JPH0840969A - Production of acrolein and catalyst - Google Patents

Production of acrolein and catalyst

Info

Publication number
JPH0840969A
JPH0840969A JP6180336A JP18033694A JPH0840969A JP H0840969 A JPH0840969 A JP H0840969A JP 6180336 A JP6180336 A JP 6180336A JP 18033694 A JP18033694 A JP 18033694A JP H0840969 A JPH0840969 A JP H0840969A
Authority
JP
Japan
Prior art keywords
composition
catalyst
group
producing
acrolein
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6180336A
Other languages
Japanese (ja)
Inventor
Yasutaka Tanaka
康隆 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daicel Corp
Original Assignee
Daicel Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daicel Chemical Industries Ltd filed Critical Daicel Chemical Industries Ltd
Priority to JP6180336A priority Critical patent/JPH0840969A/en
Publication of JPH0840969A publication Critical patent/JPH0840969A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

PURPOSE:To obtain a catalyst for producing acrolein by vapor phase catalytic oxidation of propylene using molecular oxygen. CONSTITUTION:This method for producing a catalyst is to mix a composition (1) of the general formula (Mo)a(Bi)b(Fe)c(X)d(Z)f(O)g. [X is Ni or Co and Z i s W, Be, Mg, S, Ca, Sr, Ba, Te, Se, Ce, Ge, Mn, Zn, Cr, Ag, Sb, Pb, As, B, P, Nb, Cu, Cd, Sn, Al, Zr or Ti; (a), (b), (c, (d), (f) or (g) represents atom ratio of each element and (b) is 0.1-10, (c) is 0 20, (d) is 0-20 and (f) is 0-4 when (a) is 12 and (g) is a number of atom necessary for satisfying a valency of each componentl with a composition (2) of the general formula, (A)m(Mo)n(O)p [A is K, Rb, Cs or Tl and (m), (n) and (p) are each an atomic ratio of each element and (n) is 1-9 and (p) is 3n+1 when (m) is 2] under heating, evaporate and bake the mixed composition. This method for producing acrolein is to use the catalyst.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はプロピレンを分子状酸素
により気相接触酸化してアクロレインを製造する改良さ
れた方法及びこの接触酸化反応に用いる改良された触媒
の製造方法に関する。
FIELD OF THE INVENTION The present invention relates to an improved process for the vapor phase catalytic oxidation of propylene with molecular oxygen to produce acrolein and a process for the production of an improved catalyst for this catalytic oxidation reaction.

【0002】[0002]

【従来の技術】プロピレンを分子状酸素により気相接触
酸化してアクロレインを製造する際に用いられる触媒に
関して、従来から数多くの提案がなされている。なかで
も、Mo、Bi及びFeを必須成分として含有する外
に、Co及びNiからなる群から選ばれた1種以上の元
素、およびK、Rb、Cs、Tlからなる群から選ばれ
た1種以上の元素を含有する触媒に関して、数多くの提
案がなされている。しかし、これらの従来提案の触媒は
触媒活性、アクロレインへの選択性、触媒の安定性、触
媒寿命などの触媒性能の点でまだ十分とはいえず、その
改良が望まれていた。
2. Description of the Related Art Many proposals have hitherto been made regarding catalysts used for producing acrolein by subjecting propylene to vapor-phase catalytic oxidation with molecular oxygen. Among them, in addition to containing Mo, Bi and Fe as essential components, at least one element selected from the group consisting of Co and Ni, and one selected from the group consisting of K, Rb, Cs and Tl Many proposals have been made regarding catalysts containing the above elements. However, these conventionally proposed catalysts are still insufficient in catalytic performance such as catalytic activity, selectivity to acrolein, stability of the catalyst, and catalyst life, and improvement thereof has been desired.

【0003】[0003]

【発明が解決しようとする課題】本発明の目的はMo、
Bi及び好ましくは、Fe、Ni及びCoからなる群か
ら選ばれた1種以上の元素を含有する組成物と、モリブ
デン酸のアルカリ金属塩を含む組成物との混合物である
触媒の存在下でプロピレンを分子状酸素により気相接触
酸化してアクロレインを収率よく製造する、改良された
方法を提供することにある。
The object of the present invention is to provide Mo,
Propylene in the presence of a catalyst which is a mixture of Bi and preferably a composition containing one or more elements selected from the group consisting of Fe, Ni and Co and a composition containing an alkali metal salt of molybdic acid. It is an object of the present invention to provide an improved method for producing acrolein in good yield by subjecting benzene to vapor phase catalytic oxidation with molecular oxygen.

【0004】本発明の目的はMo、Bi及び好ましく
は、Fe、Ni及びCoからなる群から選ばれた1種以
上の元素を含有する組成物と、モリブデン酸のアルカリ
金属塩を含む組成物とを混合物し、加熱混合し、蒸発乾
涸し、焼成することによる、触媒活性、アクロレインへ
の選択性、安定性において改良された、上記アクロレイ
ン製造用触媒の製造方法を提供することにある。
The object of the present invention is to provide a composition containing Mo, Bi and, preferably, one or more elements selected from the group consisting of Fe, Ni and Co, and a composition containing an alkali metal salt of molybdic acid. It is intended to provide a method for producing the above-mentioned catalyst for producing acrolein, which is improved in catalytic activity, selectivity to acrolein, and stability by mixing, heating and mixing, evaporating and drying, and calcining.

