as essential components for use in carrying out the gas phase oxidation of acrolein in the presence of molecular oxygen or a gas comprising molecular oxygen, a packing density of the catalyst charged into the respective reaction tubes is 0.90 g/cm<SP>3</SP>or higher and the surface area of the catalyst charged per unit volume is 2,000 to 6,000 m<SP>2</SP>/L (liter). <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、アクロレインの接触気相酸化によりアクリル酸を製造する方法に関する。   The present invention relates to a process for producing acrylic acid by catalytic gas phase oxidation of acrolein.

アクリル酸は、各種合成樹脂、塗料、可塑剤の原料として工業的に重要であり、現在、全世界で数百万トン/年の規模で生産されている。また、近年では、吸水性樹脂の原料としてその重要性が高まり、需要はさらに伸びており、工業的規模でアクリル酸収率のさらなる向上が望まれている。   Acrylic acid is industrially important as a raw material for various synthetic resins, paints, and plasticizers, and is currently produced on a scale of several million tons / year worldwide. In recent years, the importance has increased as a raw material for water-absorbent resins, and the demand has further increased, and further improvement in the yield of acrylic acid is desired on an industrial scale.

アクリル酸の工業的製法としては、第1段目の反応として、プロピレンの接触気相酸化により主としてアクロレインとして、さらに第2段目の反応として、第1段目の反応で得られたアクロレインの接触気相酸化によってアクリル酸とする2段酸化方法が最も一般的である。このような2段酸化方法における第2段目の反応であるアクロレインからアクリル酸を製造する工程としては、アクリル酸の収率や寿命等の触媒性能は必ずしも充分なものではなく、その性能の改善を目的として各社で検討がなされ様々な提案がされている。   As an industrial process for acrylic acid, the first stage reaction is mainly acrolein by catalytic vapor phase oxidation of propylene, and the second stage reaction is contact of acrolein obtained by the first stage reaction. A two-stage oxidation method in which acrylic acid is formed by gas phase oxidation is most common. In the process of producing acrylic acid from acrolein, which is the second stage reaction in such a two-stage oxidation method, the catalyst performance such as the yield and life of acrylic acid is not always sufficient, and the performance is improved. For each purpose, various companies have studied and various proposals have been made.

例えば、モリブデン、バナジウム、タングステンからなる触媒(特許文献1)、モリブデン、バナジウム、銅、タングステン、クロムからなる触媒(特許文献2)、モリブデン、バナジウムからなる触媒(特許文献3)、モリブデン、バナジウム、銅とアンチモン、ゲルマニウムの少なくとも1種の元素とからなる触媒(特許文献4)などが開示されている。   For example, a catalyst composed of molybdenum, vanadium, and tungsten (Patent Document 1), a catalyst composed of molybdenum, vanadium, copper, tungsten, and chromium (Patent Document 2), a catalyst composed of molybdenum and vanadium (Patent Document 3), molybdenum, vanadium, A catalyst composed of copper and at least one element of antimony or germanium (Patent Document 4) is disclosed.

特公昭44−12129号公報Japanese Examined Patent Publication No. 44-12129 特公昭49−11371号公報Japanese Patent Publication No.49-11371 特公昭50−25914号公報Japanese Patent Publication No. 50-25914 特開昭52−85091号公報JP-A-52-85091

しかしながら、前記した技術はいずれも、目的とするアクリル酸の収率や触媒寿命等の面において、工業的な規模から見てなお改善の余地を残すものである。   However, all of the above-described techniques still leave room for improvement in terms of the yield of the target acrylic acid, catalyst life, and the like from an industrial scale.

かくして、本発明の目的は、アクロレインの接触気相酸化によりアクリル酸を製造する方法において、高収率で長期間にわたって安定してアクリル酸を製造する方法を提供することにある。   Thus, an object of the present invention is to provide a method for producing acrylic acid stably in a high yield over a long period of time in a method for producing acrylic acid by catalytic gas phase oxidation of acrolein.

反応に使用する触媒量が多く、単位容積当たりに充填される触媒の表面積が大きいほど触媒性能および触媒寿命に対して好ましいことは当業者であれば当然認識していることである。   Those skilled in the art will naturally recognize that the greater the amount of catalyst used in the reaction and the greater the surface area of the catalyst packed per unit volume, the better for catalyst performance and catalyst life.

しかしながら、アクロレイン等の酸化反応のような発熱を伴う反応では、局部的な異常発熱部(以下、「ホットスポット部」という)が発生し、長期間の反応の間に触媒の粉化、崩壊あるいは構成成分の触媒からの飛散、昇華などが発生し、触媒性能および触媒寿命が低下する傾向があり、1本当たりの反応管に充填される触媒量が多くなる、すなわち、触媒の充填密度が高くなるほどその傾向は強くなる。一方、1本当たりの反応管に充填される触媒量が少ないと反応ガスとの接触効率が低下するため、十分な活性が得られず、また、経時的な触媒の性能劣化が起こり易いなど、触媒性能および触媒寿命の面で好ましくない。また、充填された触媒の表面積に関しても同様の問題が発生する。   However, in a reaction accompanied by heat generation such as an oxidation reaction such as acrolein, a local abnormal heat generation portion (hereinafter referred to as “hot spot portion”) is generated, and the catalyst is pulverized, disintegrated or disintegrated during a long-term reaction. Spattering and sublimation of the constituent components from the catalyst occur, and the catalyst performance and catalyst life tend to be reduced, and the amount of catalyst charged in one reaction tube increases, that is, the packing density of the catalyst is high. The tendency becomes stronger. On the other hand, if the amount of catalyst charged in one reaction tube is small, the contact efficiency with the reaction gas decreases, so that sufficient activity cannot be obtained, and the catalyst performance is likely to deteriorate over time, etc. It is not preferable in terms of catalyst performance and catalyst life. The same problem occurs with respect to the surface area of the packed catalyst.

本発明者らは上記問題を鑑み触媒の充填方法について鋭意検討した結果、固定床熱交換型反応器に触媒を充填するに際し、触媒の充填密度および単位容積当たりの触媒に起因する表面積が特定の範囲になるように触媒を充填することにより長期間安定して高い収率でアクリル酸を製造することができることを見出し本発明に至った。   As a result of intensive studies on the catalyst filling method in view of the above problems, the inventors have determined that the catalyst packing density and the surface area due to the catalyst per unit volume are specific when the catalyst is packed in the fixed bed heat exchange reactor. It has been found that by filling the catalyst so as to fall within the range, acrylic acid can be produced stably and with a high yield for a long period of time, leading to the present invention.

本発明によれば、アクロレインの接触気相酸化によりアクリル酸を製造する方法において、高収率で長期間にわたって安定してアクリル酸を製造することが可能となる。   According to the present invention, in a method for producing acrylic acid by catalytic gas phase oxidation of acrolein, it becomes possible to produce acrylic acid stably in a high yield over a long period of time.

以下、本発明にかかるアクリル酸の製造方法について詳しく説明するが、本発明の範囲はこれらの説明に拘束されることはなく、以下の例示以外についても本発明の趣旨を損なわない範囲で適宜変更し、実施することができる。   Hereinafter, although the manufacturing method of acrylic acid concerning this invention is demonstrated in detail, the range of this invention is not restrained by these description, and changes suitably in the range which does not impair the meaning of this invention except the following illustrations. And can be implemented.

本発明において、固定床熱交換型反応器の各反応管に触媒を充填するに際して、各反応管に充填されるべき触媒の充填密度および表面積を特定の範囲内に調整する必要がある。具体的には、固定床熱交換型反応器の各反応管に充填された触媒の充填密度が0.90g/cm以上、好ましくは1.00〜1.60g/cmの範囲、かつ触媒1L(リッター)当たりの表面積が2,000〜6,000m、より好ましくは2,100〜4,000mの範囲になるように触媒を充填する。触媒の充填密度および表面積が上記範囲未満の場合、触媒と反応ガスとの接触効率が低下するため、十分な活性が得られずアクリル酸の収量が低く、また、触媒の経時劣化も進み易く触媒寿命も短い。一方、反応管に充填された触媒の充填密度および表面積が上記範囲より大きい場合、圧力損失が増加し、ブロワー等のランニングコストが増加すると共に逐次反応の増加により、結果として目的生成物のアクリル酸の収量が低くなる。更に先述したように高温のホットスポット部の発生により局部的な触媒の劣化の点からも不利である。 In the present invention, when the catalyst is filled in each reaction tube of the fixed bed heat exchange reactor, it is necessary to adjust the packing density and surface area of the catalyst to be filled in each reaction tube within a specific range. Specifically, the packing density of the catalyst packed in each reaction tube of the fixed-bed heat exchange reactor is 0.90 g / cm 3 or more, preferably in the range of 1.00~1.60g / cm 3, and the catalyst The catalyst is packed so that the surface area per liter (liter) is in the range of 2,000 to 6,000 m 2 , more preferably 2,100 to 4,000 m 2 . When the packing density and surface area of the catalyst are less than the above ranges, the contact efficiency between the catalyst and the reaction gas is lowered, so that sufficient activity cannot be obtained, the yield of acrylic acid is low, and the catalyst is likely to deteriorate with time. Life is short. On the other hand, when the packing density and the surface area of the catalyst packed in the reaction tube are larger than the above ranges, the pressure loss increases, the running cost of the blower and the like increases, and the sequential reaction increases. Yield is low. Further, as described above, it is disadvantageous in terms of local catalyst deterioration due to the generation of a hot spot portion.

本発明における反応管に充填された触媒の充填密度および触媒1L(リッター)当たりの表面積は、下記式により算出される。
充填密度(g/cm
=反応管に充填された触媒の質量(g)/反応管に充填された触媒の容量(cm
ここで、
反応管に充填された触媒の容量(cm
=反応管に充填された触媒の充填層長×((反応管内径/2)×円周率)
であり、
表面積(m)=充填密度(g/cm)×比表面積(m/g)×1,000(cm
充填密度は以下により求められる。
The packing density of the catalyst packed in the reaction tube and the surface area per 1 L (liter) of the catalyst in the present invention are calculated by the following equations.
Packing density (g / cm 3 )
= Mass of catalyst charged in reaction tube (g) / capacity of catalyst charged in reaction tube (cm 3 )
here,
Capacity of the catalyst filled in the reaction tube (cm 3 )
= Packed bed length of catalyst packed in reaction tube × ((reaction tube inner diameter / 2) 2 × circumference ratio)
And
Surface area (m 2 ) = packing density (g / cm 3 ) × specific surface area (m 2 / g) × 1,000 (cm 3 )
The packing density is determined as follows.

なお、比表面積は、この種の測定に一般的に用いられるBET比表面積計などの装置を用いて測定できる。   The specific surface area can be measured using an apparatus such as a BET specific surface area meter generally used for this type of measurement.

本発明に用いられる触媒としては、触媒成分としてモリブデンおよびバナジウムを必須成分とする触媒であって、下記一般式(1)
Mo12 (1)
(ここで、Moはモリブデン、Vはバナジウム、Aはニオブおよび/またはタングステン、Bはクロム、マンガン、鉄、コバルト、ニッケル、銅、亜鉛、およびビスマスからなる群より選ばれる少なくとも1種の元素、Cはスズ、アンチモン、テルルからなる群より選ばれる少なくとも1種の元素、Dはチタン、アルミニウム、ケイ素およびジルコニウムから選ばれる少なくとも1種の元素、Oは酸素を表し、またa、b、c、d、eおよびzはそれぞれV、A、B、C、DおよびOの原子比を表し、a=1〜14、b=0〜12、c=0〜10、d=0〜6、e=0〜40であり、zは各元素の酸化状態によって定まる数値である)で表される触媒が好適である。
The catalyst used in the present invention is a catalyst having molybdenum and vanadium as essential components as catalyst components, and the following general formula (1)
Mo 12 V a A b B c C d D e O z (1)
(Where Mo is molybdenum, V is vanadium, A is niobium and / or tungsten, B is at least one element selected from the group consisting of chromium, manganese, iron, cobalt, nickel, copper, zinc, and bismuth, C represents at least one element selected from the group consisting of tin, antimony and tellurium, D represents at least one element selected from titanium, aluminum, silicon and zirconium, O represents oxygen, and a, b, c, d, e, and z represent atomic ratios of V, A, B, C, D, and O, respectively, a = 1 to 14, b = 0 to 12, c = 0 to 10, d = 0 to 6, e = 0 to 40, and z is a numerical value determined by the oxidation state of each element).

前記した触媒の調製には、この種の触媒の調製に一般的に用いられる方法を用いて製造することができ、下記に一例を示す。   The above-described catalyst can be prepared by a method generally used for preparing this type of catalyst, and an example is shown below.

触媒活性成分の原料として、各成分元素の酸化物、水酸化物、アンモニウム塩、硝酸塩、炭酸塩、硫酸塩、有機酸塩などの塩類や、それらの水溶液、ゾルなど、あるいは、複数の元素を含む化合物などを、例えば、水に混合して水溶液あるいは水性スラリー(以下、「出発原料混合液」)とする。   As raw materials for catalytically active components, oxides, hydroxides, ammonium salts, nitrates, carbonates, sulfates, organic acid salts, etc. of each component element, their aqueous solutions, sols, etc., or multiple elements The compound or the like is mixed with water to form an aqueous solution or an aqueous slurry (hereinafter referred to as “starting raw material mixture”).

次に、必要に応じて、得られた出発原料混合液を加熱や減圧など各種方法により乾燥させて触媒前駆体とする。加熱による乾燥方法としては、例えば、スプレードライヤー、ドラムドライヤー等を用いて粉末状の触媒前駆体を得ることもできるし、箱型乾燥機、トンネル型乾燥機等を用いて気流中で加熱してブロック状またはフレーク状の触媒前駆体を得ることもできる。また、一旦、出発原料混合液を濃縮、蒸発乾固してケーキ状の固形物を得て、この固形物をさらに上記加熱処理する方法も採用できる。減圧による乾燥方法としては、例えば、真空乾燥機を用いて、ブロック状または粉末状の触媒前駆体を得ることができる。   Next, if necessary, the obtained starting material mixture is dried by various methods such as heating and decompression to obtain a catalyst precursor. As a drying method by heating, for example, a powdered catalyst precursor can be obtained using a spray dryer, a drum dryer or the like, or heated in an air stream using a box-type dryer, a tunnel-type dryer or the like. Block or flake catalyst precursors can also be obtained. Alternatively, a method of once concentrating the starting raw material mixture and evaporating to dryness to obtain a cake-like solid and further subjecting the solid to the above heat treatment can also be employed. As a drying method by reduced pressure, for example, a block or powdery catalyst precursor can be obtained using a vacuum dryer.

