JP5388897B2 - Catalyst for producing unsaturated aldehyde and / or unsaturated carboxylic acid, and method for producing unsaturated aldehyde and / or unsaturated carboxylic acid using the catalyst - Google Patents
Catalyst for producing unsaturated aldehyde and / or unsaturated carboxylic acid, and method for producing unsaturated aldehyde and / or unsaturated carboxylic acid using the catalyst Download PDFInfo
- Publication number
- JP5388897B2 JP5388897B2 JP2010042142A JP2010042142A JP5388897B2 JP 5388897 B2 JP5388897 B2 JP 5388897B2 JP 2010042142 A JP2010042142 A JP 2010042142A JP 2010042142 A JP2010042142 A JP 2010042142A JP 5388897 B2 JP5388897 B2 JP 5388897B2
- Authority
- JP
- Japan
- Prior art keywords
- catalyst
- mass
- carboxylic acid
- unsaturated carboxylic
- unsaturated
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/50—Improvements relating to the production of bulk chemicals
- Y02P20/52—Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts
Landscapes
- Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
- Catalysts (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Description
本発明は、不飽和アルデヒドおよび/または不飽和カルボン酸製造用触媒、詳しくは、プロピレン、イソブチレンまたはターシャリーブチルアルコール(以下、「TBA」と記することがある)の分子状酸素を用いた接触気相酸化によりそれぞれ対応する不飽和アルデヒドおよび/または不飽和カルボン酸を製造するに好適な触媒、およびこの触媒を用いたこれら不飽和アルデヒドおよび/または不飽和カルボン酸の製造方法に関する。 The present invention relates to a catalyst for producing an unsaturated aldehyde and / or unsaturated carboxylic acid, specifically, contact using molecular oxygen of propylene, isobutylene or tertiary butyl alcohol (hereinafter sometimes referred to as “TBA”). The present invention relates to a catalyst suitable for producing a corresponding unsaturated aldehyde and / or unsaturated carboxylic acid by gas phase oxidation, and a method for producing these unsaturated aldehyde and / or unsaturated carboxylic acid using the catalyst.
従来、プロピレンの分子状酸素を用いた接触気相酸化によりアクロレインおよび/またはアクリル酸を製造する際に使用する触媒や、イソブチレンまたはTBAの接触気相酸化によりメタクロレインおよび/またはメタクリル酸を製造する際に使用する触媒に関して、触媒の機械的強度の向上を目的とした提案が数多くなされている。 Conventionally, a catalyst used for producing acrolein and / or acrylic acid by catalytic gas phase oxidation using molecular oxygen of propylene, or methacrolein and / or methacrylic acid by catalytic gas phase oxidation of isobutylene or TBA. Many proposals have been made with respect to the catalyst used for the purpose of improving the mechanical strength of the catalyst.
例えば、触媒物質もしくは触媒前駆体あるいは担体物質もしくは担体前駆体および無機質あるいは有機質繊維を分散したスラリーに不活性基材を浸漬し、乾燥もしくは焼成することを特徴とするコート触媒(特許文献1)、繊維平均直径が1μm以下のウィスカを担持助材として用いた担持触媒(特許文献2)、モリブデン及びビスマスを必須成分として含む担持触媒において、平均直径が2〜200μmの無機質繊維を担持補助剤として用いた触媒(特許文献3)、モリブデンおよびビスマスを必須成分とするリング状に成型してなる触媒において、無機質繊維を含有する触媒(特許文献4)などが開示されている。 For example, a coated catalyst characterized in that an inert substrate is immersed in a slurry in which a catalyst material or catalyst precursor or a carrier material or carrier precursor and inorganic or organic fibers are dispersed, and is dried or calcined (Patent Document 1), A supported catalyst using whisker having an average fiber diameter of 1 μm or less as a supporting aid (Patent Document 2), a supported catalyst containing molybdenum and bismuth as essential components, and an inorganic fiber having an average diameter of 2 to 200 μm is used as a supporting aid. In the conventional catalyst (Patent Document 3), a catalyst formed into a ring shape containing molybdenum and bismuth as essential components, a catalyst containing an inorganic fiber (Patent Document 4) is disclosed.
しかしながら、前記した触媒はいずれも機械的強度はある程度改善されるものの、目的とする不飽和アルデヒドや不飽和カルボン酸の収率はまだ十分ではないため、より高い機械的強度を有し、かつ、高収率で目的生成物を得ることができる触媒が望まれている。 However, although all the above-mentioned catalysts have improved mechanical strength to some extent, the yields of the target unsaturated aldehyde and unsaturated carboxylic acid are not yet sufficient, so they have higher mechanical strength, and A catalyst capable of obtaining a target product with high yield is desired.
本発明の目的は、上記従来技術の問題を解決し、プロピレン、イソブチレンまたはTBAの分子状酸素を用いた接触気相酸化により、それぞれ対応する不飽和アルデヒドおよび/または不飽和カルボン酸を製造するに好適な触媒、具体的には機械的強度に優れ、かつ、目的生成物を高収率で製造可能である触媒を提供することにある。 The object of the present invention is to solve the above-mentioned problems of the prior art and produce the corresponding unsaturated aldehyde and / or unsaturated carboxylic acid by catalytic gas phase oxidation using molecular oxygen of propylene, isobutylene or TBA, respectively. An object of the present invention is to provide a suitable catalyst, specifically, a catalyst having excellent mechanical strength and capable of producing a target product in a high yield.
本発明者らは、上記課題を解決するため鋭意検討を行った結果、プロピレン、イソブチレンまたはTBAの分子状酸素を用いた接触気相酸化により、それぞれ対応する不飽和アルデヒドおよび/または不飽和カルボン酸を製造するためのモリブデン−ビスマス系触媒において、その機械的強度の向上を目的に含有する無機質繊維として今まで全く着目されていない無機質繊維の酸量を特定範囲とすることで、機械的強度のみならず高収率で目的生成物を製造可能であることを見出した。具体的には、モリブデンおよびビスマスを必須として含む触媒活性成分と、酸量が0.05mmol/g以下である無機質繊維とを含有する触媒が、機械的強度が高く、高収率で目的生成物を製造することができることを見出し、本発明に至った。その理由については明らかでないが、種々の検討により無機質繊維の酸量が前記範囲外では、触媒の活性および選択性が低下することがわかった。 As a result of intensive studies to solve the above-mentioned problems, the present inventors have found that the corresponding unsaturated aldehyde and / or unsaturated carboxylic acid are obtained by catalytic gas phase oxidation using molecular oxygen of propylene, isobutylene or TBA, respectively. Molybdenum-bismuth-based catalyst for the production of the inorganic fiber for the purpose of improving its mechanical strength, the inorganic fiber that has not been noticed at all until now in a specific range, only the mechanical strength In other words, it was found that the target product can be produced in a high yield. Specifically, a catalyst containing a catalytically active component essentially containing molybdenum and bismuth and an inorganic fiber having an acid amount of 0.05 mmol / g or less has a high mechanical strength and a desired product in a high yield. Has been found to be able to be produced, leading to the present invention. Although the reason is not clear, it has been found by various studies that the activity and selectivity of the catalyst decrease when the acid amount of the inorganic fiber is outside the above range.
さらには、無機質繊維の含有量を触媒活性成分に対し、0.5質量%〜30質量%とすることで、前記した無機質繊維の触媒性能への悪影響を抑制できることも見出した。 Furthermore, it discovered that the bad influence to the catalyst performance of an inorganic fiber mentioned above could be suppressed by making content of an inorganic fiber 0.5 mass%-30 mass% with respect to a catalyst active component.
本発明によれば、プロピレン、イソブチレンまたはTBAの接触気相酸化により、それぞれ対応する不飽和アルデヒドおよび/または不飽和カルボン酸を製造するための機械的強度の高い触媒が得られ、かつ、目的生成物を高収率で製造することが可能となる。 According to the present invention, a catalyst having high mechanical strength for producing a corresponding unsaturated aldehyde and / or unsaturated carboxylic acid can be obtained by catalytic gas phase oxidation of propylene, isobutylene or TBA, respectively, The product can be produced with high yield.
