JP3772389B2 - Method for producing oxidation catalyst and method for producing methacrylic acid - Google Patents

Method for producing oxidation catalyst and method for producing methacrylic acid Download PDF

Info

Publication number
JP3772389B2
JP3772389B2 JP11616796A JP11616796A JP3772389B2 JP 3772389 B2 JP3772389 B2 JP 3772389B2 JP 11616796 A JP11616796 A JP 11616796A JP 11616796 A JP11616796 A JP 11616796A JP 3772389 B2 JP3772389 B2 JP 3772389B2
Authority
JP
Japan
Prior art keywords
catalyst
producing
methacrylic acid
solid
kneading
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP11616796A
Other languages
Japanese (ja)
Other versions
JPH09299802A (en
Inventor
英夫 藤澤
久夫 木下
幸雄 酒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP11616796A priority Critical patent/JP3772389B2/en
Publication of JPH09299802A publication Critical patent/JPH09299802A/en
Application granted granted Critical
Publication of JP3772389B2 publication Critical patent/JP3772389B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Description

【0001】
【発明の属する技術分野】
本発明は、酸化触媒の製造方法及び該触媒によるメタクリル酸の製造方法に関する。詳しくは、本発明は、メタクロレイン、t−ブタノール、イソブタン、イソブテン等を分子状酸素により気相接触酸化してメタクリル酸を製造するために用いられるヘテロポリ酸系触媒の製造方法及び該触媒によるメタクリル酸の製造方法に関する。
【0002】
【従来の技術】
メタクロレインを気相接触酸化してメタクリル酸を製造する触媒としてリンモリブデン酸等のようなケギン構造を有するヘテロポリ酸化合物が有効であることは従来から知られている。しかしながら、Mo−V系触媒によるアクロレインからアクリル酸への気相接触酸化が、工業レベルで99%以上の転化率及び97%以上の選択率で三年以上に亘り安定な運転実績を達成しているのと比較すると、メタクリル酸の製造については未だ著しく低いレベルに留まっている。このため、反応活性、メタクリル酸選択性、触媒寿命の改善或いは触媒製造の安定性を求め、触媒組成、調製方法、乾燥方法、焼成方法、触媒形状等に精力的な研究開発が行われており、いろいろな提案がこれ迄になされている。
【0003】
例えば、触媒組成については特開昭55−39236号公報を初めとする多くの特許公報に触媒構成元素として実質的にはVが必須であると共に、アルカリ金属、アルカリ土類金属、遷移金属、希土類金属等多くの元素が触媒性能向上に有効であることが記載されている。
特開昭61−5043号公報、特開昭61−7233号公報及び特開平3−21346号公報には、特定のCe化合物が有効であることが示され、又、特開平3−238051号公報には特定のBi原料が有効であることが示されている。
【0004】
特開平6−91172号公報には、触媒成分の中、SbとMo、Cu又はVとを予め焼成して複合酸化物として使用することにより高い触媒性能が得られると記載されている。
また、触媒の調製方法、例えば、触媒原料の溶解混合加熱工程、触媒原料の特定、アンモニウム及び硝酸量の制御等(特開昭61−283352号公報、特開平3−238050号公報、特開平6−86932号公報、特開平6−86933号公報)についても、多くの提案がなされている。
【0005】
特開平4−7037号公報、特開平4−16242号公報には、触媒原料を溶解混合した溶液のpHを酸性に保ち、且つ溶液を85℃以上に加熱することによりケギン型のヘテロポリ酸を作り、次いで溶液を80℃以下に冷却した後にアルカリイオン及びアンモニウムイオン或いはピリジン等の塩基を添加し、酸素濃度5%以上のガスで焼成する方法が提案されている。
【0006】
特開昭57−165040号公報には、アンモニウムイオンを含んだ原料溶液を濃縮、乾固し、焼成を400〜550℃で行うことが記載されている。
特開平6−86932号公報にはNH4 /Mo=(6〜18)/12及びNO3 /Mo=(0.1〜5)/1となるように溶液中のアンモニア及び硝酸根量を制御し、更にオートクレーブ中110〜200℃という特殊な条件で溶液中でドーソン型のヘテロポリ酸を生成させ、不活性ガス雰囲気中焼成することが記載されている。特開平6−86933号公報には、硫酸根の共存がドーソン型のヘテロポリ酸の生成に有効でこの場合オートクレーブ加熱は必ずしも必要ではないと記載されている。
【0007】
特開昭63−130143号公報には、乾燥固形物を固形物に対し1〜10倍の水に再分散させることにより触媒性能が向上すると述べられている。
触媒の焼成も、触媒性能に大きな影響があり、酸素濃度及び焼成温度の制御(特開昭56−161841号公報、特開平3−238050号公報)、アンモニア・水蒸気の制御(特開昭58−67643号公報)、不活性ガス中での焼成(特開昭57−165040号公報)等についていろいろ提案されている。
【0008】
一方、表面積、細孔の制御を目的として例えばピリジン・キノリンの添加(特開昭57−171444号公報、特開昭60−209258号公報)、活性炭の添加(特開平6−374号公報)、アルコール・アルデヒド・有機酸の添加(特開平6−15178号公報)等について提案がなされている。
【0009】
【発明が解決しようとする課題】
しかしながら、これまで提案されている触媒はいずれも反応成績が十分でない、生産性が低い、触媒の経時低下が大きい、反応温度が高い、或いは触媒の調製法の再現性に欠ける等の問題点を有し、工業用触媒として十分な性能とは言えず、更なる改良が望まれている。
本発明の課題は、メタクロレインの気相酸化によるメタクリル酸の製造に用いられる、より高い反応活性を有し、かつより高い収率でメタクリル酸を与えるテロポリ酸系触媒の製造方法及び該触媒によるメタクリル酸の製造方法を提供することにある。
【0010】
【課題を解決するための手段】
本発明者等は、上記課題を解決するためにリン、モリブデン及びアルカリ金属を含む酸化触媒の製造方法について鋭意検討した結果、触媒原料を水に溶解或いは懸濁させた溶液を乾燥し、予め予備焼成した後、得られた固形物について、アンモニア水により混練処理すること及び混練に際し特定の酸化物を添加することにより高い反応活性を有し、かつより高い収率でメタクリル酸を与える触媒が得られることを見出し、本発明を完成するに至った。
【0011】
即ち、本発明の要旨は、
1.リン、モリブデン及びアルカリ金属を含む酸化触媒を製造するに際し、触媒原料を水に溶解或いは懸濁させた溶液を乾燥し、次いで得られた固形物を150〜350℃で予備焼成した後、該予備焼成固形物について、中性ないしアルカリ性になるようにアンモニア水により混練処理すること及び混練に際しZn、Ce、M及びbより選ばれた少なくとも一種以上の酸化物を添加することを特徴とする酸化触媒の製造方法及び
2.上記で得られた酸化触媒の存在下、メタクロレインを気相酸化することを特徴とするメタクリル酸の製造方法、
にある。
以下、本発明を詳細に説明する。
【0012】
【発明の実施の形態】
(1)酸化触媒の製造方法
本発明のリン、モリブデン及びアルカリ金属を含有する酸化触媒としては、特に限定されるものではないが、好適なものとして、一般式(I)
【0013】
【化2】
a Mob c Bad Sbe Cuf g h i −Zj k (I)
【0014】
(式中、Xは、K、Rb及びsよりなる群から選ばれた一種以上の元素を表わし、Yは、Bi、Mn、Cr、Zr、Co、Ce、Zn、Fe及びNiよりなる群から選ばれた一種以上の元素を表わし、Zは、Zn、Ce、M及びbより選ばれた一種以上の元素を表わし、Zj k は予備焼成固形物とアンモニア水との混練処理工程において添加される。添字a、c、d、e、f、g、h、i及びjは、b=12としたときの各元素の原子比を表わし、a=0.1〜5、c=0〜5、d=0〜5、e=0〜5、f=0〜2、g=0.1〜3、h=0〜2、j=0.1〜2であり、また、i及びkは他の元素の原子価及び原子比によって決まる値である)
で表わされるヘテロポリ酸触媒が挙げられる。
【0015】
金属成分の原料として、モリブデンについてはパラモリブデン酸アンモニウム、モリブデン酸、酸化モリブデン等、バナジウムについてはメタバナジン酸アンモニウム、酸化バナジウム、シュウ酸バナジル等、リンについては正リン酸、メタリン酸、五酸化リン、ピロリン酸、リン酸アンモニウム等、銅については硝酸銅、硫酸銅、塩化第一銅、塩化第二銅等、アンチモンについては酸化アンチモン、塩化アンチモン等の化合物が使用可能である。その他の金属についても酸化物及び焼成により酸化物となり得る水酸化物、硝酸塩、酢酸塩、シュウ酸塩、炭酸塩、塩化物等の化合物が使用可能であるが、中でも硝酸塩が好適である。また、モリブデンとリンの原料としてリンモリブデン酸、リンモリブデン酸アンモニウム等のヘテロポリ酸を使用することもできる。
【0016】
触媒原料を水に溶解或いは懸濁させた溶液を、好ましくは40〜100℃で0.5〜24時間、更に好ましくは50〜90℃で1〜6時間の間、攪拌しながら加温する。より低温、短時間では高い選択性が得られず、高温長時間では活性が低下する可能性がある。この混合溶液にシリカ、ケイソウ土、セライト、等の担体成分を加えることもできる。
【0017】
加温処理を終了した触媒成分を含む混合溶液は通常の方法で乾燥される。一般的には100〜250℃に保った熱風乾燥機中で蒸発乾固させる。スプレードライ法も、触媒成分の偏在を無くした均一な乾燥粒子を得ることができるため、より工業的に有利な方法であり、特に流動層反応用触媒として好適である。
【0018】
乾燥した触媒成分は150〜350℃、好ましくは200〜300℃の温度条件下で、空気を流通して予備焼成を行う。
ここで予備焼成固形物が中性ないしアルカリ性になるように予備焼成固形物に対し0.015〜0.15重量倍好ましくは0.018〜0.05重量倍の水酸化アンモニウムを含む0.2〜0.8重量倍のアンモニア水を加え混練処理すると共に該固形物にZn、Ce、M及びbより選ばれた一種以上の元素の酸化物を加える。
【0019】
アンモニア水の量が0.2重量倍より少ないと混練を十分に行うことができず、0.8重量倍を越えると触媒成分の不必要な溶解により触媒性能の低下を招く。水酸化アンモニウムの添加量が予備焼成触媒に対し0.015重量倍より少ないと、アンモニア添加の効果が明確ではなく、0.15重量倍を越えると初期活性が低下すると共に触媒の安定性が損なわれる。本工程で添加される化合物としては酸化物が用いられる。水酸化物、硝酸塩等で添加すると触媒活性を損なう。酸化物の好適な添加量は、予備焼成触媒に含まれるMoのモル数を12とした場合0.2〜2モル、好ましくは0.3〜1.5モルであり、少なければその効果が明らかではなく、多すぎると活性及び選択性が低下する可能性がある。これらの酸化物は混練工程においてアンモニア水と共に用いることが重要で、他の触媒成分の混合溶解時に添加すると、期待される触媒性能の向上は認められず、むしろ顕著な活性低下をもたらす。
混練を終了した触媒成分は通常の方法で乾燥される。
【0020】
担持触媒として使用する場合は必要に応じ、得られた混練物に水を加えて粘度を調節し、アルミナ、シリコンカーバイド等の担体に適当な方法で担持して使用する。
乾燥した触媒成分は、粉砕後錠剤成型する。この他ペースト状にて押し出し成型後乾燥する等一般の成型法を任意に選ぶこともできる。触媒の形状に特に制限はなく、球、シリンダー、ペレット、リング等の形状を反応器の形式、条件等を考慮し最適なものを選ぶことができるが、通常使用される多管式固定床反応器で使用する場合にはリングの形状が好ましい結果を与える。
【0021】
用いる触媒原料、触媒組成、調製法によって最適条件は異なるが、一般的には300〜500℃で1〜24時間、好ましくは350〜450℃で2〜12時間焼成することにより触媒の活性化を行う。焼成は、酸素濃度を0.1〜5容量%、好ましくは0.2〜2容量%に制御した不活性ガスの雰囲気下、好ましくは該不活性ガス流通下で行う。酸素濃度が0.1容量%より少ないとアンモニアの脱離を十分に行うためには、触媒自体が不安定となるような高温を必要としたり、或いは適切な温度で処理する場合には、著しく長時間を必要とする等の問題がある。
【0022】
逆に5容量%を越えると一部のアンモニアが触媒上で燃焼するためか、焼成の制御が困難となり、極端な場合には、触媒成分の分解により三酸化モリブデンが多量に生成し、触媒性能を著しく低下させる可能性がある。
【0023】
従来ヘテロポリ酸触媒の調製においては、触媒成分を溶解した溶液のpHをケギン構造が安定に存在できる強酸性に保ち、長時間還流するのが一般的であった(特開平4−7037号公報、特開平4−16242号公報)。最近では溶液を弱酸性に調整して生成するドーソン型のヘテロポリ酸が、その後の焼成により高活性なケギン型のヘテロポリ酸の前駆体であるとの報告もある(特開平6−86932号公報、特開平6−86933号公報)。
【0024】
しかし、本発明者等は、驚くべきことに、予備焼成した触媒前駆体をアンモニア水で混練処理することによりより高い触媒性能が得られると共に、更にこの時Zn、Ce、M及びbより選ばれた一種以上の元素の酸化物を加えて、混練することにより更に高い触媒活性が達成できることを見出した。
【0025】
性能向上の理由は必ずしも明らかではないが、アンモニア添加により触媒製造工程における結晶構造の変化が見出されている。予備焼成を終わった触媒成分酸化物はX線回折ではケギン構造のピークのみを与えるが、アンモニア水で混練処理することによりケギン構造の回折ピークが低下し、P2 Mo5 23のヘテロポリ酸のピークが確認されるようになる。この状態で添加された金属酸化物粉体は表面の一部の溶解を伴いながら、触媒活性成分相互作用することにより高度に分散されるものと思われる。酸化物以外の水酸化物或いは硝酸塩ではむしろ負の効果を示すことは溶液中における酸化物と触媒活性成分との相互作用がpH等の液の状態により変化する結果であると推定される。このように添加した金属酸化物と少なくともケギン構造の一部が構造変化した触媒活性成分との複合体を、0.1〜5容量%の酸素を含む不活性ガスの雰囲気下、焼成すると、再びケギン構造が再生される。本発明の高活性触媒の活性種は、P2 Mo5 を含むアモルファス前駆体と添加酸化物の複合体の熱処理工程での固相反応により生成すると思われる。従って、良好な触媒性能を発現させるためには、前駆体から活性種を生成させる固相反応の制御が重要で、酸素濃度を制御した条件で焼成させることが必要となるものと思われる。このとき触媒性能が向上した触媒では0.1〜1μmのメソ・マクロポアー部分の細孔が増大していることが判明した。
【0026】
本発明の製造方法に係る触媒は従来の触媒に比較して活性が高いことの他に、成型触媒の比重が小さいと共に、焼成したときの強度が大きいことが特長として挙げられる。アンモニア水を添加しての混練において添加された酸化物が一部バインダー的な作用をしているものと思われ、実用触媒としてのメリットは著しく大きい。
【0027】
(2)メタクリル酸の製造方法
本発明の製造方法に係る触媒は、通常の接触酸化反応によるメタクリル酸の製造方法に採用可能であり、200〜400℃程度の反応温度及び0.5〜10気圧程度の反応圧力で、水蒸気の存在下に反応を行うことが好ましい。
反応原料のメタクロレインとしては、例えば、メタクロレインの製造目的でイソブテン或いはt−ブタノールを接触酸化して得られる生成ガスをそのまま用いてもよいし、或いは、該生成ガスを精製してメタクロレインを他のガスより分離してから用いてもよい。
【0028】
酸化に用いる酸素源としては、一般に空気が使用されるが、酸素(分子状酸素)を二酸化炭素、窒素等の不活性ガスで希釈した混合ガスを使用しても差支えない。
水蒸気、反応原料、酸素等の混合ガス(以下、反応混合ガスという)を触媒に流通するが、接触時間は通常1〜20秒程度が適当である。反応混合ガスの組成としては、例えばメタクロレイン1モルに対して分子状酸素0.2〜4モル、水蒸気1〜20モルが使用される。
【0029】
その他、この接触酸化反応は、本発明の主旨に反しない限り、通常のメタクロレイン酸化に関する知見を参考にして行うことができる。
本発明により得られる触媒は、イソ酪酸の酸化脱水素、イソブチルアルデヒドの酸化によるメタクリル酸の製造にも用いることができる。また、イソブチレンから一段でメタクリル酸を製造する際にも用いることが可能である。これらの反応では、メタクロレインの酸化と同様な反応条件が採用できる。
【0030】
【実施例】
以下、本発明を実施例、比較例を挙げて更に具体的に説明するが、本発明は、その要旨を越えない限り実施例に限定されるものではない。
なお、転化率、選択率及び収率は下式により求め、モル基準で表示した。
【0031】
【数1】
転化率(%)=[(反応したメタクロレインのモル数)/(供給したメタクロレインのモル数)]×100
【0032】
【数2】
選択率(%)=[(生成したメタクリル酸のモル数)/(反応したメタクロレインのモル数)]×100
【0033】
【数3】
収率(%)=[(生成したメタクリル酸のモル数)/(供給したメタクロレインのモル数)]×100
【0034】
実施例1
(触媒調製)
純水580mlにパラモリブデン酸アンモニウム212gとメタバナジン酸アンモニウム11.7gを加え70℃に加温した。攪拌しながらリン酸23g、硝酸セシウム9.75g、硝酸銅4.83gを含む水溶液を加え、次いで三酸化アンチモン14.5gを加え、80℃まで昇温し、その後2時間80℃に保った。得られたスラリー溶液は250℃に保ったオーブン中で10時間かけて乾燥及び予備焼成を行った。得られた固体100gに5%アンモニア水50ml及びZnO粉末3.8gを加え20分間混練を行い、その後130℃に保ったオーブン中で乾燥を行った。得られた固体を外径5mmの円柱形に打錠成型し、酸素を0.6%含む窒素流通下、400℃で6時間焼成し触媒を得た。得られた触媒の組成は各成分の原子比でMo122 1 Sb1 Cu0.2 Cs0.5 Zn1 である。(但し、O、H、N原子を除く)
【0035】
(接触酸化反応)
この触媒30mlをステンレス製反応管(内径18mm)に充填し、ナイター浴を介して加熱し、メタクロレインの接触酸化を行った。原料ガスはメタクロレイン5モル%、酸素12モル%、水蒸気30モル%、窒素53モル%の混合ガスであり、これを常圧下、反応温度290℃、空間速度1400/時で反応させた。その結果メタクロレイン(MACR)転化率95.0%、メタクリル酸(MAA)選択率80.2%、メタクリル酸(MAA)収率76.2%であった。
【0036】
比較例1
ZnO粉末を加えなかったこと以外は実施例1と同様に触媒を調製し、反応評価を行った。その結果メタクロレイン転化率89.1%、メタクリル酸選択率83.1%、メタクリル酸収率74.7%であった。
【0037】
比較例2
混練工程を省略し、予備焼成品を成型後焼成したこと以外は実施例1と同様に触媒を調製し、反応評価を行った。その結果メタクロレイン転化率81.5%、メタクリル酸選択率85.5%、メタクリル酸収率69.7%であった。
【0038】
実施例2
ZnO粉末の量を半分に減らしたこと以外は実施例1と同様に触媒を調製し、反応評価を行った。その結果メタクロレイン転化率95.6%、メタクリル酸選択率79.5%、メタクリル酸収率76.0%であった。
【0039】
比較例3
ZnOの代りにZn(NO3 3 を使用したこと以外は実施例1と同様に触媒を調製し、反応評価を行った。その結果メタクロレイン転化率77.4%、メタクリル酸選択率83.9%、メタクリル酸収率64.9%であった。
【0040】
比較例4
ZnOを最初の触媒原料混合工程で加えること以外は実施例1と同様に触媒を調製し、反応評価を行った。その結果メタクロレイン転化率61.0%、メタクリル酸選択率87.7%、メタクリル酸収率53.5%であった。
【0041】
実施例3〜、比較例5〜7
表1に示す酸化物(比較例5のみ水酸化物)を用いたこと以外は実施例1と同様に触媒を調製し、反応評価を行った。結果を表1に示す。
【0042】
【発明の効果】
本発明の酸化触媒は、メタクロレインの気相酸化によるメタクリル酸の製造において、より高い反応活性を有し、かつより高い収率でメタクリル酸を与える
【0043】
【表1】

Figure 0003772389
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing an oxidation catalyst and a method for producing methacrylic acid using the catalyst. Specifically, the present invention relates to a method for producing a heteropolyacid catalyst used for producing methacrylic acid by vapor-phase catalytic oxidation of methacrolein, t-butanol, isobutane, isobutene and the like with molecular oxygen, and methacrylic acid produced by the catalyst. The present invention relates to a method for producing an acid.
[0002]
[Prior art]
It has been conventionally known that a heteropolyacid compound having a Keggin structure such as phosphomolybdic acid is effective as a catalyst for producing methacrylic acid by gas phase catalytic oxidation of methacrolein. However, the gas-phase catalytic oxidation of acrolein to acrylic acid by Mo-V catalyst has achieved stable operation results for over 3 years at a conversion rate of 99% or more and a selectivity of 97% or more at the industrial level. Compared to the present, the production of methacrylic acid is still at a very low level. For this reason, active research and development has been carried out on catalyst composition, preparation method, drying method, firing method, catalyst shape, etc., seeking reaction activity, methacrylic acid selectivity, catalyst life improvement or catalyst production stability. Various proposals have been made so far.
[0003]
For example, as for the catalyst composition, V is essential as a catalyst constituent element in many patent gazettes including JP-A-55-39236, and alkali metal, alkaline earth metal, transition metal, rare earth It is described that many elements such as metals are effective in improving the catalyst performance.
JP-A-61-5043, JP-A-61-2233 and JP-A-3-21346 show that a specific Ce compound is effective, and JP-A-3-238051. Shows that a specific Bi raw material is effective.
[0004]
Japanese Patent Laid-Open No. 6-91172 describes that high catalytic performance can be obtained by pre-calcining Sb and Mo, Cu or V among the catalyst components and using them as composite oxides.
Further, a catalyst preparation method, for example, dissolution and heating step of catalyst raw material, specification of catalyst raw material, control of ammonium and nitric acid amounts, etc. (Japanese Patent Laid-Open Nos. 61-283352, 3-238050, and 6) Many proposals have been made on Japanese Patent Publication No. -86932 and Japanese Patent Laid-Open No. 6-86933.
[0005]
In JP-A-4-7037 and JP-A-4-16242, a Keggin type heteropolyacid is prepared by keeping the pH of a solution prepared by dissolving and mixing catalyst raw materials acidic and heating the solution to 85 ° C. or higher. Then, a method has been proposed in which the solution is cooled to 80 ° C. or lower and then a base such as alkali ions and ammonium ions or pyridine is added and calcined with a gas having an oxygen concentration of 5% or more.
[0006]
Japanese Patent Application Laid-Open No. 57-165040 describes that a raw material solution containing ammonium ions is concentrated and dried and calcined at 400 to 550 ° C.
In JP-A-6-86932, the amounts of ammonia and nitrate radicals in the solution are controlled so that NH 4 / Mo = (6-18) / 12 and NO 3 /Mo=(0.1-5)/1. In addition, it is described that a Dawson type heteropolyacid is produced in a solution under a special condition of 110 to 200 ° C. in an autoclave and calcined in an inert gas atmosphere. Japanese Patent Application Laid-Open No. 6-86933 describes that the coexistence of sulfate radicals is effective for the production of a Dawson type heteropolyacid, and in this case, autoclave heating is not necessarily required.
[0007]
Japanese Patent Application Laid-Open No. 63-130143 describes that the catalyst performance is improved by redispersing the dried solid in 1 to 10 times the water of the solid.
The calcination of the catalyst also has a great influence on the catalyst performance. The oxygen concentration and the calcination temperature are controlled (Japanese Patent Laid-Open Nos. 56-161841 and 3-238050), and the ammonia and water vapor are controlled (Japanese Patent Laid-Open No. 58-58). No. 67643), firing in an inert gas (Japanese Patent Laid-Open No. 57-165040), and the like have been proposed.
[0008]
On the other hand, for the purpose of controlling the surface area and pores, for example, addition of pyridine / quinoline (JP 57-171444, JP 60-209258), addition of activated carbon (JP 6-374), Proposals have been made on the addition of alcohols, aldehydes, organic acids (JP-A-6-15178).
[0009]
[Problems to be solved by the invention]
However, all of the catalysts proposed so far have problems such as insufficient reaction results, low productivity, large deterioration of the catalyst over time, high reaction temperature, or lack of reproducibility of the catalyst preparation method. Therefore, it cannot be said that it is sufficient performance as an industrial catalyst, and further improvement is desired.
An object of the present invention is to provide a method for producing a telopolyacid catalyst used in the production of methacrylic acid by vapor phase oxidation of methacrolein , which has higher reaction activity and gives methacrylic acid in a higher yield, and the catalyst. It is in providing the manufacturing method of methacrylic acid.
[0010]
[Means for Solving the Problems]
The present inventors have phosphorus in order to solve the above problems, the result of intensive studies on a manufacturing method of the oxidation catalyst containing molybdenum and alkali metals, the catalyst material is dried a solution prepared by dissolving or suspending in water, previously A catalyst that has high reaction activity by kneading with ammonia water and adding a specific oxide during kneading , and giving methacrylic acid in a higher yield, after pre-baking, is obtained. As a result, the present invention was completed.
[0011]
That is, the gist of the present invention is as follows.
1. Phosphorus, when preparing an oxidation catalyst containing molybdenum and alkali metals, after the catalyst raw material solution obtained by dissolving or suspending in water was dried and pre-fired then the resulting solid at 150 to 350 ° C., the for pre-fired solid, be kneaded with ammonia water to a neutral or alkaline, and Zn upon kneading, Ce, adding at least one kind of oxide selected Ri by M o and N b 1. a method for producing an oxidation catalyst, and A process for producing methacrylic acid, characterized in that methacrolein is vapor-phase oxidized in the presence of the oxidation catalyst obtained above ,
It is in.
Hereinafter, the present invention will be described in detail.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
(1) phosphorus TECHNICAL FIELD The present invention of the oxidation catalyst, the oxidation catalyst containing molybdenum and alkali metals, is not particularly limited, as preferred, the general formula (I)
[0013]
[Chemical 2]
P a Mo b V c Ba d Sb e Cu f X g Y h O i -Z j O k (I)
[0014]
(In the formula, X, K, represents one or more elements selected from Rb and C s O Li Cheng group, Y is, Bi, Mn, Cr, Zr , Co, Ce, Zn, consisting Fe and Ni represents one or more elements selected from the group, Z is, Zn, Ce, represent M o and N b which is selected by one or more elements, Z j O k is the pre-fired solid and aqueous ammonia The subscripts a, c, d, e, f, g, h, i, and j represent the atomic ratio of each element when b = 12, and a = 0.1-5. C = 0-5, d = 0-5, e = 0-5, f = 0-2, g = 0.1-2, h = 0-2, j = 0.1-2, and , I and k are values determined by the valence and atomic ratio of other elements)
The heteropolyacid catalyst represented by these is mentioned.
[0015]
As a raw material of the metal component, for molybdenum, ammonium paramolybdate, molybdate, molybdenum oxide, etc., for vanadium, ammonium metavanadate, vanadium oxide, vanadyl oxalate, etc., for phosphorus, orthophosphoric acid, metaphosphoric acid, phosphorus pentoxide, Compounds such as pyrophosphoric acid, ammonium phosphate, etc. can be used for copper, such as copper nitrate, copper sulfate, cuprous chloride and cupric chloride, and for antimony, compounds such as antimony oxide and antimony chloride can be used. As for other metals, oxides and hydroxides, nitrates, acetates, oxalates, carbonates, chlorides and the like that can be converted into oxides by firing can be used, but nitrates are particularly preferable. Moreover, heteropolyacids such as phosphomolybdic acid and ammonium phosphomolybdate can also be used as raw materials for molybdenum and phosphorus.
[0016]
A solution obtained by dissolving or suspending the catalyst raw material in water is preferably heated at 40 to 100 ° C. for 0.5 to 24 hours, more preferably 50 to 90 ° C. for 1 to 6 hours with stirring. Higher selectivity cannot be obtained at a lower temperature and a shorter time, and the activity may decrease at a higher temperature and a longer time. Carrier components such as silica, diatomaceous earth, and celite can be added to the mixed solution.
[0017]
The mixed solution containing the catalyst component after the heating treatment is dried by a usual method. Generally, it is evaporated to dryness in a hot air drier kept at 100 to 250 ° C. The spray drying method is also a more industrially advantageous method because it can obtain uniform dry particles with no uneven distribution of catalyst components, and is particularly suitable as a fluidized bed reaction catalyst.
[0018]
The dried catalyst component is pre-calcined by circulating air under a temperature condition of 150 to 350 ° C., preferably 200 to 300 ° C.
Here, the pre-baked solid is neutral or alkaline so that the pre-baked solid contains 0.015-0.15 times by weight, preferably 0.018-0.05 wt. to 0.8 Zn in solid was while kneaded added times by weight of aqueous ammonia, Ce, is added an oxide of one or more elements selected Ri by M o and N b.
[0019]
When the amount of aqueous ammonia is less than 0.2 times by weight, kneading cannot be sufficiently performed, and when it exceeds 0.8 times by weight, catalyst performance is lowered due to unnecessary dissolution of catalyst components. If the amount of ammonium hydroxide added is less than 0.015 times by weight of the pre-calcined catalyst, the effect of ammonia addition is not clear, and if it exceeds 0.15 times by weight, the initial activity decreases and the stability of the catalyst is impaired. It is. An oxide is used as the compound added in this step. Addition with hydroxide, nitrate, etc. impairs catalytic activity. A suitable addition amount of the oxide is 0.2 to 2 mol, preferably 0.3 to 1.5 mol when the number of moles of Mo contained in the pre-calcined catalyst is 12, and the effect is clear if the amount is small. If too much, activity and selectivity may decrease. It is important to use these oxides together with aqueous ammonia in the kneading step, and when added during mixing and dissolution of other catalyst components, the expected improvement in catalyst performance is not recognized, but rather a significant decrease in activity is brought about.
The catalyst component after the kneading is dried by a usual method.
[0020]
When used as a supported catalyst, if necessary, water is added to the obtained kneaded product to adjust the viscosity, and the resultant is supported on a carrier such as alumina or silicon carbide by an appropriate method.
The dried catalyst component is tableted after pulverization. In addition, a general molding method such as extruding and drying in paste form can be arbitrarily selected. There are no particular restrictions on the shape of the catalyst, and it is possible to select the optimal shape for the shape of spheres, cylinders, pellets, rings, etc. in consideration of the reactor type, conditions, etc. When used in a vessel, the shape of the ring gives favorable results.
[0021]
The optimum conditions vary depending on the catalyst raw material, catalyst composition, and preparation method to be used. In general, the catalyst is activated by calcining at 300 to 500 ° C. for 1 to 24 hours, preferably at 350 to 450 ° C. for 2 to 12 hours. Do. Firing is performed in an inert gas atmosphere in which the oxygen concentration is controlled to 0.1 to 5% by volume, preferably 0.2 to 2% by volume, and preferably under the flow of the inert gas. When the oxygen concentration is less than 0.1% by volume, in order to sufficiently desorb ammonia, a high temperature at which the catalyst itself becomes unstable is required, or when processing at an appropriate temperature, There are problems such as requiring a long time.
[0022]
Conversely, if it exceeds 5% by volume, it may be difficult to control firing because part of the ammonia burns on the catalyst. In extreme cases, a large amount of molybdenum trioxide is generated due to decomposition of the catalyst components, resulting in catalyst performance. May be significantly reduced.
[0023]
Conventionally, in the preparation of a heteropolyacid catalyst, the pH of a solution in which a catalyst component has been dissolved is generally kept strong acidic so that the Keggin structure can exist stably, and refluxed for a long time (Japanese Patent Laid-Open No. 4-7037, JP-A-4-16242). Recently, there is also a report that a Dawson type heteropolyacid produced by adjusting the solution to be weakly acidic is a precursor of a highly active Keggin type heteropolyacid by subsequent calcination (JP-A-6-86932, JP-A-6-86933).
[0024]
However, the present inventors have surprisingly, the higher catalytic performance can be obtained by kneading the catalyst precursor was pre-baked with aqueous ammonia, further when the Zn, Ce, M o and N b It has been found that a higher catalytic activity can be achieved by adding an oxide of one or more selected elements and kneading.
[0025]
The reason for the performance improvement is not necessarily clear, but a change in crystal structure in the catalyst production process has been found by adding ammonia. The catalyst component oxide that has been pre-fired gives only the peak of the Keggin structure by X-ray diffraction, but the diffraction peak of the Keggin structure decreases by kneading with ammonia water, and the heteropolyacid of P 2 Mo 5 O 23 is reduced. A peak is confirmed. It is considered that the metal oxide powder added in this state is highly dispersed by the interaction of the catalytically active components while partly dissolving the surface. The fact that a hydroxide or nitrate other than oxide exhibits a rather negative effect is presumed to be a result of the interaction between the oxide and the catalytically active component in the solution changing depending on the liquid state such as pH. When the composite of the metal oxide added in this way and the catalytically active component in which at least a part of the Keggin structure is changed in structure is fired in an atmosphere of an inert gas containing 0.1 to 5% by volume of oxygen, the complex again The Keggin structure is regenerated. The active species of the highly active catalyst of the present invention is considered to be generated by a solid phase reaction in a heat treatment step of a composite of an amorphous precursor containing P 2 Mo 5 and an added oxide. Therefore, in order to develop good catalytic performance, it is important to control the solid phase reaction for generating active species from the precursor, and it is considered necessary to perform calcination under conditions in which the oxygen concentration is controlled. At this time, it was found that the pores of the mesopore / macropore portion of 0.1 to 1 μm were increased in the catalyst with improved catalyst performance.
[0026]
The catalyst according to the production method of the present invention is characterized in that, in addition to the high activity compared to the conventional catalyst, the specific gravity of the molded catalyst is small and the strength when calcined is large. It is considered that the oxide added in the kneading with the addition of aqueous ammonia partially acts as a binder, and the merit as a practical catalyst is remarkably large.
[0027]
(2) Method for Producing Methacrylic Acid The catalyst according to the production method of the present invention can be employed in a method for producing methacrylic acid by a normal catalytic oxidation reaction, and has a reaction temperature of about 200 to 400 ° C. and 0.5 to 10 atm. It is preferable to carry out the reaction in the presence of water vapor at a reaction pressure of the order.
As the reaction raw material methacrolein, for example, a product gas obtained by catalytic oxidation of isobutene or t-butanol for the purpose of producing methacrolein may be used as it is, or the product gas may be purified to obtain methacrolein. It may be used after being separated from other gases.
[0028]
As an oxygen source used for oxidation, air is generally used, but a mixed gas obtained by diluting oxygen (molecular oxygen) with an inert gas such as carbon dioxide or nitrogen may be used.
A gas mixture of water vapor, reaction raw materials, oxygen, etc. (hereinafter referred to as reaction mixture gas) is circulated through the catalyst, and the contact time is usually about 1 to 20 seconds. As the composition of the reaction mixed gas, for example, 0.2 to 4 mol of molecular oxygen and 1 to 20 mol of water vapor are used per 1 mol of methacrolein.
[0029]
In addition, this catalytic oxidation reaction can be carried out with reference to knowledge relating to normal methacrolein oxidation unless it is contrary to the gist of the present invention.
The catalyst obtained by the present invention can also be used for the production of methacrylic acid by oxidative dehydrogenation of isobutyric acid and oxidation of isobutyraldehyde. It can also be used when producing methacrylic acid from isobutylene in one step. In these reactions, reaction conditions similar to those of methacrolein oxidation can be employed.
[0030]
【Example】
EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples and comparative examples. However, the present invention is not limited to the examples unless it exceeds the gist.
The conversion rate, selectivity, and yield were obtained from the following formulas and displayed on a molar basis.
[0031]
[Expression 1]
Conversion (%) = [(moles of methacrolein reacted) / (moles of methacrolein fed)] × 100
[0032]
[Expression 2]
Selectivity (%) = [(number of moles of methacrylic acid formed) / (number of moles of reacted methacrolein)] × 100
[0033]
[Equation 3]
Yield (%) = [(moles of methacrylic acid produced) / (moles of methacrolein fed)] × 100
[0034]
Example 1
(Catalyst preparation)
To 580 ml of pure water, 212 g of ammonium paramolybdate and 11.7 g of ammonium metavanadate were added and heated to 70 ° C. While stirring, an aqueous solution containing 23 g of phosphoric acid, 9.75 g of cesium nitrate and 4.83 g of copper nitrate was added, then 14.5 g of antimony trioxide was added, the temperature was raised to 80 ° C., and then kept at 80 ° C. for 2 hours. The obtained slurry solution was dried and pre-baked in an oven kept at 250 ° C. for 10 hours. To 100 g of the obtained solid, 50 ml of 5% ammonia water and 3.8 g of ZnO powder were added, kneaded for 20 minutes, and then dried in an oven maintained at 130 ° C. The obtained solid was tablet-molded into a cylindrical shape having an outer diameter of 5 mm, and calcined at 400 ° C. for 6 hours in a nitrogen stream containing 0.6% oxygen to obtain a catalyst. The composition of the obtained catalyst is Mo 12 P 2 V 1 Sb 1 Cu 0.2 Cs 0.5 Zn 1 in terms of atomic ratio of each component. (Excluding O, H and N atoms)
[0035]
(Catalytic oxidation reaction)
30 ml of this catalyst was filled into a stainless steel reaction tube (inner diameter: 18 mm) and heated through a night bath to perform catalytic oxidation of methacrolein. The raw material gas was a mixed gas of 5% by mole of methacrolein, 12% by mole of oxygen, 30% by mole of water vapor and 53% by mole of nitrogen, and this was reacted under normal pressure at a reaction temperature of 290 ° C. and a space velocity of 1400 / hour. As a result, methacrolein (MACR) conversion was 95.0%, methacrylic acid (MAA) selectivity was 80.2%, and methacrylic acid (MAA) yield was 76.2%.
[0036]
Comparative Example 1
A catalyst was prepared in the same manner as in Example 1 except that no ZnO powder was added, and the reaction was evaluated. As a result, methacrolein conversion was 89.1%, methacrylic acid selectivity was 83.1%, and methacrylic acid yield was 74.7%.
[0037]
Comparative Example 2
A catalyst was prepared and the reaction was evaluated in the same manner as in Example 1 except that the kneading step was omitted and the pre-fired product was fired after molding. As a result, methacrolein conversion was 81.5%, methacrylic acid selectivity was 85.5%, and methacrylic acid yield was 69.7%.
[0038]
Example 2
A catalyst was prepared in the same manner as in Example 1 except that the amount of ZnO powder was reduced to half, and the reaction was evaluated. As a result, the methacrolein conversion rate was 95.6%, the methacrylic acid selectivity was 79.5%, and the methacrylic acid yield was 76.0%.
[0039]
Comparative Example 3
A catalyst was prepared in the same manner as in Example 1 except that Zn (NO 3 ) 3 was used instead of ZnO, and the reaction was evaluated. As a result, methacrolein conversion was 77.4%, methacrylic acid selectivity was 83.9%, and methacrylic acid yield was 64.9%.
[0040]
Comparative Example 4
A catalyst was prepared in the same manner as in Example 1 except that ZnO was added in the initial catalyst raw material mixing step, and the reaction was evaluated. As a result, methacrolein conversion was 61.0%, methacrylic acid selectivity was 87.7%, and methacrylic acid yield was 53.5%.
[0041]
Examples 3 to 5 and Comparative Examples 5 to 7
A catalyst was prepared and evaluated for reaction in the same manner as in Example 1 except that the oxide shown in Table 1 (hydroxide only in Comparative Example 5) was used. The results are shown in Table 1.
[0042]
【The invention's effect】
The oxidation catalyst of the present invention has higher reaction activity in the production of methacrylic acid by gas phase oxidation of methacrolein and gives methacrylic acid in a higher yield .
[0043]
[Table 1]
Figure 0003772389

Claims (6)

リン、モリブデン及びアルカリ金属をむ触媒原料を水に溶解或いは懸濁させた溶液を乾燥し、得られた固形物を150〜350℃で予備焼成し、予備焼成した固形物に、中性ないしアルカリ性になるようにアンモニア水を加えて混練すること、及び混練に際しZn、Ce、M及びbより選ばれた少なくとも一種の元素の酸化物を添加することを特徴とする酸化触媒の製造方法。Phosphorus, molybdenum and including catalysts raw material alkali metals solution obtained by dissolving or suspending in water was dried, pre-fired and the resulting solid at 150 to 350 ° C., the solids were preliminary firing, kneading by adding ammonia water to make the neutral to alkaline, and Zn, Ce, adding an oxide of at least one kind of element selected Ri by M o and N b, wherein upon kneading A method for producing an oxidation catalyst. 般式(I)
Figure 0003772389
(式中、Xは、K、Rb及びsよりなる群から選ばれた一種以上の元素を表わし、Yは、Bi、Mn、Cr、Zr、Co、Ce、Zn、Fe及びNiよりなる群から選ばれた一種以上の元素を表わす。添字a、c、d、e、f、g、h及びiは、b=12としたときの各元素の原子比を表わし、a=0.1〜5、c=0〜5、d=0〜5、e=0〜5、f=0〜2、g=0.1〜3、h=0〜2、j=0.1〜2であり、iは他の元素の原子価及び原子比によって決まる値である)
で表わされるリン、モリブデン及びアルカリ金属を含むヘテロポリ酸を与える触媒原料を水に溶解或いは懸濁させた溶液を乾燥し、得られた固形物を150〜350℃で予備焼成し、予備焼成した固形物に、Zn、Ce、Mo及びNbより選ばれた少なくとも一種の元素の酸化物を、予備焼成した固形物中のMoに対するこれらの元素の原子比が12:0.1〜2となるように添加し、更に予備焼成した固形物に対して0.015〜0.15重量倍の水酸化アンモニウムを含むアンモニア水を0.2〜0.8重量倍添加して混練することを特徴とする酸化触媒の製造方法。
One general formula (I)
Figure 0003772389
(In the formula, X, K, represents one or more elements selected from Rb and C s O Li Cheng group, Y is, Bi, Mn, Cr, Zr , Co, Ce, Zn, consisting Fe and Ni to i Table one or more elements selected from the group. subscripts a, c, d, e, f, g, h and i represent atomic ratios of each element when a b = 12, a = 0 .1-5, c = 0-5, d = 0-5, e = 0-5, f = 0-2, g = 0.1-2, h = 0-2, j = 0.1-2 I is a value determined by the valence and atomic ratio of other elements)
A solution obtained by dissolving or suspending a catalyst raw material that gives a heteropolyacid containing phosphorus, molybdenum, and an alkali metal represented by water in water is dried, and the obtained solid is pre-fired at 150 to 350 ° C. An oxide of at least one element selected from Zn, Ce, Mo and Nb is preliminarily fired so that the atomic ratio of these elements to Mo in the solid body is 12: 0.1-2. Addition and further kneading by adding 0.2 to 0.8 times by weight ammonia water containing 0.015 to 0.15 times by weight ammonium hydroxide to the pre-baked solid matter A method for producing a catalyst.
Zn、Ce、Mo及びNbより選ばれた少なくとも一種の元素の酸化物を、予備焼成した固形物中のMoに対するこれらの元素の原子比が12:0.3〜1.5となるように予備焼成した固形物に添加することを特徴とする請求項1又は2に記載の酸化触媒の製造方法。An oxide of at least one element selected from Zn, Ce, Mo and Nb is preliminarily prepared so that the atomic ratio of these elements to Mo in the pre-fired solid is 12: 0.3 to 1.5. It adds to the baked solid substance, The manufacturing method of the oxidation catalyst of Claim 1 or 2 characterized by the above-mentioned. 予備焼成した固形物に対し、0.018〜0.05重量倍の水酸化アンモニウムを含む0.2〜0.8重量倍のアンモニア水を添加して混練することを特徴とする請求項1ないし3のいずれか1項に記載の酸化触媒の製造方法。 Solids was precalcined to, claims 1, characterized in that kneading by adding 0.2 to 0.8 times by weight of ammonia water containing ammonium hydroxide from 0.018 to 0.05 times by weight 4. The method for producing an oxidation catalyst according to any one of 3 above. アンモニア水を加えて混練した混練物を乾燥した後、これを0.1〜5容量%の酸素を含有する不活性ガス中で、350〜450℃の温度範囲で焼成する請求項1ないしのいずれか1項に記載の製造方法。 After drying the kneaded product was kneaded by adding aqueous ammonia, which in an inert gas containing 0.1 to 5% by volume of oxygen, of claims 1 to 4 is calcined at a temperature range of 350 to 450 ° C. The manufacturing method of any one of Claims 1. 請求項1ないし5のいずれか1項に記載の方法で製造された酸化触媒の存在下、メタクロレインを気相酸化することを特徴とするメタクリル酸の製造方法。A method for producing methacrylic acid, comprising subjecting methacrolein to gas phase oxidation in the presence of the oxidation catalyst produced by the method according to any one of claims 1 to 5 .
JP11616796A 1996-05-10 1996-05-10 Method for producing oxidation catalyst and method for producing methacrylic acid Expired - Fee Related JP3772389B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11616796A JP3772389B2 (en) 1996-05-10 1996-05-10 Method for producing oxidation catalyst and method for producing methacrylic acid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11616796A JP3772389B2 (en) 1996-05-10 1996-05-10 Method for producing oxidation catalyst and method for producing methacrylic acid

Publications (2)

Publication Number Publication Date
JPH09299802A JPH09299802A (en) 1997-11-25
JP3772389B2 true JP3772389B2 (en) 2006-05-10

Family

ID=14680456

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11616796A Expired - Fee Related JP3772389B2 (en) 1996-05-10 1996-05-10 Method for producing oxidation catalyst and method for producing methacrylic acid

Country Status (1)

Country Link
JP (1) JP3772389B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4182237B2 (en) * 1997-09-30 2008-11-19 住友化学株式会社 Catalyst for gas-phase catalytic oxidation reaction of isobutane and method for producing alkene and / or oxygen-containing compound using the same
JP3859397B2 (en) * 1999-07-22 2006-12-20 三菱レイヨン株式会社 Catalyst for production of methacrolein and methacrylic acid
US6645906B2 (en) * 2001-04-30 2003-11-11 Rohm And Haas Company High temperature mixing
JP4253176B2 (en) * 2002-11-12 2009-04-08 株式会社日本触媒 Catalyst for producing acrylic acid and method for producing acrylic acid
JP4745653B2 (en) * 2003-12-05 2011-08-10 三菱レイヨン株式会社 Method for producing methacrylic acid
CN112076786B (en) * 2020-09-01 2022-11-22 润泰化学(泰兴)有限公司 Preparation method of catalyst for preparing methacrylic acid by catalyzing isobutyraldehyde

Also Published As

Publication number Publication date
JPH09299802A (en) 1997-11-25

Similar Documents

Publication Publication Date Title
EP0415347B1 (en) Catalyst for the production of methacrylic acid
KR101579702B1 (en) Catalyst for oxidation of saturated and unsaturated aldehydes to unsaturated carboxylic acid, method of making and method of using thereof
JP4715699B2 (en) Method for regenerating catalyst for methacrylic acid production and method for producing methacrylic acid
JP3799660B2 (en) Oxidation catalyst, method for producing the same, and method for producing methacrylic acid
JP3772389B2 (en) Method for producing oxidation catalyst and method for producing methacrylic acid
JP4200744B2 (en) Method for producing catalyst for producing methacrylic acid and method for producing methacrylic acid
JP3772392B2 (en) Composite oxide catalyst and method for producing methacrylic acid
JP5214500B2 (en) Method for producing catalyst for producing methacrylic acid and method for producing methacrylic acid
KR100865654B1 (en) Catalysts for methacrylic acid production and process for producing methacrylic acid
JP4595769B2 (en) Method for producing catalyst for producing methacrylic acid and method for producing methacrylic acid
JPH10128112A (en) Catalyst for vapor phase contact oxidation reaction of isobutane and its preparation
JP6845473B2 (en) Method for manufacturing catalyst
JPH09290162A (en) Production of oxidation catalyst and production of methacrylic acid
JP2008229515A (en) Method for manufacturing catalyst for producing methacrylic acid
JP3316881B2 (en) Method for producing catalyst for producing methacrylic acid
JP5069152B2 (en) Unsaturated carboxylic acid synthesis catalyst, method for producing the same, and method for producing unsaturated carboxylic acid using the catalyst
JP2000296336A (en) Catalyst for production of methacrylic acid and production of methacrylic acid
JP3502526B2 (en) Vanadium-phosphorus oxide, method for producing the same, catalyst for gas phase oxidation comprising the oxide, and method for partial gas phase oxidation of hydrocarbons
JP2002306970A (en) Catalyst for manufacturing methacrylic acid, method for manufacturing the catalyst and method for manufacturing methacrylic acid
JP3482476B2 (en) Method for producing catalyst for producing methacrylic acid and method for producing methacrylic acid
JP4629886B2 (en) Catalyst for producing methacrolein and / or methacrylic acid, method for producing the same, and method for producing methacrolein and / or methacrylic acid
JP2944463B2 (en) Catalyst for producing methacrylic acid and method for producing methacrylic acid using the catalyst
JP4207531B2 (en) Method for producing catalyst for producing methacrylic acid and method for producing methacrylic acid
JPH0463139A (en) Catalyst for production of methacrylic acid
JPH09290161A (en) Production of oxidation catalyst and production of methacrylic acid

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051028

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051101

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060124

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060206

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090224

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100224

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees