JP4280797B2 - Method for producing composite oxide catalyst - Google Patents

Method for producing composite oxide catalyst Download PDF

Info

Publication number
JP4280797B2
JP4280797B2 JP2002330930A JP2002330930A JP4280797B2 JP 4280797 B2 JP4280797 B2 JP 4280797B2 JP 2002330930 A JP2002330930 A JP 2002330930A JP 2002330930 A JP2002330930 A JP 2002330930A JP 4280797 B2 JP4280797 B2 JP 4280797B2
Authority
JP
Japan
Prior art keywords
producing
composite oxide
oxide catalyst
bismuth
molybdenum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002330930A
Other languages
Japanese (ja)
Other versions
JP2003220335A (en
Inventor
力 勅使河原
成康 嘉糠
具敦 岩倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP2002330930A priority Critical patent/JP4280797B2/en
Publication of JP2003220335A publication Critical patent/JP2003220335A/en
Application granted granted Critical
Publication of JP4280797B2 publication Critical patent/JP4280797B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、プロピレン、イソブテン又はターシャリーブタノールからアクロレイン又はメタクロレインを製造する気相接触酸化反応、プロピレン又はイソブテンからアクリロニトリル又はメタクリロニトリルを製造する気相接触アンモ酸化反応、及びブテンからブタジエンを製造する気相接触酸化的脱水素反応等の選択的反応に用いられる複合酸化物触媒の製造方法に関する。
【0002】
【従来の技術】
プロピレン、イソブテン又はターシャリーブタノールからアクロレイン又はメタクロレインを製造する気相接触酸化反応、プロピレン又はイソブテンからアクリロニトリル又はメタクリロニトリルを製造する気相接触アンモ酸化反応、及びブテンからブタジエンを製造する気相接触酸化的脱水素反応等の選択的反応において、モリブデン−ビスマス系の複合酸化物触媒が有用な触媒であることは良く知られており、工業的にも広く実用化されている。
【0003】
これら各種反応におけるモリブデン−ビスマス系複合酸化物触媒の組成及び製造方法に関しては、特許文献1〜50等が知られている。
【0004】
これらのうち、製造方法についていくつか例を挙げると、例えば、特許文献27にはクエン酸ビスマス水溶液をモリブデン酸水溶液に添加する方法、特許文献28、特許文献29及び特許文献30にはモリブデン酸水溶液に固体状態のビスマス化合物を添加する方法、特許文献31にはpHが6〜8の範囲のモリブデン酸水溶液にビスマス塩の水溶液とアンモニア水を同時に添加する方法、特許文献32にはモリブデン化合物の懸濁液にビスマス塩の水溶液を添加する方法、特許文献33、特許文献23及び特許文献34には種々のモリブデイトを予め形成する方法、特許文献35及び特許文献36には種々のビスマス化合物を予め形成する方法、特許文献37にはビスマス源として酸化ビスマスや、次炭酸ビスマスを用いる方法、特許文献38には鉄、ビスマス及びテルルの少なくとも一つとモリブデン化合物とを含むスラリーをpH7を越える範囲に調整する方法、特許文献39にはシリカを含むモリブデン化合物含有スラリーにキレート剤を添加してpH6以上に調整する方法、特許文献40にはモリブデンを含むスラリーをpH6以上とした後ビスマス化合物を混合する方法などが開示されている。
【0005】
また、特許文献41には、モリブデン酸鉄のゲルを添加する方法、特許文献42にはモリブデンと鉄を予め混合する方法、特許文献43にはモリブデン化合物と特定の金属化合物を特定の条件下で混合し、鉄化合物を混合して製造する方法が開示されている。
【0006】
また、触媒の性能は、触媒を構成する成分及びその比率に強く支配されるが、とりわけ大規模な工業スケールでの触媒製造においては、触媒の構成成分やその比率だけでなく、触媒製造の生産性、安定性のみならず触媒性能の発現及び向上のために、触媒の製造方法が重要な役割を担っている。このため、上記触媒系に関しても、触媒の製造方法に関して多くの提案がなされている。例えば、特許文献44には、触媒原料を混合したスラリーを微粒化処理後、オートクレーブ中、100〜200℃で処理することが有効である旨が開示されている。また、特許文献45には、Mo,Bi,Feを必須成分として含有するスラリーを噴霧乾燥する旨が開示されている。さらに、特許文献46には、噴霧乾燥前にホモジナイザー等で10ミクロン以下に微細化処理することが開示されている。さらにまた、特許文献47、特許文献48、特許文献49、特許文献50には、成形助剤について開示されている。
【0007】
【特許文献1】
特公昭36−3563号公報
【特許文献2】
特公昭39−3670号公報
【特許文献3】
特公昭44−6245号公報
【特許文献4】
特公昭47−27490号公報
【特許文献5】
特公昭47−27490号公報
【特許文献6】
特公昭47−42241号公報
【特許文献7】
特公平7−87300号公報
【特許文献8】
特公昭48−1645号公報
【特許文献9】
特公昭48−4763号公報
【特許文献10】
特公昭48−17253号公報
【特許文献11】
特公昭49−3498号公報
【特許文献12】
特公昭55−41213号公報
【特許文献13】
特公昭56−14659号公報
【特許文献14】
特公昭56−23969号公報
【特許文献15】
特公昭56−52013号公報
【特許文献16】
特公昭57−26245号公報
【特許文献17】
特開昭48−503号公報
【特許文献18】
特開昭48−514号公報
【特許文献19】
特開昭48−52713号公報
【特許文献20】
特開昭48−54027号公報
【特許文献21】
特開昭48−57916号公報
【特許文献22】
特開昭55−20610号公報
【特許文献23】
特開昭55−47144号公報
【特許文献24】
特開昭55−84541号公報
【特許文献25】
特開昭59−76541号公報
【特許文献26】
特開昭60−122041号公報
【特許文献27】
特公昭43−22746号公報
【特許文献28】
特開昭53−10387号公報
【特許文献29】
特開昭53−10388号公報
【特許文献30】
特公昭55−12298号公報
【特許文献31】
特公昭59−51848号公報
【特許文献32】
特公昭59−51849号公報
【特許文献33】
特開昭55−13187号公報
【特許文献34】
特公昭60−29536号公報
【特許文献35】
特公昭52−22359号公報
【特許文献36】
特公昭52−47435号公報
【特許文献37】
特開昭62−23548号公報
【特許文献38】
特開平2−59046号公報
【特許文献39】
特開平2−214543号公報
【特許文献40】
特開平2−251250号公報
【特許文献41】
特開平1−168344号公報
【特許文献42】
特開平9−10588号公報
【特許文献43】
特開平12−37631号公報
【特許文献44】
特開平7−289902号公報
【特許文献45】
特開平9−117664号公報
【特許文献46】
特開平10−258233号公報
【特許文献47】
特開平6−380号公報
【特許文献48】
特開平7−16463号公報
【特許文献49】
特開平7−16464号公報
【特許文献50】
特開平7−185349号公報
【0008】
【発明が解決しようとする課題】
このように触媒の性能向上を図るためにモリブデン水溶液とビスマス化合物を混合する方法を工夫したり、モリブデンと鉄との混合方法を工夫したり、種々の方法が提案されている。しかし、これらの方法を二価の金属元素ならびに三価の金属元素からなる群から選ばれた少なくとも一種の金属元素を含むモリブデン−ビスマス含有複合酸化物触媒の製造に適用した場合、目的とする酸化生成物収率は必ずしも満足すべきものではなかった。
【0009】
そこで、この発明は、プロピレン、イソブテン又はターシャリーブタノールからアクロレイン又はメタクロレインを製造する気相接触酸化反応、プロピレン又はイソブテンからアクリロニトリル又はメタクリロニトリルを製造する気相接触アンモ酸化反応、及びブテンからブタジエンを製造する気相接触酸化的脱水素反応のいずれかの反応に用いられる触媒の製造方法として、より効率的かつ安定的に高性能触媒を製造する方法を提供することを目的とする。
【0010】
【課題を解決するための手段】
この発明は、上記の課題を解決するために、下記一般式(1)で表される複合酸化物触媒を、各成分元素の供給源化合物の水性系での一体化及び加熱を含む工程を経て製造する方法において、モリブデン、鉄、ニッケル又はコバルトの少なくとも一つ、及びシリカを含む原料塩水溶液又はこれを乾燥して得た乾燥物を加熱処理して触媒前駆体を製造する前工程、該触媒前駆体、モリブデン及びビスマス化合物とを水性溶媒とともに一体化し、乾燥、焼成する後工程を経て調製することにより、高活性で、かつ目的とする酸化生成物を高い収率で与える複合酸化物触媒が得られることを見出したのである。
MoaBibCocNidFeefghSiij (1)
(式中、Xはマグネシウム(Mg)、カルシウム(Ca)、亜鉛(Zn)、セリウム(Ce)及びサマリウム(Sm)からなる群から選ばれる少なくとも1種の元素であり、Yはナトリウム(Na)、カリウム(K)、ルビジウム(Rb)、セシウム(Cs)及びタリウム(Tl)からなる群から選ばれる少なくとも1種の元素であり、Zはホウ素(B)、リン(P)、砒素(As)及びタングステン(W)からなる群から選ばれる少なくとも1種の元素である。また、a〜jはそれぞれの元素の原子比を表わし、a=12のとき、b=0.5〜7、c=0〜10、d=0〜10(但しc+d=1〜10)、e=0.05〜3、f=0〜2、g=0.04〜2、h=0〜3、i=5〜48の範囲にあり、またjは他の元素の酸化状態を満足させる数値である。)
【0011】
この発明の複合酸化物触媒の製造方法においては、前記前工程で用いられるモリブデンが、モリブデンの全原子比(a)の内の一部の原子比(a1)相当のモリブデンであり、前記後工程で用いられるモリブデンが、モリブデンの全原子比(a)からa1を差し引いた残りの原子比(a2)相当のモリブデンであることが好ましい。
また、前記a1が1<a1/(c+d+e)<3を満足する値であることが好ましい。
さらに、前記a2が0<a2/b<8を満足する値であることが好ましい。
【0012】
この発明の複合酸化物触媒の製造方法においては、前記触媒前駆体の灼熱減量が、0.5〜5重量%であることが好ましい。
但し、灼熱減量は、次式により与えられる値である。
灼熱減量(%)=[(W0−W1)/W0]×100
0:触媒前駆体を150℃で3時間乾燥して付着水分を除いたものの重量(g)
1:付着水分を除いた前記触媒前駆体を更に500℃で2時間熱処理した後の重量(g)
【0013】
この発明の複合酸化物触媒の製造方法においては、前工程の一体化における熟成温度が、60〜90℃であることが好ましい。
【0014】
また、前工程における触媒前駆体製造のための加熱温度が200〜400℃であることが好ましい。
【0015】
この発明の複合酸化物触媒の製造方法においては、X、Y、及びZの各成分を後工程において添加することが好ましい。
【0016】
さらに、後工程において、触媒前駆体、モリブデン及びビスマス化合物の水性溶媒中での一体化の際にアンモニア水を添加することができる。
【0017】
また、後工程の焼成温度は、450〜650℃の範囲であることが好ましい。
【0018】
ビスマスの供給源としては、酸化ビスマス又は次炭酸ビスマスの少なくとも一方を用いることができる。
【0019】
また、ビスマスの供給源として、所要のNaの少なくとも一部を固溶した次炭酸ビスマスを用いることができる。
【0020】
また、ビスマスの供給源として、X成分の少なくとも一部を含むBiとXとの複合炭酸塩化合物を用いることができる。
【0021】
また、ビスマスの供給源として、所要のNa及びX成分のそれぞれ少なくとも一部を含むBiとNaとXとの複合炭酸塩化合物を用いることができる。
【0022】
この発明により、プロピレン、イソブテン又はターシャリーブタノールからアクロレイン又はメタクロレインを製造する気相接触酸化反応、プロピレン又はイソブテンからアクリロニトリル又はメタクリロニトリルを製造する気相接触アンモ酸化反応、及びブテンからブタジエンを製造する気相接触酸化的脱水素反応のいずれかに用いることができる、高性能な複合酸化物触媒を効率的かつ安定的に製造することができる。
【0023】
プロピレンを原料とするアクロレイン及び/又はアクリル酸の製造する場合、この発明より製造された複合酸化物触媒は、触媒組成物として少なくとも一部含有すればよい。
【0024】
【発明の実施の形態】
以下、この発明を詳細に説明する。
なお、この発明において、モリブデン(Mo)、ビスマス(Bi)、ケイ素(Si)、コバルト(Co)、ニッケル(Ni)、鉄(Fe)、マグネシウム(Mg)、カルシウム(Ca)、亜鉛(Zn)、セリウム(Ce)、サマリウム(Sm)、ナトリウム(Na)、カリウム(K)、ルビジウム(Rb)、セシウム(Cs)、タリウム(Tl)、ホウ素(B)、リン(P)、砒素(As)、タングステン(W)の各元素は、適宜、括弧内の元素記号を用いて表記する。
【0025】
上記成分元素の供給源化合物としては、成分元素の酸化物、硝酸塩、炭酸塩、アンモニウム塩、水酸化物、カルボン酸塩、カルボン酸アンモニウム塩、ハロゲン化アンモニウム塩、水素酸、アセチルアセトナート、アルコキシド等があげられる。
【0026】
上記成分元素の供給源化合物の具体例としては、下記のようなものがあげられる。Moの供給源化合物としては、パラモリブデン酸アンモニウム、三酸化モリブデン、モリブデン酸、リンモリブデン酸アンモニウム、リンモリブデン酸等があげられる。さらに、Feの供給源化合物としては、硝酸第二鉄、硫酸第二鉄、塩化第二鉄、酢酸第二鉄等があげられる。
【0027】
また、Coの供給源化合物としては、硝酸コバルト、硫酸コバルト、塩化コバルト、炭酸コバルト、酢酸コバルト等があげられる。さらに、Niの供給源化合物としては、硝酸ニッケル、硫酸ニッケル、塩化ニッケル、炭酸ニッケル、酢酸ニッケル等があげられる。
【0028】
また、Siの供給源化合物としては、シリカ、粒状シリカ、コロイダルシリカ、ヒュームドシリカ等をあげることができる。
【0029】
さらに、Biの供給源化合物としては、塩化ビスマス、硝酸ビスマス、酸化ビスマス、次炭酸ビスマス等があげられる。また、X成分(Mg,Ca,Zn,Ce及び/又はSm)やY成分(Na,K,Rb,Cs及び/又はTl)を固溶させた、BiとX成分やY成分との複合炭酸塩化合物として供給することもできる。
【0030】
例えば、Y成分としてNaを用いた場合、BiとNaとの複合炭酸塩化合物は、炭酸ナトリウム又は重炭酸ナトリウムの水溶液等に、硝酸ビスマス等の水溶性ビスマス化合物の水溶液を滴下混合し、得られた沈殿を水洗、乾燥することによって製造することができる。
【0031】
また、BiとX成分との複合炭酸塩化合物は、炭酸アンモニウム又は重炭酸アンモニウムの水溶液等に、硝酸ビスマス及びX成分の硝酸塩等の水溶性化合物からなる水溶液を滴下混合し、得られた沈殿を水洗、乾燥することによって製造することができる。上記炭酸アンモニウム又は重炭酸アンモニウムの代わりに、炭酸ナトリウム又は重炭酸ナトリウムを用いると、Bi、Na及びX成分との複合炭酸塩化合物を製造することができる。
【0032】
その他の成分元素の供給源化合物としては、下記のものがあげられる。Kの供給源化合物としては、硝酸カリウム、硫酸カリウム、塩化カリウム、炭酸カリウム、酢酸カリウム等をあげることができる。Rbの供給源化合物としては、硝酸ルビジウム、硫酸ルビジウム、塩化ルビジウム、炭酸ルビジウム、酢酸ルビジウム等をあげることができる。Csの供給源化合物としては、硝酸セシウム、硫酸セシウム、塩化セシウム、炭酸セシウム、酢酸セシウム等をあげることができる。Tlの供給源化合物としては、硝酸第一タリウム、塩化第一タリウム、炭酸タリウム、酢酸第一タリウム等をあげることができる。
【0033】
さらに、Bの供給源化合物としては、ホウ砂、ホウ酸アンモニウム、ホウ酸等をあげることができる。Pの供給源化合物としては、リンモリブデン酸アンモニウム、リン酸アンモニウム、リン酸、五酸化リン等をあげることができる。Asの供給源化合物としては、ジアルセノ十八モリブデン酸アンモニウム、ジアルセノ十八タングステン酸アンモニウム等をあげることができる。Wの供給源化合物としては、パラタングステン酸アンモニウム、三酸化タングステン、タングステン酸、リンタングステン酸等をあげることができる。
【0034】
また、Mgの供給源化合物としては、硝酸マグネシウム、硫酸マグネシウム、塩化マグネシウム、炭酸マグネシウム、酢酸マグネシウム等があげられる。Caの供給源化合物としては、硝酸カルシウム、硫酸カルシウム、塩化カルシウム、炭酸カルシウム、酢酸カルシウム等があげられる。Znの供給源化合物としては、硝酸亜鉛、硫酸亜鉛、塩化亜鉛、炭酸亜鉛、酢酸亜鉛等があげられる。Ceの供給源化合物としては、硝酸セリウム、硫酸セリウム、塩化セリウム、炭酸セリウム、酢酸セリウム等があげられる。Smの供給源化合物としては、硝酸サマリウム、硫酸サマリウム、塩化サマリウム、炭酸サマリウム、酢酸サマリウム等があげられる。
【0035】
この発明の製造方法における前工程において用いる原料塩水溶液は、触媒成分として少なくともモリブデン(全原子比aの内のa1相当)、鉄、ニッケル又はコバルトの少なくとも一方、及びシリカを含む水溶液、水スラリー又はケーキである。
【0036】
この原料水溶液の調製は、供給源化合物の水性系での一体化により行われる。この発明において、各成分元素の供給源化合物の水性系での一体化とは、各成分元素の供給源化合物の水溶液あるいは水分散液を一括に、あるいは段階的に混合又は熟成処理、混合及び熟成処理を行うことをいう。即ち、(イ)上記の各供給源化合物を一括して混合する方法、(ロ)上記の各供給源化合物を一括して混合し、そして熟成処理する方法、(ハ)上記の各供給源化合物を段階的に混合する方法、(ニ)上記の各供給源化合物を段階的に混合・熟成処理を繰り返す方法、及び(イ)〜(ニ)を組み合わせる方法のいずれもが、各成分元素の供給源化合物の水性系での一体化という概念に含まれる。ここで、熟成とは、工業原料もしくは半製品を、一定時間、一定温度等の特定条件のもとに処理して、必要とする物理性、化学性の取得、上昇あるいは所定反応の進行等を図る操作をいい、この発明における一定時間とは、通常10分〜24時間の範囲であり、一定温度とは通常室温〜水溶液又は水分散液の沸点範囲をいう。
【0037】
上記の一体化の具体的な方法としては、例えば、触媒成分から選ばれた酸性塩を混合して得られた溶液と、触媒成分から選ばれた塩基性塩を混合して得られた溶液とを混合する方法等が挙げられ、具体例としてモリブデン化合物の水溶液に、鉄化合物とニッケル化合物及び/又はコバルト化合物との混合物を加温下添加し、シリカを混合する方法等が挙げられる。
【0038】
このようにして得られたシリカを含む原料塩水溶液(スラリー)を60〜90℃に加温し、熟成する。
【0039】
この熟成とは、上記触媒前駆体用スラリーを所定温度で所定時間、撹拌することをいう。この熟成により、スラリーの粘度が上昇し、スラリー中の固体成分の沈降を緩和し、とりわけ次の乾燥工程での成分の不均一化を抑制するのに有効となり、得られる最終製品である複合酸化物触媒の原料転化率や選択率等の触媒活性がより良好となる。
【0040】
上記熟成における温度は、60〜90℃がよく、70〜85℃が好ましい。熟成温度が60℃未満では、熟成の効果が十分ではなく、良好な活性を得られない場合がある。一方、90℃を超えると、熟成時間中の水の蒸発が多く、工業的な実施には不利である。更に100℃を超えると、溶解槽に耐圧容器が必要となり、また、ハンドリングも複雑になり、経済性及び操作性の面で著しく不利となる。
【0041】
上記熟成にかける時間は、2〜12時間がよく、3〜8時間が好ましい。熟成時間が2時間未満では、触媒の活性及び選択性が十分に発現しない場合がある。一方、12時間を超えても熟成効果が増大することはなく、工業的な実施には不利である。
【0042】
上記撹拌方法としては、任意の方法を採用することができ、例えば、撹拌翼を有する撹拌機による方法や、ポンプによる外部循環による方法等があげられる。
【0043】
熟成されたスラリーは、そのままで、又は乾燥した後、加熱処理を行う。乾燥する場合の乾燥方法及び得られる乾燥物の状態については特に限定はなく、例えば、通常のスプレードライヤー、スラリードライヤー、ドラムドライヤー等を用いて粉体状の乾燥物を得てもよいし、また、通常の箱型乾燥器、トンネル型焼成炉を用いてブロック状又はフレーク状の乾燥物を得てもよい。
【0044】
上記の原料塩水溶液又はこれを乾燥して得た顆粒あるいはケーキ状のものは空気中で200〜400℃、好ましくは250〜350℃の温度域で短時間の熱処理を行う。その際の炉の形式及びその方法については特に限定はなく、例えば、通常の箱型加熱炉、トンネル型加熱炉等を用いて乾燥物を固定した状態で加熱してもよいし、また、ロータリーキルン等を用いて乾燥物を流動させながら加熱してもよい。
【0045】
加熱処理後に得られた触媒前駆体の灼熱減量は、0.5〜5重量%であることが好ましく、1〜3重量%であるのがより好ましい。灼熱減量をこの範囲とすることで、原料転化率や選択率が高い触媒を得ることができる。なお、灼熱減量は、前記のように、次式により与えられる値である。
灼熱減量(%)=[(W0−W1)/W0]×100
0:触媒前駆体を150℃で3時間乾燥して付着水分を除いたものの重量(g)
1:付着水分を除いた前記触媒前駆体を更に500℃で2時間熱処理した後の重量(g)
【0046】
この発明の製造方法における後工程では、上記の前工程において得られる触媒前駆体とモリブデン(全原子比aからa1相当を差し引いた残りのa2相当)とビスマス化合物の一体化を、水性溶媒下で行う。この際、アンモニア水を添加するのが好ましい。X、Y、Z成分の添加もこの後工程で行うのが好ましい。また、この発明のビスマス供給源化合物は、水に難溶性〜不溶性のビスマスである。この化合物は、粉末の形態で使用することが好ましい。触媒製造原料としてのこれら化合物は粉末より大きな粒子のものであってもよいが、その熱拡散を行わせるべき加熱工程を考えれば小さい粒子である方が好ましい。従って、原料としてのこれらの化合物がこのように粒子の小さいものでなかった場合は、加熱工程前に粉砕を行うべきである。
【0047】
次に、得られたスラリーを充分に撹拌した後、乾燥する。このようにして得られた乾燥品を、押出し成型、打錠成型、あるいは担持成型等の方法により任意の形状に賦形する。次に、このものを、好ましくは450〜650℃の温度条件にて1〜16時間程度の最終熱処理に付す。
以上のようにして、高活性で、かつ目的とする酸化生成物を高い収率で与える複合酸化物触媒が得られる。
【0048】
この方法で製造された複合酸化物触媒は、分子状酸素の存在下に行なわれる各種の気相接触酸化反応、具体的には、プロピレン、イソブテン又はターシャリーブタノールからアクロレイン又はメタクロレインを製造する気相接触酸化反応、プロピレン又はイソブテンからアクリロニトリル又はメタクリロニトリルを製造する気相接触アンモ酸化反応、及びブテンからブタジエンを製造する気相接触酸化的脱水素反応のいずれかの反応に使用することができる。
【0049】
【実施例】
この発明に係る複合酸化物触媒のより具体的な製造方法と、得られた複合酸化物触媒を用いてプロピレンの酸化反応を実施した結果を以下に示す。なお、使用した各薬品は、原則として、試薬特級のものを使用した。
【0050】
<実施例1>
(複合酸化物触媒の調製)
パラモリブデン酸アンモン54gを純水250mlに加温して溶解させる。次に硝酸第二鉄7.18g、硝酸コバルト31.8g及び硝酸ニッケル31.8gを純水60mlに加温して溶解させる。これらの溶液を、充分に撹拌しながら徐々に混合する。
次に、シリカ64gを加えて、充分に攪拌する。このスラリーを75℃に加温し、5時間熟成する。その後、スラリーを加熱乾燥した後、空気雰囲気で300℃/1時間の熱処理に付す。得られた触媒前駆体の粒状固体(灼熱減量:1.4重量%)を粉砕し、パラモリブデン酸アンモン40.1gを純水150mlにアンモニア水10mlを加え溶解した溶液に分散する。次に、純水40mlにホウ砂0.85g及び硝酸カリウム0.36gを加温下に溶解させて、上記スラリーに加える。次に、Naを0.45%固溶した次炭酸ビスマス58.1gを加えて、撹拌混合する。
このスラリーを加熱乾燥した後、得られた粒状固体を小型成形機にて径5mm、高さ4mmの錠剤に打錠成型し、次に500℃/4時間の焼成を行って、触媒とした。
仕込み原料から計算される触媒は、次の原子比を有する複合酸化物である。
Mo:Bi:Co:Ni:Fe:Na:B:K:Si=12:5:2.5:2.5:0.4:0.35:0.2:0.08:24
調製の際のモリブデンの原子比a1とa2は、それぞれ6.9と5.1である。
【0051】
(プロピレンの酸化反応)
上記のようにして調製した複合酸化物触媒を使用して、プロピレンの酸化反応を実施し、プロピレン転化率、アクロレイン収率、アクリル酸収率を計算した。
複合酸化物触媒20mlを内径15mmのステンレス鋼製ナイタージャケット付反応管に充填し、プロピレン濃度10%、スチーム濃度17%、及び空気濃度73%の原料ガスを常圧にて接触時間1.8秒にて通過させて、プロピレンの酸化反応を実施したところ、反応浴温305℃にて表1に示す結果が得られた。
【0052】
<比較例1>
実施例1と同一組成の触媒を次のように調製した。パラモリブデン酸アンモン94.1gを純水400mlに加温して溶解させる。次に硝酸第二鉄7.18g、硝酸コバルト31.8g及び硝酸ニッケル31.8gを純水60mlに加温して溶解させる。これらの溶液を、充分に撹拌しながら徐々に混合する。
次に、純水40mlにホウ砂0.85g及び硝酸カリウム0.36gを加温下に溶解させて、上記スラリーに加える。次に、シリカ64gを加えて、充分に撹拌する。このスラリーを75℃に加温し、5時間熟成させる。その後、スラリーを加熱乾燥した後、空気雰囲気で300℃/1時間の熱処理に付す。得られた粒状固体を粉砕し、純水150mlにアンモニア水10mlを加え分散する。次に、Naを0.45%固溶した次炭酸ビスマス58.1gを加えて、撹拌混合する。このスラリーを加熱乾燥した後、得られた粒状固体を小型成形機にて径5mm、高さ4mmの錠剤に打錠成型し、次に500℃/4時間の焼成を行って、触媒とした。このように、モリブデン成分の供給源を分けずにX、Y、Z成分と同時に添加したこと以外は、実施例1と同様にして製造した複合酸化物触媒を用いて、実施例1と同様にプロピレンの酸化反応を実施した結果を表1に示した。
【0053】
<比較例2>
実施例1において、熟成温度を室温とし、熟成時間を2時間として触媒を調製した。実施例1と同様にプロピレンの酸化反応を行い、結果を表1に示した。
【0054】
【表1】

Figure 0004280797
【0055】
ここで、プロピレン転化率、アクロレイン収率、アクリル酸収率の定義は、次の通りである。
プロピレン転化率(モル%)=(反応したプロピレンのモル数/供給したプロピレンのモル数)×100
アクロレイン収率(モル数)=(生成したアクロレインのモル数/供給したプロピレンのモル数)×100
アクリル酸収率(モル数)=(生成したアクリル酸のモル数/供給したプロピレンのモル数)×100
【0056】
【発明の効果】
以上のように、この発明によれば、プロピレン、イソブテン又はターシャリーブタノールからアクロレイン又はメタクロレインを製造する気相接触酸化反応、プロピレン又はイソブテンからアクリロニトリル又はメタクリロニトリルを製造する気相接触アンモ酸化反応、及びブテンからブタジエンを製造する気相接触酸化的脱水素反応等の選択的反応に用いられる触媒として、原料転化率や選択率等の触媒性能がより向上した触媒を得ることができる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a gas phase catalytic oxidation reaction for producing acrolein or methacrolein from propylene, isobutene or tertiary butanol, a gas phase catalytic ammoxidation reaction for producing acrylonitrile or methacrylonitrile from propylene or isobutene, and butadiene from butene. The present invention relates to a method for producing a composite oxide catalyst used for a selective reaction such as vapor phase catalytic oxidative dehydrogenation.
[0002]
[Prior art]
Gas phase catalytic oxidation reaction for producing acrolein or methacrolein from propylene, isobutene or tertiary butanol, gas phase catalytic ammoxidation reaction for producing acrylonitrile or methacrylonitrile from propylene or isobutene, and gas phase contact for producing butadiene from butene In selective reactions such as oxidative dehydrogenation, it is well known that molybdenum-bismuth-based composite oxide catalysts are useful catalysts, and they are widely used industrially.
[0003]
For the composition and production method of the molybdenum-bismuth-based composite oxide catalyst in these various reactions, Patent Documents 1 to 50 are known.
[0004]
Among these, for example, Patent Document 27 discloses a method of adding a bismuth citrate aqueous solution to a molybdic acid aqueous solution. Patent Document 28, Patent Document 29, and Patent Document 30 include a molybdic acid aqueous solution. A method of adding a bismuth compound in a solid state to Patent Document 31; a method of simultaneously adding an aqueous solution of bismuth salt and aqueous ammonia to a molybdic acid aqueous solution having a pH of 6 to 8; A method of adding an aqueous solution of a bismuth salt to a suspension, Patent Document 33, Patent Document 23 and Patent Document 34 are pre-formed with various molybdates, Patent Document 35 and Patent Document 36 are pre-formed with various bismuth compounds. Patent Document 37 discloses a method using bismuth oxide or bismuth carbonate as a bismuth source, Patent Document 37 No. 8 is a method of adjusting a slurry containing at least one of iron, bismuth and tellurium and a molybdenum compound to a range exceeding pH 7, and Patent Document 39 discloses adding a chelating agent to a molybdenum compound-containing slurry containing silica to make the pH 6 or more. A method of adjusting, Patent Document 40 discloses a method of mixing a bismuth compound after setting the slurry containing molybdenum to pH 6 or higher.
[0005]
Patent Document 41 includes a method of adding iron molybdate gel, Patent Document 42 includes a method of premixing molybdenum and iron, and Patent Document 43 includes a molybdenum compound and a specific metal compound under specific conditions. A method of mixing and producing an iron compound is disclosed.
[0006]
In addition, the performance of the catalyst is strongly governed by the components constituting the catalyst and the ratio thereof. Especially in the production of a catalyst on a large-scale industrial scale, not only the components and ratio of the catalyst but also the production of the catalyst production. The catalyst production method plays an important role for the expression and improvement of the catalyst performance as well as the stability and stability. For this reason, many proposals have been made with respect to the above catalyst system as well as a method for producing the catalyst. For example, Patent Document 44 discloses that it is effective to treat a slurry mixed with a catalyst raw material at 100 to 200 ° C. in an autoclave after atomization. Patent Document 45 discloses that a slurry containing Mo, Bi, and Fe as essential components is spray-dried. Further, Patent Document 46 discloses that a finer treatment is performed to 10 microns or less with a homogenizer or the like before spray drying. Furthermore, Patent Literature 47, Patent Literature 48, Patent Literature 49, and Patent Literature 50 disclose molding aids.
[0007]
[Patent Document 1]
Japanese Patent Publication No. 36-3563
[Patent Document 2]
Japanese Examined Patent Publication No. 39-3670
[Patent Document 3]
Japanese Patent Publication No. 44-6245
[Patent Document 4]
Japanese Patent Publication No. 47-27490
[Patent Document 5]
Japanese Patent Publication No. 47-27490
[Patent Document 6]
Japanese Examined Patent Publication No. 47-42241
[Patent Document 7]
Japanese Patent Publication No. 7-87300
[Patent Document 8]
Japanese Patent Publication No. 48-1645
[Patent Document 9]
Japanese Patent Publication No. 48-4863
[Patent Document 10]
Japanese Patent Publication No. 48-17253
[Patent Document 11]
Japanese Patent Publication No.49-3498
[Patent Document 12]
Japanese Patent Publication No.55-41213
[Patent Document 13]
Japanese Examined Patent Publication No. 56-14659
[Patent Document 14]
Japanese Patent Publication No. 56-23969
[Patent Document 15]
Japanese Patent Publication No. 56-52013
[Patent Document 16]
Japanese Patent Publication No.57-26245
[Patent Document 17]
JP-A-48-503
[Patent Document 18]
JP-A-48-514
[Patent Document 19]
JP-A-48-52713
[Patent Document 20]
JP-A-48-54027
[Patent Document 21]
JP-A-48-57916
[Patent Document 22]
Japanese Patent Laid-Open No. 55-20610
[Patent Document 23]
JP 55-47144 A
[Patent Document 24]
JP-A-55-84541
[Patent Document 25]
JP 59-76541 A
[Patent Document 26]
JP-A-60-122201
[Patent Document 27]
Japanese Patent Publication No. 43-22746
[Patent Document 28]
Japanese Patent Laid-Open No. 53-10387
[Patent Document 29]
Japanese Patent Laid-Open No. 53-10388
[Patent Document 30]
Japanese Patent Publication No.55-12298
[Patent Document 31]
Japanese Examined Patent Publication No.59-51848
[Patent Document 32]
Japanese Patent Publication No.59-51849
[Patent Document 33]
Japanese Patent Laid-Open No. 55-13187
[Patent Document 34]
Japanese Patent Publication No. 60-29536
[Patent Document 35]
Japanese Examined Patent Publication No. 52-22359
[Patent Document 36]
Japanese Examined Patent Publication No. 52-47435
[Patent Document 37]
Japanese Patent Laid-Open No. 62-23548
[Patent Document 38]
JP-A-2-59046
[Patent Document 39]
JP-A-2-214543
[Patent Document 40]
JP-A-2-251250
[Patent Document 41]
JP-A-1-168344
[Patent Document 42]
Japanese Patent Laid-Open No. 9-10588
[Patent Document 43]
JP-A-12-37631
[Patent Document 44]
JP-A-7-289902
[Patent Document 45]
Japanese Patent Laid-Open No. 9-117664
[Patent Document 46]
JP 10-258233 A
[Patent Document 47]
JP-A-6-380
[Patent Document 48]
Japanese Patent Laid-Open No. 7-16463
[Patent Document 49]
Japanese Unexamined Patent Publication No. 7-16464
[Patent Document 50]
JP-A-7-185349
[0008]
[Problems to be solved by the invention]
Thus, in order to improve the performance of the catalyst, various methods have been proposed, such as devising a method of mixing an aqueous molybdenum solution and a bismuth compound, devising a mixing method of molybdenum and iron, or the like. However, when these methods are applied to the production of a molybdenum-bismuth-containing composite oxide catalyst containing at least one metal element selected from the group consisting of divalent metal elements and trivalent metal elements, the target oxidation is achieved. The product yield was not always satisfactory.
[0009]
Therefore, the present invention relates to a gas phase catalytic oxidation reaction for producing acrolein or methacrolein from propylene, isobutene or tertiary butanol, a gas phase catalytic ammoxidation reaction for producing acrylonitrile or methacrylonitrile from propylene or isobutene, and butadiene from butene. An object of the present invention is to provide a method for producing a high-performance catalyst more efficiently and stably as a method for producing a catalyst used in any of the reactions in the gas phase catalytic oxidative dehydrogenation reaction for producing NO.
[0010]
[Means for Solving the Problems]
In order to solve the above-described problems, the present invention is a process in which a composite oxide catalyst represented by the following general formula (1) is integrated and heated in an aqueous system of source compounds of each component element. A pre-process for producing a catalyst precursor by heat-treating a raw salt aqueous solution containing at least one of molybdenum, iron, nickel or cobalt and silica, or a dried product obtained by drying the same, in the production method, the catalyst A composite oxide catalyst that integrates a precursor, molybdenum, and a bismuth compound together with an aqueous solvent, and is prepared through a post-process that is dried and calcined, thereby providing a highly active and desired oxidation product in a high yield. I found out that I could get it.
Mo a Bi b Co c Ni d Fe e X f Y g Z h Si i O j (1)
Wherein X is at least one element selected from the group consisting of magnesium (Mg), calcium (Ca), zinc (Zn), cerium (Ce) and samarium (Sm), and Y is sodium (Na) , Potassium (K), rubidium (Rb), cesium (Cs) and at least one element selected from the group consisting of thallium (Tl), and Z is boron (B), phosphorus (P), arsenic (As) And at least one element selected from the group consisting of tungsten (W), and a to j represent atomic ratios of the respective elements, and when a = 12, b = 0.5 to 7, c = 0-10, d = 0-10 (where c + d = 1-10), e = 0.05-3, f = 0-2, g = 0.04-2, h = 0-3, i = 5 48, and j satisfies the oxidation state of other elements That is a number.)
[0011]
In the method for producing a composite oxide catalyst of the present invention, the molybdenum used in the preceding step is a partial atomic ratio (a) of the total atomic ratio (a) of molybdenum. 1 ) Equivalent molybdenum, and the molybdenum used in the subsequent step is a from the total atomic ratio of molybdenum (a) 1 The remaining atomic ratio (a 2 ) It is preferable that it is an equivalent molybdenum.
In addition, a 1 Is 1 <a 1 / (C + d + e) A value satisfying <3 is preferred.
Furthermore, said a 2 Is 0 <a 2 / B A value satisfying <8 is preferred.
[0012]
In the method for producing the composite oxide catalyst of the present invention, the ignition loss of the catalyst precursor is preferably 0.5 to 5% by weight.
However, the loss on ignition is a value given by the following equation.
Burning loss (%) = [(W 0 -W 1 ) / W 0 ] × 100
W 0 : Weight (g) of catalyst precursor dried at 150 ° C. for 3 hours to remove adhering moisture
W 1 : Weight (g) after heat-treating the catalyst precursor excluding adhering moisture at 500 ° C. for 2 hours
[0013]
In the method for producing a composite oxide catalyst of the present invention, the aging temperature in the integration of the previous step is preferably 60 to 90 ° C.
[0014]
Moreover, it is preferable that the heating temperature for catalyst precursor manufacture in a pre-process is 200-400 degreeC.
[0015]
In the method for producing a composite oxide catalyst of the present invention, it is preferable to add each component of X, Y, and Z in a subsequent step.
[0016]
Furthermore, ammonia water can be added during the integration of the catalyst precursor, molybdenum, and bismuth compound in an aqueous solvent in a subsequent step.
[0017]
Moreover, it is preferable that the baking temperature of a post process is the range of 450-650 degreeC.
[0018]
As a supply source of bismuth, at least one of bismuth oxide and bismuth subcarbonate can be used.
[0019]
Further, as a bismuth supply source, bismuth carbonate in which at least a part of required Na is dissolved can be used.
[0020]
Further, as a bismuth supply source, a complex carbonate compound of Bi and X containing at least a part of the X component can be used.
[0021]
As a bismuth supply source, a complex carbonate compound of Bi, Na and X containing at least a part of each of the required Na and X components can be used.
[0022]
According to this invention, gas phase catalytic oxidation reaction for producing acrolein or methacrolein from propylene, isobutene or tertiary butanol, gas phase catalytic ammoxidation reaction for producing acrylonitrile or methacrylonitrile from propylene or isobutene, and butadiene production from butene Thus, a high-performance composite oxide catalyst that can be used in any of the gas phase catalytic oxidative dehydrogenation reactions can be produced efficiently and stably.
[0023]
When producing acrolein and / or acrylic acid using propylene as a raw material, the composite oxide catalyst produced from the present invention may be at least partially contained as a catalyst composition.
[0024]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail.
In this invention, molybdenum (Mo), bismuth (Bi), silicon (Si), cobalt (Co), nickel (Ni), iron (Fe), magnesium (Mg), calcium (Ca), zinc (Zn) , Cerium (Ce), samarium (Sm), sodium (Na), potassium (K), rubidium (Rb), cesium (Cs), thallium (Tl), boron (B), phosphorus (P), arsenic (As) Each element of tungsten (W) is appropriately described using element symbols in parentheses.
[0025]
Source compounds of the above component elements include oxides, nitrates, carbonates, ammonium salts, hydroxides, carboxylates, carboxylic acid ammonium salts, ammonium halide salts, hydrogen acids, acetylacetonates, alkoxides of the component elements. Etc.
[0026]
Specific examples of the source compound for the component elements include the following. Examples of Mo supply source compounds include ammonium paramolybdate, molybdenum trioxide, molybdic acid, phosphomolybdate, and phosphomolybdic acid. Furthermore, examples of Fe source compounds include ferric nitrate, ferric sulfate, ferric chloride, and ferric acetate.
[0027]
Examples of the Co source compound include cobalt nitrate, cobalt sulfate, cobalt chloride, cobalt carbonate, and cobalt acetate. Further, examples of the Ni source compound include nickel nitrate, nickel sulfate, nickel chloride, nickel carbonate, nickel acetate and the like.
[0028]
Examples of Si supply source compounds include silica, granular silica, colloidal silica, and fumed silica.
[0029]
Furthermore, examples of Bi source compounds include bismuth chloride, bismuth nitrate, bismuth oxide, and bismuth subcarbonate. Also, a composite carbonic acid of Bi and X component or Y component in which X component (Mg, Ca, Zn, Ce and / or Sm) or Y component (Na, K, Rb, Cs and / or Tl) is dissolved. It can also be supplied as a salt compound.
[0030]
For example, when Na is used as the Y component, a complex carbonate compound of Bi and Na can be obtained by dropping an aqueous solution of a water-soluble bismuth compound such as bismuth nitrate into an aqueous solution of sodium carbonate or sodium bicarbonate. The precipitate can be produced by washing with water and drying.
[0031]
In addition, the complex carbonate compound of Bi and X component is prepared by mixing an aqueous solution of a water-soluble compound such as bismuth nitrate and nitrate of X component with an aqueous solution of ammonium carbonate or ammonium bicarbonate, etc. It can be produced by washing with water and drying. When sodium carbonate or sodium bicarbonate is used instead of the above ammonium carbonate or ammonium bicarbonate, a complex carbonate compound with Bi, Na and X components can be produced.
[0032]
Examples of other component element source compounds include the following. Examples of the source compound for K include potassium nitrate, potassium sulfate, potassium chloride, potassium carbonate, and potassium acetate. Examples of the source compound for Rb include rubidium nitrate, rubidium sulfate, rubidium chloride, rubidium carbonate, and rubidium acetate. Examples of Cs supply source compounds include cesium nitrate, cesium sulfate, cesium chloride, cesium carbonate, cesium acetate, and the like. Examples of the source compound of Tl include thallium nitrate, thallium chloride, thallium carbonate, and thallium acetate.
[0033]
Furthermore, examples of the source compound for B include borax, ammonium borate, and boric acid. Examples of the P source compound include ammonium phosphomolybdate, ammonium phosphate, phosphoric acid, and phosphorus pentoxide. Examples of As source compounds include dialsenooctammonium molybdate, dialsenooctammonium tungstate, and the like. Examples of the source compound for W include ammonium paratungstate, tungsten trioxide, tungstic acid, phosphotungstic acid, and the like.
[0034]
Examples of Mg source compounds include magnesium nitrate, magnesium sulfate, magnesium chloride, magnesium carbonate, and magnesium acetate. Examples of the Ca source compound include calcium nitrate, calcium sulfate, calcium chloride, calcium carbonate, calcium acetate and the like. Examples of Zn source compounds include zinc nitrate, zinc sulfate, zinc chloride, zinc carbonate, and zinc acetate. Examples of the Ce source compound include cerium nitrate, cerium sulfate, cerium chloride, cerium carbonate, and cerium acetate. Examples of Sm source compounds include samarium nitrate, samarium sulfate, samarium chloride, samarium carbonate, and samarium acetate.
[0035]
The raw material salt aqueous solution used in the previous step in the production method of the present invention contains at least molybdenum (a of the total atomic ratio a) as a catalyst component. 1 Equivalent), an aqueous solution, a water slurry or a cake containing at least one of iron, nickel or cobalt and silica.
[0036]
This raw material aqueous solution is prepared by integrating the source compound in an aqueous system. In the present invention, the integration of each component element source compound in an aqueous system means that an aqueous solution or an aqueous dispersion of each component element source compound is mixed or aged in stages or mixed and aged. It means performing processing. (B) a method of mixing the above-mentioned source compounds in a lump, (b) a method of mixing the above-mentioned source compounds in a lump and aging, and (c) a method of mixing each of the above-mentioned source compounds. Supply of each component element is a method of stepwise mixing, (d) a method of repeatedly mixing and aging the above-mentioned source compounds stepwise, and a method of combining (b) to (d). It is included in the concept of integration of the source compound in an aqueous system. Here, aging refers to the processing of industrial raw materials or semi-finished products under specific conditions such as constant temperature for a certain period of time to obtain the required physical and chemical properties, increase or advance the prescribed reaction, etc. The fixed time in the present invention is usually in the range of 10 minutes to 24 hours, and the fixed temperature is usually in the range of room temperature to the boiling point of the aqueous solution or aqueous dispersion.
[0037]
As a specific method of the above integration, for example, a solution obtained by mixing an acidic salt selected from catalyst components, and a solution obtained by mixing a basic salt selected from catalyst components, Specific examples include a method of adding a mixture of an iron compound and a nickel compound and / or a cobalt compound to an aqueous solution of a molybdenum compound while heating, and mixing silica.
[0038]
The raw material salt aqueous solution (slurry) containing silica thus obtained is heated to 60 to 90 ° C. and aged.
[0039]
The aging means that the catalyst precursor slurry is stirred at a predetermined temperature for a predetermined time. This aging increases the viscosity of the slurry, reduces the sedimentation of the solid components in the slurry, and is particularly effective in suppressing the heterogeneity of components in the subsequent drying process. The catalytic activity such as the raw material conversion rate and selectivity of the product catalyst becomes better.
[0040]
The temperature in the aging is preferably 60 to 90 ° C, and preferably 70 to 85 ° C. When the aging temperature is less than 60 ° C., the aging effect is not sufficient, and good activity may not be obtained. On the other hand, when it exceeds 90 ° C., the water is often evaporated during the aging time, which is disadvantageous for industrial implementation. Further, if the temperature exceeds 100 ° C., a pressure vessel is required for the dissolution tank, and handling becomes complicated, which is extremely disadvantageous in terms of economy and operability.
[0041]
The aging time is preferably 2 to 12 hours, and preferably 3 to 8 hours. If the aging time is less than 2 hours, the activity and selectivity of the catalyst may not be sufficiently developed. On the other hand, the aging effect does not increase even if it exceeds 12 hours, which is disadvantageous for industrial implementation.
[0042]
Any method can be adopted as the stirring method, and examples thereof include a method using a stirrer having a stirring blade and a method using external circulation using a pump.
[0043]
The aged slurry is subjected to heat treatment as it is or after drying. There is no particular limitation on the drying method in the case of drying and the state of the dried product to be obtained. For example, a powdery dried product may be obtained using a normal spray dryer, slurry dryer, drum dryer, etc. Alternatively, a block-like or flake-like dried product may be obtained using a normal box-type dryer or a tunnel-type firing furnace.
[0044]
The raw material salt aqueous solution or granules or cakes obtained by drying the aqueous salt solution are heat-treated in air at a temperature of 200 to 400 ° C., preferably 250 to 350 ° C. for a short time. There are no particular limitations on the type and method of the furnace at that time, and for example, it may be heated with a dry matter fixed using a normal box-type furnace, tunnel-type furnace, etc., or a rotary kiln. It is possible to heat the dried product while flowing it.
[0045]
The ignition loss of the catalyst precursor obtained after the heat treatment is preferably 0.5 to 5% by weight, more preferably 1 to 3% by weight. By setting the ignition loss within this range, a catalyst having a high raw material conversion rate and high selectivity can be obtained. Note that the loss on ignition is a value given by the following equation as described above.
Burning loss (%) = [(W 0 -W 1 ) / W 0 ] × 100
W 0 : Weight (g) of catalyst precursor dried at 150 ° C. for 3 hours to remove adhering moisture
W 1 : Weight (g) after heat-treating the catalyst precursor excluding adhering moisture at 500 ° C. for 2 hours
[0046]
In the post-process in the production method of the present invention, the catalyst precursor and molybdenum obtained in the pre-process described above (from the total atomic ratio a to a 1 The remaining a minus 2 And the bismuth compound are integrated in an aqueous solvent. At this time, it is preferable to add ammonia water. The addition of the X, Y, and Z components is also preferably performed in the subsequent step. The bismuth source compound of the present invention is bismuth that is hardly soluble or insoluble in water. This compound is preferably used in the form of a powder. These compounds as the catalyst production raw material may be particles larger than the powder, but are preferably smaller particles in view of the heating step in which thermal diffusion should be performed. Therefore, if these compounds as raw materials are not such particles, they should be pulverized before the heating step.
[0047]
Next, the obtained slurry is sufficiently stirred and then dried. The dried product thus obtained is shaped into an arbitrary shape by a method such as extrusion molding, tableting molding or support molding. Next, this is preferably subjected to a final heat treatment for about 1 to 16 hours under a temperature condition of 450 to 650 ° C.
As described above, a composite oxide catalyst having a high activity and a desired oxidation product in a high yield can be obtained.
[0048]
The composite oxide catalyst produced by this method is used for various gas phase catalytic oxidation reactions carried out in the presence of molecular oxygen, specifically, for producing acrolein or methacrolein from propylene, isobutene or tertiary butanol. It can be used for any of the phase catalytic oxidation reaction, the gas phase catalytic ammoxidation reaction for producing acrylonitrile or methacrylonitrile from propylene or isobutene, and the gas phase catalytic oxidative dehydrogenation reaction for producing butadiene from butene. .
[0049]
【Example】
A more specific method for producing the composite oxide catalyst according to the present invention and results of carrying out an oxidation reaction of propylene using the obtained composite oxide catalyst are shown below. As a general rule, chemicals of special grade were used.
[0050]
<Example 1>
(Preparation of composite oxide catalyst)
54 g of ammonium paramolybdate is dissolved in 250 ml of pure water. Next, 7.18 g of ferric nitrate, 31.8 g of cobalt nitrate and 31.8 g of nickel nitrate are heated and dissolved in 60 ml of pure water. These solutions are gradually mixed with good stirring.
Next, 64 g of silica is added and stirred thoroughly. This slurry is heated to 75 ° C. and aged for 5 hours. Thereafter, the slurry is heated and dried, and then subjected to a heat treatment at 300 ° C./1 hour in an air atmosphere. The obtained catalyst precursor granular solid (ignition loss: 1.4% by weight) is pulverized, and 40.1 g of ammonium paramolybdate is dispersed in a solution obtained by adding 10 ml of ammonia water to 150 ml of pure water. Next, 0.85 g of borax and 0.36 g of potassium nitrate are dissolved in 40 ml of pure water under heating, and added to the slurry. Next, 58.1 g of bismuth subcarbonate in which Na is dissolved in 0.45% is added and mixed with stirring.
After the slurry was heat-dried, the obtained granular solid was tableted into a tablet having a diameter of 5 mm and a height of 4 mm with a small molding machine, and then calcined at 500 ° C. for 4 hours to obtain a catalyst.
The catalyst calculated from the charged raw materials is a complex oxide having the following atomic ratio.
Mo: Bi: Co: Ni: Fe: Na: B: K: Si = 12: 5: 2.5: 2.5: 0.4: 0.35: 0.2: 0.08: 24
Molybdenum atomic ratio a during preparation 1 And a 2 Are 6.9 and 5.1, respectively.
[0051]
(Propylene oxidation reaction)
The composite oxide catalyst prepared as described above was used to carry out an oxidation reaction of propylene, and the propylene conversion rate, acrolein yield, and acrylic acid yield were calculated.
20 ml of a composite oxide catalyst was filled in a stainless steel nighter jacketed reaction tube with an inner diameter of 15 mm, and a contact time of 1.8 seconds at a normal pressure of a raw material gas having a propylene concentration of 10%, a steam concentration of 17% and an air concentration of 73% When the propylene oxidation reaction was carried out, the results shown in Table 1 were obtained at a reaction bath temperature of 305 ° C.
[0052]
<Comparative Example 1>
A catalyst having the same composition as in Example 1 was prepared as follows. 94.1 g of ammonium paramolybdate is dissolved in 400 ml of pure water by heating. Next, 7.18 g of ferric nitrate, 31.8 g of cobalt nitrate and 31.8 g of nickel nitrate are heated and dissolved in 60 ml of pure water. These solutions are gradually mixed with good stirring.
Next, 0.85 g of borax and 0.36 g of potassium nitrate are dissolved in 40 ml of pure water under heating, and added to the slurry. Next, 64 g of silica is added and stirred thoroughly. The slurry is warmed to 75 ° C. and aged for 5 hours. Thereafter, the slurry is heated and dried, and then subjected to a heat treatment at 300 ° C./1 hour in an air atmosphere. The obtained granular solid is pulverized, and 10 ml of ammonia water is added to 150 ml of pure water and dispersed. Next, 58.1 g of bismuth subcarbonate in which Na is dissolved in 0.45% is added and mixed with stirring. After the slurry was heat-dried, the obtained granular solid was tableted into a tablet having a diameter of 5 mm and a height of 4 mm with a small molding machine, and then calcined at 500 ° C. for 4 hours to obtain a catalyst. Thus, using the composite oxide catalyst produced in the same manner as in Example 1 except that it was added simultaneously with the X, Y and Z components without dividing the supply source of the molybdenum component, it was the same as in Example 1. The results of the oxidation reaction of propylene are shown in Table 1.
[0053]
<Comparative example 2>
In Example 1, the catalyst was prepared by setting the aging temperature to room temperature and the aging time to 2 hours. The oxidation reaction of propylene was carried out in the same manner as in Example 1, and the results are shown in Table 1.
[0054]
[Table 1]
Figure 0004280797
[0055]
Here, the definitions of propylene conversion rate, acrolein yield, and acrylic acid yield are as follows.
Propylene conversion rate (mol%) = (number of moles of reacted propylene / number of moles of supplied propylene) × 100
Acrolein yield (number of moles) = (number of moles of acrolein produced / number of moles of propylene supplied) × 100
Acrylic acid yield (number of moles) = (number of moles of produced acrylic acid / number of moles of supplied propylene) × 100
[0056]
【The invention's effect】
As described above, according to the present invention, the gas phase catalytic oxidation reaction for producing acrolein or methacrolein from propylene, isobutene or tertiary butanol, and the gas phase catalytic ammoxidation reaction for producing acrylonitrile or methacrylonitrile from propylene or isobutene. As a catalyst used for a selective reaction such as a gas phase catalytic oxidative dehydrogenation reaction for producing butadiene from butene, a catalyst with improved catalytic performance such as raw material conversion and selectivity can be obtained.

Claims (12)

下記一般式(1)で表される複合酸化物触媒を、各成分元素の供給源化合物の水性系での一体化及び加熱を含む工程を経て製造する方法において、
モリブデン、鉄、ニッケル又はコバルトの少なくとも一つ、及びシリカを含む原料塩水溶液又はこれを乾燥して得た乾燥物を加熱処理して触媒前駆体を製造する前工程、該触媒前駆体、モリブデン及びビスマス化合物とを水性溶媒とともに一体化し、乾燥、焼成する後工程を経て調製する複合酸化物触媒の製造方法であって、
前記前工程で用いられるモリブデンが、モリブデンの全原子比(a)の内の一部の原子比(a)相当のモリブデンであり、前記後工程で用いられるモリブデンが、モリブデンの全原子比(a)からaを差し引いた残りの原子比(a)相当のモリブデンであり、前記aが1<a/(c+d+e)<3を満足する値であり、
前記前工程で製造された、下記式(2)により与えられる触媒前駆体の灼熱減量が、0.5〜5重量%であり、
前工程の一体化における熟成温度が、60〜90℃であることを特徴とする複合酸化物触媒の製造方法。
MoBiCoNiFeSi (1)
(式中、Xはマグネシウム(Mg)、カルシウム(Ca)、亜鉛(Zn)、セリウム(Ce)及びサマリウム(Sm)からなる群から選ばれる少なくとも1種の元素であり、Yはナトリウム(Na)及びカリウム(K)であり、Zはホウ素(B)である。また、a〜jはそれぞれの元素の原子比を表わし、a=12のとき、b=0.5〜7、c=0〜10、d=0〜10(但しc+d=1〜10)、e=0.05〜3、f=0〜2、g=0.04〜2、h=0〜3、i=5〜48の範囲にあり、またjは他の元素の酸化状態を満足させる数値である。)
灼熱減量(%)=[(W −W )/W ]×100 (2)
(W :触媒前駆体を150℃で3時間乾燥して付着水分を除いたものの重量(g)、W :付着水分を除いた前記触媒前駆体を更に500℃で2時間熱処理した後の重量(g))
In a method for producing a composite oxide catalyst represented by the following general formula (1) through a process including integration and heating of an aqueous source system of each component element,
A pre-process for producing a catalyst precursor by heat-treating a raw salt solution containing at least one of molybdenum, iron, nickel or cobalt and silica or a dried product obtained by drying the raw salt solution, the catalyst precursor, molybdenum and A method for producing a composite oxide catalyst, wherein a bismuth compound is integrated with an aqueous solvent, dried and calcined and then prepared through post-processing steps,
Molybdenum used in the previous step is molybdenum corresponding to a partial atomic ratio (a 1 ) of the total atomic ratio (a) of molybdenum, and the molybdenum used in the subsequent step is the total atomic ratio of molybdenum ( atomic ratio obtained by subtracting a 1 from a) (a 2) a corresponding molybdenum, Ri value der wherein a 1 satisfies 1 <a 1 / (c + d + e) <3,
The ignition loss of the catalyst precursor produced by the following formula (2) produced in the previous step is 0.5 to 5% by weight,
A method for producing a composite oxide catalyst, wherein the aging temperature in the integration of the previous step is 60 to 90 ° C.
Mo a Bi b Co c Ni d Fe e X f Y g Z h Si i O j (1)
Wherein X is at least one element selected from the group consisting of magnesium (Mg), calcium (Ca), zinc (Zn), cerium (Ce) and samarium (Sm), and Y is sodium (Na) And potassium (K), Z is boron (B), and a to j represent atomic ratios of the respective elements, and when a = 12, b = 0.5 to 7, c = 0 to 0. 10, d = 0 to 10 (where c + d = 1 to 10), e = 0.05 to 3, f = 0 to 2, g = 0.04 to 2, h = 0 to 3, i = 5 to 48 And j is a numerical value that satisfies the oxidation state of other elements.)
Burning loss (%) = [(W 0 −W 1 ) / W 0 ] × 100 (2)
(W 0 : weight (g) of the catalyst precursor dried at 150 ° C. for 3 hours to remove adhering water, W 1 : after further heat-treating the catalyst precursor excluding adhering water for 2 hours at 500 ° C. Weight (g)
前記aが0<a/b<8を満足する値である請求項1記載の複合酸化物触媒の製造方法。The method for producing a composite oxide catalyst according to claim 1, wherein a 2 is a value satisfying 0 <a 2 / b <8. 前工程における触媒前駆体製造のための加熱温度が200〜400℃であることを特徴とする請求項1記載の複合酸化物触媒の製造方法。  The method for producing a composite oxide catalyst according to claim 1, wherein the heating temperature for producing the catalyst precursor in the previous step is 200 to 400 ° C. X、Y、及びZの各成分を後工程において添加することを特徴とする請求項1乃至3のいずれか1項に記載の複合酸化物触媒の製造方法。 4. The method for producing a composite oxide catalyst according to claim 1, wherein components X, Y, and Z are added in a subsequent step. 5. 後工程において、触媒前駆体、モリブデン及びビスマス化合物の水性溶媒中での一体化の際にアンモニア水を添加することを特徴とする請求項1乃至4のいずれか1項に記載の複合酸化物触媒の製造方法。In a later step, the catalyst precursor, a composite oxide catalyst according to any one of claims 1 to 4, characterized in that the addition of aqueous ammonia during the integration of an aqueous solvent of the molybdenum and bismuth compounds Manufacturing method. 後工程の焼成温度が450〜650℃の範囲である請求項1乃至5のいずれか1項に記載の複合酸化物触媒の製造方法。The method for producing a composite oxide catalyst according to any one of claims 1 to 5, wherein the calcining temperature in the subsequent step is in the range of 450 to 650 ° C. ビスマスの供給源として、酸化ビスマス又は次炭酸ビスマスの少なくとも一方を用いる請求項1乃至6のいずれか1項に記載の複合酸化物触媒の製造方法。The method for producing a composite oxide catalyst according to any one of claims 1 to 6, wherein at least one of bismuth oxide and bismuth subcarbonate is used as a bismuth supply source. ビスマスの供給源として、所要のNaの少なくとも一部を固溶した次炭酸ビスマスを用いることを特徴とする請求項1乃至6のいずれか1項に記載の複合酸化物触媒の製造方法。The method for producing a composite oxide catalyst according to any one of claims 1 to 6, wherein bismuth carbonate containing at least a part of required Na as a solid solution is used as a bismuth supply source. ビスマスの供給源として、X成分の少なくとも一部を含むBiとXとの複合炭酸塩化合物を用いることを特徴とする請求項1乃至6のいずれか1項に記載の複合酸化物触媒の製造方法。The method for producing a composite oxide catalyst according to any one of claims 1 to 6, wherein a composite carbonate compound of Bi and X containing at least a part of the X component is used as a bismuth supply source. . ビスマスの供給源として、所要のNa及びX成分のそれぞれ少なくとも一部を含むBiとNaとXとの複合炭酸塩化合物を用いることを特徴とする請求項1乃至6のいずれか1項に記載の複合酸化物触媒の製造方法。As a source of bismuth, according to any one of claims 1 to 6, characterized in that a composite carbonate compound of Bi, Na and X, respectively, comprising at least part of the required Na and X components A method for producing a composite oxide catalyst. 請求項1乃至10のいずれか1項に記載の方法により製造された複合酸化物触媒をプロピレン、イソブテン又はターシャリーブタノールからアクロレイン又はメタクロレインを製造する気相接触酸化反応、プロピレン又はイソブテンからアクリロニトリル又はメタクリロニトリルを製造する気相接触アンモ酸化反応、及びブテンからブタジエンを製造する気相接触酸化的脱水素反応のいずれかに用いる酸化反応。A gas phase catalytic oxidation reaction for producing acrolein or methacrolein from propylene, isobutene or tertiary butanol, an acrylonitrile from propylene or isobutene, or a composite oxide catalyst produced by the method according to any one of claims 1 to 10 An oxidation reaction used for either a gas phase catalytic ammoxidation reaction for producing methacrylonitrile or a gas phase catalytic oxidative dehydrogenation reaction for producing butadiene from butene. 請求項1乃至10のいずれか1項に記載の方法により製造された複合酸化物触媒を用いることを特徴とする、プロピレンを原料とするアクロレイン及び/又はアクリル酸の製造方法。A method for producing acrolein and / or acrylic acid using propylene as a raw material, wherein the composite oxide catalyst produced by the method according to any one of claims 1 to 10 is used.
JP2002330930A 2001-11-21 2002-11-14 Method for producing composite oxide catalyst Expired - Lifetime JP4280797B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002330930A JP4280797B2 (en) 2001-11-21 2002-11-14 Method for producing composite oxide catalyst

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2001-356555 2001-11-21
JP2001356555 2001-11-21
JP2002330930A JP4280797B2 (en) 2001-11-21 2002-11-14 Method for producing composite oxide catalyst

Publications (2)

Publication Number Publication Date
JP2003220335A JP2003220335A (en) 2003-08-05
JP4280797B2 true JP4280797B2 (en) 2009-06-17

Family

ID=27759176

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002330930A Expired - Lifetime JP4280797B2 (en) 2001-11-21 2002-11-14 Method for producing composite oxide catalyst

Country Status (1)

Country Link
JP (1) JP4280797B2 (en)

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4185404B2 (en) * 2003-05-28 2008-11-26 株式会社日本触媒 Catalyst for producing unsaturated aldehyde and unsaturated carboxylic acid, method for producing the same, and method for producing unsaturated aldehyde and unsaturated carboxylic acid
JP2005169311A (en) * 2003-12-12 2005-06-30 Mitsubishi Chemicals Corp Production method for complex oxide catalyst
JP4425743B2 (en) * 2004-08-19 2010-03-03 ダイヤニトリックス株式会社 Method for producing fluidized bed catalyst for acrylonitrile synthesis
JP4895265B2 (en) * 2005-09-16 2012-03-14 三菱レイヨン株式会社 Process for producing methacrolein and / or methacrylic acid synthesis catalyst
JP5621304B2 (en) * 2009-05-21 2014-11-12 三菱化学株式会社 Method for producing conjugated diene
KR20120026049A (en) * 2009-05-29 2012-03-16 미쓰비시 가가꾸 가부시키가이샤 Method for producing conjugated diene
JP5621305B2 (en) * 2009-05-29 2014-11-12 三菱化学株式会社 Method for producing conjugated diene
JP5652151B2 (en) * 2009-12-21 2015-01-14 三菱化学株式会社 Method for producing conjugated diene
JP2011148764A (en) * 2009-12-22 2011-08-04 Mitsubishi Chemicals Corp Method for producing conjugated diene
JP5682130B2 (en) * 2010-04-02 2015-03-11 三菱化学株式会社 Method for producing conjugated diene
JP2012106942A (en) * 2010-11-16 2012-06-07 Mitsubishi Chemicals Corp Method for producing conjugated diene
KR101942598B1 (en) 2011-03-09 2019-01-25 미쯔비시 케미컬 주식회사 Conjugated diene production method
JP6229201B2 (en) * 2013-03-13 2017-11-15 三菱ケミカル株式会社 Composite metal oxide catalyst and method for producing conjugated diene
JP6570320B2 (en) 2015-03-20 2019-09-04 Jxtgエネルギー株式会社 Method for producing diene
JP6300280B2 (en) 2015-03-26 2018-03-28 Jxtgエネルギー株式会社 Method for producing conjugated diene
JP6300281B2 (en) 2015-03-26 2018-03-28 Jxtgエネルギー株式会社 Method for producing conjugated diene and reaction apparatus
JP6574654B2 (en) * 2015-09-15 2019-09-11 旭化成株式会社 Metal oxide catalyst, method for producing the same, and method for producing butadiene
JP6736017B2 (en) * 2015-11-05 2020-08-05 Eneos株式会社 Isomerization catalyst, method for producing linear olefin and method for producing compound
JP6716237B2 (en) 2015-12-01 2020-07-01 Jxtgエネルギー株式会社 Butadiene production method
WO2017159570A1 (en) 2016-03-15 2017-09-21 Jxエネルギー株式会社 Unsaturated hydrocarbon production method and conjugated diene production method
JP2017176931A (en) * 2016-03-28 2017-10-05 三菱ケミカル株式会社 catalyst
JP6770824B2 (en) 2016-04-15 2020-10-21 Eneos株式会社 A method for producing a dehydrogenation catalyst, a method for producing an unsaturated hydrocarbon, and a method for producing a conjugated diene.
JP6883286B2 (en) 2017-02-21 2021-06-09 Eneos株式会社 Method for producing unsaturated hydrocarbons
RU2753508C2 (en) 2017-03-17 2021-08-17 Мицубиси Кемикал Корпорейшн Method for catalytic oxidation and method for the production of conjugated diene
JP6812869B2 (en) * 2017-03-23 2021-01-13 三菱ケミカル株式会社 Method for producing composite oxide catalyst
CN111757779A (en) 2018-02-20 2020-10-09 日本化药株式会社 Catalyst and direct-connection two-stage gas-phase catalytic oxidation method using same
JP2020163383A (en) * 2019-03-29 2020-10-08 三菱ケミカル株式会社 Method of producing catalyst for synthesizing unsaturated carboxylic acid

Also Published As

Publication number Publication date
JP2003220335A (en) 2003-08-05

Similar Documents

Publication Publication Date Title
JP4280797B2 (en) Method for producing composite oxide catalyst
JP3142549B2 (en) Iron / antimony / molybdenum-containing oxide catalyst composition and method for producing the same
JP5562038B2 (en) Method for producing multi-element oxide material containing iron element in oxidized form
JP4954750B2 (en) Method for producing molybdenum, bismuth, iron, silica-containing composite oxide catalyst
JP2003117397A (en) Production method of catalyst for ammoxidation
KR950004031B1 (en) Method for preparing mettacrolein and method for preparing a catalyst for use in the preparation of methacrolein
JP3819192B2 (en) Production method of acrylonitrile
JPH0587299B2 (en)
CN102049272A (en) Method for producing catalyst for preparation of methacrylic acid and method for preparing methacrylic acid
JP4356303B2 (en) Composite oxide catalyst and method for producing the same
JP3288197B2 (en) Method for producing catalyst for synthesizing methacrolein and methacrylic acid
WO2005056185A1 (en) Process for producing composite oxide catalyst
JP4157362B2 (en) Composite oxide catalyst and method for producing the same
JPH0613097B2 (en) Method for producing complex oxide catalyst
JP4017412B2 (en) Method for producing composite oxide catalyst
JP4385587B2 (en) Method for producing composite oxide catalyst
JP5378041B2 (en) Method for producing composite oxide catalyst for acrylonitrile synthesis
JP4629886B2 (en) Catalyst for producing methacrolein and / or methacrylic acid, method for producing the same, and method for producing methacrolein and / or methacrylic acid
JP3347263B2 (en) Preparation of catalysts for the production of unsaturated aldehydes and unsaturated carboxylic acids
JP4060578B2 (en) Method for producing composite oxide catalyst
JP2000296336A (en) Catalyst for production of methacrylic acid and production of methacrylic acid
JP2000037631A (en) Preparation of molybdenum - bismuth - iron containing composite oxide catalyst
JPH09299802A (en) Manufacture of oxidation catalyst and preparation of methacrylic acid
JP4273565B2 (en) Process for the preparation of complex oxide catalysts for the synthesis of unsaturated aldehydes and unsaturated carboxylic acids
JP2003164763A (en) Method for manufacturing composite oxide catalyst for oxidizing propylene

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050607

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080311

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080502

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080819

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081015

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20081029

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081209

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20081217

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081217

R150 Certificate of patent or registration of utility model

Ref document number: 4280797

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120327

Year of fee payment: 3

A072 Dismissal of procedure [no reply to invitation to correct request for examination]

Free format text: JAPANESE INTERMEDIATE CODE: A072

Effective date: 20090414

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130327

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140327

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term