以下、本発明にかかる不飽和アルデヒドおよび/または不飽和カルボン酸製造用触媒および該触媒を用いた不飽和アルデヒドおよび/または不飽和カルボン酸の製造方法について詳しく説明するが、本発明の範囲はこれらの説明に拘束されることはなく、以下の例示以外についても本発明の趣旨を損なわない範囲で適宜変更し、実施することができる。 Hereinafter, the catalyst for producing an unsaturated aldehyde and / or unsaturated carboxylic acid according to the present invention and the method for producing an unsaturated aldehyde and / or unsaturated carboxylic acid using the catalyst will be described in detail. It is not restrained by description of this, It can change suitably and implement in the range which does not impair the meaning of this invention except the following illustration.
本発明における不飽和アルデヒドおよび/または不飽和カルボン酸製造用触媒としては、モリブデンおよびビスマスを必須成分とする触媒活性成分と、酸量が0.05mmol/g以下である無機質繊維とを含有することが重要であり、モリブデンおよびビスマスを必須成分とする触媒活性成分としては、下記一般式(1)
Mo12BiaFebAcBdCeDfOx (1)
(ここで、Moはモリブデン、Biはビスマス、Feは鉄、Aはコバルトおよびニッケルから選ばれる少なくとも1種の元素、Bはアルカリ金属、アルカリ土類金属およびタリウムから選ばれる少なくとも1種の元素、Cはタングステン、ケイ素、アルミニウム、ジルコニウムおよびチタンから選ばれる少なくとも1種の元素、Dはリン、テルル、アンチモン、スズ、セリウム、鉛、ニオブ、マンガン、砒素、ホウ素および亜鉛から選ばれる少なくとも1種の元素、Oは酸素であり、a、b、c、d、e、fおよびxはそれぞれBi、Fe、A、B、C、DおよびOの原子比を表し、0<a≦10、0<b≦20、2≦c≦20、0<d≦10、0≦e≦30、0≦f≦4であり、xはそれぞれの元素の酸化状態によって定まる数値である。)で表される触媒活性成分が好適である。
The unsaturated aldehyde and / or unsaturated carboxylic acid production catalyst in the present invention contains a catalytically active component having molybdenum and bismuth as essential components and an inorganic fiber having an acid amount of 0.05 mmol / g or less. As the catalytically active component having molybdenum and bismuth as essential components, the following general formula (1)
Mo 12 Bi a Fe b A c B d C e D f O x (1)
(Where Mo is molybdenum, Bi is bismuth, Fe is iron, A is at least one element selected from cobalt and nickel, B is at least one element selected from alkali metals, alkaline earth metals and thallium, C is at least one element selected from tungsten, silicon, aluminum, zirconium and titanium, D is at least one element selected from phosphorus, tellurium, antimony, tin, cerium, lead, niobium, manganese, arsenic, boron and zinc The element, O is oxygen, a, b, c, d, e, f and x represent the atomic ratios of Bi, Fe, A, B, C, D and O, respectively, and 0 <a ≦ 10, 0 < b ≦ 20, 2 ≦ c ≦ 20, 0 <d ≦ 10, 0 ≦ e ≦ 30, 0 ≦ f ≦ 4, and x is a numerical value determined by the oxidation state of each element. In catalytically active component represented are preferred.
前記無機質繊維としては、その酸量が0.05mmol/g以下であればよく、好ましくは0.03mmol/g以下である。本発明において酸量を測定する方法としては、アンモニア吸着昇温脱離法を採用する。当該法は当業者間では一般的な手法であり、例えば、測定試料を予め乾燥し重量を測定した後、アンモニアを当該試料に通過させ、次いで昇温し、排出されるアンモニア量を測定するものである。具体的には、TPD(昇温脱離法)により、予め120〜300℃で1〜4時間乾燥した試料に、50〜120℃の雰囲気下でアンモニアガスを通気して試料に飽和吸着させ、その後400〜700℃まで昇温して脱離するアンモニア量を測定する方法等が挙げられる。 As said inorganic fiber, the acid amount should just be 0.05 mmol / g or less, Preferably it is 0.03 mmol / g or less. In the present invention, an ammonia adsorption temperature programmed desorption method is employed as a method for measuring the acid amount. This method is a general technique among those skilled in the art, for example, after measuring a sample in advance and measuring the weight, passing ammonia through the sample, then raising the temperature, and measuring the amount of ammonia discharged It is. Specifically, by TPD (temperature-programmed desorption method), ammonia gas was aerated in an atmosphere of 50 to 120 ° C. in a sample previously dried at 120 to 300 ° C. for 1 to 4 hours, and saturated adsorption was performed on the sample. A method of measuring the amount of ammonia desorbed by raising the temperature to 400 to 700 ° C. is then mentioned.
前記無機質繊維の種類としては、その酸量が0.05mmol/g以下となるものであれば特に限定されず、ガラス繊維、セラミック繊維、金属繊維、鉱物繊維、炭素繊維などを使用することができ、その結晶構造も多結晶質でも単結晶質でもよい。中でも、その汎用性の面からガラス繊維、アルミナ繊維、シリカ繊維およびシリカ−アルミナ繊維が好適である。前記無機質繊維としては、2種類以上を適宜組み合わせて使用しても、あるいは酸量が異なるものや後述する平均繊維長や平均繊維径の異なるものを適宜組み合わせて使用することもできる。 The kind of the inorganic fiber is not particularly limited as long as its acid amount is 0.05 mmol / g or less, and glass fiber, ceramic fiber, metal fiber, mineral fiber, carbon fiber and the like can be used. The crystal structure may be polycrystalline or monocrystalline. Among these, glass fiber, alumina fiber, silica fiber, and silica-alumina fiber are preferable from the viewpoint of versatility. As the inorganic fiber, two or more kinds may be used in appropriate combination, or those having different acid amounts and those having different average fiber length and average fiber diameter, which will be described later, may be used in appropriate combination.
また、前記無機質繊維としては、アルカリ成分の含有量が1質量%未満であるものが好ましい。その理由については明らかではないが、無機質繊維に含まれるアルカリ成分が触媒活性成分中に溶出することで、触媒の活性および選択性に悪影響を及ぼすものと推測される。 Moreover, as said inorganic fiber, what has content of an alkali component of less than 1 mass% is preferable. The reason for this is not clear, but it is presumed that the alkali component contained in the inorganic fiber is eluted into the catalytically active component, thereby adversely affecting the activity and selectivity of the catalyst.
無機質繊維中のアルカリ成分の含有量については、JIS R3420に記載のアルカリ含有率の測定方法に準じて測定することができる。 About content of the alkali component in an inorganic fiber, it can measure according to the measuring method of the alkali content rate as described in JISR3420.
前記無機質繊維の大きさとしては、平均繊維径が0.5μm〜50μm、好ましくは2μm〜20μm、平均繊維長が10μm〜1000μm、好ましくは30μm〜500μmのものが好適である。平均繊維長は、触媒中において前記範囲内であればよく、予め10μm〜1000μmの平均繊維長を有する無機質繊維を用いても、あるいは1000μmを超える平均繊維長を有する無機質繊維を触媒活性成分の一部または全部と混合した後、強く攪拌して繊維を切断し、結果的に平均繊維長が10μm〜1000μmの範囲に入るようにしてもよい。しかし、後者の場合、無機質繊維の分散性が悪くなることから、予め10μm〜1000μm平均繊維長を有する無機質繊維を用いるのが好ましい。 As the size of the inorganic fibers, those having an average fiber diameter of 0.5 μm to 50 μm, preferably 2 μm to 20 μm, and an average fiber length of 10 μm to 1000 μm, preferably 30 μm to 500 μm are suitable. The average fiber length may be within the above-mentioned range in the catalyst, and even if inorganic fibers having an average fiber length of 10 μm to 1000 μm are used in advance, or inorganic fibers having an average fiber length exceeding 1000 μm are used as one of the catalytic active components. After mixing with part or all, the fibers may be cut by vigorous stirring so that the average fiber length falls within the range of 10 μm to 1000 μm. However, in the latter case, since the dispersibility of the inorganic fibers deteriorates, it is preferable to use inorganic fibers having an average fiber length of 10 μm to 1000 μm in advance.
さらに、前記無機質繊維の含有量は、前記触媒活性成分量に対して0.5質量%〜30質量%の範囲が好ましく、1質量%〜15質量%の範囲がより好ましい。含有量が前記範囲より少ないと機械的強度向上効果が十分でなく、また前記範囲より多いと触媒中に含有される触媒活性成分量が少なくなり、触媒性能が低下してしまうほか触媒寿命の面からも好ましくない。 Furthermore, the content of the inorganic fiber is preferably in the range of 0.5% by mass to 30% by mass and more preferably in the range of 1% by mass to 15% by mass with respect to the amount of the catalytically active component. If the content is less than the above range, the effect of improving the mechanical strength is not sufficient, and if the content is more than the above range, the amount of the catalytic active component contained in the catalyst is reduced, the catalyst performance is deteriorated and the catalyst life is reduced. Is also not preferable.
本発明の触媒は、酸量が0.05mmol/g以下である無機質繊維を含有する点を除けば、公知の不飽和アルデヒドおよび/または不飽和カルボン酸製造用触媒の調製に一般に用いられている方法に準じて製造することができる。 The catalyst of the present invention is generally used for the preparation of known unsaturated aldehyde and / or unsaturated carboxylic acid production catalysts except that it contains inorganic fibers having an acid amount of 0.05 mmol / g or less. It can be produced according to the method.
具体的には、一般式(1)で表される触媒活性成分の原料として、各成分元素の酸化物、水酸化物、アンモニウム塩、硝酸塩、炭酸塩、硫酸塩、有機酸塩などの塩類や、それらの水溶液、ゾルなど、あるいは、複数の元素を含む化合物などを、例えば、水に混合して水溶液あるいは水性スラリー(以下、「出発原料混合液」と記すことがある)とする。 Specifically, as a raw material of the catalytically active component represented by the general formula (1), salts such as oxides, hydroxides, ammonium salts, nitrates, carbonates, sulfates, and organic acid salts of each component element, These aqueous solutions, sols, and the like, or compounds containing a plurality of elements are mixed with water to form an aqueous solution or an aqueous slurry (hereinafter sometimes referred to as “starting raw material mixture”).
次に、必要に応じて、得られた出発原料混合液を加熱や減圧など各種方法により乾燥させて触媒前駆体とする。加熱による乾燥方法としては、例えば、スプレードライヤー、ドラムドライヤー等を用いて粉末状の触媒前駆体を得ることもできるし、箱型乾燥機、トンネル型乾燥機等を用いて気流中で加熱してブロック状またはフレーク状の触媒前駆体を得ることもできる。また、一旦、出発原料混合液を濃縮、蒸発乾固してケーキ状の固形物を得て、この固形物をさらに前記加熱処理する方法も採用できるほか、得られた前記触媒前駆体をさらに焼成して焼成物とする方法も採用できる。減圧による乾燥方法としては、例えば、真空乾燥機を用いて、ブロック状または粉末状の触媒前駆体を得ることができる。 Next, if necessary, the obtained starting material mixture is dried by various methods such as heating and decompression to obtain a catalyst precursor. As a drying method by heating, for example, a powdered catalyst precursor can be obtained using a spray dryer, a drum dryer or the like, or heated in an air stream using a box-type dryer, a tunnel-type dryer or the like. Block or flake catalyst precursors can also be obtained. Also, once the starting material mixture is concentrated and evaporated to dryness to obtain a cake-like solid, the solid can be further heat-treated, and the obtained catalyst precursor is further calcined. Thus, a method of forming a fired product can also be adopted. As a drying method by reduced pressure, for example, a block or powdery catalyst precursor can be obtained using a vacuum dryer.
得られた触媒前駆体あるいは焼成物は、必要に応じて適当な粒度の粉体を得るための粉砕工程や分級工程を経て、続く成形工程に送られる。なお、上記触媒前駆体あるいは焼成物の粉体の粒度は、特に限定されないが、成形性に優れる点で500μm以下が好ましい。 The obtained catalyst precursor or calcined product is sent to a subsequent molding step through a pulverization step and a classification step for obtaining a powder having an appropriate particle size as required. The particle size of the powder of the catalyst precursor or the calcined product is not particularly limited, but is preferably 500 μm or less from the viewpoint of excellent moldability.
触媒の成形方法としては、前記触媒前駆体、焼成物あるいはそれらと粉体状の不活性担体との混合物を押し出し成形法や打錠成形法などにより一定の形状に成形する方法、一定の形状を有する任意の不活性担体上に担持する担持法などがあるが、生成物の逐次反応を抑制するため触媒自体の厚みは少ない方が好ましいことから、後者の不活性担体上に担持する担持法が好ましい。 As a method for molding the catalyst, a method of molding the catalyst precursor, the calcined product or a mixture of them with a powdery inert carrier into a fixed shape by an extrusion molding method or a tableting molding method, Although there is a supporting method for supporting on an arbitrary inert carrier, it is preferable that the thickness of the catalyst itself is small in order to suppress the sequential reaction of the product. Therefore, the supporting method for supporting the latter on the inert carrier is preferable. preferable.
無機質繊維の添加方法については、特に制限はなく、触媒活性成分中に無機質繊維が均一に分散、含有されるようにし得るものであれば、いずれの方法も用いることができる。例えば、一般式(1)で表される触媒活性成分の出発原料混合液に無機質繊維を添加しても、あるいは触媒活性成分の出発原料混合液を乾燥あるいはさらに焼成した後に得られる触媒前駆体に無機質繊維を添加してもよい。後者の場合、触媒前駆体粉体と無機質繊維とを粉粒状態で混合してもあるいは水などの溶媒に分散させて混合してもよい。なかでも、触媒活性成分の出発原料混合液に混合する方が、無機質繊維の分散性の面から好ましい。また、無機質繊維は一括して添加しても、あるいは分割して添加してもよく、例えば、その一部を出発原料混合液に添加し、残りを乾燥あるいはさらに焼成した後に得られる触媒前駆体に添加してもよい。 The method for adding the inorganic fiber is not particularly limited, and any method can be used as long as the inorganic fiber can be uniformly dispersed and contained in the catalytically active component. For example, even if an inorganic fiber is added to the starting material mixture of the catalytically active component represented by the general formula (1), or the catalyst precursor obtained after drying or further firing the starting material mixture of the catalytically active component Inorganic fibers may be added. In the latter case, the catalyst precursor powder and the inorganic fiber may be mixed in a granular state or may be mixed in a solvent such as water. Especially, it is preferable from the surface of the dispersibility of an inorganic fiber to mix with the starting raw material liquid mixture of a catalyst active component. Further, the inorganic fiber may be added all at once or may be added separately, for example, a catalyst precursor obtained by adding a part of the inorganic fiber to the starting material mixture and drying or further firing the remainder. You may add to.
押し出し成形法や打錠成形法等の場合、その形状に特に制限はなく、球状、円柱状、リング状、不定形などのいずれの形状でもよい。もちろん球状の場合、真球である必要はなく実質的に球状であればよく、円柱状およびリング状についても同様に断面形状は真円である必要は無く、実質的に円形であればよい。 In the case of an extrusion molding method or a tableting molding method, the shape is not particularly limited, and may be any shape such as a spherical shape, a cylindrical shape, a ring shape, and an indeterminate shape. Of course, in the case of a spherical shape, it does not need to be a true sphere and may be substantially spherical, and the cross-sectional shape does not have to be a perfect circle in the same way for a cylindrical shape and a ring shape, and may be substantially a circular shape.
担持法としては、例えば、特公昭49−11371号公報に記載の一定の形状を有する不活性担体に出発原料混合液を加熱攪拌しながら蒸発乾固して担体に付着させる方法、特開昭59−173140あるいは特開平6−381号公報に記載の出発原料混合液のスラリーを不活性担体に付着させつつ、同時に溶媒を気化蒸発させて担持する方法、特開昭63−200839号公報、特開平10−28877号公報あるいは特開2004−136267号公報に記載の不活性担体に前記触媒前駆体や焼成物を粉体状で担持させる方法などにしたがって製造することができる。 As the loading method, for example, a method in which a starting material mixture is evaporated to dryness while heating and stirring to an inert carrier having a certain shape described in JP-B-49-11371, and attached to the carrier, Japanese Patent Application Laid-Open No. Sho 59. -173140 or JP-A-6-381, a method of carrying a slurry of a starting material mixture by adhering it to an inert carrier while simultaneously evaporating and carrying a solvent, JP-A-62-200839, It can be produced according to a method of supporting the catalyst precursor or the calcined product in a powder form on an inert carrier described in JP-A No. 10-28877 or JP-A No. 2004-136267.
不活性担体としては、アルミナ、シリカ、シリカ−アルミナ、チタニア、マグネシア、ステアタイト、コージェライト、シリカ−マグネシア、炭化ケイ素、窒化ケイ素、ゼオライト等が挙げられる。その形状についても特に制限はなく、球状、円柱状、リング状など公知の形状のものが使用できる。不活性担体に対する触媒活性成分の担持量については、特に限定されないが、20質量%〜300質量%の範囲が好ましく、50質量%〜200質量%の範囲がより好ましい。担持量が前記範囲より少なすぎると触媒寿命の低下が懸念され、前記範囲より多すぎると担持した際の機械的強度が低下する可能性がある。 Examples of the inert carrier include alumina, silica, silica-alumina, titania, magnesia, steatite, cordierite, silica-magnesia, silicon carbide, silicon nitride, zeolite, and the like. There is no restriction | limiting in particular also about the shape, The thing of well-known shapes, such as spherical shape, cylindrical shape, and ring shape, can be used. The amount of the catalytically active component supported on the inert carrier is not particularly limited, but is preferably in the range of 20% by mass to 300% by mass, and more preferably in the range of 50% by mass to 200% by mass. If the supported amount is less than the above range, there is a concern that the catalyst life will be reduced, and if it is more than the above range, the mechanical strength at the time of loading may decrease.
成形工程においては、成形性を向上させるための成形補助剤やバインダー、触媒に適度な細孔を形成させるための気孔形成剤などを用いることができる。具体例としては、エチレングリコール、グリセリン、プロピオン酸、マレイン酸、ベンジルアルコール、プロピルアルコール、ブチルアルコールまたはフェノール類の有機化合物や水、硝酸、硝酸アンモニウム、炭酸アンモニウムなどが挙げられる。 In the molding step, a molding aid or binder for improving moldability, a pore forming agent for forming appropriate pores in the catalyst, or the like can be used. Specific examples include organic compounds such as ethylene glycol, glycerin, propionic acid, maleic acid, benzyl alcohol, propyl alcohol, butyl alcohol or phenols, water, nitric acid, ammonium nitrate, and ammonium carbonate.
上記成形工程で得られた成形体あるいは担持体は、続く焼成工程に送られる。焼成温度としては350℃〜600℃、好ましくは400℃〜550℃、更に好ましくは420℃〜500℃、焼成時間としては好ましくは1〜10時間である。焼成雰囲気としては、酸化雰囲気であれば良いが、分子状酸素含有ガス雰囲気が好ましく、特に、分子状酸素含有ガス流通下に焼成工程を行うのが好ましい。分子状酸素含有ガスとしては空気が好適に用いられる。 The molded body or carrier obtained in the molding process is sent to the subsequent firing process. The firing temperature is 350 ° C to 600 ° C, preferably 400 ° C to 550 ° C, more preferably 420 ° C to 500 ° C, and the firing time is preferably 1 to 10 hours. The firing atmosphere may be an oxidizing atmosphere, but a molecular oxygen-containing gas atmosphere is preferable, and it is particularly preferable to perform the firing step under the flow of the molecular oxygen-containing gas. Air is suitably used as the molecular oxygen-containing gas.
なお、焼成工程で用いる焼成炉としては特に制限はなく、一般的に使用される箱型焼成炉あるいはトンネル型焼成炉等を用いればよい。 In addition, there is no restriction | limiting in particular as a baking furnace used by a baking process, What is necessary is just to use the box-type baking furnace or tunnel type baking furnace etc. which are generally used.
本発明におけるプロピレン、イソブチレンまたはTBAの分子状酸素を用いた接触気相酸化により対応する不飽和アルデヒドおよび/または不飽和カルボン酸を製造するのに用いられる反応器については、固定床反応器である限り特段の制限はないが、特に固定床多管式反応器が好ましい。その反応管の内径は通常15〜50mm、より好ましくは20〜40mm、さらに好ましくは22〜38mmである。 In the present invention, the reactor used for producing the corresponding unsaturated aldehyde and / or unsaturated carboxylic acid by catalytic gas phase oxidation using molecular oxygen of propylene, isobutylene or TBA is a fixed bed reactor. Although there is no particular limitation, a fixed bed multi-tubular reactor is particularly preferable. The inner diameter of the reaction tube is usually 15 to 50 mm, more preferably 20 to 40 mm, and still more preferably 22 to 38 mm.
固定床多管式反応器の各反応管には、必ずしも単一の触媒を充填する必要はなく、従来公知の複数種の触媒をそれぞれ層(以下、「反応帯」と記すことがある)をなすように充填することも可能である。例えば、特開平4−217932号公報のような異なる占有容積を有する複数の触媒を原料ガス入口側から出口側に向かって占有容積が小さくなるように充填する方法、あるいは特開平10−168003号公報のような担持率の異なる複数の触媒を原料ガス入口側から出口側に向かって担持率が高くなるように充填する方法、あるいは特開2005−320315号公報のような触媒の一部を不活性な担体などで希釈する方法、あるいはこれらを組み合わせる方法などを採用してもよい。この時、反応帯の数は、反応条件や反応器の規模により適宜決定されるが、反応帯の数が多すぎると触媒の充填作業が煩雑になるなどの問題が発生するため工業的には2〜6程度までが望ましい。 Each reaction tube of the fixed-bed multitubular reactor does not necessarily need to be filled with a single catalyst, and a plurality of conventionally known types of catalysts (each may be referred to as a “reaction zone”) are provided. It is also possible to fill as much as possible. For example, a method of filling a plurality of catalysts having different occupied volumes as disclosed in JP-A-4-217932 so that the occupied volume decreases from the raw material gas inlet side to the outlet side, or JP-A-10-168003 A method of filling a plurality of catalysts having different loading rates such as from the raw material gas inlet side to the outlet side so that the loading rate increases, or a part of the catalyst as disclosed in JP-A-2005-320315 is inactive. A method of diluting with a simple carrier or a combination of these may be employed. At this time, the number of reaction zones is appropriately determined depending on the reaction conditions and the scale of the reactor. However, if the number of reaction zones is too large, problems such as complicated packing of the catalyst may occur. About 2-6 is desirable.
本発明における反応条件には特に制限は無く、この種の反応に一般に用いられている条件であればいずれも実施することが可能である。例えば、原料ガスとして1〜15容量%、好ましくは4〜12容量%のプロピレン、イソブチレンまたはTBA、0.5〜25容量%、好ましくは2〜20容量%の分子状酸素、0〜30容量%、好ましくは0〜25容量%の水蒸気、残部が窒素などの不活性ガスからなる混合ガスを250〜450℃の温度範囲で0.1〜1.0MPaの圧力下、300〜5,000Hr−1(STP)の空間速度で触媒に接触させればよい。 The reaction conditions in the present invention are not particularly limited, and any conditions generally used for this type of reaction can be used. For example, the raw material gas is 1-15% by volume, preferably 4-12% by volume propylene, isobutylene or TBA, 0.5-25% by volume, preferably 2-20% by volume molecular oxygen, 0-30% by volume. Preferably, a mixed gas consisting of 0 to 25% by volume of water vapor and the balance of an inert gas such as nitrogen is 300 to 5,000 Hr −1 under a pressure of 0.1 to 1.0 MPa in a temperature range of 250 to 450 ° C. The catalyst may be contacted at a space velocity of (STP).
反応原料ガスとしてのグレードについては特に制限はなく、例えば、原料としてプロピレンを用いる場合、ポリマーグレードやケミカルグレードのプロピレンなどを用いることができる。また、プロパンの酸化脱水素反応によって得られるプロピレン含有の混合ガスも使用可能であり、この混合ガスに必要に応じ、空気または酸素などを添加して使用することもできる。 The grade as the reaction raw material gas is not particularly limited. For example, when propylene is used as the raw material, polymer grade or chemical grade propylene can be used. Also, a propylene-containing mixed gas obtained by propane oxidative dehydrogenation reaction can be used. If necessary, air or oxygen can be added to this mixed gas.
以下に、実施例を挙げて本発明を具体的に説明するが、本発明はこれにより何ら限定されるものではない。なお、以下では、便宜上、「質量部」を単に「部」、と記すことがある。実施例および比較例における転化率および収率は、次式によって求めた。
転化率[mol%]
=(反応した出発原料のmol数)/(供給した原料のmol数)×100
収率[mol%]
=(生成した不飽和アルデヒドおよび生成した不飽和カルボン酸の合計mol数)/(供給した出発原料のmol数)×100
[酸量の測定方法]
酸量の測定は、日本ベル(株)製の触媒分析装置BEL−CATを用いたアンモニアTPD法(昇温脱離法)により以下の条件で測定した。
試料量:約0.1g
キャリアーガス:ヘリウム
検出器:TCD(熱伝導型検出器)
前処理温度/時間:200℃×2時間
アンモニア吸着温度:100℃
昇温範囲:100℃〜600℃
昇温速度:10℃/分
[触媒の機械的強度測定方法]
内径25mm、長さ5000mmのステンレス製反応管を鉛直方向に設置し、該反応管の下端を厚さ1mmのステンレス製受け板で塞ぐ。約50gの触媒を該反応管の上端から反応管内に落下させた後、反応管下端のステンレス製受け板を外し、反応管から触媒を静かに抜き出す。抜き出した触媒を目開き5mmの篩で篩い、篩上に残った触媒の質量を計量した。
Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited thereto. Hereinafter, for convenience, “parts by mass” may be simply referred to as “parts”. The conversion rates and yields in the examples and comparative examples were determined by the following equations.
Conversion rate [mol%]
= (Mol number of reacted starting material) / (mol number of supplied raw material) x 100
Yield [mol%]
= (Total number of moles of unsaturated aldehyde produced and unsaturated carboxylic acid produced) / (Number of moles of supplied starting material) x 100
[Measurement method of acid amount]
The acid amount was measured by the ammonia TPD method (temperature programmed desorption method) using a catalyst analyzer BEL-CAT manufactured by Nippon Bell Co., Ltd. under the following conditions.
Sample amount: about 0.1g
Carrier gas: Helium detector: TCD (thermal conductivity detector)
Pretreatment temperature / time: 200 ° C. × 2 hours Ammonia adsorption temperature: 100 ° C.
Temperature rise range: 100 ° C to 600 ° C
Temperature increase rate: 10 ° C / min
[Measuring method of mechanical strength of catalyst]
A stainless steel reaction tube having an inner diameter of 25 mm and a length of 5000 mm is installed in the vertical direction, and the lower end of the reaction tube is closed with a stainless steel receiving plate having a thickness of 1 mm. About 50 g of the catalyst is dropped into the reaction tube from the upper end of the reaction tube, the stainless steel receiving plate at the lower end of the reaction tube is removed, and the catalyst is gently extracted from the reaction tube. The extracted catalyst was sieved with a sieve having an opening of 5 mm, and the mass of the catalyst remaining on the sieve was weighed.
触媒強度[質量%]
=篩上に残った触媒の質量/反応管上端から落下させた触媒の質量×100
<実施例1>
〔触媒調製〕
蒸留水3000部にパラモリブデン酸アンモニウム500部および硝酸カリウム1.9部を溶解した(A液)。別に蒸留水300部に65重量%硝酸20部を添加し、硝酸ビスマス91.6部、硝酸コバルト426部、硝酸鉄143部および硝酸ニッケル227部を溶解した(B液)。得られたA液にB液を添加し、30分攪拌し続けた。その後、酸量が0.027mmol/g、平均繊維径4μmおよび平均繊維長50μmのシリカーアルミナ繊維を触媒活性成分に対して3質量%となるよう添加し、さらに2時間攪拌し続けスラリーを得た。得られたスラリーを加熱攪拌してケーキ状の固形物とし、得られた固形物を空気雰囲気下200℃で約5時間乾燥を行った。乾燥後の固形物を500μm以下に粉砕し、触媒粉体を得た。転動造粒装置に平均粒径4.5mmのシリカ−アルミナ球形担体390部を投入し、次いで結合剤として15質量%の硝酸アンモニウム水溶液と共に触媒粉体を徐々に投入して担体に担持させた後、空気雰囲気下470℃で6時間焼成して触媒1を得た。この触媒1の担持率は約150質量%であり、酸素を除く金属元素組成は次のとおりであった。
触媒1:Mo12Bi0.8Co6.2Fe1.5Ni3.3K0.08
なお、担持率は、下記式により求めた。
Catalyst strength [mass%]
= Mass of catalyst remaining on sieve / mass of catalyst dropped from top of reaction tube x 100
<Example 1>
(Catalyst preparation)
500 parts of ammonium paramolybdate and 1.9 parts of potassium nitrate were dissolved in 3000 parts of distilled water (solution A). Separately, 20 parts of 65 wt% nitric acid was added to 300 parts of distilled water, and 91.6 parts of bismuth nitrate, 426 parts of cobalt nitrate, 143 parts of iron nitrate and 227 parts of nickel nitrate were dissolved (Liquid B). B liquid was added to the obtained A liquid, and stirring was continued for 30 minutes. Thereafter, silica-alumina fiber having an acid amount of 0.027 mmol / g, an average fiber diameter of 4 μm, and an average fiber length of 50 μm was added to 3% by mass with respect to the catalytically active component, and stirring was further continued for 2 hours to obtain a slurry. It was. The obtained slurry was heated and stirred to form a cake-like solid, and the obtained solid was dried at 200 ° C. for about 5 hours in an air atmosphere. The dried solid was pulverized to 500 μm or less to obtain catalyst powder. After 390 parts of a silica-alumina spherical carrier having an average particle size of 4.5 mm was put into a rolling granulator, and then catalyst powder was gradually put together with a 15% by mass aqueous ammonium nitrate solution as a binder and supported on the carrier. The catalyst 1 was obtained by calcination at 470 ° C. for 6 hours in an air atmosphere. The supported rate of the catalyst 1 was about 150% by mass, and the metal element composition excluding oxygen was as follows.
Catalyst 1: Mo 12 Bi 0.8 Co 6.2 Fe 1.5 Ni 3.3 K 0.08
The loading rate was determined by the following formula.
