JP3826413B2 - Method for producing catalyst molded body for synthesis of unsaturated aldehyde and unsaturated carboxylic acid - Google Patents

Method for producing catalyst molded body for synthesis of unsaturated aldehyde and unsaturated carboxylic acid Download PDF

Info

Publication number
JP3826413B2
JP3826413B2 JP20947395A JP20947395A JP3826413B2 JP 3826413 B2 JP3826413 B2 JP 3826413B2 JP 20947395 A JP20947395 A JP 20947395A JP 20947395 A JP20947395 A JP 20947395A JP 3826413 B2 JP3826413 B2 JP 3826413B2
Authority
JP
Japan
Prior art keywords
catalyst
molded body
weight
less
diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP20947395A
Other languages
Japanese (ja)
Other versions
JPH0952053A (en
Inventor
和也 土本
修 山西
好三郎 野村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP20947395A priority Critical patent/JP3826413B2/en
Publication of JPH0952053A publication Critical patent/JPH0952053A/en
Application granted granted Critical
Publication of JP3826413B2 publication Critical patent/JP3826413B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Description

【0001】
【発明の属する技術分野】
本発明は、接触酸化に用いる不飽和アルデヒドおよび不飽和カルボン酸合成用触媒成形体の製造方法に関する。さらに詳細には機械的強度に優れたプロピレン、イソブチレン又はターシャリーブタノールの気相接触酸化に用いる不飽和アルデヒド及び不飽和カルボン酸合成用触媒成形体の製造方法に関するものである。
【0002】
【従来の技術】
プロピレン又はイソブチレンの気相接触酸化による不飽和アルデヒド及び不飽和カルボン酸合成反応は、プロピレン又はイソブチレンの逐次酸化反応であり反応圧力の増加に伴い副生物が増加する。このためリアクター内の圧力損失を出来るだけ小さくする必要がある。また、プラント内のブロワーの負荷を軽減する意味においても前述の措置は有効である。
リアクター内の圧力損失は、触媒充填の際の粉化の程度によるところが大きいため、触媒の機械的強度を確保することが重要である。
【0003】
従来、触媒の機械的強度を付与する方法として、触媒成分にウィスカや水ガラス等を添加する方法が開示されている。
例えば、特開昭59−183832号公報および特開平2−36296号公報には、触媒成分にウィスカを添加して賦型することで高強度な触媒が得られることが教示されている。また特開平7−16463号公報には、触媒成分にシリカゾルを無水ケイ酸として1〜10重量%添加することで機械的強度に優れた触媒成形体が得られるとの提案がなされている。
【0004】
【発明が解決しようとする課題】
しかしながら、上記方法より得られた触媒成形体はある程度の機械的強度の改良効果は有するものの、未だ十分なものではなく、より高い機械的強度を有する触媒成形体ならびにその製造方法の出現が望まれていた。
【0005】
本発明者らは、かかる課題を解決するため、触媒成形体の機械的強度を高める触媒成分や添加物の種類さらにはその混合方法等を鋭意検討した結果、プロピレン、イソブチレンまたはターシャリーブタノールを気相接触酸化して不飽和アルデヒド及び不飽和カルボン酸の合成反応に適した機械的強度に優れた触媒成形体の製造法を見出し本発明を完成するに至った。
【0006】
【課題を解決するための手段】
すなわち、本発明は、モリブデン、ビスマス、鉄、ニッケルおよび/またはコバルトを触媒成分として含む原料塩水溶液を混合し、析出物を乾燥した後、塩分解し、得られた塩分解物(無水換算)100重量部に対し、無水ケイ酸として1〜6重量部のシリカゾルと2〜12重量部の長さが30〜300μm、径が2〜20μm、ショット含有率が10重量%以下である無機ファイバーを添加、混合し、室温で20時間以下養成させ、0.16〜0.32kW・h/kgのエネルギ−で混錬を行い、次いで成形した後、乾燥、必要により熱処理することを特徴とするプロピレン、イソブチレン又はターシャリーブタノ−ルの気相接触酸化に用いる不飽和アルデヒド及び不飽和カルボン酸合成用触媒成形体の製造方法を提供するにある。
【0007】
【発明の実施の形態】
本発明における触媒活性物質は、従来公知のプロピレン、イソブチレン又はタ−シャリ−ブタノ−ルの気相接触酸化により不飽和アルデヒド及び不飽和カルボン酸を合成するに際し適用する触媒活性物質であり、モリブデン、ビスマス、鉄、ニッケルおよび/またはコバルトを主たる触媒成分として含む複合酸化物であって、その組成は以下で示す一般式のものが代表的である。
MoaBibFecAdBeCfDgOx
(式中、Mo、Bi、Fe及びOはそれぞれモリブデン、ビスマス、鉄及び酸素を表し、Aはニッケル及び/又はコバルトを表し、Bはマンガン、亜鉛、カルシウム、マグネシウム、スズ及び鉛からなる群より選ばれた少なくとも1種の元素を表し、Cはリン、ホウ素、ヒ素、テルル、タングステン、アンチモン及びケイ素からなる群より選ばれた少なくとも1種の元素を表し、Dはカリウム、ルビジウム、セシウム及びタリウムからなる群より選ばれた少なくとも1種の元素を表す。a〜xは各元素の原子比率を表し、a=12としたとき、0<b≦10、0<c≦10、1≦d≦10、0≦e≦10、0≦f≦10、0≦g≦2であり、xは各元素の酸化状態により定まる値である。)
【0008】
触媒成分の原料としては各元素の酸化物、硝酸塩、炭酸塩、アンモニウム塩、ハロゲン化物などを組み合わせて使用することができる。例えば、パラモリブデン酸アンモニウム、三酸化モリブデン、塩化モリブデン、塩化ビスマス、硝酸第二鉄、硝酸ニッケル、硝酸コバルト等が使用される。これらは溶解して溶液の形にして使用される。
【0009】
これら原料を用いた触媒を調製する方法はとしては、従来公知の方法であればよく特に制限されないが、例えば原料塩水溶液のうち、酸性塩と塩基性塩を中和析出させる析出沈殿法が挙げられる。中和させるためにこれら溶液に酸や塩基を添加することもできる。中和条件としては液温50〜100℃、pHは3〜10である。得られた沈殿物は通常、室温〜150℃で含水率0.1〜10重量%以下程度まで脱水される。脱水方法としては従来公知のフィルタ−プレス等の濾過機や通風乾燥機、気流乾燥機などの乾燥方法が使用される。次いで、これら乾燥粉は空気雰囲気下、約100〜500℃で塩分解する。
【0010】
分解後の粉末はそのまま、好ましくは解砕処理後、本発明の特徴であるシリカゾルと無機ファイバーを混合し、所望の形状に成形する。
粉末の解砕は平均粒子径(累積50%径D50)が2〜10μm、累積90%径(D90)が40μm以下になるまで実施するのが好ましく、使用する装置としてはかかる解砕効果が得られるならば特に制限されるものではないが、例えば、ボ−ルミル、自由粉砕機、ジェットミル等が挙げられる。
【0011】
分解後の粉末(以下、触媒成分と称する場合がある)に添加するシリカゾルの添加量は触媒成分100重量部(無水物に換算して)に対して、無水ケイ酸として1〜6重量部、好ましくは2〜5重量部である。添加量が1重量部未満であると、成形触媒としたときに充分な機械的強度が得られず、6重量部を越えると触媒の活性低下を招く。
【0012】
一方、粉末に添加する無機ファイバ−は触媒成分100重量部に対して、2〜12重量部、好ましくは4〜8重量部、更に好ましくは6重量部である。
添加量が2重量部未満の場合には補強効果の発現が小さく、12重量部を越えるとファイバの分散が悪化するため、成形触媒としたとき充分な機械的強度が得られない。
使用する無機ファイバーとしては、触媒に対し不活性なものであれば何でも良く、通常アルミナ繊維、シリカ繊維、ガラス繊維、ロックウール、アスベスト、シリカアルミナ繊維等が適用される。
無機ファイバーの形状は、長さが約30μm〜約300μm、直径が約2μm〜約20μm、アスペクト比(長さ/直径)1.5〜150のものが使用される。 長さが約30μm未満、または直径が約20μmを越えると成形触媒にしたときに充分な機械的強度が得られず、長さが300μmを越える、または直径が2μm未満の場合には繊維の分散性が不良となり、成形触媒にしたとき強度のバラツキが大きくなる。また、ショット含有率は約25重量%以下である。25重量%を越えると成形触媒にしたときに充分な機械的強度が得られない。
【0013】
本発明において、触媒成分に対するシリカゾルと無機ファイバ−の添加は特にその添加順序を問わないが、より均一に分散せしめ得る点より、同時添加し混合することが推奨される。
これらの混合に際し、従来公知のステアリン酸、ワックス等の滑剤、ポリビニルアルコール、メチルセルロース等の可塑剤、さらには他の成形用副原料を併用することは勿論可能である。
【0014】
触媒成分へのシリカゾルと無機ファイバー、さらには滑剤、可塑剤等の成形用副原料を混合するに際し用いる混合機としては、公知の混合機、例えばオムニミキサー、ヘンシェルミキサー等が使用できる。更に好ましくは、粉体と工業(1982年8月号、第49頁)に記載の、すき形ショベルミキサ−の使用が推奨される。この場合、すき形ショベルミキサ−の回転数は約160〜約230rpm、チョッパの回転数は約4000〜約6000rpmが好ましい。かかる条件を満足する場合には極めて強度に優れた成形体原料となし得る。
混合は乾式であっても、水等を加えた湿式混合であってもよい。
【0015】
混練時、0.16〜0.32kW・h/kgのエネルギ−で混練を行うことにより、触媒成形体にしたときの強度が向上する。混練動力が0.16kW・h/kgより小さいと成形体にしたときに充分な強度が得られず、0.32kW・h/kgより大きいと、成形体にしたときに、その細孔容積、直径ともに減じ、前記条件を採用した場合に比較し触媒活性が低下する。なお、混練機は従来公知のもの、例えば、ニ−ダ−、パグミルなどが使用できる。
【0016】
触媒成分、シリカゾルおよび無機粉末の混合物、或いは混練物質は次いで成形に供されるが、成形に際し、予め養成処理を行ってもよい。該養成処理は混合物、或いは混練物質より水分の蒸発が起こらないような条件下、室温で約6〜約20時間放置することにより行われる。養成を行う時期は触媒成分と他成形用副原料を湿式混合後行っても良いし、この湿式混合物を混錬機で混錬後行っても良い。養成時間が長いほど成形触媒の機械的強度が向上するが、約20時間を超えると触媒の活性低下を招くため好ましくない。養成により成形体の強度が向上する理由については明らかではないが、触媒成分と水等との接触時間が増加することより、触媒成分が一次粒子近くまで解膠され、従って成形したときに成形体が緻密になるためと考える。
【0017】
本発明において、成形は湿式成形であれば特に限定はなく、従来、公知のマルメライザ−法、押出し成形法、液中造粒法等が適用される。押出し成形法にあっては、成形体の細孔容積を減じない程度で真空脱気を行っても良い。
【0018】
成形物の形状は特に限定はなく、従来、公知の顆粒状、円柱状、リング状、クロ−バ−状、星形状、ハニカム状等の任意の形状に成形できる。これら形状に成形された触媒は次いで、通常、室温〜150℃で乾燥され、その後空気雰囲気下、約300〜約600℃で熱処理される。
熱処理温度が上記範囲より低い場合には、不飽和アルデヒドおよび不飽和カルボン酸に対する選択性が低下し、一方高い場合にはプロピレン又はイソブチレンの反応性が低下する。かかる熱処理は通常公知の箱型焼成炉、トンネル炉、ロータリーキルン、焼成炉、通風焼成炉等で実施することが可能である。
【0019】
このようにして得られた触媒に、更に性能を向上させる目的より各種の添加物、例えば有機起孔剤、反応に実質的に不活性な酸化モリブデン等を加えることもできる。
【0020】
このようにして得られた本発明の触媒は、細孔容積が約0.2cc/g以上、普通には約0.2cc/g〜約0.4cc/gで、以下に記載の方法で測定、算出する充填粉化率が約5%以下、普通には約2%以下の物性を有し、プロピレン、イソブチレン及びターシャリーブタノールを分子状酸素で気相接触酸化して相当する不飽和アルデヒドおよび不飽和カルボン酸の合成用触媒成形体として、より具体的にはプロピレンを分子状酸素で気相接触酸化してアクロレイン及びアクリル酸を合成する、イソブチレンを分子状酸素で気相接触酸化してメタクリロレイン及びメタクリル酸を合成する、プロピレンを分子状酸素とアンモニアでアンモ酸化してアクリロニトリルを合成する、更にはイソブチレンを分子状酸素とアンモニアでアンモ酸化してメタクリロニトリルを合成する際の触媒成形体として好適であり、その適用条件は従来公知の範囲である例えば、反応温度280〜400℃、反応圧力は減圧〜加圧下、通常、常圧〜5atm、酸素/オレフィン(モル比)は1〜3、空間速度SV=500〜5000/Hの範囲で適宜行うことができる。
【0021】
【実施例】
以下、本発明による触媒の製造例及び、それらを用いての反応例を比較例と共に説明するが、本発明はこれに限定されるものではない。なお実施例及び比較例における部は特に断りのない限り重量部である。また、以下の実施例において反応率、選択率ならびに成形体の充填粉化率は以下如く定義し算出した。
反応率(%)=〔(反応したオレフィンのモル数)/(供給したオレフィンのモル数)〕×100
選択率(%)=〔(生成物のモル数)/(反応したオレフィンのモル数)〕×〔(生成物の炭素数)/(原料オレフィンの炭素数)〕×100
【0022】
触媒成形体の機械的強度は充填粉化率で評価する。水平方向に対し垂直に設置した内径30.6mmφ、長さ5000mmからなるステンレス管に、触媒成形体500gをステンレス管上部より60秒で充填し、充填後ステンレス管下部より回収する。回収した触媒の内、8メッシュの篩を通過しないで残った触媒の量がBであるとすると、充填粉化率は以下のように定義される。
充填粉化率(%)=〔(500−B)/500〕×100
【0023】
充填粉化率による圧損の測定
管径30.6mmφ、長さ5000mmのステンレス管を水平方向に対し、垂直に設置し、触媒を管上部より60秒で4960mmまで充填した後、該管の下部より4Nm3 /hの流量で空気を流し、ステンレス管下部(空気入口部)と上部(空気出口部)の間でΔPを測定した。
【0024】
実施例1
パラモリブデン酸アンモニウム〔(NH4 6 Mo7 24・4H2 O〕144gを温水470mlに溶解し、更に20%シリカゾル(SiO2 )20.4gを加え、これをA液とする。硝酸ニッケル〔Ni(NO3 2 ・6H2 O〕2g及び硝酸コバルト〔Co(NO3 2 ・6H2 O〕138.5g及び硝酸第二鉄〔Fe(NO3 3 ・9H2 O〕55g及び硝酸タリウム(TlNO3 )3.3gを温水250mlに溶解し、これをB液とする。純水40mlに60%硝酸9.4gを加え、硝酸ビスマス〔Bi(NO3 3 ・5H2 O〕33gを溶解し、これをC液とする。次いで、B液とC液を混合した後、A液を撹拌しながら、このA液中にBとCの混合液を添加し、次いで燐酸(H3 PO4 )0.8gを加えてスラリ−を得る。これを濃縮乾燥後、空気流通下200〜250℃で塩分解する。その後奈良式自由解砕機を用い解砕し、触媒粉を得た。解砕した触媒粉の粒径をレ−ザー回折・散乱法により測定したところ、累積50%径が6.5μm、累積90%径が35μmであった。また、窒素吸着1点法によるBET比表面積の値は20m2 /gであった。
【0025】
この触媒粉100部に対し、40%シリカゾルを無水ケイ酸として2部及びセラミックファイバ−(SiO2 ・Al2 3 )〔商品名:東芝モノフラックスRFC−200SF、繊維長さ100〜300μm、繊維直径2〜4μm〕4部、ヒドロキシプロピルメチルセルロ−ス4部、純水30部を添加し、すき形ショベルミキサ−で混合した。この混合物を水分の蒸発が極力無いように密閉容器に入れ、室温で16時間養成した後、混錬機で混錬した。このときの混錬機の所用動力は0.24kW・h/kgであった。次いでこの混錬物を押出し成形機により、外径5mmφ、内径2mmφ、長さ5mmのリング状に成形した。その後30℃で乾燥し、空気雰囲気下、480℃で6時間焼成を行い触媒とした。この触媒の細孔容積を水銀圧入法で測定したところ、0.27cc/gであった。
【0026】
上記触媒9.6gを内径18mmφのガラス反応管に充填した。このように充填した触媒を反応温度330℃、反応圧力2.0atm、プロピレン:空気:スチ−ム=1:7.5:3のモル比で、空間速度SV=1031/Hの条件下で反応試験を行った。このときのプロピレンの反応率は95.6%、アクロレイン及びアクリル酸の選択率は93.1%であった。また、充填粉化率は0.72%であった。
また、この触媒を用いた場合の粉化による圧損(ΔP)の影響を上記測定方法で測定したところ、0.47kg/cm2 であった。
【0027】
比較例1
混合実施例1の方法に於いて、養成及び混錬を行わなかった以外は実施例1と同じ条件で、触媒成形体を得た。このものの細孔容積は0.33cc/gであった。次いで、この触媒成形体を用い実施例1と同様の方法でプロピレンの接触反応を行った。このときのプロピレンの反応率は95.9%、アクロレイン及びアクリル酸の選択率は93.0%であり、充填粉化率は1.44%、ΔPは0.49kg/cmであった。
【0028】
実施例3
レ−ザ−回折・散乱法による測定において、累積50%径が4.0μm、累積90%径が19μmである触媒粉(解砕機の回転数を上げて解砕した)を用いた以外は実施例1と同じ条件で、成形、反応を行った。このときのプロピレンの反応率は95.5%、アクロレイン及びアクリル酸の選択率は93.2%であり、充填粉化率は0.65%であった。また、細孔容積は0.30cc/gであった。
【0029】
比較例2 40%シリカゾルの添加量を、触媒粉100部に対して無水ケイ酸として4部にし、混合粉の養成及び混錬を行わなかった以外は、実施例1と同じ条件で触媒成形を行い、得られた触媒成形体を用いプロピレンの反応を行った。このときのプロピレンの反応率は94.7%、アクロレイン及びアクリル酸の選択率は93.1%であり、充填粉化率は0.98%であった。また、触媒成形体の細孔容積は0.25cc/gであった。
【0030】
実施例5
実施例1の方法に於いてショベルミキサーをオムニミキサーに代えて混合した以外は実施例1と同じ条件で、成形、反応を行った。このときのプロピレンの反応率は95.3%、アクロレイン及びアクリル酸の選択率は93.4%であり、充填粉化率は1.61%であった。また、細孔容積は0.32cc/gであった。
【0031】
比較例3
実施例1の方法に於いて、シリカゾル及びセラミックファイバ−を添加しなかった以外は実施例1と同じ条件で、触媒成形を行い、得られた触媒成形体を用いプロピレンの反応を行った。このときのプロピレンの反応率は96.1%、アクロレイン及びアクリル酸の選択率は92.8%であり、充填粉化率は20%であった。また、細孔容積は0.36cc/gであった。
【0032】
比較例4
40%シリカゾルの添加量を、触媒粉100部に対して無水ケイ酸として8部にした以外は実施例1と同じ条件で、触媒成形を行い、得られた触媒成形体を用いプロピレンの反応を行った。このときのプロピレンの反応率は94.5%、アクロレイン及びアクリル酸の選択率は91.6%であり、充填粉化率は0.30%であった。また、細孔容積は0.19cc/gであった。
【0033】
比較例5
実施例1の方法に於いてファイバ−を添加しなかった以外は実施例1と同じ条件で、触媒成形を行い、得られた触媒成形体を用いプロピレンの反応を行った。
このときのプロピレンの反応率は95.7%、アクロレイン及びアクリル酸の選択率は93.1%であり、充填粉化率は12%であった。また、細孔容積は0.34cc/gであった。
この触媒を用いた場合の粉化による圧損(ΔP)の影響を実施例1と同一方法で測定したところ、1.52kg/cm2であった。
【0034】
比較例6
実施例1の方法に於いてシリカゾルを添加しなかった以外は実施例1と同じ条件で、触媒成形を行い、得られた触媒成形体を用いプロピレンの反応を行った。
このときのプロピレンの反応率は95.5%、アクロレイン及びアクリル酸の選択率は93.3%であり、充填粉化率は11%であった。また、細孔容積は0.34cc/gであった。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing a molded catalyst for synthesis of unsaturated aldehyde and unsaturated carboxylic acid used for catalytic oxidation. More specifically, the present invention relates to a method for producing a catalyst molded body for synthesis of unsaturated aldehyde and unsaturated carboxylic acid used for gas phase catalytic oxidation of propylene, isobutylene or tertiary butanol having excellent mechanical strength.
[0002]
[Prior art]
The unsaturated aldehyde and unsaturated carboxylic acid synthesis reaction by the gas phase catalytic oxidation of propylene or isobutylene is a sequential oxidation reaction of propylene or isobutylene, and by-products increase as the reaction pressure increases. For this reason, it is necessary to make the pressure loss in the reactor as small as possible. In addition, the above measures are also effective in reducing the load on the blower in the plant.
Since the pressure loss in the reactor largely depends on the degree of pulverization when the catalyst is charged, it is important to ensure the mechanical strength of the catalyst.
[0003]
Conventionally, as a method of imparting the mechanical strength of a catalyst, a method of adding whisker, water glass or the like to a catalyst component has been disclosed.
For example, JP-A-59-183832 and JP-A-2-36296 teach that a high-strength catalyst can be obtained by adding whisker to a catalyst component and shaping. Japanese Patent Application Laid-Open No. 7-16463 proposes that a catalyst molded article having excellent mechanical strength can be obtained by adding 1 to 10% by weight of silica sol as silicic anhydride to the catalyst component.
[0004]
[Problems to be solved by the invention]
However, although the catalyst molded body obtained by the above method has a certain degree of mechanical strength improvement effect, it is not yet sufficient, and the appearance of a catalyst molded body having a higher mechanical strength and its production method is desired. It was.
[0005]
In order to solve such problems, the present inventors have intensively studied the types of catalyst components and additives that increase the mechanical strength of the catalyst molded body, and the mixing method thereof. As a result, the propylene, isobutylene, and tertiary butanol have been identified. The present invention has been completed by finding a method for producing a catalyst molded article excellent in mechanical strength suitable for synthesis reaction of unsaturated aldehyde and unsaturated carboxylic acid by phase contact oxidation.
[0006]
[Means for Solving the Problems]
That is, in the present invention, a raw salt aqueous solution containing molybdenum, bismuth, iron, nickel and / or cobalt as a catalyst component is mixed, the precipitate is dried, then subjected to salt decomposition, and the resulting salt decomposition product (anhydrous conversion) An inorganic fiber having 1 to 6 parts by weight of silica sol and 2 to 12 parts by weight of 30 to 300 μm in diameter, 2 to 20 μm in diameter, and a shot content of 10% by weight or less based on 100 parts by weight of silica. Addition , mixing , cultivating at room temperature for 20 hours or less, kneading with an energy of 0.16-0.32 kW · h / kg, then forming , then drying, and heat treatment if necessary The present invention provides a method for producing a catalyst molded body for synthesizing unsaturated aldehydes and unsaturated carboxylic acids used in gas phase catalytic oxidation of isobutylene or tertiary butanol.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
The catalytically active substance in the present invention is a catalytically active substance that is applied when synthesizing unsaturated aldehydes and unsaturated carboxylic acids by vapor phase catalytic oxidation of propylene, isobutylene or tertiary-butanol known in the prior art. A composite oxide containing bismuth, iron, nickel and / or cobalt as a main catalyst component, the composition of which is typically represented by the following general formula.
MoaBibFecAdBeCfDgOx
(Wherein Mo, Bi, Fe and O represent molybdenum, bismuth, iron and oxygen, A represents nickel and / or cobalt, and B represents the group consisting of manganese, zinc, calcium, magnesium, tin and lead, respectively) Represents at least one element selected, C represents at least one element selected from the group consisting of phosphorus, boron, arsenic, tellurium, tungsten, antimony and silicon; D represents potassium, rubidium, cesium and thallium; Represents at least one element selected from the group consisting of: a to x each representing an atomic ratio of each element, where a = 12, 0 <b ≦ 10, 0 <c ≦ 10, 1 ≦ d ≦ (10, 0 ≦ e ≦ 10, 0 ≦ f ≦ 10, 0 ≦ g ≦ 2 and x is a value determined by the oxidation state of each element.)
[0008]
As raw materials for the catalyst component, oxides, nitrates, carbonates, ammonium salts, halides, and the like of each element can be used in combination. For example, ammonium paramolybdate, molybdenum trioxide, molybdenum chloride, bismuth chloride, ferric nitrate, nickel nitrate, cobalt nitrate and the like are used. These are dissolved and used in the form of a solution.
[0009]
The method for preparing the catalyst using these raw materials is not particularly limited as long as it is a conventionally known method. For example, a precipitation method in which an acidic salt and a basic salt are neutralized and precipitated in the raw material salt aqueous solution is exemplified. It is done. Acids and bases can be added to these solutions for neutralization. The neutralization conditions are a liquid temperature of 50 to 100 ° C. and a pH of 3 to 10. The obtained precipitate is usually dehydrated at room temperature to 150 ° C. to a water content of about 0.1 to 10% by weight or less. As the dehydration method, a conventionally known drying method such as a filter such as a filter press, a ventilation dryer, or an air dryer is used. Then in these dry powder under an air atmosphere, it salt decomposed at about 100 to 500 ° C..
[0010]
The powder after the salt decomposition is used as it is, preferably after the crushing treatment, and the silica sol and the inorganic fiber, which are the characteristics of the present invention, are mixed and formed into a desired shape.
The powder is preferably crushed until the average particle diameter (cumulative 50% diameter D50) is 2 to 10 μm and the cumulative 90% diameter (D90) is 40 μm or less. Although not particularly limited as long as it can be used, for example, a ball mill, a free crusher, a jet mill and the like can be mentioned.
[0011]
The amount of silica sol added to the powder after salt decomposition (hereinafter sometimes referred to as catalyst component) is 1 to 6 parts by weight as silicic acid anhydride with respect to 100 parts by weight of catalyst component (in terms of anhydride). The amount is preferably 2 to 5 parts by weight. When the addition amount is less than 1 part by weight, sufficient mechanical strength cannot be obtained when the molded catalyst is used, and when it exceeds 6 parts by weight, the activity of the catalyst is reduced.
[0012]
On the other hand, the inorganic fiber added to the powder is 2 to 12 parts by weight, preferably 4 to 8 parts by weight, and more preferably 6 parts by weight with respect to 100 parts by weight of the catalyst component.
When the addition amount is less than 2 parts by weight, the effect of reinforcement is small, and when it exceeds 12 parts by weight, the dispersion of the fiber deteriorates, so that sufficient mechanical strength cannot be obtained when a molding catalyst is used.
The inorganic fiber to be used is not particularly limited as long as it is inert to the catalyst, and usually alumina fiber, silica fiber, glass fiber, rock wool, asbestos, silica alumina fiber and the like are applied.
The inorganic fiber having a length of about 30 μm to about 300 μm, a diameter of about 2 μm to about 20 μm, and an aspect ratio (length / diameter) of 1.5 to 150 is used. When the length is less than about 30 μm or the diameter exceeds about 20 μm, sufficient mechanical strength cannot be obtained when the molded catalyst is formed, and when the length exceeds 300 μm or the diameter is less than 2 μm, fiber dispersion When the molded catalyst is used, the variation in strength increases. Further, the shot content is about 25% by weight or less. If it exceeds 25% by weight, sufficient mechanical strength cannot be obtained when a formed catalyst is formed.
[0013]
In the present invention, the addition of silica sol and inorganic fiber to the catalyst component is not particularly limited in the order of addition, but it is recommended that they be added and mixed at the same time because they can be more uniformly dispersed.
In mixing them, it is of course possible to use conventionally known lubricants such as stearic acid and wax, plasticizers such as polyvinyl alcohol and methylcellulose, and other molding auxiliary materials.
[0014]
A known mixer such as an omni mixer, a Henschel mixer or the like can be used as a mixer used when mixing the silica sol and inorganic fibers to the catalyst component, as well as auxiliary materials for molding such as a lubricant and a plasticizer. More preferably, it is recommended to use a cave excavator mixer described in Powder and Industry (August 1982, page 49). In this case, it is preferable that the rotation speed of the chamfered shovel mixer is about 160 to about 230 rpm, and the rotation speed of the chopper is about 4000 to about 6000 rpm. When satisfying such conditions, it can be a molded material raw material having extremely excellent strength.
Mixing may be dry or wet mixing with addition of water or the like.
[0015]
By kneading at an energy of 0.16 to 0.32 kW · h / kg during kneading, the strength when formed into a catalyst molded body is improved. If the kneading power is less than 0.16 kW · h / kg, sufficient strength cannot be obtained when formed into a molded body, and if greater than 0.32 kW · h / kg, the pore volume when formed into a molded body, Both the diameter decreases and the catalytic activity decreases compared to the case where the above conditions are adopted. As the kneader, conventionally known ones such as a kneader and a pug mill can be used.
[0016]
The catalyst component, the mixture of silica sol and inorganic powder, or the kneaded material is then subjected to molding, but a nurturing treatment may be performed in advance during molding. The nurturing treatment is carried out by leaving the mixture at room temperature for about 6 to about 20 hours under conditions that prevent evaporation of moisture from the mixture or the kneaded substance. The time of training may be performed after wet mixing the catalyst component and the other auxiliary material for molding, or may be performed after kneading the wet mixture with a kneader. The longer the training time is, the better the mechanical strength of the molded catalyst is, but if it exceeds about 20 hours, the catalyst activity is lowered, which is not preferable. The reason why the strength of the molded body is improved by the training is not clear, but the contact time between the catalyst component and water etc. is increased, so that the catalyst component is peptized to near the primary particles. I think that this is because it becomes more precise.
[0017]
In the present invention, the molding is not particularly limited as long as it is wet molding, and conventionally known Malmerizer method, extrusion molding method, submerged granulation method and the like are applied. In the extrusion molding method, vacuum deaeration may be performed without reducing the pore volume of the molded body.
[0018]
The shape of the molded product is not particularly limited, and it can be conventionally molded into an arbitrary shape such as a known granular shape, columnar shape, ring shape, clover shape, star shape, or honeycomb shape. The catalyst molded into these shapes is then typically dried at room temperature to 150 ° C. and then heat treated at about 300 to about 600 ° C. in an air atmosphere.
When the heat treatment temperature is lower than the above range, the selectivity for unsaturated aldehydes and unsaturated carboxylic acids decreases, while when it is high, the reactivity of propylene or isobutylene decreases. Such heat treatment can be carried out in a generally known box-type firing furnace, tunnel furnace, rotary kiln, firing furnace, ventilation firing furnace or the like.
[0019]
Various additives such as an organic pore-forming agent and molybdenum oxide substantially inert to the reaction can be added to the catalyst thus obtained for the purpose of further improving the performance.
[0020]
The catalyst of the present invention thus obtained has a pore volume of about 0.2 cc / g or more, usually about 0.2 cc / g to about 0.4 cc / g, and measured by the method described below. The calculated powdered ratio is about 5% or less, usually about 2% or less, and propylene, isobutylene and tertiary butanol are vapor-phase catalytically oxidized with molecular oxygen to give the corresponding unsaturated aldehyde and More specifically, as a catalyst molded body for synthesis of unsaturated carboxylic acid, acrolein and acrylic acid are synthesized by vapor-phase catalytic oxidation of propylene with molecular oxygen, and methanol is synthesized by vapor-phase catalytic oxidation of isobutylene with molecular oxygen. Synthesize Lorraine and methacrylic acid, ammoxidize propylene with molecular oxygen and ammonia to synthesize acrylonitrile, and ammoxidize isobutylene with molecular oxygen and ammonia It is suitable as a catalyst molded body in the synthesis of methacrylonitrile, and its application conditions are conventionally known ranges, for example, reaction temperature 280 to 400 ° C., reaction pressure is reduced pressure to increased pressure, usually normal pressure to 5 atm. The oxygen / olefin (molar ratio) can be appropriately set within the range of 1 to 3 and the space velocity SV = 500 to 5000 / H.
[0021]
【Example】
Hereinafter, although the manufacture example of the catalyst by this invention and the reaction example using them are demonstrated with a comparative example, this invention is not limited to this. In addition, the part in an Example and a comparative example is a weight part unless there is particular notice. In the following examples, the reaction rate, selectivity, and compacted powder ratio of the molded body were defined and calculated as follows.
Reaction rate (%) = [(mol number of reacted olefin) / (mol number of supplied olefin)] × 100
Selectivity (%) = [(number of moles of product) / (number of moles of reacted olefin)] × [(number of carbons of product) / (number of carbons of raw material olefin)] × 100
[0022]
The mechanical strength of the catalyst molded body is evaluated by the packing powder rate. A stainless steel tube having an inner diameter of 30.6 mmφ and a length of 5000 mm installed perpendicular to the horizontal direction is filled with 500 g of the catalyst molded body from the upper portion of the stainless steel tube in 60 seconds, and then recovered from the lower portion of the stainless steel tube. If the amount of the catalyst that remains without passing through the 8-mesh sieve among the recovered catalysts is B, the packing powdering rate is defined as follows.
Filling powder rate (%) = [(500−B) / 500] × 100
[0023]
Measurement of pressure loss due to packing powdering rate A stainless steel tube with a tube diameter of 30.6 mmφ and a length of 5000 mm was installed vertically with respect to the horizontal direction, and after filling the catalyst to 4960 mm in 60 seconds from the top of the tube, from the bottom of the tube Air was allowed to flow at a flow rate of 4 Nm 3 / h, and ΔP was measured between the lower part (air inlet part) and the upper part (air outlet part) of the stainless steel tube.
[0024]
Example 1
144 g of ammonium paramolybdate [(NH 4 ) 6 Mo 7 O 24 · 4H 2 O] is dissolved in 470 ml of warm water, and 20.4 g of 20% silica sol (SiO 2 ) is further added to make solution A. Nickel nitrate [Ni (NO 3 ) 2 · 6H 2 O] 2 g and cobalt nitrate [Co (NO 3 ) 2 · 6H 2 O] 138.5 g and ferric nitrate [Fe (NO 3 ) 3 · 9H 2 O] 55 g and 3.3 g of thallium nitrate (TlNO 3 ) are dissolved in 250 ml of warm water, and this is designated as solution B. 9.4 g of 60% nitric acid is added to 40 ml of pure water, and 33 g of bismuth nitrate [Bi (NO 3 ) 3 .5H 2 O] is dissolved therein. Next, after mixing the B liquid and the C liquid, the mixed liquid of B and C is added to the A liquid while stirring the A liquid, and then 0.8 g of phosphoric acid (H 3 PO 4 ) is added to the slurry. Get. This is concentrated and dried, and then subjected to salt decomposition at 200 to 250 ° C. under air flow. Thereafter, the mixture was crushed using a Nara free crusher to obtain catalyst powder. When the particle diameter of the crushed catalyst powder was measured by a laser diffraction / scattering method, the cumulative 50% diameter was 6.5 μm and the cumulative 90% diameter was 35 μm. Further, the value of the BET specific surface area by the nitrogen adsorption one point method was 20 m 2 / g.
[0025]
To 100 parts of this catalyst powder, 2 parts of 40% silica sol as silicic acid and ceramic fiber (SiO 2 · Al 2 O 3 ) [trade name: Toshiba Monoflux RFC-200SF, fiber length 100 to 300 μm, fiber 4 parts of diameter 2-4 μm], 4 parts of hydroxypropylmethylcellulose and 30 parts of pure water were added and mixed with a cave shovel mixer. This mixture was put in a sealed container so as to minimize the evaporation of moisture, cultivated at room temperature for 16 hours, and then kneaded with a kneader. The required power of the kneading machine at this time was 0.24 kW · h / kg. Subsequently, this kneaded material was formed into a ring shape having an outer diameter of 5 mmφ, an inner diameter of 2 mmφ, and a length of 5 mm by an extrusion molding machine. Thereafter, it was dried at 30 ° C., and calcined at 480 ° C. for 6 hours in an air atmosphere to obtain a catalyst. It was 0.27 cc / g when the pore volume of this catalyst was measured by the mercury intrusion method.
[0026]
9.6 g of the catalyst was charged into a glass reaction tube having an inner diameter of 18 mmφ. The catalyst thus charged was reacted at a reaction temperature of 330 ° C., a reaction pressure of 2.0 atm, a molar ratio of propylene: air: steam = 1: 7.5: 3, and a space velocity SV = 1031 / H. A test was conducted. At this time, the reaction rate of propylene was 95.6%, and the selectivity of acrolein and acrylic acid was 93.1%. Moreover, the filling powder rate was 0.72%.
Moreover, when the influence of the pressure loss (ΔP) due to pulverization when this catalyst was used was measured by the above measuring method, it was 0.47 kg / cm 2 .
[0027]
Comparative Example 1
In the method of mixing Example 1, a catalyst molded body was obtained under the same conditions as in Example 1 except that no training and kneading were performed. The pore volume of this product was 0.33 cc / g. Next, propylene contact reaction was performed in the same manner as in Example 1 using this catalyst molded body. At this time, the reaction rate of propylene was 95.9%, the selectivity of acrolein and acrylic acid was 93.0%, the packing powdering rate was 1.44%, and ΔP was 0.49 kg / cm 2 .
[0028]
Example 3
In measurement by laser diffraction / scattering method, except that catalyst powder (crushed by increasing the number of revolutions of the crusher) having a cumulative 50% diameter of 4.0 μm and a cumulative 90% diameter of 19 μm was used. Molding and reaction were performed under the same conditions as in Example 1. At this time, the reaction rate of propylene was 95.5%, the selectivity of acrolein and acrylic acid was 93.2%, and the packing powdering rate was 0.65%. The pore volume was 0.30 cc / g.
[0029]
Comparative Example 2 The amount of the 40% silica sol added was 4 parts as silicic anhydride with respect to 100 parts of the catalyst powder, and the catalyst was molded under the same conditions as in Example 1 except that the mixed powder was not trained and kneaded. Then, a reaction of propylene was performed using the obtained catalyst molded body. At this time, the reaction rate of propylene was 94.7%, the selectivity of acrolein and acrylic acid was 93.1%, and the packing powdering rate was 0.98%. Moreover, the pore volume of the catalyst molded body was 0.25 cc / g.
[0030]
Example 5
Molding and reaction were carried out under the same conditions as in Example 1 except that in the method of Example 1, the shovel mixer was replaced with an omni mixer and mixed. At this time, the reaction rate of propylene was 95.3%, the selectivity of acrolein and acrylic acid was 93.4%, and the packing powdering rate was 1.61%. The pore volume was 0.32 cc / g.
[0031]
Comparative Example 3
In the method of Example 1, catalyst molding was performed under the same conditions as in Example 1 except that silica sol and ceramic fiber were not added, and propylene reaction was performed using the obtained catalyst molded body. At this time, the reaction rate of propylene was 96.1%, the selectivity of acrolein and acrylic acid was 92.8%, and the packing powdering rate was 20%. The pore volume was 0.36 cc / g.
[0032]
Comparative Example 4
Catalyst molding was performed under the same conditions as in Example 1 except that the amount of 40% silica sol added was 8 parts as silicic acid anhydride with respect to 100 parts of catalyst powder, and propylene reaction was performed using the obtained catalyst molded body. went. At this time, the reaction rate of propylene was 94.5%, the selectivity of acrolein and acrylic acid was 91.6%, and the packing powdering rate was 0.30%. The pore volume was 0.19 cc / g.
[0033]
Comparative Example 5
Except that the fiber was not added in the method of Example 1, catalyst molding was performed under the same conditions as in Example 1, and propylene reaction was performed using the obtained catalyst molded body.
At this time, the reaction rate of propylene was 95.7%, the selectivity of acrolein and acrylic acid was 93.1%, and the packing powdering rate was 12%. The pore volume was 0.34 cc / g.
When the influence of pressure loss (ΔP) due to powdering when this catalyst was used was measured by the same method as in Example 1, it was 1.52 kg / cm 2 .
[0034]
Comparative Example 6
Catalyst molding was performed under the same conditions as in Example 1 except that silica sol was not added in the method of Example 1, and propylene was reacted using the obtained catalyst molded body.
At this time, the reaction rate of propylene was 95.5%, the selectivity of acrolein and acrylic acid was 93.3%, and the packing powdering rate was 11%. The pore volume was 0.34 cc / g.

Claims (5)

モリブデン、ビスマス、鉄、ニッケルおよび/またはコバルトを触媒成分として含む原料塩水溶液を混合し、析出物を乾燥した後、塩分解し、得られた塩分解物(無水換算)100重量部に対し、無水ケイ酸として1〜6重量部のシリカゾルと2〜12重量部の長さが30〜300μm、径が2〜20μm、ショット含有率が10重量%以下である無機ファイバーを添加、混合し、室温で20時間以下養成させ、0.16〜0.32kW・h/kgのエネルギ−で混錬を行い、次いで成形した後、乾燥、必要により熱処理することを特徴とするプロピレン、イソブチレン又はターシャリーブタノールの気相接触酸化に用いる不飽和アルデヒド及び不飽和カルボン酸合成用触媒成形体の製造方法。A raw material salt aqueous solution containing molybdenum, bismuth, iron, nickel and / or cobalt as a catalyst component is mixed, the precipitate is dried, then subjected to salt decomposition, and 100 parts by weight of the obtained salt decomposition product (anhydrous conversion), 1-6 parts by weight of silica sol and 2-12 parts by weight of an inorganic fiber having a length of 30-300 μm, a diameter of 2-20 μm and a shot content of 10% by weight or less are added and mixed as silicic anhydride. Propylene, isobutylene, or tertiary butanol, characterized by being cultivated for 20 hours or less, kneaded with energy of 0.16-0.32 kW · h / kg, then molded, then dried, and optionally heat treated For producing a catalyst molded body for synthesis of unsaturated aldehyde and unsaturated carboxylic acid used for gas phase catalytic oxidation of styrene. 無機ファイバ−の長さが100〜300μm、径が2〜4μm、ショット含有率が5重量%以下である請求項1記載の不飽和アルデヒド及び不飽和カルボン酸合成用触媒成形体の製造方法。The method for producing an unsaturated aldehyde and unsaturated carboxylic acid synthesis catalyst molded body according to claim 1, wherein the inorganic fiber has a length of 100 to 300 µm, a diameter of 2 to 4 µm, and a shot content of 5 wt% or less. 前記塩分解物を、BET比表面積1〜30m2/g、平均粒子径(D50)2〜10μm、累積90%径(D90)が40μm以下となるまで解砕したのち、前記シリカゾルと前記無機ファイバーを添加する請求項1または請求項2に記載の製造方法。 Wherein said salt decomposition product, BET specific surface area of 1-30 m 2 / g, an average particle diameter (D 50) 2 to 10 [mu] m, after the 90% cumulative diameter (D 90) was crushed until 40μm or less, and the silica sol The manufacturing method of Claim 1 or Claim 2 which adds an inorganic fiber . 熱処理後の成形体の細孔容積が0.2cc/g以上で充填粉化率が5%以下であることを特徴とする請求項1〜請求項3のいずれかに記載の不飽和アルデヒド及び不飽和カルボン酸合成用触媒成形体の製
造方法。
The unsaturated aldehyde and the unsaturated aldehyde according to any one of claims 1 to 3, wherein the pore volume of the molded body after the heat treatment is 0.2 cc / g or more and the filling powder ratio is 5% or less. The manufacturing method of the catalyst molded object for saturated carboxylic acid synthesis | combination.
触媒成分とシリカゾル及び無機ファイバ−の混合において、すき形ショベルミキサーを用いることを特徴とする請求項1〜4のいずれかに記載の触媒成形体の製造方法。The method for producing a catalyst molded body according to any one of claims 1 to 4, wherein a cave excavator mixer is used in mixing the catalyst component, silica sol, and inorganic fiber.
JP20947395A 1995-08-17 1995-08-17 Method for producing catalyst molded body for synthesis of unsaturated aldehyde and unsaturated carboxylic acid Expired - Fee Related JP3826413B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20947395A JP3826413B2 (en) 1995-08-17 1995-08-17 Method for producing catalyst molded body for synthesis of unsaturated aldehyde and unsaturated carboxylic acid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20947395A JP3826413B2 (en) 1995-08-17 1995-08-17 Method for producing catalyst molded body for synthesis of unsaturated aldehyde and unsaturated carboxylic acid

Publications (2)

Publication Number Publication Date
JPH0952053A JPH0952053A (en) 1997-02-25
JP3826413B2 true JP3826413B2 (en) 2006-09-27

Family

ID=16573442

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20947395A Expired - Fee Related JP3826413B2 (en) 1995-08-17 1995-08-17 Method for producing catalyst molded body for synthesis of unsaturated aldehyde and unsaturated carboxylic acid

Country Status (1)

Country Link
JP (1) JP3826413B2 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4947753B2 (en) * 2001-06-21 2012-06-06 三菱レイヨン株式会社 Catalyst for methacrylic acid synthesis and method for producing methacrylic acid
JP4179780B2 (en) * 2001-12-28 2008-11-12 三菱レイヨン株式会社 Method for producing catalyst for synthesizing unsaturated aldehyde and unsaturated carboxylic acid, catalyst produced by this method, and method for synthesizing unsaturated aldehyde and unsaturated carboxylic acid using this catalyst
JP2007130519A (en) * 2005-11-08 2007-05-31 Mitsubishi Rayon Co Ltd Manufacturing method of extruded catalyst, and manufacturing method of unsaturated aldehyde and unsaturated carboxylic acid
JP2009090200A (en) * 2007-10-05 2009-04-30 Mitsubishi Rayon Co Ltd Method for manufacturing catalyst for synthesizing unsaturated aldehyde and unsaturated carboxylic acid
JP5163273B2 (en) 2008-05-16 2013-03-13 住友化学株式会社 Method for producing catalyst for producing unsaturated aldehyde and / or unsaturated carboxylic acid, and method for producing unsaturated aldehyde and / or unsaturated carboxylic acid
JP5366646B2 (en) * 2009-05-13 2013-12-11 三菱レイヨン株式会社 Catalyst and method for producing unsaturated aldehyde and / or unsaturated carboxylic acid
JP5388897B2 (en) * 2010-02-26 2014-01-15 株式会社日本触媒 Catalyst for producing unsaturated aldehyde and / or unsaturated carboxylic acid, and method for producing unsaturated aldehyde and / or unsaturated carboxylic acid using the catalyst
CN103097024B (en) * 2010-09-17 2015-12-02 株式会社日本触媒 For the manufacture of unsaturated aldehyde and/or unsaturated carboxylic acid catalyst and use the unsaturated aldehyde of this catalyst and/or the manufacture method of unsaturated carboxylic acid
CN103228356B (en) 2010-12-03 2015-09-23 株式会社日本触媒 Unsaturated carboxylic acid catalyst for preparing and use the preparation method of unsaturated carboxylic acid of this catalyst
JP5462300B2 (en) * 2012-02-23 2014-04-02 三菱レイヨン株式会社 Process for producing catalyst for synthesis of unsaturated aldehyde and unsaturated carboxylic acid
WO2014175113A1 (en) 2013-04-25 2014-10-30 日本化薬株式会社 Catalyst for producing unsaturated aldehyde and/or unsaturated carboxylic acid, method for producing catalyst, and method for producing unsaturated aldehyde and/or unsaturated carboxylic acid using catalyst
KR101554317B1 (en) * 2013-05-24 2015-09-18 주식회사 엘지화학 Ring shaped catalyst for producing acrolein and acrylic acid and the use thereof

Also Published As

Publication number Publication date
JPH0952053A (en) 1997-02-25

Similar Documents

Publication Publication Date Title
US5959143A (en) Catalysts and process for the preparation thereof
KR890000517B1 (en) Catalyst for manufacturing methacrolein
JP3883755B2 (en) Catalyst production method
US3977998A (en) Process for preparing phosphorus-vanadium-oxygen catalysts
JP3826413B2 (en) Method for producing catalyst molded body for synthesis of unsaturated aldehyde and unsaturated carboxylic acid
JPS6112488B2 (en)
JP5011176B2 (en) Catalyst for synthesizing acrylonitrile and method for producing acrylonitrile
JP4242597B2 (en) Unsaturated aldehyde synthesis catalyst, production method thereof, and production method of unsaturated aldehyde using the catalyst
JPH0441454A (en) Production of methacrolein
JP3465350B2 (en) Method for producing catalyst for methacrylic acid production
JP4863436B2 (en) Catalysts for the synthesis of unsaturated aldehydes and unsaturated carboxylic acids
JPH0210695B2 (en)
JP3690939B2 (en) Catalyst for synthesizing methacrylic acid and method for producing methacrylic acid
JP4157362B2 (en) Composite oxide catalyst and method for producing the same
JP3342794B2 (en) Method for producing supported catalyst for synthesis of methacrolein and methacrylic acid
JP3790080B2 (en) Catalyst for synthesizing methacrolein and methacrylic acid, and method for producing methacrolein and methacrylic acid
JPH0547265B2 (en)
JP3260185B2 (en) Catalyst for synthesis of unsaturated aldehyde and unsaturated carboxylic acid and use thereof
JP3268900B2 (en) Method for producing catalyst for the synthesis of unsaturated aldehydes and unsaturated carboxylic acids
WO2005056185A1 (en) Process for producing composite oxide catalyst
JPH0232017B2 (en)
JP4811977B2 (en) Method for producing catalyst for synthesis of methacrylic acid
JP4273565B2 (en) Process for the preparation of complex oxide catalysts for the synthesis of unsaturated aldehydes and unsaturated carboxylic acids
JP2001096162A (en) Method for production of catalyst for synthesis of unsaturated aldehyde and unsaturated carboxylic acid
JPS59183832A (en) Heteropolyacid base molded catalyst composition containing whisker

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051122

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060123

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060307

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060316

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060613

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060626

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090714

Year of fee payment: 3

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D05

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100714

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110714

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110714

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120714

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120714

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130714

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees