JP4185404B2 - Catalyst for producing unsaturated aldehyde and unsaturated carboxylic acid, method for producing the same, and method for producing unsaturated aldehyde and unsaturated carboxylic acid - Google Patents

Catalyst for producing unsaturated aldehyde and unsaturated carboxylic acid, method for producing the same, and method for producing unsaturated aldehyde and unsaturated carboxylic acid Download PDF

Info

Publication number
JP4185404B2
JP4185404B2 JP2003150688A JP2003150688A JP4185404B2 JP 4185404 B2 JP4185404 B2 JP 4185404B2 JP 2003150688 A JP2003150688 A JP 2003150688A JP 2003150688 A JP2003150688 A JP 2003150688A JP 4185404 B2 JP4185404 B2 JP 4185404B2
Authority
JP
Japan
Prior art keywords
catalyst
unsaturated
carboxylic acid
unsaturated carboxylic
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003150688A
Other languages
Japanese (ja)
Other versions
JP2004351295A (en
Inventor
直正 木村
直広 福本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Shokubai Co Ltd
Original Assignee
Nippon Shokubai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Shokubai Co Ltd filed Critical Nippon Shokubai Co Ltd
Priority to JP2003150688A priority Critical patent/JP4185404B2/en
Publication of JP2004351295A publication Critical patent/JP2004351295A/en
Application granted granted Critical
Publication of JP4185404B2 publication Critical patent/JP4185404B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Description

【0001】
【発明の属する技術分野】
本発明は不飽和アルデヒドおよび不飽和カルボン酸製造用触媒、その製造方法および不飽和アルデヒドおよび不飽和カルボン酸の製造方法に関する。詳しくは、本発明はプロピレン、イソブチレン、t−ブタノールおよびメチル−t−ブチルエーテルから選ばれる少なくとも一種の化合物を気相酸化して対応する不飽和アルデヒドおよび不飽和カルボン酸を高収率かつ長期安定して製造するための改良された触媒、この触媒の製造方法、およびこの触媒を用いてプロピレン、イソブチレン、t−ブタノールおよびメチル−t−ブチルエーテルから選ばれる少なくとも一種の化合物を気相酸化して対応する不飽和アルデヒドおよび不飽和カルボン酸を製造する方法に関する。
【0002】
【従来の技術】
プロピレン、イソブチレン、t−ブタノールまたはメチル−t−ブチルエーテルの気相接触酸化反応により対応する不飽和アルデヒドおよび不飽和カルボン酸を効率よく製造するために種々の改良触媒が提案されている。提案されている触媒は大部分がモリブデン、ビスマスおよび鉄を主成分とするものである。
【0003】
しかし、これら触媒は、不飽和アルデヒドおよび不飽和カルボン酸の収率および寿命の点で依然として改良されるべき問題を含んでいる。触媒中のモリブデンは飛散しやすく、そのことが不可逆的な触媒活性劣化を引き起こす。上記酸化反応は非常な発熱反応であり、触媒層、特にホットスポットと呼ばれる局所的異常高温帯ではモリブデンが著しく飛散する。特に、高生産性を目的とした高負荷運転においては、ホットスポット部での蓄熱が当然より大きくなるので、触媒を高温で使用する期間が長くなる。これらのことを考え合わせると、高活性で長期にわたって安定な性能を示す触媒が要望される。また、この種の触媒は一般に造粒法、押出成型法などによる成型触媒として調製されるが、種々の触媒物性値(細孔容積、細孔径分布、比表面積)が再現性よく調製されることが求められ、さらには触媒充填時などの衝撃に耐えられ、触媒を長期の反応に供した際に剥離した触媒粉による反応管閉塞および反応圧の上昇を惹起しないという機械的強度(耐摩耗度)も要求されている。
【0004】
不飽和アルデヒドおよび不飽和カルボン酸製造用触媒の製造については多くの方法が提案されている(例えば、特許文献1〜4参照)。また、反応に使用して性能の劣化した複合酸化物触媒を反応に未使用の複合酸化物触媒と組み合わせて使用する方法も提案されている(特許文献5参照)。
【特許文献1】
特開平8−24652号公報
【特許文献2】
特開平5−253480号公報
【特許文献3】
特開平9−10587号公報
【特許文献4】
特開2002−273228号公報
【特許文献5】
特開平9−12489号公報
【0005】
しかし、これら触媒でもなお工業的に十分な性能を有しているとはいえず、工業的見地から、高生産性を目的とした高負荷運転においても、長期にわたって安定した運転を可能ならしめる機械的に優れた不飽和アルデヒドおよび不飽和カルボン酸製造用触媒の開発が望まれている。
【0006】
【発明が解決しようとする課題】
本発明の目的の一つは、プロピレン、イソブチレン、t−ブタノールおよびメチル−t−ブチルエーテルから選ばれる少なくとも一種の化合物の気相酸化により対応する不飽和アルデヒドおよび不飽和カルボン酸を高収率で製造するための不飽和アルデヒドおよび不飽和カルボン酸製造用触媒、ならびにその製造方法を提供することにある。
【0007】
本発明の他の目的は、触媒寿命が長く、長期にわたって安定した運転を可能とする、機械的強度に優れた不飽和アルデヒドおよび不飽和カルボン酸製造用触媒、ならびにその製造方法を提供することにある。
【0008】
本発明のさらに他の目的は、高生産性を目的とした高負荷運転においても、長期にわたって安定した運転を可能とする、機械的強度に優れた不飽和アルデヒドおよび不飽和カルボン酸製造用触媒、ならびにその製造方法を提供することにある。
【0009】
本発明のさらに他の目的は、上記触媒を用いて高収率かつ長期にわたり安定して不飽和アルデヒドおよび不飽和カルボン酸を製造する方法を提供することにある。
【0010】
【課題を解決するための手段】
本発明者らは、不飽和アルデヒドおよび不飽和カルボン酸製造用触媒として従来公知のモリブデン、ビスマスおよび鉄を必須成分とする触媒を製造する際に、原料化合物の一部を混合した後、乾燥、焼成して一次完成触媒を製造し、次いでこの一次完成触媒をそのまま固体状態で使用し、残りの原料化合物と混合した後、乾燥、焼成して完成触媒とすると、この触媒の物性値は再現性よく得られるとともに、この触媒は上記の反応において高い活性を示し、かつ安定性に優れていて、これを上記の反応における触媒として使用すると上記目的が達成できることを見出した。
【0011】
すなわち、本発明は、
(1)プロピレン、イソブチレン、t−ブタノールおよびメチル−t−ブチルエーテルから選ばれる少なくとも一種の化合物を分子状酸素または分子状酸素含有ガスを用いて気相酸化して対応する不飽和アルデヒドおよび不飽和カルボン酸を製造するための、一般式(1):
MoaWbBicFedAeBfCgDhEiOx (1)
(ここで、Moはモリブデン、Wはタングステン、Biはビスマス、Feは鉄、Aはニッケルおよびコバルトから選ばれる少なくとも一種の元素、Bはアルカリ金属およびタリウムから選ばれる少なくとも一種の元素、Cはアルカリ土類金属から選ばれる少なくとも一種の元素、Dはリン、テルル、アンチモン、スズ、鉛、ニオブ、マンガン、ヒ素および亜鉛から選ばれる少なくとも一種の元素、Eはケイ素、アルミニウムおよびチタンから選ばれる少なくとも一種の元素、およびOは酸素をそれぞれ表し、a、b、c、d、e、f、g、h、iおよびxはそれぞれMo、W、Bi、Fe、A、B、C、D、EおよびOの原子比を表し、aが12のとき、bは0〜10、cは0.1〜10、dは0.1〜20、eは2〜20、fは0.001〜10、gは0〜10、hは0〜4、iは0〜30であり、xはそれぞれの元素の酸化状態によって定まる数値である)
で表される触媒であって、完成触媒の構成成分元素の全ての元素を含む原料化合物の一部を混合した後、乾燥、焼成して一次完成触媒を製造し、次いで該一次完成触媒と200℃以上の熱履歴を経ていない残りの原料化合物とを混合した後、乾燥、焼成して得られたものであり、一次完成触媒が完成触媒の全質量に対し1〜30%の割合で含有されていることを特徴とする不飽和アルデヒドおよび不飽和カルボン酸製造用触媒、
(2)300〜600℃(ただし、600℃を除く。)で焼成して一次完成触媒を製造する上記(1)の不飽和アルデヒドおよび不飽和カルボン酸製造用触媒、
(3)プロピレン、イソブチレン、t−ブタノールおよびメチル−t−ブチルエーテルから選ばれる少なくとも一種の化合物を分子状酸素または分子状酸素含有ガスを用いて気相酸化して対応する不飽和アルデヒドおよび不飽和カルボン酸を製造するにあたり、触媒として上記(1)または(2)の触媒を用いることを特徴とする不飽和アルデヒドおよび不飽和カルボン酸の製造方法、
である。
【0012】
【発明の実施の形態】
本発明の触媒の組成は、モリブデン、ビスマスおよび鉄を必須成分とするものであって、不飽和アルデヒドおよび不飽和カルボン酸の製造に用いることが一般に知られているものであればいずれでもよい。本発明の触媒の代表例としては、前記一般式(1)で示される触媒を挙げることができる。
【0013】
本発明の特徴は、原料化合物の一部を混合した後、乾燥、焼成して酸化物(本発明のおいては、これを一次完成触媒と称する。)を製造し、次いでこの一次完成触媒と残りの原料化合物とを混合した後、乾燥、焼成して完成触媒を得る点にある。
【0014】
上記一次完成触媒を製造するための「原料化合物」とは、完成触媒の構成成分元素の少なくとも一つの元素を含む原料化合物、好ましくはモリブデン、ビスマスおよび鉄の各元素を含む原料化合物、より好ましくは完成触媒の構成成分元素の全ての元素をそれぞれ含む原料化合物の一部を意味する。そして、その「一部」は、一次完成触媒の完成触媒に対する割合が、完成触媒の質量基準で、1〜30質量%、好ましくは2〜20質量%となるように適宜決定することができる。一次完成触媒の量が少なすぎると一次完成触媒の添加効果が得られず、一方多すぎると収率の低下が認められ、目的生成物の不飽和アルデヒドおよび不飽和カルボン酸の生成量が減少し、COおよびCOの生成量が増加する。
【0015】
上記一次完成触媒と混合する「残りの原料化合物」とは、一次完成触媒との組み合わせによって目的とする完成触媒を製造するに必要な原料化合物を意味し、その元素種および量は、目的とする完成触媒および一次完成触媒の組成および組成比に基づいて容易に決定することができる。
【0016】
原料化合物の種類には特に制限はなく、各元素を含む酸化物、あるいは焼成によって酸化物を生成する化合物であればいずれも使用することができる。焼成によって酸化物を生成する化合物としては、水酸化物、金属酸、硝酸塩、炭酸塩、アンモニウム塩、酢酸塩、ギ酸塩などを挙げることができる。また、2以上の元素を含む化合物も使用することができる。例えば、モリブデン含有化合物の具体例としては、三酸化モリブデン、パラモリブデン酸アンモニウム、モリブデン酸、リンモリブデン酸などを挙げることができる。
【0017】
上記一次完成触媒は、原料化合物の一部を、例えば、水性媒体中に適宜溶解し、加熱攪拌した後、蒸発乾固により乾燥した後、更に必要により粉砕し、成型した後、空気流通下に300〜600℃、好ましくは350〜550℃の温度で1〜10時間、好ましくは2〜8時間程度焼成することにより得られる。
【0018】
このようにして得られた一次完成触媒を残りの原料化合物と混合した後、乾燥、焼成することにより目的とする完成触媒を製造することができる。上記「残りの原料化合物」の形態については特に制限はなく、残りの原料化合物を水性媒体に溶解または懸濁させて得られる溶液またはスラリーの形態でも、あるいはこの溶液またはスラリーを蒸発乾固させて乾燥した形態のものでもよい。したがって、本発明の触媒は、例えば、次の2つの態様に従って製造することができる。
(1)残りの原料化合物を水性媒体に溶解またはスラリー化し、これを一次完成触媒、通常、適宜粉砕した粉体状の一次完成触媒と混合し、乾燥した後、空気流通下に300〜600℃、好ましくは350〜550℃の温度で1〜10時間、好ましくは2〜8時間程度焼成する。
(2)残りの原料化合物を水性媒体に溶解またはスラリー化し、次いでこれを200℃未満、好ましくは150〜180℃の温度で乾燥し、得られる乾燥物を一次完成触媒、通常、適宜粉砕して粉体状の一次完成触媒と混合し、次いで空気流通下に300〜600℃、好ましくは350〜550℃の温度で1〜10時間、好ましくは2〜8時間程度焼成する。
【0019】
なお、上記のように、本発明の触媒の製造にあたっては、残りの原料化合物が、その一次完成触媒との混合の前に、200℃以上の熱履歴を経ないようにするのが好ましい。200℃以上の温度に加熱すると、乾燥物中の原料化合物に由来する飛散成分が焼失し過ぎてしまうため好ましくない。
【0020】
本発明の触媒は、それ自体単独で使用しても、あるいはアルミナ、シリカ−アルミナ、シリコンカーバイド、チタニア、マグネシア、アルミニウムスポンジなどのような不活性担体に担持して使用してもよい。また、触媒の強度および粉化度を改善する効果があるとして一般によく知られているガラス繊維などのような無機繊維や各種ウィスカーを添加してもよい。さらに、触媒物性を再現性よく制御するために、硝酸アンモニウム、セルロース、デンプン、ポリビニルアルコール、ステアリン酸などのような、一般に粉体結合材として知られた添加物を使用することもできる。
【0021】
触媒の形状については特に制限はなく、ペレット状、球状、円柱状、リング状、タブレット状などのような任意の形状とすることができる。例えば球状の場合、その平均直径は、通常、1〜15mmであり、好ましくは3〜10mmである。
【0022】
本発明による不飽和アルデヒドおよび不飽和カルボン酸の製造は、触媒として本発明の触媒を用いる点を除けば、プロピレン、イソブチレン、t−ブタノールまたはメチル−t−ブチルエーテル、もしくはこれらの2種以上の混合物から気相酸化反応により対応する不飽和アルデヒドおよび不飽和カルボン酸を製造する際に一般に用いられている、あるいは用いることが知られている条件下に行うことができる。例えば、1〜10容量%、好ましくは2〜8容量%のプロピレン、イソブチレン、t−ブタノールおよびメチル−t−ブチルエーテルから選ばれる少なくとも一種の原料化合物、容量比でこの原料化合物の1〜10倍、好ましくは1〜8倍の範囲の分子状酸素、あるいはこのような分子状酸素と希釈剤としての不活性ガス、例えば窒素、炭酸ガス、水蒸気(特に、水蒸気の使用は副生物の生成を抑えるので目的生成物の収率向上のために有利である。)などからなる混合ガスを250〜450℃、好ましくは280〜420℃の温度範囲で、常圧〜1MPa、好ましくは常圧下に300〜5,000hr−1(STP)、好ましくは500〜4,000hr−1(STP)の空間速度で本発明の触媒と接触させればよい。
【0023】
本発明の方法によれば、プロピレンからアクロレインおよびアクリル酸が、イソブチレンからメタクロレインおよびメタクリル酸が、t−ブタノールからメタクロレインおよびメタクリル酸が、そしてメチル−t−ブチルエーテルからメタクロレインおよびメタクリル酸が、それぞれ、得られる。もちろん、反応条件を適当に変更することにより、不飽和アルデヒドと不飽和カルボン酸との生成割合を種々に変更することが可能であり、例えば、プロピレンが原料化合物であれば、アクロレインを優勢成分、アクリル酸を劣性成分とする混合物を生成物として得ることができる。
【0024】
【発明の効果】
本発明の触媒を用いることにより、プロピレン、イソブチレン、t−ブタノールおよびメチル−t−ブチルエーテルから得らればれる少なくとも一種の化合物の気相酸化により対応する不飽和アルデヒドおよび不飽和カルボン酸を高収率で製造することができる。
【0025】
また、本発明の触媒は、触媒寿命が長いので、長期にわたって安定した運転が可能である。
さらに、本発明の触媒は、高生産性を目的とした高負荷運転においても長期にわたって安定した運転を可能とする。
【0026】
【実施例】
以下、実施例を挙げて本発明をさらに具体的に説明するが、本発明はこれら実施例により限定されるものではない。なお、転化率、選択率および単流収率は以下のとおり定義される。
転化率(%)={(反応した原料化合物のモル数)/(供給した原料化合物のモル数)}(×100)
合計選択率(%)={(生成した不飽和アルデヒドおよび不飽和カルボン酸の合計モル数)/(反応した原料化合物のモル数)}(×100)