担持率[質量%]=担持された触媒活性成分の質量/用いた担体の質量×100
〔反応器〕
全長3000mm、内径25mmのSUS製反応管およびこれを覆う熱媒体を流すためのシェルからなる反応器を鉛直方向に用意した。反応管上部より得られた触媒1を落下させて、層長が2900mmとなるように充填した。
〔酸化反応〕
触媒を充填した反応管下部より、プロピレン8.3容量%、酸素15容量%、水蒸気3容量%、残部が窒素等の不活性ガス混合からなる混合ガスを空間速度2100hr−1(STP)で導入し、プロピレン酸化反応を行った。その際、プロピレン転化率が約97mol%となるように熱媒体温度(反応温度)を調節した。その結果を表1に示す。
<比較例1>
実施例1において、シリカーアルミナ繊維を添加しなかったことおよびシリカ−アルミナ球形担体の量を490部に変更したこと以外は実施例1と同様に調製し、触媒2を得た。この触媒2の担持率は約120質量%であり、酸素を除く金属元素組成は実施例1と同じであった。得られた触媒2を実施例1と同様に反応器に充填し、同条件で酸化反応を行った。その結果も表1に示す。表1に示すとおり、その機械的強度が弱いため触媒充填時に触媒活性成分が崩壊し反応時の圧力損失が高くなり、所定の転化率に調節できなかった。
<比較例2>
実施例1において、シリカーアルミナ繊維として酸量が0.084mmol/g、平均繊維径2μmおよび平均繊維長70μmのものを用いたいことおよびシリカ−アルミナ球形担体の量を490部に変更したこと以外は実施例1と同様に調製し、触媒3を得た。この触媒3の担持率は約120質量%であり、酸素を除く金属元素組成は実施例1と同じであった。得られた触媒3を実施例1と同様に反応器に充填し、同条件で酸化反応を行った。その結果も表1に示す。
<実施例2>
実施例1と同様にしてA液およびB液を調製した。得られたA液にB液を添加し、2時間攪拌し続けスラリーを得た。得られたスラリーを加熱攪拌してケーキ状の固形物とし、得られた固形物を空気雰囲気下200℃で約5時間乾燥を行った。乾燥後の固形物を500μm以下に粉砕し、触媒前駆体粉体を得た。得られた触媒前駆体粉体に、実施例1と同じシリカーアルミナ繊維を触媒活性成分に対して3質量%となるよう添加し、粉体混合し触媒粉体とした。転動造粒装置に平均粒径4.5mmのシリカ−アルミナ球形担体490部を投入し、次いで結合剤として15質量%の硝酸アンモニウム水溶液と共に触媒粉体を徐々に投入して担体に担持させた後、空気雰囲気下470℃で6時間焼成して触媒4を得た。この触媒4の担持率は約120質量%であり、酸素を除く金属元素組成は実施例1と同じであった。実施例1と同様に反応器に充填し、同条件で酸化反応を行った。その結果も表1に示す。
<実施例3>
実施例1と同様にしてA液およびB液を調製した。得られたA液にB液を添加し、2時間攪拌し続けスラリーを得た。得られたスラリーを加熱攪拌してケーキ状の固形物とし、得られた固形物を空気雰囲気下200℃で約5時間乾燥後、さらに490℃で6時間焼成を行った。焼成後の固形物を500μm以下に粉砕し、焼成粉体を得た。続いて得られた焼成粉体を蒸留水800部および実施例1と同じシリカーアルミナ繊維を触媒活性成分に対して3質量%となるよう添加した後、30分攪拌しスラリー状(C液)とした。伝熱ヒーターにより約200℃に加熱された回転ドラム内に平均粒径4.5mmのシリカ−アルミナ球形担体490部を投入した。該担体を回転ドラム内で流動させながら、C液をスプレーノズルを用いて徐々に吹きつけ、水分を気化蒸発させながら担持を行った後、担持体を120℃で3時間乾燥し触媒5を得た。この触媒5の担持率は約120質量%であり、酸素を除く金属元素組成は実施例1と同じであった。実施例1と同様に反応器に充填し、同条件で酸化反応を行った。その結果も表1に示す。
<実施例4>
〔触媒調製〕
蒸留水3000部にパラモリブデン酸アンモニウム500部および硝酸カリウム1.4部を溶解した(A液)。別に蒸留水300部に65重量%硝酸20部を添加し、硝酸ビスマス195部、硝酸コバルト522部および硝酸鉄172部を溶解した(B液)。得られたA液にB液を添加し、30分攪拌し続けた。その後、酸量が0.043mmol/g、平均繊維径7μmおよび平均繊維長30μmのアルミナ繊維を触媒活性成分に対して5質量%となるよう添加し、さらに2時間攪拌し続けスラリーを得た。得られたスラリーを加熱攪拌してケーキ状の固形物とし、得られた固形物を空気雰囲気下150℃で約5時間乾燥を行った。乾燥後の固形物を500μm以下に粉砕し、触媒粉体を得た。転動造粒装置に平均粒径4.5mmのシリカ−アルミナ球形担体460部を投入し、次いで結合剤として15質量%の硝酸アンモニウム水溶液と共に触媒粉体を投入して担体に担持させた後、空気雰囲気下480℃で6時間焼成して触媒6を得た。この触媒6の担持率は約130質量%であり、酸素を除く金属元素組成は次のとおりであった。
触媒6:Mo12Bi1.7Co7.6Fe1.8K0.06
〔酸化反応〕
実施例1と同様に反応器に充填し、同条件で酸化反応を行った。その結果も表1に示す。
<比較例3>
実施例4において、アルミナ繊維として酸量が0.11mmol/g、平均繊維径5μmおよび平均繊維長10μmのものを触媒活性成分に対して8質量%となるよう添加したこと以外は実施例4と同様に調製し、触媒7を得た。この触媒7の担持率は約130質量%であり、酸素を除く金属元素組成は実施例4と同じであった。得られた触媒7を実施例1と同様に反応器に充填し、同条件で酸化反応を行った。その結果も表1に示す。
<実施例5>
〔触媒調製〕
蒸留水3000部にパラモリブデン酸アンモニウム500部および硝酸カリウム2.9部を溶解した(A液)。別に蒸留水300部に65重量%硝酸20部を添加し、硝酸ビスマス149部、硝酸コバルト364部、硝酸鉄114部および硝酸ニッケル182部を溶解した(B液)。得られたA液にB液を添加し、30分攪拌し続けた。その後、酸量が0.003mmol/g、平均繊維径10μmおよび平均繊維長420μmのガラス繊維(旭ファイバーグラス(株)製ミルドファイバー)を触媒活性成分に対して12質量%となるよう添加し、さらに2時間攪拌し続けスラリーを得た。得られたスラリーを加熱攪拌してケーキ状の固形物とし、得られた固形物を空気雰囲気下180℃で約5時間乾燥を行った。乾燥後の固形物を500μm以下に粉砕し、触媒粉体を得た。転動造粒装置に平均粒径4.5mmのシリカ−アルミナ球形担体300部を投入し、次いで結合剤として15質量%の硝酸アンモニウム水溶液と共に触媒粉体を投入して担体に担持させた後、空気雰囲気下470℃で6時間焼成して触媒8を得た。この触媒8の担持率は約190質量%であり、酸素を除く金属元素組成は次のとおりであった。
触媒8:Mo12Bi1.3Co5.3Fe1.2Ni2.5K0.12
〔酸化反応〕
実施例1と同様に反応器に充填し、同条件で酸化反応を行った。その結果も表1に示す。
Support rate [mass%] = mass of supported catalyst active component / mass of support used × 100
[Reactor]
A reactor composed of a SUS reaction tube having a total length of 3000 mm and an inner diameter of 25 mm and a shell for flowing a heat medium covering the SUS reaction tube was prepared in the vertical direction. The catalyst 1 obtained from the upper part of the reaction tube was dropped and filled so that the layer length was 2900 mm.
[Oxidation reaction]
From the bottom of the reaction tube filled with the catalyst, a mixed gas consisting of 8.3% by volume of propylene, 15% by volume of oxygen, 3% by volume of water vapor, and the balance of an inert gas such as nitrogen is introduced at a space velocity of 2100 hr −1 (STP). Then, propylene oxidation reaction was performed. At that time, the heat medium temperature (reaction temperature) was adjusted so that the propylene conversion was about 97 mol%. The results are shown in Table 1.
<Comparative Example 1>
A catalyst 2 was obtained in the same manner as in Example 1 except that the silica-alumina fiber was not added and the amount of the silica-alumina spherical support was changed to 490 parts. The supporting rate of the catalyst 2 was about 120% by mass, and the metal element composition excluding oxygen was the same as in Example 1. The obtained catalyst 2 was charged into a reactor in the same manner as in Example 1, and an oxidation reaction was performed under the same conditions. The results are also shown in Table 1. As shown in Table 1, since the mechanical strength was weak, the catalytic active component collapsed when the catalyst was charged, the pressure loss during the reaction increased, and the conversion rate could not be adjusted.