【0005】[0005]

【課題を解決するための手段】本発明に従って、一般式
(1)(Mo)a (Bi)b (Fe)c (X)d (Z)
f (O)g (1)[式中、XはNi及びCoからなる群
から選ばれた1種以上の元素を表し、ZはW、Be、M
g、S、Ca、Sr、Ba、Te、Se、Ce、Ge、
Mn、Zn、Cr、Ag、Sb、Pb、As、B、P、
Nb、Cu、Cd、Sn、Al、Zr及びTiからなる
群から選ばれた1種以上の元素を表し、a、b、c、
d、f及びgは各元素の原子比率を表し、aを基準にと
り、a=12とした時に、b=0.1〜10、c=0〜
20、d=0〜20、f=0〜4であり、gは前記各成
分の原子価を満足するのに必要な原子数である。]で示
される組成物(1)と、 一般式(2)(A)m (M
o)n (o)p (2)[式中、AはK、Rb及びCsか
らなる群から選ばれた1種以上の元素を表し、m、n及
びpは各元素の原子比率を表し、mを基準にとり、m=
2とした時に、n=1〜9、p=3n+1である。]で
示される組成物(2)との混合物である触媒の存在下
で、プロピレンを分子状酸素を用いて気相接触酸化する
ことを特徴とするアクロレインの製造方法が提供され、
また、上記組成物(1)と組成物(2)とを加熱混合
し、蒸発乾涸し、焼成することを特徴とする、上記のア
クロレインの製造方法に用いる触媒の製造方法が提供さ
れる。
According to the present invention, the general formula (1) (Mo) a (Bi) b (Fe) c (X) d (Z) is used.
f (O) g (1) [In the formula, X represents one or more elements selected from the group consisting of Ni and Co, and Z represents W, Be, and M.
g, S, Ca, Sr, Ba, Te, Se, Ce, Ge,
Mn, Zn, Cr, Ag, Sb, Pb, As, B, P,
Represents one or more elements selected from the group consisting of Nb, Cu, Cd, Sn, Al, Zr and Ti, and includes a, b, c,
d, f and g represent the atomic ratio of each element, and when a = 12 with a as a reference, b = 0.1-10, c = 0-
20, d = 0 to 20, f = 0 to 4, and g is the number of atoms required to satisfy the valence of each component. ] The composition (1) represented by the general formula (2) (A) m (M
o) n (o) p (2) [In the formula, A represents one or more elements selected from the group consisting of K, Rb, and Cs, and m, n, and p represent the atomic ratio of each element, Based on m, m =
When n is 2, n = 1 to 9 and p = 3n + 1. ] In the presence of a catalyst which is a mixture with the composition (2) represented by the above, there is provided a method for producing acrolein, which comprises catalytically oxidizing propylene with molecular oxygen in a gas phase.
Further, there is provided a method for producing a catalyst used in the above-mentioned method for producing acrolein, which comprises heating and mixing the composition (1) and the composition (2), evaporating and drying the mixture, and calcining the mixture.

【0006】本発明の効果を得るためには、組成物
(1)と組成物(2)とをまず別々に調整することが重
要である。本発明における触媒は、組成物(1)と組成
物(2)とを混合して得られ、その組成物全体の組成は
この分野では公知の組成である。全体の組成が同じであ
るにも拘らず、組成物(1)と組成物(2)を、まず別
々に調整しその後混合して得られる本発明の触媒が、従
来技術の触媒に比べ高い性能を示す理由は明かではない
が、組成物(1)と組成物(2)のそれぞれが、本発明
の対象反応に必要な複数の好ましい活性点を提供し、そ
れらの協奏的効果により高い選択性が発現したものと考
えられる。一方、従来技術の触媒では、組成物(2)の
アルカリ金属元素ないしタリウムが、触媒調整の沈殿課
程で組成物(1)を構成する元素群とで本発明の対象反
応にとって好ましくない相、あるいは不要な相を形成す
るために、選択性があるレベル以上にならないものと考
えられる。
In order to obtain the effects of the present invention, it is important to prepare the composition (1) and the composition (2) separately first. The catalyst in the present invention is obtained by mixing the composition (1) and the composition (2), and the composition of the entire composition is a composition known in the art. Despite having the same overall composition, the catalyst of the present invention obtained by first preparing the composition (1) and the composition (2) separately and then mixing them has higher performance than the catalyst of the prior art. Although it is not clear why the composition (1) and the composition (2) respectively provide a plurality of preferable active sites necessary for the subject reaction of the present invention, and their high concerted effects provide high selectivity. Is considered to have occurred. On the other hand, in the catalyst of the prior art, the alkali metal element or thallium of the composition (2) is not preferable for the target reaction of the present invention, or the alkali metal element or thallium of the composition (2) together with the group of elements constituting the composition (1) in the precipitation process of catalyst preparation It is considered that the selectivity does not exceed a certain level in order to form an unnecessary phase.

【0007】また、本発明の効果を得るには、組成物
(1)と組成物(2)の混合割合については好ましい範
囲がある。即ち、組成物(2)のA、即ちK、Rb叉は
Csと組成物(1)のBiの原子比率A/Biが0.0
2〜1.0の範囲、より好ましくは0.05〜0.5の
範囲となるように混合される。組成物(2)のK、R
b、Cs、又はTlと組成物(1)のBiの原子比率が
0.02未満の場合及び1.0を越える場合には組成物
(1)と組成物(2)の協奏的効果が不十分となり、選
択性、酸化活性が不十分となる。
In order to obtain the effects of the present invention, the mixing ratio of the composition (1) and the composition (2) has a preferable range. That is, the atomic ratio A / Bi of A of the composition (2), that is, K, Rb or Cs and Bi of the composition (1) is 0.0.
It is mixed so as to be in the range of 2 to 1.0, and more preferably in the range of 0.05 to 0.5. K, R of composition (2)
When the atomic ratio of b, Cs, or Tl to Bi of the composition (1) is less than 0.02 or exceeds 1.0, the concerted effect of the composition (1) and the composition (2) is unsatisfactory. It becomes sufficient, and the selectivity and the oxidation activity become insufficient.