得られた乾燥物は、必要に応じて適当な粒度の粉体を得るための粉砕工程や分級工程を経て、続く成形工程に送られる。なお、上記触媒前駆体の粉体の粒度は、特に限定されないが、成形性に優れる点で500μm以下が好ましい。   The obtained dried product is sent to a subsequent molding step through a pulverization step and a classification step for obtaining a powder having an appropriate particle size as required. The particle size of the catalyst precursor powder is not particularly limited, but is preferably 500 μm or less in terms of excellent moldability.

触媒の成形方法としては、前記触媒前駆体あるいは前記触媒前駆体と粉体状の不活性担体との混合物を押し出し成形法や打錠成形法などにより一定の形状に成形する方法、触媒成分を一定の形状を有する任意の不活性担体上に担持する担持法がある。   As a method for molding the catalyst, a method of molding the catalyst precursor or a mixture of the catalyst precursor and a powdery inert carrier into a certain shape by an extrusion molding method or a tableting molding method, a constant catalyst component is used. There is a supporting method of supporting on an arbitrary inert carrier having the following shape.

押し出し成形法や打錠成形法等の場合、その形状に特に制限はなく、球状、円柱状、リング状、不定形などのいずれの形状でもよい。もちろん球状の場合、真球である必要はなく実質的に球状であればよく、円柱状およびリング状についても同様である。   In the case of an extrusion molding method or a tableting molding method, the shape is not particularly limited, and may be any shape such as a spherical shape, a cylindrical shape, a ring shape, and an indeterminate shape. Of course, in the case of a spherical shape, it does not need to be a true sphere, and may be substantially spherical, and the same applies to a cylindrical shape and a ring shape.

担持法としては、例えば、一定の形状を有する所望の不活性担体に、出発原料混合液を乾燥させずに水溶液あるいは水性スラリーのまま、加熱しながら塗布あるいは付着させて乾燥担持させる蒸発乾固法や、不活性担体に前記触媒前駆体を粉体状で担持させる造粒法にしたがって製造することができる。中でも、特に特開昭64−85139号公報に記載の遠心流動コーティング法、特開平8−299797号公報に記載の転動造粒法、特開2004−136267号公報に記載のロッキングミキサー法を用いて不活性担体に担持する造粒法が好ましい。   As the loading method, for example, an evaporation to dryness method in which a starting inert liquid mixture or an aqueous slurry is applied to or adhered to a desired inert carrier having a certain shape while being heated or dried while being dried and supported. Alternatively, it can be produced according to a granulation method in which the catalyst precursor is supported in powder form on an inert carrier. Among these, the centrifugal fluid coating method described in JP-A No. 64-85139, the rolling granulation method described in JP-A No. 8-29997, and the rocking mixer method described in JP-A No. 2004-136267 are used. Thus, a granulation method of supporting on an inert carrier is preferable.

不活性担体としては、アルミナ、シリカ、シリカ−アルミナ、チタニア、マグネシア、ステアタイト、コージェライト、シリカ−マグネシア、炭化ケイ素、窒化ケイ素、ゼオライト等が挙げられる。担持法で使用する場合、その形状についても特に制限はなく、球状、円柱状、リング状など公知の形状のものが使用できる。   Examples of the inert carrier include alumina, silica, silica-alumina, titania, magnesia, steatite, cordierite, silica-magnesia, silicon carbide, silicon nitride, zeolite, and the like. When used in the supporting method, the shape is not particularly limited, and known shapes such as a spherical shape, a cylindrical shape, and a ring shape can be used.

成形工程においては、成形性を向上させるための成形補助剤やバインダー、触媒に適度な細孔を形成させるための気孔形成剤などを用いることができる。具体例としては、エチレングリコール、グリセリン、プロピオン酸、マレイン酸、ベンジルアルコール、プロピルアルコール、ブチルアルコールまたはフェノール類の有機化合物や水、硝酸、硝酸アンモニウム、炭酸アンモニウムなどが挙げられる。   In the molding step, a molding aid or binder for improving moldability, a pore forming agent for forming appropriate pores in the catalyst, or the like can be used. Specific examples include organic compounds such as ethylene glycol, glycerin, propionic acid, maleic acid, benzyl alcohol, propyl alcohol, butyl alcohol or phenols, water, nitric acid, ammonium nitrate, and ammonium carbonate.

また、別に触媒の機械強度を向上させる目的で、セラミック繊維、ガラス繊維、炭化ケイ素、窒化ケイ素などの補強剤を用いることもできる。補強剤は、出発原料混合液に添加しておいてもよいし、触媒前駆体に配合してもよい。   In addition, for the purpose of improving the mechanical strength of the catalyst, reinforcing agents such as ceramic fibers, glass fibers, silicon carbide, and silicon nitride can be used. The reinforcing agent may be added to the starting raw material mixture or may be blended with the catalyst precursor.

上記成形工程で得られた成形体あるいは担持体は、続く焼成工程に送られる。焼成温度としては、300℃〜500℃、好ましくは350℃〜450℃、更に好ましくは370℃〜430℃、焼成時間としては好ましくは1〜10時間である。焼成雰囲気としては、酸化雰囲気であれば良いが、分子状酸素含有ガス雰囲気が好ましく、特に、分子状酸素含有ガス流通下に焼成工程を行うのが好ましい。分子状酸素含有ガスとしては空気が好適に用いられる。   The molded body or carrier obtained in the molding process is sent to the subsequent firing process. The firing temperature is 300 ° C to 500 ° C, preferably 350 ° C to 450 ° C, more preferably 370 ° C to 430 ° C, and the firing time is preferably 1 to 10 hours. The firing atmosphere may be an oxidizing atmosphere, but a molecular oxygen-containing gas atmosphere is preferable, and it is particularly preferable to perform the firing step under the flow of the molecular oxygen-containing gas. Air is suitably used as the molecular oxygen-containing gas.

なお、焼成工程で用いる焼成炉としては特に制限はなく、一般的に使用される箱型焼成炉あるいはトンネル型焼成炉等を用いればよい。   In addition, there is no restriction | limiting in particular as a baking furnace used by a baking process, What is necessary is just to use the box-type baking furnace or tunnel type baking furnace etc. which are generally used.

本発明における固定床熱交換型反応器の各反応管に充填された触媒の充填密度および表面積が上記範囲になるようにするためには、充填される触媒の物性、特に密度、比表面積等を制御する必要があり、触媒調製時の条件調整が特に重要である。   In order to make the packing density and surface area of the catalyst packed in each reaction tube of the fixed bed heat exchange reactor in the present invention fall within the above range, the physical properties of the catalyst to be packed, particularly the density, specific surface area, etc. are set. It is necessary to control, and adjustment of conditions during catalyst preparation is particularly important.

具体的には、前記した成形工程において用いられる成形補助剤、バインダー、気孔形成剤、補強剤の添加量を制御する方法、打錠成型する場合における圧縮する圧力(打圧)を制御する方法、等を挙げることが出来る。また、触媒が充填される反応管の内径に対して触媒の粒径を制御することによっても前記範囲内になるように制御することが可能であり、もちろん、これらを組み合わせてもよい。   Specifically, a method for controlling the amount of the molding auxiliary, binder, pore forming agent, and reinforcing agent used in the molding step described above, a method for controlling the compression pressure (compression pressure) when tableting molding, Etc. can be mentioned. It is also possible to control the particle diameter of the catalyst with respect to the inner diameter of the reaction tube filled with the catalyst so that it falls within the above range. Of course, these may be combined.

本発明におけるアクロレインを分子状酸素又は分子状酸素含有ガスにより接触気相酸化してアクリル酸を製造するのに用いられる反応器については、固定床反応器である限り特段の制限はないが、特に固定床多管式反応器が好ましい。その反応管の内径は通常15〜50mm、より好ましくは20〜40mm、さらに好ましくは22〜38mmである。   The reactor used for producing acrylic acid by catalytic gas phase oxidation of acrolein with molecular oxygen or a molecular oxygen-containing gas in the present invention is not particularly limited as long as it is a fixed bed reactor. A fixed bed multitubular reactor is preferred. The inner diameter of the reaction tube is usually 15 to 50 mm, more preferably 20 to 40 mm, and still more preferably 22 to 38 mm.

固定床多管式反応器の各反応管には、必ずしも単一の触媒を充填する必要はなく、各反応管に充填される触媒の充填密度および単位容積当たりに充填される触媒の表面積が本発明の特定範囲内である限り、従来公知の複数種の触媒をそれぞれ層(以下、「反応帯」という)をなすように充填することも可能である。例えば、特開平9−241209号公報のような異なる占有容積を有する複数の触媒を原料ガス入口側から出口側に向かって占有容積が小さくなるように充填する方法、あるいは特開平7−10802号公報のような担持率の異なる複数の触媒を原料ガス入口側から出口側に向かって担持率が高くなるように充填する方法、あるいは特表2008−528683号公報のような触媒の一部を不活性な担体などで希釈する方法、あるいはこれらを組み合わせる方法などを採用してもよい。この時、反応帯の数は、反応条件や反応器の規模により適宜決定されるが、反応帯の数が多すぎると触媒の充填作業が煩雑になるなどの問題が発生するため工業的には2〜6程度までが望ましい。   Each reaction tube of the fixed bed multi-tubular reactor does not necessarily need to be filled with a single catalyst, but the packing density of the catalyst filled in each reaction tube and the surface area of the catalyst filled per unit volume are not limited. As long as it is within the specific range of the invention, it is possible to fill a plurality of conventionally known catalysts so as to form layers (hereinafter referred to as “reaction zones”). For example, a method of filling a plurality of catalysts having different occupied volumes as disclosed in JP-A-9-241209 so that the occupied volume decreases from the raw material gas inlet side to the outlet side, or JP-A-7-10802. A method of filling a plurality of catalysts having different loading rates such as from the raw material gas inlet side to the outlet side so as to increase the loading rate, or a part of the catalyst as in Japanese Patent Publication No. 2008-528883 A method of diluting with a simple carrier or a combination of these may be employed. At this time, the number of reaction zones is appropriately determined depending on the reaction conditions and the scale of the reactor. However, if the number of reaction zones is too large, problems such as complicated packing of the catalyst may occur. About 2-6 is desirable.

本発明における反応条件には特に制限は無く、この種の反応に一般に用いられている条件であればいずれも実施することが可能である。例えば、原料ガスとして1〜15容量%、好ましくは4〜12容量%のアクロレイン、0.5〜25容量%、好ましくは2〜20容量%の分子状酸素、0〜30容量%、好ましくは0〜25容量%の水蒸気、残部が窒素などの不活性ガスからなる混合ガスを200〜400℃の温度範囲で0.1〜1.0MPaの圧力下、300〜5,000Hr−1(STP)の空間速度で触媒に接触させればよい。 The reaction conditions in the present invention are not particularly limited, and any conditions generally used for this type of reaction can be used. For example, the raw material gas is 1-15% by volume, preferably 4-12% by volume acrolein, 0.5-25% by volume, preferably 2-20% by volume molecular oxygen, 0-30% by volume, preferably 0 A mixed gas consisting of ˜25% by volume of water vapor and the balance consisting of an inert gas such as nitrogen at a temperature of 200 to 400 ° C. under a pressure of 0.1 to 1.0 MPa and 300 to 5,000 Hr −1 (STP). What is necessary is just to contact a catalyst with space velocity.

反応原料ガスとしては、アクロレイン、酸素および不活性ガスからなる混合ガスはもちろんのこと、グリセリンの脱水反応やプロパンおよび/またはプロピレンの酸化反応によって得られるアクロレイン含有の混合ガスも使用可能である。また、この混合ガスに必要に応じ、空気または酸素などを添加することもできる。   As a reaction raw material gas, not only a mixed gas composed of acrolein, oxygen and an inert gas, but also an acrolein-containing mixed gas obtained by a dehydration reaction of glycerol or an oxidation reaction of propane and / or propylene can be used. In addition, air or oxygen can be added to the mixed gas as necessary.

以下に、実施例を挙げて本発明を具体的に説明するが、本発明はこれにより何ら限定されるものではない。なお、以下では、便宜上、「質量部」を単に「部」、と記すことがある。   Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited thereto. Hereinafter, for convenience, “parts by mass” may be simply referred to as “parts”.

アクロレイン転化率およびアクリル酸収率は次式によって求めた。
アクロレイン転化率[モル%]
=(反応したアクロレインのモル数)/(供給したアクロレインのモル数)×100
アクリル酸収率[モル%]
=(生成したアクリル酸のモル数)/(供給したアクロレインのモル数)×100
[触媒の比表面積測定]
BET比表面積計として株式会社マウンテック製 Macsorb model−1210を用いて触媒の比表面積を測定した。
〔触媒製造例1:触媒(1)の調製〕
イオン交換水2000部を加熱撹拌しながら、この中にパラモリブデン酸アンモニウム350部、メタバナジン酸アンモニウム116部およびパラタングステン酸アンモニウム44.6部を溶解した。別にイオン交換水200部を加熱撹拌しながら、硝酸第二銅87.8部および三酸化アンチモン12部を添加した。得られた2つの液を混合し、懸濁液を得た。この懸濁液を蒸発乾固してケーキ状の固形物を得た。得られた固形物を乾燥後、500μm以下に粉砕し、触媒前駆体粉体を得た。遠心流動コーティング装置に平均粒径5mmのシリカ−アルミナからなる球状担体1,200質量部を投入し、次いでバインダーとして15質量%の硝酸アンモニウム水溶液と共に触媒前駆体粉体を90℃の熱風を通しながら投入して担体に担持させた。得られた担持体を空気雰囲気下400℃で6時間焼成して触媒(1)を調製した。この触媒(1)の担持率は約32質量%であり、担体および酸素を除く金属元素の組成は原子比で次のとおりであった。
触媒(1) Mo12Cu2.2Sb0.5
なお、担持率は下記式により求めた。
担持率(質量%)=
[(焼成後の触媒の質量(g)−用いた担体の質量)/用いた担体の質量(g)]×100
触媒(1)の比表面積を測定したところ、2.3m/gであった。
〔触媒製造例2〜7:触媒(2)〜(7)の調製〕
触媒製造例1において、担体の粒径を表1に示したように変更した以外は、同様に調製した。それぞれの触媒の比表面積を測定した結果も表1に示す。
The acrolein conversion rate and acrylic acid yield were determined by the following equations.
Acrolein conversion [mol%]
= (Mole number of reacted acrolein) / (Mole number of supplied acrolein) × 100
Acrylic acid yield [mol%]
= (Number of moles of acrylic acid produced) / (number of moles of acrolein supplied) × 100
[Measurement of specific surface area of catalyst]
The specific surface area of the catalyst was measured using a Macsorb model-1210 manufactured by Mountec Co., Ltd. as a BET specific surface area meter.
[Catalyst Production Example 1: Preparation of Catalyst (1)]
While heating and stirring 2000 parts of ion-exchanged water, 350 parts of ammonium paramolybdate, 116 parts of ammonium metavanadate, and 44.6 parts of ammonium paratungstate were dissolved therein. Separately, 87.8 parts of cupric nitrate and 12 parts of antimony trioxide were added while heating and stirring 200 parts of ion-exchanged water. The two liquids obtained were mixed to obtain a suspension. This suspension was evaporated to dryness to obtain a cake-like solid. The obtained solid was dried and pulverized to 500 μm or less to obtain catalyst precursor powder. 1,200 parts by mass of a spherical carrier made of silica-alumina with an average particle diameter of 5 mm is put into a centrifugal fluidized coating apparatus, and then a catalyst precursor powder together with a 15% by mass ammonium nitrate aqueous solution is fed as a binder while passing hot air at 90 ° C. And supported on a carrier. The obtained carrier was calcined at 400 ° C. for 6 hours in an air atmosphere to prepare a catalyst (1). The loading ratio of the catalyst (1) was about 32% by mass, and the composition of the metal elements excluding the carrier and oxygen was as follows in terms of atomic ratio.
Catalyst (1) Mo 12 V 6 W 1 Cu 2.2 Sb 0.5
The loading rate was determined by the following formula.
Loading rate (mass%) =
[(Mass of catalyst after calcination (g) −Mass of carrier used) / Mass of carrier used (g)] × 100
It was 2.3 m < 2 > / g when the specific surface area of the catalyst (1) was measured.
[Catalyst Production Examples 2 to 7: Preparation of Catalysts (2) to (7)]
The same procedure as in Catalyst Production Example 1 was carried out except that the particle size of the support was changed as shown in Table 1. The results of measuring the specific surface area of each catalyst are also shown in Table 1.

Figure 2011102248
Figure 2011102248

<実施例1〜6および比較例1>
〔酸化反応〕
触媒(1)〜(7)それぞれを反応管内径が25mmφのステンレス鋼製反応管に触媒の充填層長が2000mmになるように充填した。この時の触媒(1)〜(7)それぞれの充填密度および充填された触媒の表面積は表2に示す。この反応管にアクロレイン5容量%、酸素6容量%、水蒸気25容量%および窒素等からなる不活性ガス64容量%の混合ガスを空間速度1500Hr−1にて導入し、反応温度260℃で酸化反応を行った。適宜反応温度を変更しながら、酸化反応を4000時間継続させた。その結果も表2に示す。
<Examples 1 to 6 and Comparative Example 1>
[Oxidation reaction]
Each of the catalysts (1) to (7) was packed into a stainless steel reaction tube having an inner diameter of 25 mmφ so that the packed bed length of the catalyst was 2000 mm. Table 2 shows the packing density of each of the catalysts (1) to (7) and the surface area of the packed catalyst. A mixed gas of 5% by volume of acrolein, 6% by volume of oxygen, 25% by volume of water vapor, and 64% by volume of inert gas such as nitrogen was introduced into the reaction tube at a space velocity of 1500 Hr −1 , and an oxidation reaction was performed at a reaction temperature of 260 ° C. Went. The oxidation reaction was continued for 4000 hours while appropriately changing the reaction temperature. The results are also shown in Table 2.

Figure 2011102248
Figure 2011102248

Claims (2)

アクロレインを分子状酸素または分子状酸素含有ガスの存在下にて接触気相酸化する際に用いられるモリブデンおよびバナジウムを必須成分とする触媒を固定床熱交換型反応器の反応管に充填する際、各反応管に充填される触媒の充填密度が0.90g/cm以上および単位容積当たりに充填される触媒の表面積が2,000〜6,000m/L(リッター)になるように設定されていることを特徴とするアクリル酸の製造方法。 When filling a reaction tube of a fixed bed heat exchange reactor with a catalyst having molybdenum and vanadium as essential components used in catalytic gas phase oxidation of acrolein in the presence of molecular oxygen or a molecular oxygen-containing gas, The packing density of the catalyst filled in each reaction tube is set to 0.90 g / cm 3 or more and the surface area of the catalyst filled per unit volume is set to 2,000 to 6,000 m 2 / L (liter). A process for producing acrylic acid, characterized in that モリブデンおよびバナジウムを必須成分とする触媒が下記一般式(1)である請求項1記載のアクリル酸の製造方法。
Mo12 (1)
(ここで、Moはモリブデン、Vはバナジウム、Aはニオブおよび/またはタングステン、Bはクロム、マンガン、鉄、コバルト、ニッケル、銅、亜鉛、およびビスマスからなる群より選ばれる少なくとも1種の元素、Cはスズ、アンチモン、テルルからなる群より選ばれる少なくとも1種の元素、Dはチタン、アルミニウム、ケイ素およびジルコニウムから選ばれる少なくとも1種の元素、Oは酸素を表し、またa、b、c、d、eおよびzはそれぞれV、A、B、C、DおよびOの原子比を表し、a=1〜14、b=0〜12、c=0〜10、d=0〜6、e=0〜40であり、zは各元素の酸化状態によって定まる数値である)
The method for producing acrylic acid according to claim 1, wherein the catalyst containing molybdenum and vanadium as essential components is represented by the following general formula (1).
Mo 12 V a A b B c C d D e O z (1)
(Where Mo is molybdenum, V is vanadium, A is niobium and / or tungsten, B is at least one element selected from the group consisting of chromium, manganese, iron, cobalt, nickel, copper, zinc, and bismuth, C represents at least one element selected from the group consisting of tin, antimony and tellurium, D represents at least one element selected from titanium, aluminum, silicon and zirconium, O represents oxygen, and a, b, c, d, e, and z represent atomic ratios of V, A, B, C, D, and O, respectively, a = 1 to 14, b = 0 to 12, c = 0 to 10, d = 0 to 6, e = 0 to 40, and z is a numerical value determined by the oxidation state of each element)
JP2009256895A 2009-11-10 2009-11-10 Method of producing acrylic acid Pending JP2011102248A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009256895A JP2011102248A (en) 2009-11-10 2009-11-10 Method of producing acrylic acid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009256895A JP2011102248A (en) 2009-11-10 2009-11-10 Method of producing acrylic acid

Publications (1)

Publication Number Publication Date
JP2011102248A true JP2011102248A (en) 2011-05-26

Family

ID=44192759

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009256895A Pending JP2011102248A (en) 2009-11-10 2009-11-10 Method of producing acrylic acid

Country Status (1)

Country Link
JP (1) JP2011102248A (en)

Similar Documents

Publication Publication Date Title
JP5845337B2 (en) Method for producing acrylic acid using a fixed bed multitubular reactor
JP2018140993A (en) Method for production of unsaturated aldehyde and/or unsaturated carboxylic acid
WO2016136882A1 (en) Catalyst for manufacturing unsaturated aldehyde and/or unsaturated carboxylic acid and manufacturing method of same, and manufacturing method of unsaturated aldehyde and/or unsaturated carboxylic acid
WO2015008814A1 (en) Method for manufacturing unsaturated aldehyde and/or unsaturated carboxylic acid
JP6694884B2 (en) Process for producing unsaturated aldehyde and / or unsaturated carboxylic acid
JP5388897B2 (en) Catalyst for producing unsaturated aldehyde and / or unsaturated carboxylic acid, and method for producing unsaturated aldehyde and / or unsaturated carboxylic acid using the catalyst
JP5420556B2 (en) Catalyst for producing acrolein and / or acrylic acid and method for producing acrolein and / or acrylic acid using the catalyst
US7161044B2 (en) Catalytic gas phase oxidation reaction
JP6932292B1 (en) Catalysts, catalyst filling methods, and methods for producing compounds using catalysts.
JP5845338B2 (en) Method for producing acrolein and acrylic acid using fixed bed multitubular reactor
JP2008264766A (en) Oxide catalyst, manufacturing method of acrolein or acrylic acid and manufacturing method of water-absorptive resin using acrylic acid
JP5548132B2 (en) Catalyst for producing acrylic acid and method for producing acrylic acid using the catalyst
JP2005320315A (en) Catalytic gas phase oxidation reaction
JP5628936B2 (en) Unsaturated carboxylic acid production catalyst and method for producing unsaturated carboxylic acid using the catalyst
JP6504774B2 (en) Catalyst for producing acrylic acid and method for producing acrylic acid using the catalyst
JP2004002209A (en) Method for producing unsaturated aldehyde
JP2015120133A (en) Catalyst for producing acrylic acid, and method for producing acrylic acid by using catalyst
JP5448331B2 (en) Acrylic acid production catalyst and method for producing acrylic acid using the catalyst
JP4970986B2 (en) Method for producing composite oxide catalyst and method for producing unsaturated aldehyde and / or unsaturated carboxylic acid using the catalyst
JP6487242B2 (en) Method for producing acrylic acid production catalyst, catalyst therefor, and method for producing acrylic acid using the catalyst
JP2011102247A (en) Method of producing acrolein and/or acrylic acid
JP2011102248A (en) Method of producing acrylic acid
JP5582709B2 (en) Catalyst for producing acrylic acid and method for producing acrylic acid using the catalyst
JP2004002323A (en) Method for producing unsaturated aldehyde
JP2011102249A (en) Method of producing acrylic acid