合計単流収率(%)={(生成した不飽和アルデヒドおよび不飽和カルボン酸の合計モル数)/(供給した原料化合物のモル数)}(×100)
実施例1
(触媒の調製)
イオン交換水2リットルに、パラモリブデン酸アンモニウム1500gおよびパラタングステン酸アンモニウム382.4gを添加し、攪拌しながら溶解した。別に、イオン交換水1リットルに、硝酸コバルト1648.5g、硝酸第2鉄429.1gおよび硝酸セシウム69.0gを溶解した。また、イオン交換水300mlおよび濃硝酸50mlからなる硝酸水溶液に、硝酸ビスマス515.2gを溶解した。これら2つの水溶液を、上記別途調製した水溶液に摘下、混合し、次いで、20質量%濃度のシリカゾル212.7gを添加し、混合してスラリーを得た(スラリーA)。
これとは別に加熱したイオン交換水100mlに、パラモリブデン酸アンモニウム75gおよびパラタングステン酸アンモニウム19.1gを添加し、攪拌しながら溶解した。別に、イオン交換水50mlに、硝酸コバルト82.4g、硝酸第2鉄21.5gおよび硝酸セシウム3.5gを溶解した。また、イオン交換水15mlおよび濃硝酸2.5mlからなる硝酸水溶液に、硝酸ビスマス25.8gを溶解した。これら2つの水溶液を、上記別途調製した水溶液に摘下、混合し、次いで、20質量%濃度のシリカゾル10.6gを添加し、混合した。このようにして得られたスラリーを加熱攪拌し、蒸発乾固後、成型助剤として水を添加し、外径6mmおよび長さ6.6mmのペレットに成型し、乾燥し、空気流通下500℃で6時間焼成して一次完成触媒(触媒B)を得た。
得られた触媒Bを粉砕後、スラリーAに加え、混合した後、蒸発乾固し、粉砕した。これに成型助剤として水を添加し、外径6mmおよび長さ6.6mmのペレットに成型し、乾燥した後、空気流通下500℃で6時間焼成して触媒(1)を得た。この触媒(1)の元素組成は原子比で(酸素を除く、以下同じ。)次のとおりであった。
Mo1 22 Bi1 . 5 Fe1 . 5Co Cs0.5 Si1
(酸化反応)
触媒(1)1200mlを直径25mmの鋼鉄製反応器に充填した。この反応器にイソブチレン6容量%、酸素13容量%、水蒸気8容量%および窒素73容量%からなる組成の混合ガスを導入し、反応温度340℃、空間速度1500hr- 1 (STP)で酸化反応を行った。結果を表1に示す。
(触媒強度測定方法)
内径25mm、長さ5000mmのステンレス製反応管を鉛直方向に設置し、この反応管の下端を厚さ1mmのステンレス製受け板で塞いだ。約50gの触媒(1)を反応管の上端から反応管内に落下させた後、反応管下端のステンレス製受け板を外し、反応管から触媒を静かに抜き出した。抜き出した触媒を目開き5mmの篩で篩い、篩上に残った触媒の質量をはかり、以下の計算式で触媒強度を計算した。
触媒強度(質量%)={(篩上に残った触媒の質量)/(反応管上端から落下させた触媒の質量)}×100
実施例2
(触媒の調製)
実施例1で得られたスラリーAを150℃で加熱攪拌し、水の大部分を蒸発させ、ケーキ状乾燥物(乾燥物C)を得た。
これとは別に実施例1で得られた一次完成触媒Bを粉砕後、乾燥物Cに添加し、十分混合した後、成型助剤として水を添加し、外径6mmおよび長さ6.6mmのペレットに成型し、乾燥した後、空気流通下500℃で6時間焼成して触媒(2)を得た。この触媒(2)の元素組成は原子比で次のとおりであった。
Mo1 22 Bi1 . 5 Fe1 . 5Co8 Cs0 . 5 Si1
(酸化反応)
実施例1において、触媒(1)の代わりに触媒(2)を使用した以外は実施例1と同様の反応条件で酸化反応を行った。結果を表1に示す。
(触媒強度測定方法)
触媒(2)について、実施例1と同様の測定条件で触媒強度測定を行った。結果を表1に示す。
実施例3
(触媒の調製)
実施例2と同様にして乾燥物Cを得た。
これとは別に、加熱したイオン交換水100mlに、パラモリブデン酸アンモニウム75gおよびパラタングステン酸アンモニウム9.6gを添加し、攪拌しながら溶解した。別に、イオン交換水50mlに、硝酸コバルト61.8g、硝酸ニッケル10.3g、硝酸第2鉄21.5gおよび硝酸セシウム4.1gを溶解した。またイオン交換水15mlおよび濃硝酸2.5mlからなる硝酸水溶液に硝酸ビスマス30.9gを溶解した。これら2つの水溶液を、上記別途調製した水溶液に摘下、混合し、次いで20質量%濃度のシリカゾル10.6gを添加し、混合してスラリーを得た。このようにして得られたスラリーを加熱攪拌し、蒸発乾固後、成型助剤として水を添加し、外形6mmおよび長さ6.6mmのペレットに成型し、乾燥した後、空気流通下500℃で6時間焼成して一次完成触媒(触媒D)を得た。触媒Dを粉砕後、乾燥物Cに加え、十分混合した後、成型助剤として水を添加し、外径6mmおよび長さ6.6mmのペレットに成型し、乾燥し、次いで空気流通下500℃で6時間焼成して触媒(3)を得た。この触媒(3)の元素組成は原子比で次のとおりであった。
Mo1 21 95 Bi1 . 51 Fe1 . 5 Co7 90Ni0 05Cs0 .50Si1 0
(酸化反応)
実施例1において、触媒(1)の代わりに触媒(3)を使用したこと以外は実施例1と同様の反応条件で酸化反応を行った。結果を表2に示す。
(触媒強度測定方法)
触媒(3)について、実施例1と同様の測定条件で触媒強度測定を行った。結果を表1に示す。
比較例1
(触媒の調製)
実施例2において、触媒Bを添加しなかったこと以外は実施例2と同様にして触媒(4)を調製した。
比較例2
(触媒の調製)
実施例2において、スラリーAを230℃で加熱攪拌し、水の大部分を蒸発させてケーキ状乾燥物(乾燥物C)を得た以外は実施例2と同様にして触媒(5)を調製した。
比較例3
(触媒の調製)
実施例2と同様にして乾燥物Cを得た。
これとは別に加熱したイオン交換水1リットルに、パラモリブデン酸アンモニウム750gおよびパラタングステン酸アンモニウム191.2gを添加し、攪拌しながら溶解した。別に、イオン交換水500mlに、硝酸コバルト824.3g、硝酸第2鉄214.6gおよび硝酸セシウム34.5gを溶解した。また、イオン交換水150mlおよび濃硝酸25mlからなる硝酸水溶液に、硝酸ビスマス257.6gを溶解した。これら2つの水溶液を、上記別途調製した水溶液に摘下、混合し、次いで、20質量%濃度のシリカゾル106.4gを添加し、混合した。このようにして得られたスラリーを加熱攪拌し、蒸発乾固後、成型助剤として水を添加し、外径6mmおよび長さ6.6mmのペレットに成型し、乾燥し、空気流通下500℃で6時間焼成して一次完成触媒(触媒)を得た。得られた触媒Eを粉砕後、乾燥物に加え、十分混合した後、成型助剤として水を添加し、外径6mmおよび長さ6.6mmのペレットに成型し、乾燥し、次いで空気流通下500℃で6時間焼成して触媒(6)を得た。この触媒(6)の元素組成は原子比で次のとおりであった。
Mo1 22 Bi1 . 5Fe1 . 5Co8Cs0 . 5Si1
(酸化反応)
実施例1において、触媒(1)の代わりに触媒(4)、触媒(5)および触媒(6)を用いたこと以外は実施例1と同様の反応条件で酸化反応を行った。結果を表1に示す。
実施例1、実施例2および実施例3と比較例1、比較例2および比較例3との比較により、本発明の触媒(1)、触媒(2)および触媒(3)は比較用の触媒(4)、触媒(5)および触媒(6)より触媒活性に優れていることがわかる。
(触媒強度測定方法)
触媒(4)、触媒(5)および触媒(6)について、実施例1と同様の測定条件で触媒強度測定を行った。結果を表1に示す。実施例1および実施例2と比較例1、比較例2および比較例3との比較により、本発明の触媒(1)、触媒(2)および触媒(3)は比較用の触媒(4)、触媒(5)および触媒(6)より触媒強度が優れていることがわかる。
実施例4
実施例1において、酸化反応を4000時間にわたり行った。4000時間後の結果を表1に示す。表1に示すように、4000時間の酸化反応の後においても、転化率の低下は小さく、また収率の低下もほとんどない。このことから、触媒(1)を使用することにより長期にわたり安定した酸化反応を継続できることがわかる。
実施例5
実施例2において、酸化反応を4000時間にわたり行った。4000時間後の結果を表1に示す。表1に示すように、4000時間の酸化反応の後においても、転化率の低下は小さく、また収率の低下もほとんどない。このことから、触媒(2)を使用することにより長期にわたり安定した酸化反応を継続できることがわかる。
実施例6
実施例3において、酸化反応を4000時間にわたり行った。4000時間後の結果を表1に示す。表1に示すように、4000時間の酸化反応の後においても、転化率の低下は小さく、また収率の低下もほとんどない。このことから、触媒(3)を使用することにより長期にわたり安定した酸化反応を継続できることがわかる。
比較例4
比較例1において、酸化反応を4000時間にわたり行った。4000時間後の結果を表1に示す。
比較例5
比較例において、酸化反応を4000時間にわたり行った。4000時間後の結果を表1に示す。
実施例4、実施例5および実施例6と比較例3および比較例4との比較から、比較用の触媒(4)および触媒(6)は触媒寿命に問題があって、これを長時間の反応に使用した場合には転化率および収率の低下が大きいことがわかる。
【表1】
実施例7
実施例2において、反応温度を360℃に、また空間速度を2500hr- 1 (STP)に変更したこと以外は実施例と同様に酸化反応を行った。結果を表2に示す。
比較例6
実施例7において、触媒(2)に代えて触媒(4)を用いたこと以外は実施例と同様に酸化反応を行った。結果を表2に示す。
実施例7と比較例6との比較から、本発明の触媒(2)は高空間速度条件下でも、比較用の触媒(4)に比べて活性および収率に優れていることがわかる。
実施例8
実施例2において、原料ガス中のイソブチレンおよび窒素の含量をそれぞれ7.5容量%および71.5容量%に変更したこと以外は実施例2と同様に酸化反応を行った。結果を表2に示す。
比較例7
実施例8において、触媒(2)に代えて触媒(4)を用いたこと以外は実施例8と同様の反応条件で酸化反応を行った。結果を表2に示す。
実施例8と比較例7との比較から、本発明の触媒(2)は高イソブチレンガス濃度条件下でも、比較用の触媒(4)に比べて活性および収率に優れていることがわかる。
【表2】
実施例9
実施例2において、酸化反応に用いる原料ガスとしてメチル−t−ブチルエーテル(MTBE)5容量%、酸素13容量%、水蒸気8容量%および窒素74容量%からなる混合ガスを使用し、かつ反応温度を360℃に変更し、また空間速度を1100hr- 1(STP)に変更したこと以外は実施例2と同様の反応条件で酸化反応を行った。結果を表3に示す。
比較例8
実施例9において、触媒(2)に代えて触媒(4)を用いたこと以外は実施例9と同様の反応条件で酸化反応を行った。結果を表3に示す。
【表3】
実施例10
(触媒調製)
加熱したイオン交換水2リットルにパラモリブデン酸アンモニウム1500gおよびパラタングステン酸アンモニウム286.8gを添加し、攪拌しながら溶解した。別に、イオン交換水1リットルに、硝酸コバルト1030.3g、硝酸第2鉄343.3gおよび硝酸カリウム4.3gを溶解した。またイオン交換水300mlおよび濃硝酸50mlからなる硝酸水溶液に、硝酸ビスマス412.1gを溶解した。これら2つの水溶液を上記別途調製した水溶液に摘下、混合し、次いで20質量%濃度のシリカゾル276.5gを添加し、混合してスラリーを得た。このようにして得られたスラリーを150℃で加熱攪拌し、水の大部分を蒸発させ、ケーキ状乾燥物(乾燥物G)を得た。
これとは別に加熱したイオン交換水100mlに、パラモリブデン酸アンモニウム75gおよびパラタングステン酸アンモニウム14.3gを添加し、攪拌しながら溶解した。別に、イオン交換水50mlに、硝酸コバルト51.5g、硝酸第2鉄17.2gおよび硝酸カリウム0.21gを溶解した。また、イオン交換水15mlおよび濃硝酸2.5mlからなる硝酸水溶液に、硝酸ビスマス20.6gを溶解した。これら2つの水溶液を、上記別途調製した水溶液に摘下、混合し、次いで、20質量%濃度のシリカゾル13.8gを添加し、混合した。このようにして得られたスラリーを加熱攪拌し、蒸発乾固後、成型助剤として水を添加し、外径6mmおよび長さ6.6mmのペレットに成型し、乾燥し、空気流通下500℃で6時間焼成して一次完成触媒(触媒H)を得た。
得られた触媒を粉砕後、乾燥物に加え、十分混合した後、成型助剤として水を添加し、外径6mmおよび長さ6.6mmのペレットに成型し、乾燥し、次いで空気流通下450℃で6時間焼成して触媒(7)を得た。この触媒(7)の元素組成は原子比で次のとおりであった。
Mo1 21 . 5Bi1 . 2Fe1 . 2Co50 . 0 6Si1 .3
(酸化反応)
触媒(7)1200mlを直径25mmの鋼鉄製反応器に充填した。この反応器にプロピレン6容量%、酸素12容量%、水蒸気10容量%および窒素72容量%からなる組成の混合ガスを導入し、反応温度310℃および空間速度2000hr- 1(STP)で酸化反応を行った。結果を表4に示す。
(触媒強度測定方法)
触媒(7)について、実施例1と同様の測定条件で触媒強度測定を行った。結果を表4に示す。
比較例9
(触媒の調製)
実施例10において、触媒を添加しなかったこと以外は実施例10と同様にして触媒(8)を調製した。
(酸化反応)
実施例10において、触媒(7)の代わりに触媒(8)を用いたこと以外は実施例10と同様の反応条件で酸化反応を行った。結果を表4に示す。
実施例10と比較例9との比較により、本発明の触媒(7)は比較用の触媒(8)より触媒活性に優れていることがわかる。
(触媒強度測定方法)
触媒(8)について、実施例1と同様の測定条件で触媒強度測定を行った。結果を表4に示す。実施例10と比較例9との比較により、本発明の触媒(7)は比較用の触媒(8)より触媒強度が優れていることがわかる。
実施例11
実施例10において、酸化反応を4000時間にわたり行った。4000時間後の結果を表4に示す。
表4に示すように、4000時間の酸化反応の後において、転化率の低下は小さく、また収率の低下もほとんどない。このことから、触媒(7)を使用することにより、長期にわたり安定した酸化反応を継続できることがわかる。
比較例10
比較例9において、酸化反応を4000時間にわたり行った。4000時間後の結果を表4に示す。
実施例11と比較例10との比較から、比較用の触媒()は触媒寿命に問題があって、これを長時間の反応に使用した場合には転化率および収率の低下が大きいことがわかる。
【表4】