【0008】本発明の方法で使用する組成物(1)及び
組成物(2)は、この分野で通常用いられる方法、例え
ば次のような方法で調整することができる:組成物
(1)は、適当なモリブデン酸塩、例えばモリブデン酸
アンモンを純水に加熱溶解し、これにBi化合物の水溶
液を加え、必要に応じて、Fe、CoおよびNiから選
ばれる1種以上の元素の化合物の水溶液を加え、さらに
必要に応じて、W、Be、Mg、S、Ca、Sr、B
a、Te、Se、Ce、Ge、Mn、Zn、Cr、A
g、Sb、Pb、As、B、P、Nb、Cu、Cd、S
n、Al、Zr及びTiからなる群から選ばれた1種以
上の元素の化合物を加え、また、必要に応じてSiO2
などの担体を加え、得られる泥状懸濁液を乾燥し、仮焼
し、200℃〜650℃の温度範囲で焼成することによ
り得られる;組成物(2)は、適当なモリブデン酸塩、
例えば、モリブデン酸アンモンを純水に加熱溶解し、こ
れにK、Rb、Cs、Tlから選ばれる1種以上の元素
の化合物、例えば、硝酸セシウムをCs:Moの原子比
率2:1〜9となるように加えたのち、硝酸で中和し、
蒸発乾涸し、仮焼し、200〜500℃の温度範囲で焼
成して調整される。
The composition (1) and the composition (2) used in the method of the present invention can be prepared by a method usually used in this field, for example, the following method: the composition (1) is , A suitable molybdate, for example, ammonium molybdate, is heated and dissolved in pure water, an aqueous solution of a Bi compound is added thereto, and if necessary, an aqueous solution of a compound of one or more elements selected from Fe, Co and Ni. And, if necessary, W, Be, Mg, S, Ca, Sr, B
a, Te, Se, Ce, Ge, Mn, Zn, Cr, A
g, Sb, Pb, As, B, P, Nb, Cu, Cd, S
A compound of one or more elements selected from the group consisting of n, Al, Zr, and Ti is added, and if necessary, SiO2
And the like, and the resulting mud-like suspension is dried, calcined and calcined in the temperature range of 200 ° C. to 650 ° C .; composition (2) is a suitable molybdate,
For example, ammonium molybdate is heated and dissolved in pure water, and a compound of one or more elements selected from K, Rb, Cs, and Tl, such as cesium nitrate, is added to the Cs: Mo atomic ratio of 2: 1 to 9. And then neutralize with nitric acid,
It is adjusted by evaporation to dryness, calcination, and firing in the temperature range of 200 to 500 ° C.

【0009】本発明において触媒は次のようにして調整
される。即ち、前記した組成物(1)と組成物(2)
を、組成物(2)のK、Rb叉はCsと組成物(1)の
Biの原子比率が0.01〜1.0の範囲、好ましくは
0.02〜0.5の範囲となるように混合する。混合す
る際、水を添加することが触媒性能を高める上でより好
ましい。混合は30℃から300℃の温度範囲で行われ
る。得られた混合物を300℃以下の温度で蒸発乾涸
し、300℃から650℃の温度範囲で焼成する。混合
時に水を加える場合の水添加量には特に制限はないが、
混合が充分におこなえる程度のスラリー状態とするのが
好ましい。また、水を添加する場合、加熱混合を自己発
生圧力の下、オートクレーブ中で行うこともできる。触
媒は、粒状あるいは成形体として固定床で使用される
が、移動床あるいは流動床にも使用できる。 本発明に
おいて触媒の原料は、触媒調整課程で酸化物の形に分解
され得る化合物であることが望ましい。そのような化合
物としては、例えば硝酸塩、アンモニウム塩、有機酸
塩、酸化物、金属酸、金属酸アンモニウム塩などがあ
る。またシリカの原料としては、シリカゾル、シリカゲ
ル、珪酸エステル、珪酸塩などが用いられる。
In the present invention, the catalyst is prepared as follows. That is, the composition (1) and the composition (2) described above.
The atomic ratio of K, Rb or Cs of the composition (2) to Bi of the composition (1) is in the range of 0.01 to 1.0, preferably 0.02 to 0.5. To mix. When mixing, it is more preferable to add water in order to enhance the catalyst performance. Mixing is performed in the temperature range of 30 ° C to 300 ° C. The resulting mixture is evaporated to dryness at a temperature of 300 ° C. or lower and calcined in the temperature range of 300 ° C. to 650 ° C. There is no particular limitation on the amount of water added when water is added during mixing,
It is preferable that the slurry state is such that the mixing can be sufficiently performed. When water is added, heating and mixing can be performed in an autoclave under self-generated pressure. The catalyst is used as a granular or shaped body in a fixed bed, but can also be used in a moving bed or a fluidized bed. In the present invention, the raw material of the catalyst is preferably a compound that can be decomposed into an oxide form in the catalyst preparation process. Examples of such compounds include nitrates, ammonium salts, organic acid salts, oxides, metal acids, ammonium metal acid salts and the like. As a raw material of silica, silica sol, silica gel, silicate ester, silicate or the like is used.

【0010】本発明による気相接触酸化反応は、原料ガ
ス組成として1〜10容量%のプロピレン、3〜20容
量%の分子状酸素及び70〜96容量%の希釈ガスから
なる混合ガスを前記した触媒上に250〜450℃の温
度範囲および常圧〜10気圧の圧力下、空間速度300
〜5000/hrで導入する事で実施される。
In the gas-phase catalytic oxidation reaction according to the present invention, a mixed gas consisting of 1 to 10% by volume of propylene, 3 to 20% by volume of molecular oxygen and 70 to 96% by volume of a diluent gas is used as the source gas composition. A space velocity of 300 on the catalyst under a temperature range of 250 to 450 ° C. and a pressure of atmospheric pressure to 10 atmospheres
It is implemented by introducing at ~ 5000 / hr.

【0011】分子状酸素源としては通常空気が使用され
るが、純酸素を使用してもよい。また希釈ガスとして
は、窒素、炭酸ガスなどの不活性ガスに使用される。反
応ガスに含まれる非凝縮性ガスの一部を循環して希釈ガ
スとして使用してもよい。希釈ガスとして水蒸気を併せ
て使用することが、活性、選択性を高める上で好まし
い。その場合、水蒸気は原料ガス中に通常60容量%ま
での量で添加される。
Air is usually used as the molecular oxygen source, but pure oxygen may be used. The diluent gas used is an inert gas such as nitrogen or carbon dioxide. A part of the non-condensable gas contained in the reaction gas may be circulated and used as a diluent gas. It is preferable to use water vapor together as a diluent gas in order to enhance activity and selectivity. In that case, steam is usually added to the source gas in an amount of up to 60% by volume.

【0012】実施例および比較例によって本発明をさら
に詳細に説明する: [実施例1]水1200mlを加熱撹拌しつつ、パラモ
リブデン酸アンモン127.2grを溶解し、A液とし
た。水180mlに硝酸コバルト139.6gr、硝酸
第二鉄72.2grを溶解し、B液とした。60%硝酸
15mlと水150mlとからなる硝酸水溶液に硝酸ビ
スマス28.6grを溶解し、C液とした。
The present invention will be explained in more detail with reference to Examples and Comparative Examples: [Example 1] 127.2 gr of ammonium paramolybdate was dissolved while heating and stirring 1200 ml of water to obtain a liquid A. Cobalt nitrate 139.6 gr and ferric nitrate 72.2 gr were dissolved in 180 ml of water to prepare a liquid B. 28.6 gr of bismuth nitrate was dissolved in a nitric acid aqueous solution consisting of 15 ml of 60% nitric acid and 150 ml of water to prepare a C liquid.

【0013】A液にB液、C液を順次滴下混合し、得ら
れたスラリー溶液を噴霧乾燥し、仮焼し、300℃で焼
成して、Mo/Bi/Fe/Co原子比率が12/1/
3/8なる組成物(1)を得た;また、水200mlを
加熱撹拌しつつ、モリブデン酸アンモン19.6grを
溶解し、次いで硝酸セシウム39.0grを加え、硝酸
で中和した後、蒸発乾涸し、仮焼し、400℃で焼成し
て、Cs/Mo原子比率が2/1なる組成物(2)を得
た;Cs/Bi原子比率が0.05となるよう、組成物
(1)と組成物(2)を232/1の割合で混合し、水
を80wt%となるように加え、100℃で十分に加熱
混合した後、120℃で蒸発乾涸し、400℃で焼成し
て触媒を調整した;得られた触媒1mlを通常の流通式
反応器に充填し、プロピレン6容量%、酸素8容量%、
水蒸気25容量%、残り61容量%が窒素という原料ガ
ス組成、反応温度340℃、空間速度1000/hrと
いう条件で反応を行い、触媒の性能を評価した。その結
果を表1に示す。
Liquid B and liquid C were sequentially added dropwise to liquid A, and the resulting slurry solution was spray-dried, calcined and calcined at 300 ° C., and the Mo / Bi / Fe / Co atomic ratio was 12 /. 1 /
A composition (1) of 3/8 was obtained; while stirring 200 ml of water with heating, 19.6 gr of ammonium molybdate was dissolved, 39.0 gr of cesium nitrate was added, and the mixture was neutralized with nitric acid and then evaporated. Drying, calcination, and baking at 400 ° C. gave a composition (2) having a Cs / Mo atomic ratio of 2/1; a composition (1) having a Cs / Bi atomic ratio of 0.05. ) And the composition (2) at a ratio of 232/1, water was added so as to be 80 wt%, sufficiently heated and mixed at 100 ° C., evaporated to dryness at 120 ° C., and baked at 400 ° C. A catalyst was prepared; 1 ml of the obtained catalyst was charged into a normal flow reactor, and 6% by volume of propylene, 8% by volume of oxygen,
The reaction was performed under the conditions of a source gas composition of 25% by volume of steam and a nitrogen content of 61% by volume, a reaction temperature of 340 ° C., and a space velocity of 1000 / hr to evaluate the performance of the catalyst. Table 1 shows the results.

【0014】[実施例2〜11]実施例1と同様にして
調整した組成物(1)と表1に示した組成物(2)を表
1に示したA/Bi原子比率となるように実施例1と同
様の方法で触媒を調整した。得られた触媒の性能を実施
例1と同様の方法で評価した。
[Examples 2 to 11] The composition (1) prepared in the same manner as in Example 1 and the composition (2) shown in Table 1 had the A / Bi atomic ratio shown in Table 1. A catalyst was prepared in the same manner as in Example 1. The performance of the obtained catalyst was evaluated in the same manner as in Example 1.

【0015】その結果を表1に示す。The results are shown in Table 1.

【0016】[実施例12]実施例1の硝酸コバルトに
代え硝酸ニッケル69.6grを用いた他は実施例1と
同様の方法で触媒を調整した。得られた触媒の性能を実
施例1と同様の方法で評価した。その結果を表1に示
す。
Example 12 A catalyst was prepared in the same manner as in Example 1 except that 69.6 gr of nickel nitrate was used in place of the cobalt nitrate of Example 1. The performance of the obtained catalyst was evaluated in the same manner as in Example 1. Table 1 shows the results.

【0017】[実施例13、14]実施例10と同様に
して調整した組成物(1)と表1に示した組成物(2)
を表1に示した原子比率となるように実施例10と同様
の方法で触媒を調整した。得られた触媒の性能を実施例
1と同様の方法で評価した。その結果を表1に示す。
[実施例15]実施例1と同様にして調整した組成物
(1)と表1に示した組成物(2)をA/Bi原子比率
が1.2となるように実施例1と同様の方法で触媒を調
整した。得られた触媒の性能を実施例1と同様の方法で
評価した。その結果を表1に示す。[比較例1]実施例
1と同様にして調整した組成物(1)のみを触媒として
使用し、実施例1と同様の方法で評価した。その結果を
表1で示す。
[Examples 13 and 14] Composition (1) prepared in the same manner as in Example 10 and composition (2) shown in Table 1
A catalyst was prepared in the same manner as in Example 10 so that the atomic ratios shown in Table 1 were obtained. The performance of the obtained catalyst was evaluated in the same manner as in Example 1. Table 1 shows the results.
Example 15 The composition (1) prepared in the same manner as in Example 1 and the composition (2) shown in Table 1 were treated in the same manner as in Example 1 so that the A / Bi atomic ratio was 1.2. The catalyst was prepared by the method. The performance of the obtained catalyst was evaluated in the same manner as in Example 1. Table 1 shows the results. [Comparative Example 1] Only the composition (1) prepared in the same manner as in Example 1 was used as a catalyst, and evaluated in the same manner as in Example 1. The results are shown in Table 1.

【0018】[比較例2]実施例1と同様にして調整し
たCs、Mo比が2/7の組成物(2)のみを触媒とし
て使用し、実施例1と同様の方法で評価した。その結果
を表1に示す。 [比較例3]水1200mlを加熱撹拌しつつ、パラモ
リブデン酸アンモン127.7gr及び硝酸セシウム
0.59grを溶解し、A液とした。水180mlに硝
酸コバルト139.6gr、硝酸第二鉄72.2grを
溶解し、B液とした。60%硝酸15mlと水150m
lとからなる硝酸水溶液に硝酸ビスマス28.6grを
溶解し、C液とした。A液にB液、C液を順次滴下混合
し、得られたスラリー溶液を噴霧乾燥し、仮焼し、40
0℃で焼成して、Mo/Bi/Fe/Co/Cs原子比
率が12.05/1/3/8/0.05なる触媒、即ち
実施例1と同じ組成をもつ触媒を調整した。得られた触
媒の性能を実施例1と同様の方法で評価した。その結果
を表2に示す。
[Comparative Example 2] Evaluation was carried out in the same manner as in Example 1 using only the composition (2) having a Cs / Mo ratio of 2/7 prepared in the same manner as in Example 1 as a catalyst. Table 1 shows the results. [Comparative Example 3] Ammon paramolybdate 127.7 gr and cesium nitrate 0.59 gr were dissolved while heating and stirring 1200 ml of water to prepare a solution A. Cobalt nitrate 139.6 gr and ferric nitrate 72.2 gr were dissolved in 180 ml of water to prepare a liquid B. 60% nitric acid 15ml and water 150m
28.6 gr of bismuth nitrate was dissolved in a nitric acid aqueous solution containing 1 to prepare a C liquid. Liquid B and liquid C were sequentially added dropwise to liquid A, and the resulting slurry solution was spray-dried and calcined.
A catalyst having a Mo / Bi / Fe / Co / Cs atomic ratio of 12.05 / 1/3/8 / 0.05, that is, a catalyst having the same composition as in Example 1 was prepared by firing at 0 ° C. The performance of the obtained catalyst was evaluated in the same manner as in Example 1. The results are shown in Table 2.

【0019】[比較例4]比較例3のパラモリブデン酸
アンモン及び硝酸セシウムの量をそれぞれ128.3g
r及び0.94grと変えた他は比較例3と同様の方法
で、Mo/Bi/Fe/Co/Cs原子比率が12.1
/1/3/8/0.08なる触媒、即ち実施例2と同じ
組成をもつ触媒を調整した。得られた触媒の性能を実施
例1と同様の方法で評価した。その結果を表2に示す。
[Comparative Example 4] The amounts of ammonium paramolybdate and cesium nitrate in Comparative Example 3 were 128.3 g each.
In the same manner as in Comparative Example 3 except that r and 0.94 gr were used, the Mo / Bi / Fe / Co / Cs atomic ratio was 12.1.
A catalyst of ⅓ / 3/8 / 0.08, that is, a catalyst having the same composition as in Example 2 was prepared. The performance of the obtained catalyst was evaluated in the same manner as in Example 1. The results are shown in Table 2.

【0020】[比較例5]比較例3のパラモリブデン酸
アンモン及び硝酸セシウムの量をそれぞれ129.9g
r及び1.17grと変えた他は比較例3と同様の方法
で、Mo/Bi/Fe/Co/Cs原子比率が12.2
5/1/3/8/0.1なる触媒、即ち実施例3と同じ
組成をもつ触媒を調整した。得られた触媒の性能を実施
例1と同様の方法で評価した。その結果を表2に示す。
(以下余白) 表1 例 組成物(2) A* /Bi原子 反応温度 転化率 選択率 収率 比率 実施例 1 Cs2 Mo04 0.05 340℃ 96.0% 88.8% 85.2% 2 〃 0.08 340 96.6 88.7 85.7 3 〃 0.1 360 97,2 87.4 84.9 4 Cs2 Mo3 010 0.05 340 95.5 88.1 84.1 5 Cs2 Mo7 022 0.05 340 94.7 88.5 83.8 6 Rb2 Mo04 0.05 340 96.9 88.8 86.0 7 Rb2 Mo6 016 0.05 360 97.6 88.5 86.4 8 K2 Mo04 0.05 340 95.0 89.6 85.1 9 K2 Mo4 013 0.05 360 96.8 87.8 85.0 10 Tl2 MoO4 0.05 340 97.1 88.8 86.2 11 Tl2 MoO13 0.05 360 97.8 88.5 86.5 12 Cs2 Mo04 0.05 340 96.6 87.6 85.5 13 〃 0.08 340 96.9 88.6 85.9 14 〃 0.1 360 96.8 88.5 85.7 15 Cs2 Mo04 1.2 400 97.5 70.4 68.6 比較例 1 ― 0,0 360 57.2 56.5 32.3 2 Cs2 Mo7 022 ― 360 18.5 23.8 4.4 * AはK、Rb、Cs又はTlを示す。
[Comparative Example 5] The amounts of ammonium paramolybdate and cesium nitrate in Comparative Example 3 were 129.9 g each.
In the same manner as in Comparative Example 3 except that r and 1.17 gr were used, the Mo / Bi / Fe / Co / Cs atomic ratio was 12.2.
A catalyst of 5/1/3/8 / 0.1, that is, a catalyst having the same composition as in Example 3 was prepared. The performance of the obtained catalyst was evaluated in the same manner as in Example 1. The results are shown in Table 2.
(Margins) Table 1 Example Composition (2) A * / Bi atom Reaction temperature Conversion rate Selectivity Yield ratio Example 1 Cs2 Mo04 0.05 340 ° C 96.0% 88.8% 85.2% 2 〃 0.08 340 96.6 88.7 85.7 3 〃 0.1 360 97,2 87.4 84.9 4 Cs2 Mo3 010 0.05 340 95.5 88.1 84.1 5 Cs2 Mo7 022 0.05 340 94.7 88.5 83.8 6 Rb2 Mo04 0.05 340 96.9 88.8 86.0 7 Rb2 Mo6 016 0.05 360 97.6 88.5 86.4 8 K2 Mo04 0.05 340 95.0 89.6 8 K2 Mo4 013 0.05 360 96.8 87.8 85.0 10 Tl2 MoO4 0.05 340 97.1 88.8 86.2 11 Tl2 MoO13 0.05 360 97.8 88.5 86.5 12 Cs2 Mo04 0.05 340 96.6 87.6 85.5 13 〃 0.08 340 96.9 88.6 85.9 14 〃 0.1 360 96.8 88.5 85.7 15 Cs2 Mo04 1.2 400 97.5 70.4 68.6 Comparative Example 1-0,0 360 57.2 56.5 32.3 2 Cs2 Mo7 2022-360 18.5 23.8 4.4 * A represents K, Rb, Cs or Tl.

【0021】表中の転化率はプロピレン転化率であり、
選択率および収率は、それぞれアクロレインへの選択
率、収率を意味する。(以下余白) 表2 反応温度 転化率 選択率 収率 比較例 3 340℃ 98.4% 83.9% 82.6% 4 340 98.2 84.6 83.1 5 360 98.8 84.0 83.0 表中の転化率はプロピレン転化率であり、選択率および
収率は、それぞれアクロレインへの選択率、収率を意味
する。
The conversions in the table are propylene conversions,
The selectivity and yield mean the selectivity and yield for acrolein, respectively. (The following margins) Table 2 Reaction temperature Conversion rate Selectivity Yield comparison example 3 340 ° C 98.4% 83.9% 82.6% 4 340 98.2 84.6 83.1 5 360 98.8 84.0 83.0 The conversion rate in the table is the propylene conversion rate, and the selectivity and The yield means the selectivity to acrolein and the yield, respectively.

【0022】[0022]

【発明の効果】活性、アクロレインへの選択性、安定性
に優れた新規な触媒を用いることによりアクロレインを
効果的に製造できる。(以下余白)
INDUSTRIAL APPLICABILITY Acrolein can be effectively produced by using a novel catalyst having excellent activity, selectivity to acrolein, and stability. (Below margin)

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】一般式(1)(Mo)a (Bi)b (F
e)c (X)d (Z)f (O)g (1)[式中、XはN
i及びCoからなる群から選ばれた1種以上の元素を表
し、ZはW、Be、Mg、S、Ca、Sr、Ba、T
e、Se、Ce、Ge、Mn、Zn、Cr、Ag、S
b、Pb、As、B、P、Nb、Cu、Cd、Sn、A
l、Zr及びTiからなる群から選ばれた1種以上の元
素を表し、a、b、c、d、f及びgは各元素の原子比
率を表し、aを基準にとり、a=12とした時に、b=
0.1〜10、c=0〜20、d=0〜20、f=0〜
4であり、gは前記各成分の原子価を満足するのに必要
な原子数である。]で示される組成物(1)と、 一
般式(2)(A)m (Mo)n (o)p (2)[式中、
AはK、Rb、Cs、及びTlからなる群から選ばれた
1種以上の元素を表し、m、n及びpは各元素の原子比
率を表し、mを基準にとり、m=2とした時に、n=1
〜9、p=3n+1である。]で示される組成物(2)
との混合物である触媒の存在下でプロピレンを分子状酸
素を用いて気相接触化することを特徴とするアクロレイ
ンの製造方法。
1. The general formula (1) (Mo) a (Bi) b (F
e) c (X) d (Z) f (O) g (1) [where X is N
i represents one or more elements selected from the group consisting of i and Co, and Z represents W, Be, Mg, S, Ca, Sr, Ba, T
e, Se, Ce, Ge, Mn, Zn, Cr, Ag, S
b, Pb, As, B, P, Nb, Cu, Cd, Sn, A
represents one or more elements selected from the group consisting of 1, Zr and Ti, a, b, c, d, f and g represent atomic ratios of the respective elements, and a = 12 based on a. Sometimes b =
0.1-10, c = 0-20, d = 0-20, f = 0
4 and g is the number of atoms required to satisfy the valence of each component. ] The composition (1) represented by the general formula (2) (A) m (Mo) n (o) p (2) [wherein
A represents one or more elements selected from the group consisting of K, Rb, Cs, and Tl, m, n, and p represent the atomic ratio of each element, and when m = 2 when m is a reference. , N = 1
˜9, p = 3n + 1. ] The composition (2) shown by
A process for producing acrolein, which comprises subjecting propylene to gas phase contact with molecular oxygen in the presence of a catalyst which is a mixture with.
【請求項2】組成物(1)と組成物(2)との混合比
が、A/Biの原子比率で表して0.02〜1.0であ
る請求項1記載の製造方法。
2. The production method according to claim 1, wherein the mixing ratio of the composition (1) and the composition (2) is 0.02 to 1.0 expressed by the atomic ratio of A / Bi.
【請求項3】組成物3(1)と組成物(2)とを30℃
から300℃以下の温度範囲で加熱混合し、300℃か
ら650℃の温度範囲で焼成して得られた触媒を用いる
請求項1叉は2記載の製造方法。
3. Composition 3 (1) and composition (2) at 30 ° C.
3. The production method according to claim 1 or 2, wherein a catalyst obtained by heating and mixing in a temperature range from 300 to 300 ° C or less and calcining in a temperature range from 300 to 650 ° C is used.
【請求項4】組成物(1)と組成物(2)との加熱混合
を水の存在下で実施して得られた触媒を用いる請求項3
記載の製造方法。
4. A catalyst obtained by carrying out heating and mixing of the composition (1) and the composition (2) in the presence of water.
The manufacturing method described.
【請求項5】一般式(1)(Mo)a (Bi)b (F
e)c (X)d (Z)f (O)g (1)[式中、XはN
i及びCoからなる群から選ばれた1種以上の元素を表
し、ZはW、Be、Mg、S、Ca、Sr、Ba、T
e、Se、Ce、Ge、Mn、Zn、Cr、Ag、S
b、Pb、As、B、P、Nb、Cu、Cd、Sn、A
l、Zr及びTiからなる群から選ばれた1種以上の元
素を表し、a、b、c、d、f及びgは各元素の原子比
率を表し、aを基準にとり、a=12とした時に、b=
0.1〜10、c=0〜20、d=0〜20、f=0〜
4であり、gは前記各成分の原子価を満足するのに必要
な原子数である。]で示される組成物(1)と、 一
般式(2)(A)m (Mo)n (o)p (2)[式中、
AはK、Rb、Cs又はTlからなる群から選ばれた1
種以上の元素を表し、m、n及びpは各元素の原子比率
を表し、mを基準にとり、m=2とした時に、n=1〜
9、p=3n+1である。]で示される組成物(2)と
を加熱混合し、蒸発乾涸し、焼成することを特徴とす
る、アクロレインの製造方法に用いる触媒の製造方法。
5. The general formula (1) (Mo) a (Bi) b (F
e) c (X) d (Z) f (O) g (1) [where X is N
i represents one or more elements selected from the group consisting of i and Co, and Z represents W, Be, Mg, S, Ca, Sr, Ba, T
e, Se, Ce, Ge, Mn, Zn, Cr, Ag, S
b, Pb, As, B, P, Nb, Cu, Cd, Sn, A
represents one or more elements selected from the group consisting of 1, Zr and Ti, a, b, c, d, f and g represent atomic ratios of the respective elements, and a = 12 based on a. Sometimes b =
0.1-10, c = 0-20, d = 0-20, f = 0
4 and g is the number of atoms required to satisfy the valence of each component. ] The composition (1) represented by the general formula (2) (A) m (Mo) n (o) p (2) [wherein
A is 1 selected from the group consisting of K, Rb, Cs or Tl
Represents more than one kind of element, m, n and p represent atomic ratios of each element, and when m = 2 based on m, n = 1 to 1
9, p = 3n + 1. ] It heat-mixes with the composition (2) shown by these, it evaporates to dryness, and it heats, The manufacturing method of the catalyst used for the manufacturing method of acrolein characterized by the above-mentioned.
【請求項6】組成物(1)と組成物(2)との混合比が
A/Biの原子比率で表して0.02〜1.0である請
求項5記載の触媒の製造方法。
6. The method for producing a catalyst according to claim 5, wherein the mixing ratio of the composition (1) and the composition (2) is 0.02 to 1.0 expressed as an atomic ratio of A / Bi.
【請求項7】組成物(1)と組成物(2)とを30℃か
ら300℃の温度範囲で加熱混合し、300℃以下の温
度で蒸発乾涸し、300℃から650℃の温度範囲で焼
成する、請求項5叉は請求項6記載の触媒の製造方法。
7. A composition (1) and a composition (2) are heated and mixed in a temperature range of 30 ° C. to 300 ° C., evaporated to dryness at a temperature of 300 ° C. or lower, and in a temperature range of 300 ° C. to 650 ° C. The method for producing a catalyst according to claim 5 or 6, which comprises calcination.
【請求項8】組成物(1)と組成物(2)との加熱混合
を水の存在下で実施する請求項7記載の触媒の製造方
法。
8. The method for producing a catalyst according to claim 7, wherein the composition (1) and the composition (2) are heated and mixed in the presence of water.
JP6180336A 1994-08-01 1994-08-01 Production of acrolein and catalyst Pending JPH0840969A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6180336A JPH0840969A (en) 1994-08-01 1994-08-01 Production of acrolein and catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6180336A JPH0840969A (en) 1994-08-01 1994-08-01 Production of acrolein and catalyst

Publications (1)

Publication Number Publication Date
JPH0840969A true JPH0840969A (en) 1996-02-13

Family

ID=16081447

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6180336A Pending JPH0840969A (en) 1994-08-01 1994-08-01 Production of acrolein and catalyst

Country Status (1)

Country Link
JP (1) JPH0840969A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010004567A (en) * 1999-06-29 2001-01-15 성재갑 Catalyst for production of acrolein
US6337424B1 (en) 2000-04-28 2002-01-08 Saudi Basic Industries Corporation Catalysts oxidation of lower olefins to unsaturated aldehydes, methods of making and using the same
KR100324872B1 (en) * 1999-06-10 2002-02-28 김충섭 A process for preparing Acrolein
WO2003097233A1 (en) 2002-05-16 2003-11-27 Lg Chem, Ltd. Method for preparing a catalyst for partial oxidation of propylene
JP2004351295A (en) * 2003-05-28 2004-12-16 Nippon Shokubai Co Ltd Catalyst for manufacture of unsaturated aldehyde and unsaturated carboxylic acid, preparation method therefor, and method for manufacturing unsaturated aldehyde and unsaturated carboxylic acid
WO2005079980A1 (en) * 2004-02-25 2005-09-01 Lg Chem, Ltd. Catalyst for partial oxidation and preparation method thereof
CN111068696A (en) * 2018-10-18 2020-04-28 中国石油化工股份有限公司 Supported acrolein catalyst and application thereof
CN116332812A (en) * 2022-12-30 2023-06-27 浙江南郊化学有限公司 Method for preparing 2-chloro-3-methyl-4-methylsulfonyl benzoic acid by catalytic oxidation

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100324872B1 (en) * 1999-06-10 2002-02-28 김충섭 A process for preparing Acrolein
KR20010004567A (en) * 1999-06-29 2001-01-15 성재갑 Catalyst for production of acrolein
US6337424B1 (en) 2000-04-28 2002-01-08 Saudi Basic Industries Corporation Catalysts oxidation of lower olefins to unsaturated aldehydes, methods of making and using the same
US6620973B2 (en) 2000-04-28 2003-09-16 Saudi Basic Industries Corporation Catalysts for oxidation of lower olefins to unsaturated aldehydes, methods of making and using the same
US7341974B2 (en) 2002-05-16 2008-03-11 Lg Chem, Ltd. Method for preparing a catalyst for partial oxidation of propylene
WO2003097233A1 (en) 2002-05-16 2003-11-27 Lg Chem, Ltd. Method for preparing a catalyst for partial oxidation of propylene
KR100513664B1 (en) * 2002-05-16 2005-09-07 주식회사 엘지화학 Method for preparing a catalyst for partial oxidation of propylene
JP2004351295A (en) * 2003-05-28 2004-12-16 Nippon Shokubai Co Ltd Catalyst for manufacture of unsaturated aldehyde and unsaturated carboxylic acid, preparation method therefor, and method for manufacturing unsaturated aldehyde and unsaturated carboxylic acid
WO2005079980A1 (en) * 2004-02-25 2005-09-01 Lg Chem, Ltd. Catalyst for partial oxidation and preparation method thereof
CN100415370C (en) * 2004-02-25 2008-09-03 Lg化学株式会社 Catalyst for partial oxidation and preparation method thereof
US7544633B2 (en) 2004-02-25 2009-06-09 Lg Chem, Ltd. Catalyst for partial oxidation and preparation method thereof
CN111068696A (en) * 2018-10-18 2020-04-28 中国石油化工股份有限公司 Supported acrolein catalyst and application thereof
CN116332812A (en) * 2022-12-30 2023-06-27 浙江南郊化学有限公司 Method for preparing 2-chloro-3-methyl-4-methylsulfonyl benzoic acid by catalytic oxidation

Similar Documents

Publication Publication Date Title
JP3142549B2 (en) Iron / antimony / molybdenum-containing oxide catalyst composition and method for producing the same
US5245083A (en) Method for preparing methacrolein and method for preparing a catalyst for use in the preparation of methacrolein
JP2841324B2 (en) Method for producing methacrolein
JPS5811416B2 (en) Method for producing methacrylic acid
US4115441A (en) Catalyst compositions especially useful for preparation of unsaturated acids
JPH0840969A (en) Production of acrolein and catalyst
US4083805A (en) Preparation of methacrylic acid from methacrolein
US4256914A (en) Catalytic oxidation of methacrolein
JP3257818B2 (en) Method for producing methacrolein, catalyst used for producing methacrolein, and method for producing the catalyst
JPH05177141A (en) Preparation of methacrylic acid
JP3316881B2 (en) Method for producing catalyst for producing methacrylic acid
JP3772389B2 (en) Method for producing oxidation catalyst and method for producing methacrylic acid
JP4629886B2 (en) Catalyst for producing methacrolein and / or methacrylic acid, method for producing the same, and method for producing methacrolein and / or methacrylic acid
JP2847150B2 (en) Method for producing acrolein or methacrolein
JPS6035179B2 (en) Oxidation catalyst and its preparation method
JP3505547B2 (en) Method for producing acrylonitrile
JPH03167152A (en) Production of methacrylic acid
JPH05213848A (en) Production of alpha,beta-unsaturated nitrile
JP3036948B2 (en) Method for producing α, β-unsaturated compound
JPS6154013B2 (en)
JPS5824419B2 (en) Fuhouwa Carbon Sanno Seizouhouhou
JPH04208239A (en) Production of acrolein and acrylic acid
JP2002095972A (en) Catalyst for producing methacrylic acid, method for producing the catalyst, and method for producing methacrylic acid
JP2841323B2 (en) Method for producing methacrolein
JPH052374B2 (en)