<Comparative example 2>
In Example 1, except that the silica-alumina fiber has an acid amount of 0.084 mmol / g, an average fiber diameter of 2 μm, and an average fiber length of 70 μm, and the amount of the silica-alumina spherical carrier is changed to 490 parts. Was prepared in the same manner as in Example 1 to obtain Catalyst 3. The supporting rate of the catalyst 3 was about 120% by mass, and the metal element composition excluding oxygen was the same as that in Example 1. The obtained catalyst 3 was charged into a reactor in the same manner as in Example 1, and an oxidation reaction was performed under the same conditions. The results are also shown in Table 1.
<Example 2>
Liquid A and liquid B were prepared in the same manner as in Example 1. B liquid was added to the obtained A liquid, and it stirred for 2 hours, and obtained the slurry. The obtained slurry was heated and stirred to form a cake-like solid, and the obtained solid was dried at 200 ° C. for about 5 hours in an air atmosphere. The dried solid was pulverized to 500 μm or less to obtain catalyst precursor powder. To the obtained catalyst precursor powder, the same silica-alumina fiber as in Example 1 was added to 3% by mass with respect to the catalytically active component, and powder mixing was performed to obtain a catalyst powder. After 490 parts of a silica-alumina spherical carrier having an average particle diameter of 4.5 mm was put into a rolling granulator, and then catalyst powder was gradually put together with a 15% by mass aqueous ammonium nitrate solution as a binder and supported on the carrier. The catalyst 4 was obtained by calcination at 470 ° C. for 6 hours in an air atmosphere. The supported rate of the catalyst 4 was about 120% by mass, and the metal element composition excluding oxygen was the same as that in Example 1. The reactor was charged in the same manner as in Example 1, and the oxidation reaction was performed under the same conditions. The results are also shown in Table 1.
<Example 3>
Liquid A and liquid B were prepared in the same manner as in Example 1. B liquid was added to the obtained A liquid, and it stirred for 2 hours, and obtained the slurry. The obtained slurry was heated and stirred to obtain a cake-like solid, and the obtained solid was dried in an air atmosphere at 200 ° C. for about 5 hours, and further calcined at 490 ° C. for 6 hours. The fired solid matter was pulverized to 500 μm or less to obtain a fired powder. Subsequently, 800 parts of distilled water and the same silica-alumina fiber as in Example 1 were added to the obtained fired powder so as to be 3% by mass with respect to the catalytically active component, and then stirred for 30 minutes to form a slurry (liquid C). It was. Into a rotating drum heated to about 200 ° C. by a heat transfer heater, 490 parts of a silica-alumina spherical carrier having an average particle diameter of 4.5 mm was charged. While the carrier was allowed to flow in the rotating drum, the liquid C was gradually blown using a spray nozzle to carry the carrier while vaporizing and evaporating the water, and then the carrier was dried at 120 ° C. for 3 hours to obtain catalyst 5. It was. The supporting rate of the catalyst 5 was about 120% by mass, and the metal element composition excluding oxygen was the same as in Example 1. The reactor was charged in the same manner as in Example 1, and the oxidation reaction was performed under the same conditions. The results are also shown in Table 1.
<Example 4>
(Catalyst preparation)
500 parts of ammonium paramolybdate and 1.4 parts of potassium nitrate were dissolved in 3000 parts of distilled water (solution A). Separately, 20 parts of 65% by weight nitric acid was added to 300 parts of distilled water to dissolve 195 parts of bismuth nitrate, 522 parts of cobalt nitrate and 172 parts of iron nitrate (Liquid B). B liquid was added to the obtained A liquid, and stirring was continued for 30 minutes. Thereafter, an alumina fiber having an acid amount of 0.043 mmol / g, an average fiber diameter of 7 μm and an average fiber length of 30 μm was added so as to be 5% by mass with respect to the catalytically active component, and stirring was further continued for 2 hours to obtain a slurry. The obtained slurry was heated and stirred to form a cake-like solid, and the obtained solid was dried at 150 ° C. for about 5 hours in an air atmosphere. The dried solid was pulverized to 500 μm or less to obtain catalyst powder. 460 parts of a silica-alumina spherical carrier having an average particle diameter of 4.5 mm was put into a rolling granulator, and then a catalyst powder was put together with a 15% by mass ammonium nitrate aqueous solution as a binder and supported on the carrier. The catalyst 6 was obtained by calcination at 480 ° C. for 6 hours in an atmosphere. The supported rate of the catalyst 6 was about 130% by mass, and the metal element composition excluding oxygen was as follows.
Catalyst 6: Mo 12 Bi 1.7 Co 7.6 Fe 1.8 K 0.06
[Oxidation reaction]
The reactor was charged in the same manner as in Example 1, and the oxidation reaction was performed under the same conditions. The results are also shown in Table 1.
<Comparative Example 3>
Example 4 is the same as Example 4 except that an alumina fiber having an acid amount of 0.11 mmol / g, an average fiber diameter of 5 μm, and an average fiber length of 10 μm is added to 8% by mass with respect to the catalytically active component. In the same manner, catalyst 7 was obtained. The supported rate of the catalyst 7 was about 130% by mass, and the metal element composition excluding oxygen was the same as that in Example 4. The obtained catalyst 7 was charged into a reactor in the same manner as in Example 1, and an oxidation reaction was performed under the same conditions. The results are also shown in Table 1.
<Example 5>
(Catalyst preparation)
500 parts of ammonium paramolybdate and 2.9 parts of potassium nitrate were dissolved in 3000 parts of distilled water (solution A). Separately, 65 parts by weight of 65% nitric acid was added to 300 parts of distilled water, and 149 parts of bismuth nitrate, 364 parts of cobalt nitrate, 114 parts of iron nitrate and 182 parts of nickel nitrate were dissolved (Liquid B). B liquid was added to the obtained A liquid, and stirring was continued for 30 minutes. Thereafter, an acid amount of 0.003 mmol / g, an average fiber diameter of 10 μm, and an average fiber length of 420 μm of glass fiber (Asahi Fiber Glass Co., Ltd. milled fiber) were added so as to be 12% by mass with respect to the catalytically active component. The mixture was further stirred for 2 hours to obtain a slurry. The obtained slurry was heated and stirred to obtain a cake-like solid, and the obtained solid was dried at 180 ° C. for about 5 hours in an air atmosphere. The dried solid was pulverized to 500 μm or less to obtain catalyst powder. 300 parts of a silica-alumina spherical carrier having an average particle size of 4.5 mm was put into a rolling granulator, and then a catalyst powder was put together with a 15% by mass ammonium nitrate aqueous solution as a binder to be supported on the carrier, and then air The catalyst 8 was obtained by calcination at 470 ° C. for 6 hours in an atmosphere. The supported rate of the catalyst 8 was about 190% by mass, and the metal element composition excluding oxygen was as follows.
Catalyst 8: Mo 12 Bi 1.3 Co 5.3 Fe 1.2 Ni 2.5 K 0.12
[Oxidation reaction]
The reactor was charged in the same manner as in Example 1, and the oxidation reaction was performed under the same conditions. The results are also shown in Table 1.
Claims (4)
Mo12BiaFebAcBdCeDfOx (1)
(式中、Moはモリブデン、Biはビスマス、Feは鉄、Aはコバルトおよびニッケルから選ばれる少なくとも1種の元素、Bはアルカリ金属、アルカリ土類金属およびタリウムから選ばれる少なくとも1種の元素、Cはタングステン、ケイ素、アルミニウム、ジルコニウムおよびチタンから選ばれる少なくとも1種の元素、Dはリン、テルル、アンチモン、スズ、セリウム、鉛、ニオブ、マンガン、砒素および亜鉛から選ばれる少なくとも1種の元素、Oは酸素であり、a、b、c、d、e、fおよびxはそれぞれBi、Fe、A、B、C、DおよびOの原子比を表し、0<a≦10、0<b≦20、2≦c≦20、0<d≦10、0≦e≦30、0≦f≦4であり、xはそれぞれの元素の酸化状態によって定まる数値である。) An unsaturated aldehyde comprising: a catalytically active component represented by the following general formula (1) having molybdenum and bismuth as essential components; and an inorganic fiber having an acid amount of 0.05 mmol / g or less. Or a catalyst for the production of unsaturated carboxylic acids.
Mo 12 Bi a Fe b A c B d C e D f O x (1)
(Wherein Mo is molybdenum, Bi is bismuth, Fe is iron, A is at least one element selected from cobalt and nickel, B is at least one element selected from alkali metals, alkaline earth metals and thallium, C is at least one element selected from tungsten, silicon, aluminum, zirconium and titanium; D is at least one element selected from phosphorus, tellurium, antimony, tin, cerium, lead, niobium, manganese, arsenic and zinc; O is oxygen, and a, b, c, d, e, f and x represent the atomic ratio of Bi, Fe, A, B, C, D and O, respectively, and 0 <a ≦ 10, 0 <b ≦ (20, 2 ≦ c ≦ 20, 0 <d ≦ 10, 0 ≦ e ≦ 30, 0 ≦ f ≦ 4, and x is a numerical value determined by the oxidation state of each element.)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010042142A JP5388897B2 (en) | 2010-02-26 | 2010-02-26 | Catalyst for producing unsaturated aldehyde and / or unsaturated carboxylic acid, and method for producing unsaturated aldehyde and / or unsaturated carboxylic acid using the catalyst |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010042142A JP5388897B2 (en) | 2010-02-26 | 2010-02-26 | Catalyst for producing unsaturated aldehyde and / or unsaturated carboxylic acid, and method for producing unsaturated aldehyde and / or unsaturated carboxylic acid using the catalyst |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2011177616A JP2011177616A (en) | 2011-09-15 |
JP5388897B2 true JP5388897B2 (en) | 2014-01-15 |
Family
ID=44689758
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010042142A Active JP5388897B2 (en) | 2010-02-26 | 2010-02-26 | Catalyst for producing unsaturated aldehyde and / or unsaturated carboxylic acid, and method for producing unsaturated aldehyde and / or unsaturated carboxylic acid using the catalyst |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5388897B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105026036A (en) * | 2013-05-24 | 2015-11-04 | Lg化学株式会社 | Catalyst for preparing acrolein and acrylic acid, and method for preparing same |
EP3351301A4 (en) * | 2015-09-16 | 2019-05-22 | Nippon Kayaku Kabushiki Kaisha | Catalyst for production of conjugated diolefin and method for producing same |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014175113A1 (en) | 2013-04-25 | 2014-10-30 | 日本化薬株式会社 | Catalyst for producing unsaturated aldehyde and/or unsaturated carboxylic acid, method for producing catalyst, and method for producing unsaturated aldehyde and/or unsaturated carboxylic acid using catalyst |
WO2016140265A1 (en) * | 2015-03-03 | 2016-09-09 | 日本化薬株式会社 | Catalyst for conjugated diolefin production and method for producing same |
CN116761676A (en) * | 2021-01-27 | 2023-09-15 | 日本化药株式会社 | Catalyst and method for producing unsaturated carboxylic acid using the same |
WO2022163725A1 (en) * | 2021-01-27 | 2022-08-04 | 日本化薬株式会社 | Catalyst, and method for producing unsaturated carboxylic acid using same |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3276984B2 (en) * | 1992-06-19 | 2002-04-22 | 三菱レイヨン株式会社 | Supported catalyst for synthesis of unsaturated aldehyde and unsaturated carboxylic acid and method for producing the same |
JP3826413B2 (en) * | 1995-08-17 | 2006-09-27 | 住友化学株式会社 | Method for producing catalyst molded body for synthesis of unsaturated aldehyde and unsaturated carboxylic acid |
JP3892244B2 (en) * | 2001-03-21 | 2007-03-14 | 株式会社日本触媒 | Process for producing catalyst for producing unsaturated aldehyde and unsaturated carboxylic acid |
-
2010
- 2010-02-26 JP JP2010042142A patent/JP5388897B2/en active Active
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105026036A (en) * | 2013-05-24 | 2015-11-04 | Lg化学株式会社 | Catalyst for preparing acrolein and acrylic acid, and method for preparing same |
CN105026036B (en) * | 2013-05-24 | 2018-04-27 | Lg化学株式会社 | It is used to prepare the catalyst of methacrylaldehyde and acrylic acid and the preparation method of the catalyst |
EP3351301A4 (en) * | 2015-09-16 | 2019-05-22 | Nippon Kayaku Kabushiki Kaisha | Catalyst for production of conjugated diolefin and method for producing same |
Also Published As
Publication number | Publication date |
---|---|
JP2011177616A (en) | 2011-09-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5628930B2 (en) | Catalyst for producing unsaturated aldehyde and / or unsaturated carboxylic acid, and method for producing unsaturated aldehyde and / or unsaturated carboxylic acid using the catalyst | |
JP5845337B2 (en) | Method for producing acrylic acid using a fixed bed multitubular reactor | |
US9573127B2 (en) | Process for producing shaped catalyst and process for producing diene or unsaturated aldehyde and/or unsaturated carboxylic acid using the shaped catalyst | |
JP3892244B2 (en) | Process for producing catalyst for producing unsaturated aldehyde and unsaturated carboxylic acid | |
JP5388897B2 (en) | Catalyst for producing unsaturated aldehyde and / or unsaturated carboxylic acid, and method for producing unsaturated aldehyde and / or unsaturated carboxylic acid using the catalyst | |
WO2006104155A1 (en) | Catalyst for producing methacrylic acid and method for preparation thereof | |
KR102618400B1 (en) | Catalyst and manufacturing method thereof, and direct two-stage contact gas phase oxidation method using the catalyst and use thereof | |
JPWO2014181839A1 (en) | Catalyst for producing unsaturated aldehyde and / or unsaturated carboxylic acid, method for producing the same, and method for producing unsaturated aldehyde and / or unsaturated carboxylic acid | |
JP4242597B2 (en) | Unsaturated aldehyde synthesis catalyst, production method thereof, and production method of unsaturated aldehyde using the catalyst | |
JP6694884B2 (en) | Process for producing unsaturated aldehyde and / or unsaturated carboxylic acid | |
JP5628936B2 (en) | Unsaturated carboxylic acid production catalyst and method for producing unsaturated carboxylic acid using the catalyst | |
JP5420556B2 (en) | Catalyst for producing acrolein and / or acrylic acid and method for producing acrolein and / or acrylic acid using the catalyst | |
JP2020015043A (en) | Method fop producing catalyst for producing methacrylic acid | |
JP6932292B1 (en) | Catalysts, catalyst filling methods, and methods for producing compounds using catalysts. | |
JP2012045516A (en) | Method of manufacturing catalyst for manufacturing unsaturated aldehyde and/or unsaturated carboxylic acid and the catalyst, and method of manufacturing acrolein and/or acrylic acid using the catalyst | |
JP2008264766A (en) | Oxide catalyst, manufacturing method of acrolein or acrylic acid and manufacturing method of water-absorptive resin using acrylic acid | |
JP5845338B2 (en) | Method for producing acrolein and acrylic acid using fixed bed multitubular reactor | |
JP5448331B2 (en) | Acrylic acid production catalyst and method for producing acrylic acid using the catalyst | |
JP6504774B2 (en) | Catalyst for producing acrylic acid and method for producing acrylic acid using the catalyst | |
JP2004002209A (en) | Method for producing unsaturated aldehyde | |
JP5542557B2 (en) | Catalyst for producing unsaturated aldehyde and unsaturated carboxylic acid, method for producing the same, and method for producing unsaturated aldehyde and unsaturated carboxylic acid | |
JP2015120133A (en) | Catalyst for producing acrylic acid, and method for producing acrylic acid by using catalyst | |
JP4970986B2 (en) | Method for producing composite oxide catalyst and method for producing unsaturated aldehyde and / or unsaturated carboxylic acid using the catalyst | |
WO2016147324A1 (en) | Catalyst for production of unsaturated aldehyde and/or unsaturated carboxylic acid, method for producing same, and method for producing unsaturated aldehyde and/or unsaturated carboxylic acid | |
JP6487242B2 (en) | Method for producing acrylic acid production catalyst, catalyst therefor, and method for producing acrylic acid using the catalyst |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20121005 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20130911 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20130917 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20131008 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5388897 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |