JP4273565B2 - Process for the preparation of complex oxide catalysts for the synthesis of unsaturated aldehydes and unsaturated carboxylic acids - Google Patents

Process for the preparation of complex oxide catalysts for the synthesis of unsaturated aldehydes and unsaturated carboxylic acids Download PDF

Info

Publication number
JP4273565B2
JP4273565B2 JP10253399A JP10253399A JP4273565B2 JP 4273565 B2 JP4273565 B2 JP 4273565B2 JP 10253399 A JP10253399 A JP 10253399A JP 10253399 A JP10253399 A JP 10253399A JP 4273565 B2 JP4273565 B2 JP 4273565B2
Authority
JP
Japan
Prior art keywords
catalyst
nitrate
aqueous solution
bismuth
mol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP10253399A
Other languages
Japanese (ja)
Other versions
JP2000288396A (en
JP2000288396A5 (en
Inventor
直輝 三浦
好三郎 野村
利明 宇井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP10253399A priority Critical patent/JP4273565B2/en
Publication of JP2000288396A publication Critical patent/JP2000288396A/en
Publication of JP2000288396A5 publication Critical patent/JP2000288396A5/ja
Application granted granted Critical
Publication of JP4273565B2 publication Critical patent/JP4273565B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、不飽和アルデヒド及び不飽和カルボン酸合成用複合酸化物触媒の製造に関する。詳しくはプロピレン、イソブチレンを分子状酸素により気相接触酸化して、アクロレインおよびアクリル酸又はメタクロレインおよびメタクリル酸を合成する際に使用する複合酸化物触媒の製造法に関する。
【0002】
【従来の技術】
プロピレン、イソブチレンを分子状酸素により気相接触酸化して、アクロレインおよびアクリル酸又はメタクロレインおよびメタクリル酸を合成する触媒に関し、従来から数多くの提案がなされている。また、それらの触媒の製造法についても数多く提案されているが、触媒調製時の硝酸量に関して詳細に記載されているものは多くない。例えば特開平3−109943号公報では触媒調製時に使用する硝酸量が触媒原料中に含有される硝酸根を別にしてモリブデン酸アンモニウム1molあたり0.01〜0.36molで調製する方法が提案されている。
また特開昭62−234548号公報、特開昭63−54941号公報、特開平8−24652号公報等では、ビスマス原料として硝酸塩以外の炭酸塩や酸化物を用いており、この場合硝酸は添加されていない。
【0003】
【発明が解決しようとする課題】
複合酸化物触媒の成分元素の供給化合物を水を分散媒として混合する際、それぞれの供給化合物が水溶性で水溶液として均一に分散されているものを使用することが触媒の均一分散手段として効果的であることは良く知られている。ところで、硝酸ビスマスは水と直ちに反応して不溶性のオキシ硝酸ビスマス等の沈殿を生成するため、ビスマス原料として硝酸ビスマスを使用する場合、均一な水溶液を得るために一般的には硝酸を同時に使用し調製する方法が採用されている。しかしながらこれら原料調製に使用されたスラリー乾燥品等の中間体中に含まれる硝酸根は、最終焼成までの工程で全て除去されるものであり、触媒構成元素を確保するのに不可避な硝酸根以外の硝酸の使用は、触媒製造工程におけるNOx等の有害廃棄物の増加や触媒製造コスト引き上げの原因となり好ましくない。
【0004】
一方、ビスマス原料として炭酸塩や酸化物を用いる方法では、硝酸は使用されていないものの原料自体が不溶性であり、粉末状で使用したり、超音波処理しても触媒性能の不均一化は避けられない。
【0005】
本発明の目的は、プロピレン、イソブチレンからそれぞれに対応する不飽和アルデヒドおよび不飽和カルボン酸の合成に使用される複合酸化物触媒の製造法において、触媒構成元素を確保するのに不可避な硝酸根以外の硝酸を用いることなく、触媒製造工程におけるNOx等の有害廃棄物の増加や触媒製造コスト引き上げがなく、かつ得られる触媒性能も何ら硝酸を用いる方法に比較し遜色のない、簡便で再現性の良い工業用触媒の製造法を提供することにある。
【0006】
【課題を解決するための手段】
すなわち本発明は、プロピレンまたはイソブチレンを分子状酸素により気相接触酸化しそれぞれに対応する不飽和アルデヒドおよび不飽和カルボン酸を合成する際に用いられる、一般式MoaBibFecdefgx(Mo、Biおよびeはそれぞれモリブデン、ビスマスおよび鉄を表し、Aはニッケルおよび/またはコバルトを表し、Bはマンガン、亜鉛、カルシウム、マグネシウム、スズおよび鉛からなる群より選ばれた少なくとも1種の元素を表し、Cはリン、ホウ素、ヒ素、テルル、タングステン、アンチモンおよびケイ素からなる群より選ばれた少なくとも1種の元素を表し、Dはカリウム、ルビジウム、セシウムおよびタリウムからなる群より選ばれた少なくとも1種の元素を表し、a=12としたとき、0<b≦10、0<c≦10、1≦d≦10、0≦e≦10、0≦f≦10、0<g≦2でありxは各元素の酸化状態により定まる値である。)で示される複合酸化物触媒の製造法において、該複合酸化物触媒の原料調製時に、予め触媒を構成する成分のうちビスマス成分を除く他成分のうちの少なくとも1種を硝酸塩を用いた水溶液となし、次いで該水溶液中にビスマス成分として硝酸ビスマスを硝酸を用いることなく溶解させることを特徴とする不飽和アルデヒド及び不飽和カルボン酸合成用複合酸化物触媒の製造法を提供するものである。
【0007】
【発明の実施の形態】
以下本発明方法をさらに詳細に説明する。
本発明の特徴は、硝酸ビスマスを用いる不飽和アルデヒド及び不飽和カルボン酸合成用複合酸化物触媒を製造するに際し、該複合酸化物触媒の原料調製に硝酸を用いることなく、かつビスマスが均一に溶解した原料水溶液を得ることにある。
【0008】
本発明が対象とする複合酸化物触媒は、一般式MoaBibFecAdBeCfDgOx(Mo、Bi、Feはそれぞれモリブデン、ビスマスおよび鉄を表し、Aはニッケルおよび/またはコバルトを表し、Bはマンガン、亜鉛、カルシウム、マグネシウム、スズおよび鉛からなる群より選ばれた少なくとも1種の元素を表し、Cはリン、ホウ素、ヒ素、テルル、タングステン、アンチモンおよびケイ素からなる群より選ばれた少なくとも1種の元素を表し、Dはカリウム、ルビジウム、セシウムおよびタリウムからなる群より選ばれた少なくとも1種の元素を表し、a=12としたとき、0<b≦10、0<c≦10、1≦d≦10、0≦e≦10、0≦f≦10、0<g≦2でありxは各元素の酸化状態により定まる値である。)で示される組成を有するものである。
【0009】
具体的には、例えば下記の触媒組成(酸素原子を除く)等が挙げられる。
Mo12Bi0.1-5Fe0.5-5Co5-10Cs0.01-1
Mo120.1-2Bi0.1-5Fe0.5-5Co5-10Cs0.01-1
Mo120.1-2Bi0.1-5Fe0.5-5Co5-100.01-1Si0.1-20
Mo12Bi0.1-5Fe0.5-5Ni5-10Tl0.01-10.01-2Si0.1-20
【0010】
本発明の実施に際しては、ビスマスを除く他の触媒成分の原料として、少なくとも1種、好ましくは2種類以上に硝酸塩を使用することを必須とし、これを水溶液として適用するものであり、ビスマス原料は硝酸ビスマスを用い、これを上記硝酸塩水溶液中に添加、溶解し、触媒成分を調製するものである。本発明において、硝酸ビスマスを添加、溶解させる硝酸塩水溶液は、水溶液中の硝酸イオン濃度が約6mol/l〜約11mol/l、好ましくは約7mol/l〜約10mol/lの範囲に調製し使用することが好ましい。硝酸ビスマスを溶解する水溶液中の硝酸イオン濃度が6mol/l未満の場合には、添加した硝酸ビスマスが溶解せずにオキシ硝酸ビスマス等の不溶性の沈殿が生じ不均一な原料水溶液となり、また、11mol/lを超える硝酸イオン濃度を得ようとすると溶媒である水の添加量が著しく制限され、原料硝酸塩の溶解に時間がかかる。
【0011】
本発明が対象とする触媒を得るための触媒原料調製において、上記硝酸塩として適用する触媒成分とビスマス成分を除く残部の触媒成分は、各元素の酸化物、硫酸塩、炭酸塩、水酸化物、アンモニウム塩、ハロゲン化物等を適宜組み合わせて使用することができる。具体的には、モリブデン原料として三酸化モリブデン、モリブデン酸、パラモリブデン酸アンモニウム等が使用できる。触媒成分調製方法は、1種以上、あるいは2種以上の硝酸塩を溶解した水溶液中に硝酸ビスマスを添加し溶解させること以外の他の触媒成分の混合順序等、混合方法は特に制限されるものではない。
【0012】
このようにして調製された触媒原料は乾燥処理に付される。乾燥方法は溶解、混合した溶液、あるいは水性スラリー中の各成分が著しい偏在を伴わない方法であればよく、通常従来から良く知られているニーダーによる蒸発乾固法、箱型乾燥機、ドラム型通気乾燥装置、スプレードライヤー、気流乾燥機等の種々の方法が用いられる。
【0013】
本発明において、かかる乾燥品に硝安等のアンモニウム塩が含まれる場合、この乾燥品に熱処理を施すことにより、アンモニウム塩の脱離、所謂塩分解が行われる。塩分解は約200〜約450℃、好ましくは約250〜約400℃の温度範囲で行われる。
【0014】
本発明において、得られた触媒前駆体を最終焼成することにより最終的な触媒が得られる。最終焼成温度は約350〜約700℃の範囲で約1〜約40時間保持して行われる。
【0015】
本発明の触媒前駆体を用いて得られる触媒は、通常、所望の形状に成型され用いられる。打錠成型や押出し成型等によってリング状、ペレット状又は球状等に成型される。触媒の成型は通常、仮焼成したものを成型し、次いで最終焼成するが、これに限るものではない。
【0016】
このようにして得られた複合酸化物触媒はプロピレン又はイソブチレンの分子状酸素による気相接触酸化反応用触媒として使用し得る。この場合の反応条件は、従来公知の方法で行うことができる。例えば、反応温度約280〜約400℃、反応圧力は減圧でも可能であるが、通常、常圧〜約500kPa、酸素/イソブチレン(モル比)は約1〜約3、空間速度SV=約500〜約5000/hで適宜行われる。
【0017】
【発明の実施の形態】
以下、実施例を挙げて本発明をさらに詳細に説明するが、本発明はこれに限定されるものではない。尚、本発明において、反応率(%)、選択率(%)および収率(%)は次の如く定義するものである。
【0018】
反応率(%)=[(供給オレフィンのモル数)−(未反応オレフィンのモル数)]÷(供給オレフィンのモル数)×100
選択率(%)=(生成物のモル数)÷[(供給オレフィンのモル数)−(未反応オレフィンのモル数)]×100
収率(%)=(生成物のモル数)÷(供給オレフィンのモル数)×100
【0019】
実施例1
モリブデン酸アンモニウム[(NH46Mo724・4H2O]211.97gを温水250gに溶解し、A液を作製した。硝酸鉄(III)[Fe(NO33・9H2O]101.0gおよび硝酸コバルト[Co(NO32・6H2O]218.3gおよび硝酸セシウム(CsNO3)11.7gを温水100gに溶解した。このときの硝酸鉄、硝酸コバルト、硝酸セシウム混合水溶液中の硝酸イオン濃度は8.3mol/lであった。次いでこの水溶液中に硝酸ビスマス[Bi(NO33・5H2O]48.5gを添加、溶解し、B液を作製した。このようにして作製したA液を攪拌しながらB液を添加しスラリーを得、続いてこれを濃縮乾固した。得られた乾燥品を360℃で1時間仮焼成し、触媒前駆体を得た。得られた触媒前駆体を10〜24メッシュの粒子に打錠成型し、530℃で6時間最終焼成した。酸素を除く触媒組成は、 Mo12Bi1Fe2.5Co7.5Cs0.6である。上記した触媒7.0gを、30.0gのシリコンカーバイト(14メッシュ)とともに、内径18mmのガラス製反応管に充填し、イソブチレン:酸素:窒素:スチーム=1:2.2:6.2:2のモル比の原料ガスを供給し、空間速度SV=750hr-1(STP)の反応条件で反応を行った。その結果を表1に示す。
【0020】
比較例1
実施例1において、純水60gに70%硝酸12gを加え、硝酸ビスマス[Bi(NO33・5H2O]48.5gを溶解した硝酸ビスマス水溶液を用いてB液を調製したこと以外は実施例1と同様に触媒を調製した。以下実施例1と同様にして反応を行った。その結果を表1に示す。得られた触媒は実施例1に比べ、活性は高いものの、収率が低いことがわかる。
【0021】
実施例2
実施例1において、モリブデン酸アンモニウムを220.7g、硝酸セシウムを9.7gとした以外(硝酸ビスマスを添加、溶解する水溶液中の硝酸イオン濃度は8.2mol/lであった)は実施例1と同様に触媒を調製した。このようにして得られた触媒の酸素を除く触媒組成は、 Mo12Bi0.96Fe2.4Co7.2Cs0.48である。以下実施例1と同様にして反応を行った。その結果を表1に示す。
【0022】
比較例2
実施例1において、モリブデン酸アンモニウムを220.7g、硝酸セシウムを9.7gとし、純水60gに70%硝酸12gを加え、硝酸ビスマス[Bi(NO33・5H2O]48.5gを溶解した硝酸ビスマス水溶液を用いてB液を調製したこと以外は実施例1と同様に触媒を調製した。得られた触媒を用い実施例1と同様にして反応を行った。その結果を表1に示す。得られた触媒は実施例2に比べ、収率が低いことがわかる。
【0023】
【表1】

Figure 0004273565
【0024】
実施例3
モリブデン酸アンモニウム[(NH46Mo724・4H2O]8474.5gを温水10000gに溶解し、さらに20%シリカゾル(SiO2)1201.6gを加え、A液を調製した。硝酸鉄(III)[Fe(NO33・9H2O]3636.0gおよび硝酸コバルト[Co(NO32・6H2O]8730.9gおよび硝酸セシウム(CsNO3)58.5gを温水4000gに溶解した。このときの硝酸イオン濃度は8.0mol/lであった。次いで硝酸ビスマス[Bi(NO33・5H2O]1940.3gを添加、溶解し、B液を調製した。A液を攪拌しながらB液を添加しスラリーを得、続いてこれを噴霧乾燥した。得られた触媒前駆体を10〜24メッシュの粒子に打錠成型し、435℃で6時間最終焼成した。このようにして得られた触媒の酸素を除く触媒組成は、 Mo12Bi1Fe2.25Co7.5Cs0.075Si1ある。上記した触媒9.6gを、18.0gのシリコンカーバイト(14メッシュ)とともに、内径18mmのステンレス製反応管に充填し、プロピレン:空気:スチーム=1:7.5:3のモル比の原料ガスを供給し、空間速度SV=1031hr-1(STP)の反応条件で反応を行った。その結果を表2に示す。
【0025】
比較例3
実施例3において、純水2952gに62%硝酸528gを加え、硝酸ビスマス[Bi(NO33・5H2O]1940.3gを溶解した硝酸ビスマス水溶液を用いてB液を調製したこと以外は実施例3と同様に触媒を調製した。以下実施例3と同様にして反応を行った。その結果を表2に示す。得られた触媒は実施例3に比べ、低活性で収率も低いことがわかる。
【0026】
【表2】
Figure 0004273565
【0027】
【発明の効果】
本発明によれば、プロピレン、イソブチレンからそれぞれに対応する不飽和アルデヒドおよび不飽和カルボン酸の合成に使用される複合酸化物触媒の製造法において、触媒構成元素を確保するのに不可避な硝酸根以外の硝酸を用いることなく、触媒製造工程におけるNOx等の有害廃棄物の増加や触媒製造コスト引き上げがなく、簡便で再現性の良く、かつ得られる触媒性能も何ら硝酸を用いる方法に比較し遜色のない、むしろ高収率を発揮し得る触媒を提供し得るもので、その工業的利用価値は頗る大なるものである。[0001]
[Industrial application fields]
The present invention relates to the production of composite oxide catalysts for the synthesis of unsaturated aldehydes and unsaturated carboxylic acids. More specifically, the present invention relates to a method for producing a composite oxide catalyst used for synthesizing acrolein and acrylic acid or methacrolein and methacrylic acid by vapor-phase catalytic oxidation of propylene and isobutylene with molecular oxygen.
[0002]
[Prior art]
Many proposals have been made on catalysts for synthesizing acrolein and acrylic acid or methacrolein and methacrylic acid by vapor-phase catalytic oxidation of propylene and isobutylene with molecular oxygen. A number of methods for producing these catalysts have also been proposed, but there are not many that are described in detail regarding the amount of nitric acid at the time of catalyst preparation. For example, Japanese Patent Laid-Open No. 3-109943 proposes a method in which the amount of nitric acid used in preparing the catalyst is 0.01 to 0.36 mol per mol of ammonium molybdate, apart from the nitrate radical contained in the catalyst raw material. Yes.
In JP-A-62-234548, JP-A-63-54941, JP-A-8-24652, etc., carbonates and oxides other than nitrate are used as bismuth raw materials. In this case, nitric acid is added. It has not been.
[0003]
[Problems to be solved by the invention]
When mixing the supply compounds of the component elements of the composite oxide catalyst with water as a dispersion medium, it is effective as a means for uniformly dispersing the catalyst to use water-soluble and uniformly dispersed aqueous solutions. It is well known that By the way, bismuth nitrate reacts immediately with water to form precipitates such as insoluble bismuth oxynitrate. Therefore, when bismuth nitrate is used as a bismuth raw material, nitric acid is generally used simultaneously to obtain a uniform aqueous solution. The method of preparation is adopted. However, the nitrate radicals contained in the intermediates such as the dried slurry used in the raw material preparation are all removed in the process up to the final firing, except for the nitrate radicals unavoidable for securing the catalyst constituent elements. The use of nitric acid is not preferable because it causes an increase in hazardous waste such as NOx in the catalyst production process and an increase in catalyst production costs.
[0004]
On the other hand, in the method using carbonate or oxide as the bismuth raw material, although nitric acid is not used, the raw material itself is insoluble, and even if it is used in powder form or sonicated, it does not make the catalyst performance uneven. I can't.
[0005]
The object of the present invention is to produce a composite oxide catalyst used for synthesizing the corresponding unsaturated aldehyde and unsaturated carboxylic acid from propylene and isobutylene, respectively, except for the nitrate radical which is unavoidable for securing catalyst constituent elements. Without using nitric acid, there is no increase in NOx and other hazardous wastes in the catalyst production process and no increase in catalyst production cost, and the resulting catalyst performance is comparable to the method using nitric acid and is simple and reproducible. It is to provide a method for producing a good industrial catalyst.
[0006]
[Means for Solving the Problems]
That is, the present invention relates to the general formula Mo a Bi b Fe c A d B e used in the gas phase catalytic oxidation of propylene or isobutylene with molecular oxygen to synthesize the corresponding unsaturated aldehyde and unsaturated carboxylic acid. C f D g O x (Mo , Bi and F e represent molybdenum, represents bismuth and iron, a represents nickel and / or cobalt, B is manganese, zinc, calcium, magnesium, from the group consisting of tin and lead Represents at least one element selected, C represents at least one element selected from the group consisting of phosphorus, boron, arsenic, tellurium, tungsten, antimony and silicon, and D represents potassium, rubidium, cesium and thallium Represents at least one element selected from the group consisting of: when a = 12, 0 <b ≦ 10, 0 <c ≦ 10, 1 ≦ d ≦ 10, 0 ≦ e ≦ 10, 0 ≦ f ≦ 10, 0 <g ≦ 2, and x is a value determined by the oxidation state of each element. In the method for producing a composite oxide catalyst, at the time of preparing the raw material of the composite oxide catalyst, at least one of the components constituting the catalyst excluding the bismuth component is made into an aqueous solution using nitrate, The present invention provides a method for producing a composite oxide catalyst for synthesizing an unsaturated aldehyde and an unsaturated carboxylic acid, wherein bismuth nitrate is dissolved as a bismuth component in an aqueous solution without using nitric acid.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the method of the present invention will be described in more detail.
A feature of the present invention is that, when producing a composite oxide catalyst for synthesis of unsaturated aldehyde and unsaturated carboxylic acid using bismuth nitrate, nitric acid is not used for preparing the composite oxide catalyst raw material, and bismuth is uniformly dissolved. It is to obtain a raw material aqueous solution.
[0008]
The composite oxide catalyst targeted by the present invention has the general formula MoaBibFecAdBeCfDgOx (Mo, Bi, and Fe represent molybdenum, bismuth, and iron, A represents nickel and / or cobalt, and B represents manganese, zinc, calcium, magnesium, respectively) Represents at least one element selected from the group consisting of tin and lead, and C represents at least one element selected from the group consisting of phosphorus, boron, arsenic, tellurium, tungsten, antimony and silicon, and D Represents at least one element selected from the group consisting of potassium, rubidium, cesium and thallium, and when a = 12, 0 <b ≦ 10, 0 <c ≦ 10, 1 ≦ d ≦ 10, 0 ≦ e ≦ 10, 0 ≦ f ≦ 10, 0 <g ≦ 2, and x is a value determined by the oxidation state of each element). And it has a composition that.
[0009]
Specific examples include the following catalyst composition (excluding oxygen atoms).
Mo 12 Bi 0.1-5 Fe 0.5-5 Co 5-10 Cs 0.01-1
Mo 12 W 0.1-2 Bi 0.1-5 Fe 0.5-5 Co 5-10 Cs 0.01-1
Mo 12 W 0.1-2 Bi 0.1-5 Fe 0.5-5 Co 5-10 K 0.01-1 Si 0.1-20
Mo 12 Bi 0.1-5 Fe 0.5-5 Ni 5-10 Tl 0.01-1 P 0.01-2 Si 0.1-20
[0010]
In practicing the present invention, it is essential to use nitrate as a raw material for other catalyst components excluding bismuth, preferably two or more, and this is applied as an aqueous solution. Using bismuth nitrate, this is added and dissolved in the nitrate aqueous solution to prepare a catalyst component. In the present invention, the nitrate aqueous solution to which bismuth nitrate is added and dissolved is prepared and used so that the nitrate ion concentration in the aqueous solution is in the range of about 6 mol / l to about 11 mol / l, preferably about 7 mol / l to about 10 mol / l. It is preferable. When the concentration of nitrate ion in the aqueous solution in which bismuth nitrate is dissolved is less than 6 mol / l, the added bismuth nitrate does not dissolve and insoluble precipitation such as bismuth oxynitrate occurs, resulting in a heterogeneous raw material aqueous solution. If a nitrate ion concentration exceeding 1 / l is to be obtained, the amount of water as a solvent is remarkably limited, and it takes time to dissolve the raw material nitrate.
[0011]
In the catalyst raw material preparation for obtaining the catalyst targeted by the present invention, the remaining catalyst components excluding the catalyst component and bismuth component applied as the nitrate are oxides, sulfates, carbonates, hydroxides of the respective elements, Ammonium salts, halides, and the like can be used in appropriate combinations. Specifically, molybdenum trioxide, molybdic acid, ammonium paramolybdate or the like can be used as the molybdenum raw material. In the catalyst component preparation method, the mixing method is not particularly limited, such as the mixing order of other catalyst components other than adding bismuth nitrate in an aqueous solution in which one or more or two or more nitrates are dissolved. Absent.
[0012]
The catalyst raw material thus prepared is subjected to a drying process. The drying method may be a solution, a mixed solution, or a method in which each component in the aqueous slurry is not accompanied by significant uneven distribution. Usually, a conventionally well-known evaporating and drying method by a kneader, a box type dryer, a drum type Various methods such as an air dryer, a spray dryer, and an air dryer are used.
[0013]
In the present invention, when an ammonium salt such as ammonium nitrate is contained in such a dried product, the ammonium salt is eliminated, so-called salt decomposition, by subjecting the dried product to a heat treatment. The salt decomposition is performed at a temperature range of about 200 to about 450 ° C, preferably about 250 to about 400 ° C.
[0014]
In the present invention, the final catalyst is obtained by final calcination of the obtained catalyst precursor. The final calcination temperature is in the range of about 350 to about 700 ° C. for about 1 to about 40 hours.
[0015]
The catalyst obtained using the catalyst precursor of the present invention is usually molded into a desired shape and used. It is formed into a ring shape, a pellet shape, a spherical shape, or the like by tableting or extrusion molding. The catalyst is usually molded by calcining and then final calcining, but is not limited thereto.
[0016]
The composite oxide catalyst thus obtained can be used as a catalyst for gas phase catalytic oxidation reaction of propylene or isobutylene with molecular oxygen. The reaction conditions in this case can be performed by a conventionally known method. For example, the reaction temperature may be about 280 to about 400 ° C., and the reaction pressure may be reduced, but usually normal pressure to about 500 kPa, oxygen / isobutylene (molar ratio) is about 1 to about 3, and space velocity SV = about 500 to It is appropriately performed at about 5000 / h.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
EXAMPLES Hereinafter, although an Example is given and this invention is demonstrated further in detail, this invention is not limited to this. In the present invention, the reaction rate (%), selectivity (%) and yield (%) are defined as follows.
[0018]
Reaction rate (%) = [(moles of olefin supplied) − (moles of unreacted olefin)] ÷ (moles of olefin supplied) × 100
Selectivity (%) = (moles of product) ÷ [(moles of olefin supplied) − (moles of unreacted olefin)] × 100
Yield (%) = (number of moles of product) ÷ (number of moles of olefin supplied) × 100
[0019]
Example 1
Ammonium molybdate [(NH 4 ) 6 Mo 7 O 24 · 4H 2 O] 211.97 g was dissolved in 250 g of hot water to prepare solution A. 101.0 g of iron (III) nitrate [Fe (NO 3 ) 3 .9H 2 O], 218.3 g of cobalt nitrate [Co (NO 3 ) 2 .6H 2 O] and 11.7 g of cesium nitrate (CsNO 3 ) Dissolved in 100 g. At this time, the nitrate ion concentration in the mixed aqueous solution of iron nitrate, cobalt nitrate, and cesium nitrate was 8.3 mol / l. Next, 48.5 g of bismuth nitrate [Bi (NO 3 ) 3 .5H 2 O] was added and dissolved in this aqueous solution to prepare a B liquid. Liquid B was added while stirring the liquid A thus prepared to obtain a slurry, which was subsequently concentrated to dryness. The obtained dried product was calcined at 360 ° C. for 1 hour to obtain a catalyst precursor. The obtained catalyst precursor was tablet-molded into 10-24 mesh particles and finally fired at 530 ° C. for 6 hours. The catalyst composition excluding oxygen is Mo 12 Bi 1 Fe 2.5 Co 7.5 Cs 0.6 . 7.0 g of the catalyst described above was charged into a glass reaction tube having an inner diameter of 18 mm together with 30.0 g of silicon carbide (14 mesh), and isobutylene: oxygen: nitrogen: steam = 1: 2.2: 6.2: A raw material gas having a molar ratio of 2 was supplied, and the reaction was performed under the reaction condition of a space velocity SV = 750 hr −1 (STP). The results are shown in Table 1.
[0020]
Comparative Example 1
In Example 1, except that 12 g of 70% nitric acid was added to 60 g of pure water, and liquid B was prepared using an aqueous bismuth nitrate solution in which 48.5 g of bismuth nitrate [Bi (NO 3 ) 3 .5H 2 O] was dissolved. A catalyst was prepared in the same manner as in Example 1. Thereafter, the reaction was carried out in the same manner as in Example 1. The results are shown in Table 1. It can be seen that the obtained catalyst is less active than Example 1, although the activity is high.
[0021]
Example 2
In Example 1, except that ammonium molybdate was changed to 220.7 g and cesium nitrate was set to 9.7 g (the concentration of nitrate ion in the aqueous solution in which bismuth nitrate was added and dissolved was 8.2 mol / l). A catalyst was prepared in the same manner as above. The catalyst composition excluding oxygen of the catalyst thus obtained is Mo 12 Bi 0.96 Fe 2.4 Co 7.2 Cs 0.48 . Thereafter, the reaction was carried out in the same manner as in Example 1. The results are shown in Table 1.
[0022]
Comparative Example 2
In Example 1, 220.7 g of ammonium molybdate and 9.7 g of cesium nitrate were added, 12 g of 70% nitric acid was added to 60 g of pure water, and 48.5 g of bismuth nitrate [Bi (NO 3 ) 3 .5H 2 O] was added. A catalyst was prepared in the same manner as in Example 1 except that solution B was prepared using a dissolved bismuth nitrate aqueous solution. The reaction was carried out in the same manner as in Example 1 using the obtained catalyst. The results are shown in Table 1. It can be seen that the yield of the obtained catalyst is lower than that of Example 2.
[0023]
[Table 1]
Figure 0004273565
[0024]
Example 3
A solution A was prepared by dissolving 8474.5 g of ammonium molybdate [(NH 4 ) 6 Mo 7 O 24 · 4H 2 O] in 10000 g of hot water and adding 1201.6 g of 20% silica sol (SiO 2 ). Iron nitrate (III) [Fe (NO 3 ) 3 · 9H 2 O] 3636.0 g, cobalt nitrate [Co (NO 3 ) 2 · 6H 2 O] 8730.9 g and cesium nitrate (CsNO 3 ) 58.5 g Dissolved in 4000 g. The nitrate ion concentration at this time was 8.0 mol / l. Next, 1940.3 g of bismuth nitrate [Bi (NO 3 ) 3 .5H 2 O] was added and dissolved to prepare a liquid B. While the liquid A was stirred, the liquid B was added to obtain a slurry, which was subsequently spray-dried. The obtained catalyst precursor was tablet-molded into 10-24 mesh particles, and finally calcined at 435 ° C. for 6 hours. The catalyst composition excluding oxygen of the catalyst thus obtained is Mo 12 Bi 1 Fe 2.25 Co 7.5 Cs 0.075 Si 1 . 9.6 g of the catalyst described above was charged into a stainless steel reaction tube having an inner diameter of 18 mm together with 18.0 g of silicon carbide (14 mesh), and a raw material having a molar ratio of propylene: air: steam = 1: 7.5: 3. Gas was supplied, and the reaction was performed under the reaction condition of space velocity SV = 1031 hr −1 (STP). The results are shown in Table 2.
[0025]
Comparative Example 3
In Example 3, except that 528 g of 62% nitric acid was added to 2952 g of pure water, and liquid B was prepared using a bismuth nitrate aqueous solution in which 1940.3 g of bismuth nitrate [Bi (NO 3 ) 3 .5H 2 O] was dissolved A catalyst was prepared in the same manner as in Example 3. Thereafter, the reaction was carried out in the same manner as in Example 3. The results are shown in Table 2. It can be seen that the obtained catalyst has a low activity and a low yield as compared with Example 3.
[0026]
[Table 2]
Figure 0004273565
[0027]
【The invention's effect】
According to the present invention, in a method for producing a composite oxide catalyst used for synthesizing an unsaturated aldehyde and an unsaturated carboxylic acid corresponding to propylene and isobutylene, respectively, other than nitrate radicals unavoidable for securing catalyst constituent elements. Without using nitric acid, there is no increase in NOx and other hazardous wastes in the catalyst production process and no increase in catalyst production cost, and it is simple and reproducible, and the resulting catalyst performance is inferior to the method using nitric acid. However, it can provide a catalyst that can exhibit a high yield, and its industrial utility value is much greater.

Claims (2)

プロピレンまたはイソブチレンを分子状酸素により気相接触酸化しそれぞれに対応する不飽和アルデヒドおよび不飽和カルボン酸を合成する際に用いられる、一般式MoaBibFecdefgx(Mo、BiおよびFeはそれぞれモリブデン、ビスマスおよび鉄を表し、Aはニッケルおよび/またはコバルトを表し、Bはマンガン、亜鉛、カルシウム、マグネシウム、スズおよび鉛からなる群より選ばれた少なくとも1種の元素を表し、Cはリン、ホウ素、ヒ素、テルル、タングステン、アンチモンおよびケイ素からなる群より選ばれた少なくとも1種の元素を表し、Dはカリウム、ルビジウム、セシウムおよびタリウムからなる群より選ばれた少なくとも1種の元素を表し、a=12としたとき、0<b≦10、0<c≦10、1≦d≦10、0≦e≦10、0≦f≦10、0<g≦2でありxは各元素の酸化状態により定まる値である。)で示される複合酸化物触媒の製造法において、該複合酸化物触媒の原料調製時に、予め触媒を構成する成分のうちビスマス成分を除く他成分のうちの少なくとも1種を硝酸塩を用いた水溶液となし、次いで該水溶液中にビスマス成分として硝酸ビスマスを硝酸を用いることなく溶解させ、かつ、ビスマス成分を除く他成分のうちの少なくとも1種以上の硝酸塩を溶解させた溶液中の硝酸イオン濃度が、6mol/l〜11mol/lであることを特徴とする不飽和アルデヒド及び不飽和カルボン酸合成用複合酸化物触媒の製造法。General formula Mo a Bi b Fe c A d B e C f D g O used in the gas phase catalytic oxidation of propylene or isobutylene with molecular oxygen to synthesize the corresponding unsaturated aldehyde and unsaturated carboxylic acid respectively x (Mo, Bi and Fe represent molybdenum, bismuth and iron, A represents nickel and / or cobalt, and B represents at least one selected from the group consisting of manganese, zinc, calcium, magnesium, tin and lead. C represents at least one element selected from the group consisting of phosphorus, boron, arsenic, tellurium, tungsten, antimony and silicon, and D is selected from the group consisting of potassium, rubidium, cesium and thallium. Represents at least one element, and when a = 12, 0 <b ≦ 10, 0 <c ≦ 10 1 ≦ d ≦ 10, 0 ≦ e ≦ 10, 0 ≦ f ≦ 10, 0 <g ≦ 2, and x is a value determined by the oxidation state of each element.) At the time of preparing the raw material for the composite oxide catalyst, at least one of the components constituting the catalyst excluding the bismuth component is made into an aqueous solution using nitrate, and then bismuth nitrate as a bismuth component in the aqueous solution. The concentration of nitrate ions in a solution in which at least one of the other components excluding the bismuth component is dissolved and nitric acid is dissolved without using nitric acid is 6 mol / l to 11 mol / l A process for producing a composite oxide catalyst for synthesizing an unsaturated aldehyde and an unsaturated carboxylic acid. 複合酸化物触媒の原料調製時に、予め触媒を構成する成分のうちビスマス成分を除く他成分であって硝酸塩として用いる成分を水に溶解させて硝酸イオン濃度が6mol/l〜11mol/lである水溶液となし、次いで該水溶液中にビスマス成分として硝酸ビスマスを硝酸を用いることなく溶解させて水溶液Bを調製し、他方、触媒を構成する成分のうちビスマス成分を除く他成分であって硝酸塩以外の成分を水に溶解させて水溶液Aを調製し、その後、水溶液Bを水溶液Aと混合する請求項1に記載の製造法。An aqueous solution having a nitrate ion concentration of 6 mol / l to 11 mol / l by dissolving in water components other than the bismuth component, which are components constituting the catalyst, in advance during preparation of the composite oxide catalyst raw material. Next, bismuth nitrate is dissolved in the aqueous solution as a bismuth component without using nitric acid to prepare an aqueous solution B. On the other hand, among the components constituting the catalyst, other components except the bismuth component and components other than nitrate The aqueous solution A is prepared by dissolving water in water, and then the aqueous solution B is mixed with the aqueous solution A.
JP10253399A 1999-04-09 1999-04-09 Process for the preparation of complex oxide catalysts for the synthesis of unsaturated aldehydes and unsaturated carboxylic acids Expired - Lifetime JP4273565B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10253399A JP4273565B2 (en) 1999-04-09 1999-04-09 Process for the preparation of complex oxide catalysts for the synthesis of unsaturated aldehydes and unsaturated carboxylic acids

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10253399A JP4273565B2 (en) 1999-04-09 1999-04-09 Process for the preparation of complex oxide catalysts for the synthesis of unsaturated aldehydes and unsaturated carboxylic acids

Publications (3)

Publication Number Publication Date
JP2000288396A JP2000288396A (en) 2000-10-17
JP2000288396A5 JP2000288396A5 (en) 2006-03-30
JP4273565B2 true JP4273565B2 (en) 2009-06-03

Family

ID=14329941

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10253399A Expired - Lifetime JP4273565B2 (en) 1999-04-09 1999-04-09 Process for the preparation of complex oxide catalysts for the synthesis of unsaturated aldehydes and unsaturated carboxylic acids

Country Status (1)

Country Link
JP (1) JP4273565B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005169311A (en) * 2003-12-12 2005-06-30 Mitsubishi Chemicals Corp Production method for complex oxide catalyst
JP4650354B2 (en) 2006-06-28 2011-03-16 住友化学株式会社 Method for regenerating unsaturated aldehyde and / or unsaturated carboxylic acid production catalyst, and method for producing unsaturated aldehyde and / or unsaturated carboxylic acid
JP5892826B2 (en) 2012-03-27 2016-03-23 住友化学株式会社 Method for producing methacrylic acid

Also Published As

Publication number Publication date
JP2000288396A (en) 2000-10-17

Similar Documents

Publication Publication Date Title
KR890000517B1 (en) Catalyst for manufacturing methacrolein
JP4280797B2 (en) Method for producing composite oxide catalyst
KR950004031B1 (en) Method for preparing mettacrolein and method for preparing a catalyst for use in the preparation of methacrolein
JP2841324B2 (en) Method for producing methacrolein
JP2001246260A (en) Method for preparing heteropolyacid-based catalyst and method for producing methacrylic acid
JP2003251183A (en) Catalyst for synthesizing unsaturated aldehyde and manufacturing method therefor, and method for manufacturing unsaturated aldehyde using the catalyst
JPH0813332B2 (en) Preparation of catalysts for the production of methacrolein and methacrylic acid
JP2000005603A (en) Catalyst composition for making unsaturated nitrile
JP4442317B2 (en) Method for producing composite oxide catalyst
JPH09316023A (en) Production of (meth)acrylic acid
KR100865654B1 (en) Catalysts for methacrylic acid production and process for producing methacrylic acid
JP3288197B2 (en) Method for producing catalyst for synthesizing methacrolein and methacrylic acid
JP4273565B2 (en) Process for the preparation of complex oxide catalysts for the synthesis of unsaturated aldehydes and unsaturated carboxylic acids
WO2005056185A1 (en) Process for producing composite oxide catalyst
JP3995381B2 (en) Catalyst for producing methacrylic acid and method for producing methacrylic acid
JP2005058909A (en) Production method for catalyst for synthesizing methacrylic acid
JP3772389B2 (en) Method for producing oxidation catalyst and method for producing methacrylic acid
JP3370548B2 (en) Method for producing catalyst for synthesis of unsaturated aldehyde and unsaturated carboxylic acid
JP3347263B2 (en) Preparation of catalysts for the production of unsaturated aldehydes and unsaturated carboxylic acids
JP2002306970A (en) Catalyst for manufacturing methacrylic acid, method for manufacturing the catalyst and method for manufacturing methacrylic acid
JP4629886B2 (en) Catalyst for producing methacrolein and / or methacrylic acid, method for producing the same, and method for producing methacrolein and / or methacrylic acid
JP3446403B2 (en) Method for producing catalyst for synthesis of unsaturated aldehyde and unsaturated carboxylic acid
JP2003164763A (en) Method for manufacturing composite oxide catalyst for oxidizing propylene
JPH0615178A (en) Preparation of catalyst for production of methacrylic acid
JP3505547B2 (en) Method for producing acrylonitrile

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060214

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060214

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20080125

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20080220

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081118

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090119

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090210

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20090119

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090223

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120313

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130313

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130313

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140313

Year of fee payment: 5

EXPY Cancellation because of completion of term