Figure 0004185404
Figure 0004185404
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a catalyst for producing an unsaturated aldehyde and an unsaturated carboxylic acid, a method for producing the same, and a method for producing an unsaturated aldehyde and an unsaturated carboxylic acid. Specifically, the present invention stabilizes the corresponding unsaturated aldehyde and unsaturated carboxylic acid in high yield and long-term by gas phase oxidation of at least one compound selected from propylene, isobutylene, t-butanol and methyl-t-butyl ether. The improved catalyst for the production of the catalyst, the process for producing the catalyst, and at least one compound selected from propylene, isobutylene, t-butanol and methyl-t-butyl ether using the catalyst, and correspondingly The present invention relates to a method for producing unsaturated aldehydes and unsaturated carboxylic acids.
[0002]
[Prior art]
Various improved catalysts have been proposed for the efficient production of the corresponding unsaturated aldehydes and unsaturated carboxylic acids by gas phase catalytic oxidation of propylene, isobutylene, t-butanol or methyl-t-butyl ether. Most of the proposed catalysts are based on molybdenum, bismuth and iron.
[0003]
However, these catalysts still have problems to be improved in terms of yield and lifetime of unsaturated aldehydes and unsaturated carboxylic acids. Molybdenum in the catalyst is easily scattered, which causes irreversible deterioration of the catalytic activity. The oxidation reaction is a very exothermic reaction, and molybdenum is remarkably scattered in the catalyst layer, particularly in a locally abnormal high temperature zone called a hot spot. In particular, in a high load operation for the purpose of high productivity, the heat storage in the hot spot portion is naturally larger, so the period of using the catalyst at a high temperature becomes longer. Considering these things, there is a demand for a catalyst that exhibits high activity and stable performance over a long period of time. Also, this type of catalyst is generally prepared as a molding catalyst by granulation method, extrusion molding method, etc., but various catalyst physical properties (pore volume, pore size distribution, specific surface area) must be prepared with good reproducibility. In addition, it has a mechanical strength (abrasion resistance) that can withstand impacts such as when the catalyst is charged and does not cause reaction tube blockage and reaction pressure increase due to catalyst powder that has been peeled off when the catalyst is subjected to a long-term reaction. ) Is also required.
[0004]
Many methods have been proposed for the production of unsaturated aldehyde and unsaturated carboxylic acid production catalysts (see, for example, Patent Documents 1 to 4). In addition, a method has also been proposed in which a composite oxide catalyst whose performance is deteriorated by use in a reaction is used in combination with an unused composite oxide catalyst in the reaction (see Patent Document 5).
[Patent Document 1]
Japanese Patent Laid-Open No. 8-24652
[Patent Document 2]
JP-A-5-253480
[Patent Document 3]
Japanese Patent Laid-Open No. 9-10588
[Patent Document 4]
JP 2002-273228 A
[Patent Document 5]
JP-A-9-12489
[0005]
However, even these catalysts do not have industrially sufficient performance, and from an industrial standpoint, machines that enable stable operation over a long period of time even in high-load operation aimed at high productivity. Development of an excellent catalyst for producing unsaturated aldehydes and unsaturated carboxylic acids is desired.
[0006]
[Problems to be solved by the invention]
One of the objects of the present invention is to produce the corresponding unsaturated aldehyde and unsaturated carboxylic acid in high yield by vapor phase oxidation of at least one compound selected from propylene, isobutylene, t-butanol and methyl-t-butyl ether. It is an object of the present invention to provide an unsaturated aldehyde and unsaturated carboxylic acid production catalyst and a production method thereof.
[0007]
Another object of the present invention is to provide an unsaturated aldehyde and unsaturated carboxylic acid production catalyst having excellent mechanical strength, which has a long catalyst life and enables stable operation over a long period of time, and a method for producing the same. is there.
[0008]
Still another object of the present invention is to provide an unsaturated aldehyde and unsaturated carboxylic acid production catalyst excellent in mechanical strength that enables stable operation over a long period of time even in high-load operation aimed at high productivity. And providing a method for producing the same.
[0009]
Still another object of the present invention is to provide a method for producing an unsaturated aldehyde and an unsaturated carboxylic acid stably in a high yield and over a long period of time using the above catalyst.
[0010]
[Means for Solving the Problems]
The inventors of the present invention, when producing a conventionally known catalyst containing molybdenum, bismuth and iron as essential components as an unsaturated aldehyde and unsaturated carboxylic acid production catalyst, are mixed with a part of the raw material compound, dried, Firing to produce a primary finished catalyst, then using this primary finished catalyst as it is in a solid state, mixing it with the remaining raw material compounds, drying and calcining to give a finished catalyst, the physical properties of this catalyst are reproducible In addition to being obtained well, this catalyst showed high activity in the above reaction and was excellent in stability, and it was found that the above object can be achieved when this catalyst is used as a catalyst in the above reaction.
[0011]
  That is, the present invention
(1) Gas phase oxidation of at least one compound selected from propylene, isobutylene, t-butanol and methyl-t-butyl ether using molecular oxygen or a molecular oxygen-containing gas, and corresponding unsaturated aldehydes and unsaturated carboxylic acids For producing acidGeneral formula (1):
MoaWbBicFedAeBfCgDhEiOx (1)
(Where Mo is molybdenum, W is tungsten, Bi is bismuth, Fe is iron, A is at least one element selected from nickel and cobalt, B is at least one element selected from alkali metals and thallium, and C is an alkali. At least one element selected from earth metals, D is at least one element selected from phosphorus, tellurium, antimony, tin, lead, niobium, manganese, arsenic and zinc, E is at least one selected from silicon, aluminum and titanium And O represents oxygen, and a, b, c, d, e, f, g, h, i, and x represent Mo, W, Bi, Fe, A, B, C, D, E, and Represents an atomic ratio of O, and when a is 12, b is 0 to 10, c is 0.1 to 10, d is 0.1 to 20, e is 2 to 20, and f is 0.001. 10, g is 0, h is 0 to 4, i is 0 to 30, x is a numerical value determined by the oxidation state of each element)
Represented byA catalyst,Includes all elements of the constituent elements of the finished catalystAfter mixing a part of the raw material compound, drying and calcining to produce a primary finished catalyst,Has not passed a heat history of 200 ° C or higherAfter mixing with the remaining raw material compounds, it was obtained by drying and firing.The primary finished catalyst is contained in a proportion of 1 to 30% with respect to the total mass of the finished catalyst.A catalyst for producing an unsaturated aldehyde and an unsaturated carboxylic acid,
(2)The unsaturated aldehyde and unsaturated carboxylic acid production catalyst according to the above (1), which is calcined at 300 to 600 ° C. (excluding 600 ° C.) to produce a primary finished catalyst,
(3) Gas phase oxidation of at least one compound selected from propylene, isobutylene, t-butanol and methyl-t-butyl ether using molecular oxygen or a molecular oxygen-containing gas, and corresponding unsaturated aldehydes and unsaturated carboxylic acids In producing the acid, the above (1) is used as a catalyst.Or (2)A method for producing an unsaturated aldehyde and an unsaturated carboxylic acid, characterized by using a catalyst of
It is.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
The composition of the catalyst of the present invention may be any as long as it contains molybdenum, bismuth and iron as essential components and is generally known for use in the production of unsaturated aldehydes and unsaturated carboxylic acids. As a typical example of the catalyst of the present invention, a catalyst represented by the general formula (1) can be mentioned.
[0013]
A feature of the present invention is that a part of the raw material compound is mixed, dried and calcined to produce an oxide (in the present invention, this is referred to as a primary completed catalyst), and then this primary completed catalyst and The remaining raw material compound is mixed and then dried and calcined to obtain a finished catalyst.
[0014]
The “raw material compound” for producing the primary finished catalyst is a raw material compound containing at least one element of constituent elements of the finished catalyst, preferably a raw material compound containing each element of molybdenum, bismuth and iron, more preferably This means a part of the raw material compound containing all the constituent elements of the finished catalyst. The “part” can be appropriately determined such that the ratio of the primary completed catalyst to the completed catalyst is 1 to 30 mass%, preferably 2 to 20 mass%, based on the mass of the completed catalyst. If the amount of the primary finished catalyst is too small, the effect of adding the primary finished catalyst cannot be obtained. On the other hand, if the amount is too large, a decrease in yield is observed, and the amount of unsaturated aldehyde and unsaturated carboxylic acid produced as the target product is reduced. , CO2And the amount of CO produced increases.
[0015]
The “remaining raw material compound” to be mixed with the primary finished catalyst means a raw material compound necessary for producing the intended finished catalyst in combination with the primary finished catalyst. It can be easily determined based on the composition and composition ratio of the finished catalyst and the primary finished catalyst.
[0016]
There is no restriction | limiting in particular in the kind of raw material compound, Any can be used if it is an oxide containing each element, or a compound which produces | generates an oxide by baking. Examples of the compound that generates an oxide by firing include a hydroxide, a metal acid, a nitrate, a carbonate, an ammonium salt, an acetate, and a formate. A compound containing two or more elements can also be used. For example, specific examples of the molybdenum-containing compound include molybdenum trioxide, ammonium paramolybdate, molybdic acid, and phosphomolybdic acid.
[0017]
The primary completed catalyst is prepared by, for example, dissolving a part of the raw material compound in an aqueous medium as appropriate, heating and stirring, drying by evaporation to dryness, further pulverizing and molding as necessary, and then under air flow. It is obtained by baking at a temperature of 300 to 600 ° C., preferably 350 to 550 ° C. for 1 to 10 hours, preferably about 2 to 8 hours.
[0018]
The primary finished catalyst thus obtained is mixed with the remaining raw material compounds, and then dried and calcined to produce the intended finished catalyst. The form of the “remaining raw material compound” is not particularly limited, and may be in the form of a solution or slurry obtained by dissolving or suspending the remaining raw material compound in an aqueous medium, or by evaporating this solution or slurry to dryness. It may be in a dry form. Therefore, the catalyst of the present invention can be produced, for example, according to the following two aspects.
(1) The remaining raw material compound is dissolved or slurried in an aqueous medium, and this is mixed with a primary finished catalyst, usually a primary finished catalyst, which is appropriately pulverized, and dried. The firing is preferably performed at a temperature of 350 to 550 ° C. for 1 to 10 hours, preferably about 2 to 8 hours.
(2) The remaining raw material compound is dissolved or slurried in an aqueous medium, and then this is dried at a temperature of less than 200 ° C., preferably 150 to 180 ° C., and the resulting dried product is pulverized as a primary finished catalyst, usually appropriately. The mixture is mixed with a powdery primary finished catalyst, and then calcined under air flow at a temperature of 300 to 600 ° C., preferably 350 to 550 ° C. for 1 to 10 hours, preferably about 2 to 8 hours.
[0019]
As described above, in the production of the catalyst of the present invention, it is preferable that the remaining raw material compounds do not pass through a thermal history of 200 ° C. or higher before mixing with the primary finished catalyst. Heating to a temperature of 200 ° C. or higher is not preferable because the scattered components derived from the raw material compounds in the dried product will be burned out too much.
[0020]
The catalyst of the present invention may be used alone or may be used by being supported on an inert support such as alumina, silica-alumina, silicon carbide, titania, magnesia, aluminum sponge and the like. In addition, inorganic fibers such as glass fibers and various whiskers that are generally well-known as having an effect of improving the strength and the degree of pulverization of the catalyst may be added. Furthermore, in order to control the physical properties of the catalyst with good reproducibility, additives generally known as powder binders such as ammonium nitrate, cellulose, starch, polyvinyl alcohol, stearic acid and the like can be used.
[0021]
There is no restriction | limiting in particular about the shape of a catalyst, It can be set as arbitrary shapes, such as a pellet form, spherical shape, a column shape, a ring shape, and a tablet shape. For example, in the case of a spherical shape, the average diameter is usually 1 to 15 mm, preferably 3 to 10 mm.
[0022]
The production of unsaturated aldehydes and unsaturated carboxylic acids according to the present invention is propylene, isobutylene, t-butanol or methyl-t-butyl ether, or a mixture of two or more thereof, except that the catalyst of the present invention is used as a catalyst. Can be carried out under the conditions generally used or known to be used in the production of the corresponding unsaturated aldehyde and unsaturated carboxylic acid by gas phase oxidation reaction. For example, 1 to 10% by volume, preferably 2 to 8% by volume of at least one raw material compound selected from propylene, isobutylene, t-butanol and methyl-t-butyl ether, 1 to 10 times the raw material compound in a volume ratio, Preferably molecular oxygen in the range of 1 to 8 times, or such molecular oxygen and inert gas as diluent, such as nitrogen, carbon dioxide gas, water vapor (especially the use of water vapor suppresses the formation of by-products. Etc.) in a temperature range of 250 to 450 ° C., preferably 280 to 420 ° C., normal pressure to 1 MPa, preferably 300 to 5 at normal pressure. , 000 hr-1(STP), preferably 500 to 4,000 hr-1What is necessary is just to make it contact with the catalyst of this invention with the space velocity of (STP).
[0023]
According to the method of the present invention, propylene to acrolein and acrylic acid, isobutylene to methacrolein and methacrylic acid, t-butanol to methacrolein and methacrylic acid, and methyl-t-butyl ether to methacrolein and methacrylic acid, Each is obtained. Of course, by appropriately changing the reaction conditions, it is possible to variously change the production ratio of unsaturated aldehyde and unsaturated carboxylic acid. For example, if propylene is a starting compound, acrolein is the dominant component, A mixture containing acrylic acid as an inferior component can be obtained as a product.
[0024]
【The invention's effect】
By using the catalyst of the present invention, the corresponding unsaturated aldehyde and unsaturated carboxylic acid can be obtained in a high yield by gas phase oxidation of at least one compound obtained from propylene, isobutylene, t-butanol and methyl-t-butyl ether. Can be manufactured.
[0025]
Moreover, since the catalyst of the present invention has a long catalyst life, it can be stably operated over a long period of time.
Furthermore, the catalyst of the present invention enables a stable operation over a long period even in a high load operation aiming at high productivity.
[0026]
【Example】
  EXAMPLES Hereinafter, although an Example is given and this invention is demonstrated further more concretely, this invention is not limited by these Examples. The conversion rate, selectivity, and single flow yield are defined as follows.
Conversion rate (%) = {(number of moles of reacted raw material compound) / (number of moles of supplied raw material compound)} (× 100)
Total selectivity (%) = {(total number of moles of unsaturated aldehyde and unsaturated carboxylic acid produced) / (number of moles of reacted raw material compound)} (× 100)
Total single flow yield (%) = {(total number of moles of unsaturated aldehyde and unsaturated carboxylic acid produced) / (number of moles of supplied raw material compound)} (× 100)
Example 1
(Preparation of catalyst)
  To 2 liters of ion-exchanged water, 1500 g of ammonium paramolybdate and 382.4 g of ammonium paratungstate were added and dissolved while stirring. Separately, 1648.5 g of cobalt nitrate, 429.1 g of ferric nitrate and 69.0 g of cesium nitrate were dissolved in 1 liter of ion-exchanged water. Also, 515.2 g of bismuth nitrate was dissolved in an aqueous nitric acid solution consisting of 300 ml of ion-exchanged water and 50 ml of concentrated nitric acid. These two aqueous solutions were picked and mixed in the separately prepared aqueous solution, and then 212.7 g of silica sol having a concentration of 20% by mass was added and mixed to obtain a slurry (slurry A).
  Separately, 75 g of ammonium paramolybdate and 19.1 g of ammonium paratungstate were added to 100 ml of ion-exchanged water heated and dissolved while stirring. Separately, 82.4 g of cobalt nitrate, 21.5 g of ferric nitrate and 3.5 g of cesium nitrate were dissolved in 50 ml of ion-exchanged water. Further, 25.8 g of bismuth nitrate was dissolved in an aqueous nitric acid solution consisting of 15 ml of ion-exchanged water and 2.5 ml of concentrated nitric acid. These two aqueous solutions were dropped into the separately prepared aqueous solution and mixed, and then 10.6 g of silica sol having a concentration of 20% by mass was added and mixed. The slurry thus obtained was heated and stirred, evaporated to dryness, water was added as a molding aid, molded into pellets having an outer diameter of 6 mm and a length of 6.6 mm, dried, and 500 ° C. under air flow. Was calcined for 6 hours to obtain a primary completed catalyst (catalyst B).
  The obtained catalyst B was pulverized, added to the slurry A, mixed, evaporated to dryness, and pulverized. Water was added thereto as a molding aid, molded into pellets having an outer diameter of 6 mm and a length of 6.6 mm, dried, and then calcined at 500 ° C. for 6 hours in an air stream to obtain a catalyst (1). The elemental composition of the catalyst (1) was as follows in terms of atomic ratio (excluding oxygen, the same applies hereinafter).
Mo1 2 W2 Bi1 . Five Fe1 . FiveCo8 Cs0.5 Si1
(Oxidation reaction)
  1200 ml of catalyst (1) was charged into a steel reactor having a diameter of 25 mm. A mixed gas having a composition of 6% by volume of isobutylene, 13% by volume of oxygen, 8% by volume of water vapor and 73% by volume of nitrogen was introduced into the reactor, and the reaction temperature was 340 ° C. and the space velocity was 1500 hr.- 1 The oxidation reaction was performed with (STP). The results are shown in Table 1.
(Catalyst strength measurement method)
  A stainless steel reaction tube having an inner diameter of 25 mm and a length of 5000 mm was installed in the vertical direction, and the lower end of the reaction tube was covered with a stainless steel receiving plate having a thickness of 1 mm. About 50 g of the catalyst (1) was dropped into the reaction tube from the upper end of the reaction tube, the stainless steel receiving plate at the lower end of the reaction tube was removed, and the catalyst was gently extracted from the reaction tube. The extracted catalyst was sieved with a sieve having an opening of 5 mm, the mass of the catalyst remaining on the sieve was measured, and the catalyst strength was calculated by the following formula.
Catalyst strength (mass%) = {(mass of catalyst remaining on the sieve) / (mass of catalyst dropped from the upper end of the reaction tube)} × 100
Example 2
(Preparation of catalyst)
  The slurry A obtained in Example 1 was heated and stirred at 150 ° C., and most of the water was evaporated to obtain a cake-like dried product (dried product C).
  Separately from this, the primary finished catalyst B obtained in Example 1 was pulverized, added to the dried product C, mixed well, then water was added as a molding aid, and the outer diameter was 6 mm and the length was 6.6 mm. After forming into pellets and drying, the catalyst (2) was obtained by calcining at 500 ° C. for 6 hours under air flow. The elemental composition of the catalyst (2) was as follows in terms of atomic ratio.
Mo1 2 W2 Bi1 . Five Fe1 . FiveCo8 Cs0 . Five Si1
(Oxidation reaction)
  In Example 1, the oxidation reaction was performed under the same reaction conditions as in Example 1 except that the catalyst (2) was used instead of the catalyst (1). The results are shown in Table 1.
(Catalyst strength measurement method)
  For the catalyst (2), the catalyst strength was measured under the same measurement conditions as in Example 1. The results are shown in Table 1.
Example 3
(Preparation of catalyst)
  A dried product C was obtained in the same manner as in Example 2.
  Separately, 75 g of ammonium paramolybdate and 9.6 g of ammonium paratungstate were added to 100 ml of heated ion-exchanged water and dissolved while stirring. Separately, 61.8 g of cobalt nitrate, 10.3 g of nickel nitrate, 21.5 g of ferric nitrate and 4.1 g of cesium nitrate were dissolved in 50 ml of ion-exchanged water. Further, 30.9 g of bismuth nitrate was dissolved in an aqueous nitric acid solution consisting of 15 ml of ion exchange water and 2.5 ml of concentrated nitric acid. These two aqueous solutions were picked and mixed in the separately prepared aqueous solution, and then 10.6 g of silica sol having a concentration of 20% by mass was added and mixed to obtain a slurry. The slurry thus obtained was heated and stirred, evaporated to dryness, water was added as a molding aid, molded into pellets having an outer diameter of 6 mm and a length of 6.6 mm, dried, and then air-circulated at 500 ° C. Was calcined for 6 hours to obtain a primary completed catalyst (catalyst D). After pulverizing the catalyst D, it is added to the dried product C and mixed well. Then, water is added as a molding aid, molded into pellets having an outer diameter of 6 mm and a length of 6.6 mm, dried, and then air-flowed at 500 ° C. And calcined for 6 hours to obtain a catalyst (3). The elemental composition of the catalyst (3) was as follows in terms of atomic ratio.
Mo1 2 W1 . 95 Bi1 . 51 Fe1 . Five Co7 . 90Ni0 . 05Cs0 .50Si1 . 0
(Oxidation reaction)
  In Example 1, the oxidation reaction was performed under the same reaction conditions as in Example 1 except that the catalyst (3) was used instead of the catalyst (1). The results are shown in Table 2.
(Catalyst strength measurement method)
  For the catalyst (3), the catalyst strength was measured under the same measurement conditions as in Example 1. The results are shown in Table 1.
Comparative Example 1
(Preparation of catalyst)
  In Example 2, a catalyst (4) was prepared in the same manner as in Example 2 except that the catalyst B was not added.
Comparative Example 2
(Preparation of catalyst)
  In Example 2, the catalyst (5) was prepared in the same manner as in Example 2 except that the slurry A was heated and stirred at 230 ° C., and most of the water was evaporated to obtain a cake-like dried product (dried product C). did.
Comparative Example 3
(Preparation of catalyst)
  A dried product C was obtained in the same manner as in Example 2.
  Separately, 750 g of ammonium paramolybdate and 191.2 g of ammonium paratungstate were added to 1 liter of heated ion-exchanged water, and dissolved while stirring. Separately, 824.3 g of cobalt nitrate, 214.6 g of ferric nitrate and 34.5 g of cesium nitrate were dissolved in 500 ml of ion-exchanged water. Also, 257.6 g of bismuth nitrate was dissolved in an aqueous nitric acid solution consisting of 150 ml of ion exchange water and 25 ml of concentrated nitric acid. These two aqueous solutions were dropped into the separately prepared aqueous solution and mixed, and then 106.4 g of silica sol having a concentration of 20% by mass was added and mixed. The slurry thus obtained was heated and stirred, evaporated to dryness, water was added as a molding aid, molded into pellets having an outer diameter of 6 mm and a length of 6.6 mm, dried, and 500 ° C. under air flow. Calcined for 6 hours at primary finished catalyst (catalystE) The resulting catalyst E is pulverized and then dried.CIn addition, after mixing well, water is added as a molding aid, molded into pellets having an outer diameter of 6 mm and a length of 6.6 mm, dried, and then calcined at 500 ° C. for 6 hours under air flow to form a catalyst (6 ) The elemental composition of the catalyst (6) was as follows in terms of atomic ratio.
Mo1 2 W2 Bi1 . FiveFe1 . FiveCo8Cs0 . FiveSi1
(Oxidation reaction)
  In Example 1, the oxidation reaction was performed under the same reaction conditions as in Example 1 except that the catalyst (4), the catalyst (5), and the catalyst (6) were used instead of the catalyst (1). The results are shown in Table 1.
  By comparing Example 1, Example 2 and Example 3 with Comparative Example 1, Comparative Example 2 and Comparative Example 3, the catalyst (1), catalyst (2) and catalyst (3) of the present invention are comparative catalysts. It can be seen that (4), catalyst (5) and catalyst (6) are superior in catalytic activity.
(Catalyst strength measurement method)
  Regarding the catalyst (4), the catalyst (5), and the catalyst (6), the catalyst strength was measured under the same measurement conditions as in Example 1. The results are shown in Table 1. By comparing Example 1 and Example 2 with Comparative Example 1, Comparative Example 2 and Comparative Example 3, the catalyst (1), the catalyst (2) and the catalyst (3) of the present invention were compared with the comparative catalyst (4), It can be seen that the catalyst strength is superior to that of the catalyst (5) and the catalyst (6).
Example 4
  In Example 1, the oxidation reaction was performed for 4000 hours. The results after 4000 hours are shown in Table 1. As shown in Table 1, even after 4000 hours of oxidation reaction, the decrease in conversion is small and the yield is hardly decreased. This shows that a stable oxidation reaction can be continued for a long time by using the catalyst (1).
Example 5
  In Example 2, the oxidation reaction was performed for 4000 hours. The results after 4000 hours are shown in Table 1. As shown in Table 1, even after 4000 hours of oxidation reaction, the decrease in conversion is small and the yield is hardly decreased. This shows that a stable oxidation reaction can be continued for a long time by using the catalyst (2).
Example 6
  In Example 3, the oxidation reaction was performed for 4000 hours. The results after 4000 hours are shown in Table 1. As shown in Table 1, even after 4000 hours of oxidation reaction, the decrease in conversion is small and the yield is hardly decreased. This shows that a stable oxidation reaction can be continued for a long time by using the catalyst (3).
Comparative Example 4
  In Comparative Example 1, the oxidation reaction was performed for 4000 hours. The results after 4000 hours are shown in Table 1.
Comparative Example 5
  Comparative example3The oxidation reaction was carried out for 4000 hours. The results after 4000 hours are shown in Table 1.
  From the comparison of Example 4, Example 5 and Example 6 with Comparative Example 3 and Comparative Example 4, the comparative catalyst (4) and catalyst (6) had a problem in catalyst life, When used in the reaction, it can be seen that the conversion and yield are greatly reduced.
[Table 1]
Example 7
  In Example 2, the reaction temperature was 360 ° C. and the space velocity was 2500 hr.- 1 Example except for changing to (STP)2The oxidation reaction was carried out in the same manner as above. The results are shown in Table 2.
Comparative Example 6
  Example 7 except that the catalyst (4) was used instead of the catalyst (2) in Example 7.7The oxidation reaction was carried out in the same manner as above. The results are shown in Table 2.
  From the comparison between Example 7 and Comparative Example 6, it can be seen that the catalyst (2) of the present invention is superior in activity and yield to the comparative catalyst (4) even under high space velocity conditions.
Example 8
  In Example 2, the oxidation reaction was performed in the same manner as in Example 2 except that the contents of isobutylene and nitrogen in the raw material gas were changed to 7.5% by volume and 71.5% by volume, respectively. The results are shown in Table 2.
Comparative Example 7
  In Example 8, the oxidation reaction was performed under the same reaction conditions as in Example 8 except that the catalyst (4) was used instead of the catalyst (2). The results are shown in Table 2.
  From comparison between Example 8 and Comparative Example 7, it can be seen that the catalyst (2) of the present invention is superior in activity and yield compared to the comparative catalyst (4) even under high isobutylene gas concentration conditions.
[Table 2]
Example 9
  In Example 2, a mixed gas composed of 5% by volume of methyl-t-butyl ether (MTBE), 13% by volume of oxygen, 8% by volume of water vapor and 74% by volume of nitrogen is used as a raw material gas used in the oxidation reaction, and the reaction temperature is set. Changed to 360 ° C, and space velocity was 1100 hr- 1The oxidation reaction was carried out under the same reaction conditions as in Example 2 except that the change was made to (STP). The results are shown in Table 3.
Comparative Example 8
  In Example 9, the oxidation reaction was performed under the same reaction conditions as in Example 9 except that the catalyst (4) was used instead of the catalyst (2). The results are shown in Table 3.
[Table 3]
Example 10
(Catalyst preparation)
  To 2 liters of heated ion exchange water, 1500 g of ammonium paramolybdate and 286.8 g of ammonium paratungstate were added and dissolved with stirring. Separately, 1030.3 g of cobalt nitrate, 343.3 g of ferric nitrate, and 4.3 g of potassium nitrate were dissolved in 1 liter of ion-exchanged water. Further, 412.1 g of bismuth nitrate was dissolved in an aqueous nitric acid solution consisting of 300 ml of ion-exchanged water and 50 ml of concentrated nitric acid. These two aqueous solutions were picked and mixed into the separately prepared aqueous solution, and then 276.5 g of a silica sol having a concentration of 20% by mass was added and mixed to obtain a slurry. The slurry thus obtained was heated and stirred at 150 ° C., and most of the water was evaporated to obtain a cake-like dried product (dried product G).
  Separately, 75 g of ammonium paramolybdate and 14.3 g of ammonium paratungstate were added to 100 ml of ion-exchanged water heated and dissolved while stirring. Separately, 51.5 g of cobalt nitrate, 17.2 g of ferric nitrate and 0.21 g of potassium nitrate were dissolved in 50 ml of ion-exchanged water. Further, 20.6 g of bismuth nitrate was dissolved in an aqueous nitric acid solution consisting of 15 ml of ion-exchanged water and 2.5 ml of concentrated nitric acid. These two aqueous solutions were dropped into the separately prepared aqueous solution and mixed, and then 13.8 g of a silica sol having a concentration of 20% by mass was added and mixed. The slurry thus obtained was heated and stirred, evaporated to dryness, water was added as a molding aid, molded into pellets having an outer diameter of 6 mm and a length of 6.6 mm, dried, and 500 ° C. under air flow. Was calcined for 6 hours to obtain a primary completed catalyst (Catalyst H).
  Obtained catalystHAfter crushing, dry matterGIn addition, after mixing well, water is added as a molding aid, formed into pellets having an outer diameter of 6 mm and a length of 6.6 mm, dried, and then calcined at 450 ° C. for 6 hours under air flow to form a catalyst (7 ) The elemental composition of the catalyst (7) was as follows in terms of atomic ratio.
Mo1 2 W1 . FiveBi1 . 2Fe1 . 2CoFiveK0 . 0 6Si1 .3
(Oxidation reaction)
  1200 ml of catalyst (7) was charged into a steel reactor having a diameter of 25 mm. A mixed gas having a composition of 6% by volume of propylene, 12% by volume of oxygen, 10% by volume of water vapor and 72% by volume of nitrogen was introduced into the reactor, and the reaction temperature was 310 ° C. and the space velocity was 2000 hours.- 1The oxidation reaction was performed with (STP). The results are shown in Table 4.
(Catalyst strength measurement method)
  For the catalyst (7), the catalyst strength was measured under the same measurement conditions as in Example 1. The results are shown in Table 4.
Comparative Example 9
(Preparation of catalyst)
  In Example 10, the catalystHA catalyst (8) was prepared in the same manner as in Example 10 except that was not added.
(Oxidation reaction)
  In Example 10, the oxidation reaction was performed under the same reaction conditions as in Example 10 except that the catalyst (8) was used instead of the catalyst (7). The results are shown in Table 4.
  Comparison between Example 10 and Comparative Example 9 shows that the catalyst (7) of the present invention is superior in catalytic activity to the comparative catalyst (8).
(Catalyst strength measurement method)
  For the catalyst (8), the catalyst strength was measured under the same measurement conditions as in Example 1. The results are shown in Table 4. A comparison between Example 10 and Comparative Example 9 shows that the catalyst (7) of the present invention is superior in catalyst strength to the comparative catalyst (8).
Example 11
  In Example 10, the oxidation reaction was performed for 4000 hours. The results after 4000 hours are shown in Table 4.
  As shown in Table 4, after 4000 hours of the oxidation reaction, the decrease in the conversion rate is small and the yield is hardly decreased. This shows that a stable oxidation reaction can be continued for a long time by using the catalyst (7).
Comparative Example 10
  In Comparative Example 9, the oxidation reaction was performed for 4000 hours. The results after 4000 hours are shown in Table 4.
  From a comparison between Example 11 and Comparative Example 10, a comparative catalyst (8) Has a problem in the catalyst life, and when this is used for a long-time reaction, it is understood that the conversion rate and the yield are greatly reduced.
[Table 4]
Figure 0004185404
Figure 0004185404

Claims (3)

プロピレン、イソブチレン、t−ブタノールおよびメチル−t−ブチルエーテルから選ばれる少なくとも一種の化合物を分子状酸素または分子状酸素含有ガスを用いて気相酸化して対応する不飽和アルデヒドおよび不飽和カルボン酸を製造するための、一般式(1):
MoaWbBicFedAeBfCgDhEiOx (1)
(ここで、Moはモリブデン、Wはタングステン、Biはビスマス、Feは鉄、Aはニッケルおよびコバルトから選ばれる少なくとも一種の元素、Bはアルカリ金属およびタリウムから選ばれる少なくとも一種の元素、Cはアルカリ土類金属から選ばれる少なくとも一種の元素、Dはリン、テルル、アンチモン、スズ、鉛、ニオブ、マンガン、ヒ素および亜鉛から選ばれる少なくとも一種の元素、Eはケイ素、アルミニウムおよびチタンから選ばれる少なくとも一種の元素、およびOは酸素をそれぞれ表し、a、b、c、d、e、f、g、h、iおよびxはそれぞれMo、W、Bi、Fe、A、B、C、D、EおよびOの原子比を表し、aが12のとき、bは0〜10、cは0.1〜10、dは0.1〜20、eは2〜20、fは0.001〜10、gは0〜10、hは0〜4、iは0〜30であり、xはそれぞれの元素の酸化状態によって定まる数値である)
で表される触媒であって、完成触媒の構成成分元素の全ての元素を含む原料化合物の一部を混合した後、乾燥、焼成して一次完成触媒を製造し、次いで該一次完成触媒と200℃以上の熱履歴を経ていない残りの原料化合物とを混合した後、乾燥、焼成して得られたものであり、一次完成触媒が完成触媒の全質量に対し1〜30%の割合で含有されていることを特徴とする不飽和アルデヒドおよび不飽和カルボン酸製造用触媒。
At least one compound selected from propylene, isobutylene, t-butanol and methyl-t-butyl ether is vapor-phase oxidized using molecular oxygen or a molecular oxygen-containing gas to produce the corresponding unsaturated aldehyde and unsaturated carboxylic acid. General formula (1):
MoaWbBicFedAeBfCgDhEiOx (1)
(Where Mo is molybdenum, W is tungsten, Bi is bismuth, Fe is iron, A is at least one element selected from nickel and cobalt, B is at least one element selected from alkali metals and thallium, and C is an alkali. At least one element selected from earth metals, D is at least one element selected from phosphorus, tellurium, antimony, tin, lead, niobium, manganese, arsenic and zinc, E is at least one selected from silicon, aluminum and titanium And O represents oxygen, and a, b, c, d, e, f, g, h, i, and x represent Mo, W, Bi, Fe, A, B, C, D, E, and Represents an atomic ratio of O, and when a is 12, b is 0 to 10, c is 0.1 to 10, d is 0.1 to 20, e is 2 to 20, and f is 0.001. 10, g is 0, h is 0 to 4, i is 0 to 30, x is a numerical value determined by the oxidation state of each element)
In a catalyst represented, after mixing a part of the raw material compounds containing all of the elemental constituents elements of the finished catalyst, dried, fired to produce a primary complete catalyst, and then with said primary finished catalyst 200 ℃ after mixing the remaining material compounds do not undergo the above thermal history, dried state, and are not obtained by sintering, in a proportion of 1% to 30% relative to the total weight of the primary finished catalyst final catalyst A catalyst for the production of unsaturated aldehydes and unsaturated carboxylic acids.
300〜600℃(ただし、600℃を除く。)で焼成して一次完成触媒を製造する請求項1記載の不飽和アルデヒドおよび不飽和カルボン酸製造用触媒。The unsaturated aldehyde and unsaturated carboxylic acid production catalyst according to claim 1, wherein the primary finished catalyst is produced by calcination at 300 to 600 ° C (excluding 600 ° C). プロピレン、イソブチレン、t−ブタノールおよびメチル−t−ブチルエーテルから選ばれる少なくとも一種の化合物を分子状酸素または分子状酸素含有ガスを用いて気相酸化して対応する不飽和アルデヒドおよび不飽和カルボン酸を製造するにあたり、触媒として請求項1または2の触媒を用いることを特徴とする不飽和アルデヒドおよび不飽和カルボン酸の製造方法。At least one compound selected from propylene, isobutylene, t-butanol and methyl-t-butyl ether is vapor-phase oxidized using molecular oxygen or a molecular oxygen-containing gas to produce the corresponding unsaturated aldehyde and unsaturated carboxylic acid. In doing so, a method for producing an unsaturated aldehyde and an unsaturated carboxylic acid, wherein the catalyst according to claim 1 or 2 is used as a catalyst.
JP2003150688A 2003-05-28 2003-05-28 Catalyst for producing unsaturated aldehyde and unsaturated carboxylic acid, method for producing the same, and method for producing unsaturated aldehyde and unsaturated carboxylic acid Expired - Lifetime JP4185404B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003150688A JP4185404B2 (en) 2003-05-28 2003-05-28 Catalyst for producing unsaturated aldehyde and unsaturated carboxylic acid, method for producing the same, and method for producing unsaturated aldehyde and unsaturated carboxylic acid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003150688A JP4185404B2 (en) 2003-05-28 2003-05-28 Catalyst for producing unsaturated aldehyde and unsaturated carboxylic acid, method for producing the same, and method for producing unsaturated aldehyde and unsaturated carboxylic acid

Publications (2)

Publication Number Publication Date
JP2004351295A JP2004351295A (en) 2004-12-16
JP4185404B2 true JP4185404B2 (en) 2008-11-26

Family

ID=34046425

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003150688A Expired - Lifetime JP4185404B2 (en) 2003-05-28 2003-05-28 Catalyst for producing unsaturated aldehyde and unsaturated carboxylic acid, method for producing the same, and method for producing unsaturated aldehyde and unsaturated carboxylic acid

Country Status (1)

Country Link
JP (1) JP4185404B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7888281B2 (en) * 2007-01-19 2011-02-15 Evernu Technology, Llc Selective oxidation of alkanes and/or alkenes to valuable oxygenates

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5976541A (en) * 1982-10-22 1984-05-01 Nippon Shokubai Kagaku Kogyo Co Ltd Catalyst for oxidizing propylene
JPS6028824A (en) * 1983-07-27 1985-02-14 Nippon Shokubai Kagaku Kogyo Co Ltd Catalyst for manufacturing methacrolein
JPH04126549A (en) * 1990-09-19 1992-04-27 Mitsubishi Rayon Co Ltd Preparation of catalyst for production of acrolein and acrylic acid
JP3257818B2 (en) * 1991-02-27 2002-02-18 三井化学株式会社 Method for producing methacrolein, catalyst used for producing methacrolein, and method for producing the catalyst
JP3154798B2 (en) * 1992-03-12 2001-04-09 三菱レイヨン株式会社 Method for producing catalyst for synthesizing unsaturated aldehydes and unsaturated carboxylic acids
JP3321300B2 (en) * 1994-07-18 2002-09-03 三菱レイヨン株式会社 Process for producing oxide catalyst containing molybdenum, bismuth and iron
JPH0840969A (en) * 1994-08-01 1996-02-13 Daicel Chem Ind Ltd Production of acrolein and catalyst
JP3296146B2 (en) * 1995-06-30 2002-06-24 住友化学工業株式会社 Process for producing unsaturated aldehyde and unsaturated carboxylic acid
JP3446403B2 (en) * 1995-06-30 2003-09-16 住友化学工業株式会社 Method for producing catalyst for synthesis of unsaturated aldehyde and unsaturated carboxylic acid
JP3347263B2 (en) * 1996-08-28 2002-11-20 三菱レイヨン株式会社 Preparation of catalysts for the production of unsaturated aldehydes and unsaturated carboxylic acids
JP3790080B2 (en) * 2000-01-25 2006-06-28 三菱レイヨン株式会社 Catalyst for synthesizing methacrolein and methacrylic acid, and method for producing methacrolein and methacrylic acid
JP2002273228A (en) * 2001-03-19 2002-09-24 Nippon Kayaku Co Ltd Catalyst and method for manufacturing acrolein and acrylic acid
JP4385587B2 (en) * 2001-11-09 2009-12-16 三菱化学株式会社 Method for producing composite oxide catalyst
JP4280797B2 (en) * 2001-11-21 2009-06-17 三菱化学株式会社 Method for producing composite oxide catalyst

Also Published As

Publication number Publication date
JP2004351295A (en) 2004-12-16

Similar Documents

Publication Publication Date Title
JP4185217B2 (en) Composite oxide catalyst and method for producing (meth) acrolein and (meth) acrylic acid
JP3729704B2 (en) Catalyst for producing unsaturated aldehyde and unsaturated carboxylic acid, and method for producing unsaturated aldehyde and unsaturated carboxylic acid using the catalyst
JP3943311B2 (en) Process for producing unsaturated aldehyde and unsaturated carboxylic acid
KR950004027B1 (en) Process for producing unsaturated aldehydes and unsaturated acids
KR890000517B1 (en) Catalyst for manufacturing methacrolein
JP3943291B2 (en) Method for producing acrolein and acrylic acid
JP3892244B2 (en) Process for producing catalyst for producing unsaturated aldehyde and unsaturated carboxylic acid
JP4318367B2 (en) Method for producing acrolein and acrylic acid
JP5045175B2 (en) Process for producing unsaturated aldehyde and / or unsaturated carboxylic acid
KR100986898B1 (en) Multi-metal oxide catalyst and method for producing methacrylic acid by using the same
TWI454312B (en) Method for producing catalyst for use in production of unsaturated aldehyde and/or unsaturated carboxylic acid, and method for producing unsaturated aldehyde and/or unsaturated carboxylic acid
JPS6236739B2 (en)
JPWO2012036038A1 (en) Catalyst for producing unsaturated aldehyde and / or unsaturated carboxylic acid, and method for producing unsaturated aldehyde and / or unsaturated carboxylic acid using the catalyst
JP4242597B2 (en) Unsaturated aldehyde synthesis catalyst, production method thereof, and production method of unsaturated aldehyde using the catalyst
US7045657B2 (en) Catalytic gas phase oxidation process
US7161044B2 (en) Catalytic gas phase oxidation reaction
US20030191344A1 (en) Production process for unsaturated aldehyde
JP2005320315A (en) Catalytic gas phase oxidation reaction
JP2004002209A (en) Method for producing unsaturated aldehyde
JP4185404B2 (en) Catalyst for producing unsaturated aldehyde and unsaturated carboxylic acid, method for producing the same, and method for producing unsaturated aldehyde and unsaturated carboxylic acid
JP2005305421A (en) Method of producing compound oxide catalyst
JP5448331B2 (en) Acrylic acid production catalyst and method for producing acrylic acid using the catalyst
JP4970986B2 (en) Method for producing composite oxide catalyst and method for producing unsaturated aldehyde and / or unsaturated carboxylic acid using the catalyst
JP3939262B2 (en) Process for producing unsaturated aldehydes
JP2005162744A (en) Method for producing unsaturated aldehyde and unsaturated carboxylic acid

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051128

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080612

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080617

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080718

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080902

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080905

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110912

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4185404

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110912

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120912

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120912

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130912

Year of fee payment: 5

EXPY Cancellation because of completion of term