JP4745653B2 - Method for producing methacrylic acid - Google Patents

Method for producing methacrylic acid Download PDF

Info

Publication number
JP4745653B2
JP4745653B2 JP2004351326A JP2004351326A JP4745653B2 JP 4745653 B2 JP4745653 B2 JP 4745653B2 JP 2004351326 A JP2004351326 A JP 2004351326A JP 2004351326 A JP2004351326 A JP 2004351326A JP 4745653 B2 JP4745653 B2 JP 4745653B2
Authority
JP
Japan
Prior art keywords
catalyst
parts
ammonia
average value
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2004351326A
Other languages
Japanese (ja)
Other versions
JP2005187463A (en
Inventor
奉正 辰已
啓幸 内藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Chemical Corp
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp, Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Chemical Corp
Priority to JP2004351326A priority Critical patent/JP4745653B2/en
Publication of JP2005187463A publication Critical patent/JP2005187463A/en
Application granted granted Critical
Publication of JP4745653B2 publication Critical patent/JP4745653B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Catalysts (AREA)

Description

本発明は、固定床管型反応器を用いたメタクロレインの分子状酸素による気相接触酸化においてメタクリル酸を製造する際に、長期に安定して高い収率でメタクリル酸を得る方法に関する。   The present invention relates to a method for obtaining methacrylic acid stably and in a high yield over a long period of time when producing methacrylic acid in gas phase catalytic oxidation of methacrolein with molecular oxygen using a fixed bed tubular reactor.

メタクロレインを分子状酸素により気相接触酸化してメタクリル酸を製造する触媒について、少なくともモリブデンおよびリンを含有するヘテロポリ酸系触媒が有効であることは広く知られており、又、実際にイソブチレンの直接酸化法によるメタクリル酸製造プロセスに使用されているものもある。   It is widely known that a heteropolyacid catalyst containing at least molybdenum and phosphorus is effective for a catalyst for producing methacrylic acid by vapor-phase catalytic oxidation of methacrolein with molecular oxygen. Some are used in methacrylic acid production processes by direct oxidation.

しかし、これらのヘテロポリ酸系触媒の最大の欠点は、特許文献1(特開昭59−20243号公報)などに記載されているように寿命が短いことであり、その中では比較的安定なアルカリ金属塩にしても長期に反応を継続すると構成元素の一部が酸化物の形に分解したり、飛散したりしていることが報告されている。これは、ヘテロポリ酸化合物が一般に熱的に不安定であるためである。   However, the greatest drawback of these heteropolyacid catalysts is short life as described in Patent Document 1 (Japanese Patent Laid-Open No. 59-20243), among which relatively stable alkalis. It has been reported that even if a metal salt is reacted for a long period of time, some of the constituent elements are decomposed or scattered in the form of oxides. This is because heteropolyacid compounds are generally thermally unstable.

したがって、酸化反応の工業的実施において、長期にわたって反応を継続するためには、(1)出発原料濃度を低くしたり、空間速度を小さくすること等の穏和な条件を採用する、または、(2)反応管中に充填する触媒の量を少しでも多くして反応温度を下げる等しなければならない。   Therefore, in the industrial implementation of the oxidation reaction, in order to continue the reaction over a long period, (1) mild conditions such as lowering the starting material concentration and lowering the space velocity are adopted, or (2 ) The reaction temperature must be lowered by increasing the amount of catalyst filled in the reaction tube as much as possible.

しかし、(1)の方法は、メタクリル酸生産性の低下を伴い、経済的要請とは程遠い条件で運転を行うこととなるため好ましくない。また、(2)の方法についても、上記酸化反応は非常な発熱反応であるため、触媒層での蓄熱が大きく、特にホットスポットと呼ばれる局所的異常高温帯では過度の酸化反応により収率が低下するのみならず、熱負荷による触媒の劣化により寿命は大きく影響を受けることになる。このため、反応条件や触媒の充填条件に関してもかなりの制約を受けているのが現状である。   However, the method (1) is not preferable because it involves a decrease in methacrylic acid productivity and the operation is performed under conditions far from economic demands. Also in the method (2), since the oxidation reaction is a very exothermic reaction, the heat storage in the catalyst layer is large, and the yield is lowered due to an excessive oxidation reaction particularly in a local abnormally high temperature zone called a hot spot. In addition, the life is greatly affected by the deterioration of the catalyst due to heat load. For this reason, the present condition is also subject to considerable restrictions with respect to reaction conditions and catalyst filling conditions.

ホットスポット部での蓄熱を抑えかつ長期にわたって反応を継続する方法として、例えば、特許文献2(特開平4−210937号公報)には、固定床多管型反応器の各反応管内を管軸方向に2層以上に分割して設けた複数個の反応帯に、活性の異なる複数個の触媒を原料ガスの入口側から出口側に向かって活性がより高くなるように充填する方法が開示されている。   As a method for suppressing heat storage in the hot spot section and continuing the reaction for a long period of time, for example, in Patent Document 2 (Japanese Patent Laid-Open No. Hei 4-210937), the inside of each reaction tube of a fixed-bed multitubular reactor is in the axial direction. A method is disclosed in which a plurality of catalysts having different activities are packed in a plurality of reaction zones divided into two or more layers in such a manner that the activity becomes higher from the inlet side to the outlet side of the raw material gas. Yes.

特許文献2では、原料ガスの入口側の触媒層に出口側の触媒層よりも活性の低い触媒を充填することにより、原料濃度の高い入口側でのホットスポット部における蓄熱は抑制されており高い収率でメタクリル酸を得ることができている。しかしながら、活性の低い触媒は活性の高い触媒よりも劣化が速いと同時に、原料濃度が高く、触媒が高い負荷に曝される原料ガスの入口側に活性の低い触媒を充填することは、結果として触媒の劣化を十分に抑制することはできず、工業的には更なる改良が必要とされているのが現状である。
特開昭59−20243号公報 特開平4−210937号公報
In Patent Document 2, the catalyst layer on the inlet side of the raw material gas is filled with a catalyst having lower activity than the catalyst layer on the outlet side, so that heat storage in the hot spot portion on the inlet side where the raw material concentration is high is suppressed and high. Methacrylic acid can be obtained in a yield. However, a catalyst having a low activity is deteriorated more quickly than a catalyst having a high activity, and at the same time, a raw material concentration is high and the catalyst is exposed to a high load. At present, the catalyst cannot be sufficiently prevented from deteriorating, and further improvements are required industrially.
JP 59-20243 JP-A-4-210937

したがって本発明は、反応を長期間にわたって安定に継続でき、高い収率でメタクリル酸を製造する方法を提供することを目的としている。   Accordingly, an object of the present invention is to provide a method for producing methacrylic acid in a high yield, which can continue the reaction stably over a long period of time.

本発明は、触媒充填部が原料ガスの入口側から出口側に分割され、触媒単位質量部あたりに含まれるアンモニアおよび/またはアンモニウムイオンの含有量が異なる触媒が充填された複数の触媒層からなる固定床管型反応器を用いて、メタクロレインを分子状酸素で気相接触酸化するメタクリル酸の製造方法において、
触媒充填部に充填された触媒の量が、管軸方向に沿って、反応管あたりの全充填量の50質量%となる位置を基準位置とし、
基準位置より原料ガスの入口側に充填された触媒単位質量部あたりに含まれるアンモニアおよび/またはアンモニウムイオン含有量の平均値が0.02質量部以下であり、
基準位置より原料ガスの出口側に充填された触媒単位質量部あたりに含まれるアンモニアおよび/またはアンモニウムイオン含有量の平均値と、基準位置より原料ガスの入口側に充填された触媒単位質量部あたりに含まれるアンモニアおよび/またはアンモニウムイオン含有量の平均値の比が、質量比で1:α(1.3≦α≦10)であることを特徴とし、長期間にわたって高い収率で安定にメタクリル酸を製造する方法に関する。
The present invention comprises a plurality of catalyst layers in which the catalyst filling portion is divided from the inlet side to the outlet side of the raw material gas and filled with catalysts having different contents of ammonia and / or ammonium ions contained per catalyst unit mass part. In a method for producing methacrylic acid, in which methacrolein is vapor-phase catalytically oxidized with molecular oxygen using a fixed bed tubular reactor,
The reference position is a position where the amount of the catalyst filled in the catalyst filling portion is 50% by mass of the total filling amount per reaction tube along the tube axis direction,
The average value of the ammonia and / or ammonium ion content contained per unit mass part of the catalyst charged on the inlet side of the raw material gas from the reference position is 0.02 parts by mass or less,
The average value of the ammonia and / or ammonium ion content contained per unit mass part of the catalyst charged from the reference position to the outlet side of the raw material gas, and per unit mass part of the catalyst charged from the reference position to the inlet side of the raw material gas The ratio of the average value of the ammonia and / or ammonium ion content contained in is 1: α (1.3 ≦ α ≦ 10) in terms of mass ratio. The present invention relates to a method for producing an acid.

本発明によれば、メタクロレインを分子状酸素により気相接触酸化してメタクリル酸を製造する方法において、長期間にわたって触媒活性を維持し、かつ高い収率で効果的にメタクリル酸を製造することができる。   According to the present invention, in a method for producing methacrylic acid by vapor-phase catalytic oxidation of methacrolein with molecular oxygen, methacrylic acid is effectively produced in a high yield while maintaining catalytic activity over a long period of time. Can do.

本発明では、触媒充填部が原料ガスの入口側から出口側に分割された複数の触媒層からなる固定床管型反応器を用いてメタクロレインを分子状酸素で気相接触酸化してメタクリル酸を製造する。   In the present invention, methacrylic acid is obtained by subjecting methacrolein to gas phase catalytic oxidation with molecular oxygen using a fixed bed tubular reactor in which the catalyst filling part is composed of a plurality of catalyst layers divided from the inlet side to the outlet side of the raw material gas. Manufacturing.

固定床管型反応器としては、反応管が1本だけの単管型でも複数の反応管を有する多管型でもよいが、工業的には固定床多管型反応器が通常用いられる。   The fixed bed tube reactor may be a single tube type having only one reaction tube or a multi-tube type having a plurality of reaction tubes, but a fixed bed multi-tube reactor is usually used industrially.

反応管内は複数の触媒層に分割されており、触媒単位質量部あたりに含まれるアンモニアおよび/またはアンモニウムイオン(以下、これらをまとめてアンモニア根と記載する。)の含有量が異なる触媒が充填されている。アンモニア根の含有量が異なる触媒層は何層であってもよいが、多いと触媒の製造および充填が煩雑になるため、工業的には2〜3層が好ましい。また、各触媒層の割合について特に限定はされないが、例えば、2層の場合、原料ガスの入口側の触媒層に充填されている触媒は全触媒充填量の10〜70質量%とすることができる。   The reaction tube is divided into a plurality of catalyst layers, which are filled with catalysts having different contents of ammonia and / or ammonium ions (hereinafter collectively referred to as ammonia roots) contained per unit mass of the catalyst. ing. The number of catalyst layers having different contents of ammonia radicals may be any number, but if the amount is large, production and filling of the catalyst becomes complicated, and therefore, two to three layers are preferred industrially. The ratio of each catalyst layer is not particularly limited. For example, in the case of two layers, the catalyst packed in the catalyst layer on the inlet side of the raw material gas may be 10 to 70% by mass of the total catalyst loading. it can.

本発明において、各触媒層に充填されている触媒単位質量あたりに含まれるアンモニア根の含有量を調整する方法は特に限定されず、例えば、触媒の焼成条件によって調整する場合は、焼成温度および/または焼成時間を調整することにより、流通下で焼成を実施する場合は温度、時間以外にも焼成ガスの流量や焼成ガス中の水分量を調整することなどにより実施することができる。流通下で焼成を実施する場合は、焼成前の触媒前駆体を反応管に充填した後に焼成を実施してもよく特に限定されない。また、焼成以外にアンモニア根の含有量を調整する方法として、触媒の調製時にあらかじめ触媒前駆体中に含まれるアンモニア根の含有量を調整する方法なども挙げられる。   In the present invention, the method for adjusting the content of ammonia radicals contained per catalyst unit mass packed in each catalyst layer is not particularly limited. For example, when adjusting according to the catalyst firing conditions, the firing temperature and / or Alternatively, by adjusting the baking time, when baking is performed under circulation, the baking can be performed by adjusting the flow rate of the baking gas and the moisture content in the baking gas in addition to the temperature and time. In the case of carrying out calcination under distribution, the calcination may be carried out after filling the catalyst precursor before calcination into the reaction tube, and there is no particular limitation. Moreover, as a method for adjusting the content of the ammonia radical other than the firing, a method for adjusting the content of the ammonia radical contained in the catalyst precursor in advance at the time of preparation of the catalyst may be mentioned.

各触媒層に充填されている触媒単位質量部中に含まれるアンモニア根の含有量は、触媒充填部に充填された触媒の量が、管軸方向に沿って、反応管あたりの全充填量の50質量%となる位置を基準位置とし、基準位置より原料ガスの出口側に充填された触媒単位質量部あたりに含まれるアンモニア根の含有量の平均値と、原料ガスの入口側に充填された触媒単位質量部あたりに含まれるアンモニア根の含有量の平均値の比が、質量比で1:αとなるように触媒中のアンモニア根含有量を調整することが重要である。ここでαは1.3以上であり、好ましくは1.4以上、より好ましくは1.5以上である。又、αは10以下であり、より好ましくは7以下、特に好ましくは5以下である。   The content of ammonia radicals contained in the catalyst unit mass part filled in each catalyst layer is such that the amount of catalyst filled in the catalyst filling part is the total filling amount per reaction tube along the tube axis direction. The position where 50% by mass is taken as the reference position, the average value of the content of ammonia radicals contained per unit mass part of the catalyst charged from the reference position to the outlet side of the raw material gas, and the inlet side of the raw material gas was charged It is important to adjust the ammonia root content in the catalyst so that the ratio of the average value of the ammonia root content contained per catalyst unit mass part is 1: α by mass ratio. Here, α is 1.3 or more, preferably 1.4 or more, more preferably 1.5 or more. Α is 10 or less, more preferably 7 or less, and particularly preferably 5 or less.

また、基準位置より原料ガス入口側に充填される触媒の単位質量部あたりに含まれるアンモニア根の含有量の平均値は、0.02質量部以下であり、好ましくは0.015質量部以下、より好ましくは0.01質量部以下である。また、該平均値は0.0006質量部以上が好ましく、より好ましくは0.001質量部以上、特に好ましくは0.002質量部以上である。   Further, the average value of the content of ammonia radicals contained per unit mass part of the catalyst charged on the raw material gas inlet side from the reference position is 0.02 parts by mass or less, preferably 0.015 parts by mass or less, More preferably, it is 0.01 mass part or less. The average value is preferably 0.0006 parts by mass or more, more preferably 0.001 parts by mass or more, and particularly preferably 0.002 parts by mass or more.

また、基準位置よりも原料ガスの出口側に充填される触媒の単位質量部あたりに含まれるアンモニア根の含有量の平均値は、0.0005質量部以上であることが好ましく、より好ましくは0.001質量部以上である。また、該平均値は0.01質量部以下であることが好ましく、より好ましくは0.005質量部以下である。   Further, the average value of the content of ammonia radicals contained per unit part by mass of the catalyst charged on the outlet side of the raw material gas from the reference position is preferably 0.0005 parts by mass or more, more preferably 0. 0.001 part by mass or more. Moreover, it is preferable that this average value is 0.01 mass part or less, More preferably, it is 0.005 mass part or less.

また、本発明では触媒層単位質量部あたりに含まれるアンモニア根の含有量とともに硝酸および/または硝酸イオン(以下、これらをまとめて硝酸根と記載する。)の含有量も異なる触媒が充填されていることが好ましい。各触媒層に充填されている触媒単位質量部中に含まれる硝酸根の含有量は、アンモニア根の場合と同じく反応管あたりの全充填量の50質量%となる位置を基準位置とし、基準位置より原料ガスの出口側に充填された触媒単位質量部あたりに含まれる硝酸根の含有量の平均値と、原料ガスの入口側に充填された触媒単位質量部あたりに含まれる硝酸根の含有量の平均値の比が、質量比で1:βとなるように調整されていることが好ましい。ここでβは1.1以上であり、好ましくは1.2以上、より好ましくは1.3以上である。又、βは10以下であり、より好ましくは7以下、特に好ましくは5以下である。   Further, in the present invention, catalysts having different contents of nitric acid and / or nitrate ions (hereinafter collectively referred to as nitrate radicals) are packed together with the contents of ammonia radicals contained per unit mass part of the catalyst layer. Preferably it is. The content of nitrate radicals contained in the catalyst unit mass part filled in each catalyst layer is the reference position at the position where 50% by mass of the total charge per reaction tube is the same as in the case of ammonia radicals. The average value of the content of nitrate radicals contained per catalyst unit mass part charged on the outlet side of the raw material gas, and the content of the nitrate radicals contained per catalyst unit mass part charged on the inlet side of the raw material gas It is preferable that the ratio of the average values is adjusted so that the mass ratio is 1: β. Here, β is 1.1 or more, preferably 1.2 or more, more preferably 1.3 or more. Β is 10 or less, more preferably 7 or less, and particularly preferably 5 or less.

また、基準位置より原料ガス入口側に充填される触媒の単位質量部あたりに含まれる硝酸根の含有量の平均値は、0.0003質量部以下であることが好ましく、より好ましくは0.0002質量部以下である。また、該平均値は0.000002質量部以上が好ましく、より好ましくは0.00001質量部以上である。   Further, the average value of the content of nitrate radicals contained per unit mass part of the catalyst charged on the raw material gas inlet side from the reference position is preferably 0.0003 parts by mass or less, more preferably 0.0002. It is below mass parts. Further, the average value is preferably 0.000002 parts by mass or more, more preferably 0.00001 parts by mass or more.

また、基準位置よりも原料ガスの出口側に充填される触媒の単位質量部あたりに含まれる硝酸根の含有量の平均値は、0.000001質量部以上であることが好ましく、より好ましくは0.000005質量部以上である。また、該平均値は0.0001質量部以下であることが好ましく、より好ましくは0.00007質量部以下である。   Further, the average value of the content of nitrate radicals contained per unit mass part of the catalyst charged on the outlet side of the raw material gas from the reference position is preferably 0.000001 parts by mass or more, more preferably 0. 0.0005 part by mass or more. Moreover, it is preferable that this average value is 0.0001 mass part or less, More preferably, it is 0.00007 mass part or less.

各触媒層に充填されている触媒単位質量あたりに含まれる硝酸根の含有量を調整する方法は特に限定されず、アンモニア根の含有量を調整する場合と同様、触媒の焼成条件および/または触媒調製時に触媒前駆体中に含まれる硝酸根の含有量を調整する方法などが挙げられる。   The method for adjusting the content of nitrate radicals contained per unit mass of the catalyst packed in each catalyst layer is not particularly limited, as in the case of adjusting the content of ammonia radicals, and the catalyst firing conditions and / or catalysts. Examples thereof include a method of adjusting the content of nitrate radicals contained in the catalyst precursor during preparation.

本発明において、各触媒層に充填されている触媒は、不活性担体などで希釈されていてもよく特に限定されない。ただし、この場合は触媒単位質量部あたりのアンモニア根またはアンモニア根および硝酸根の量は、不活性担体と触媒の合計した量の中に含まれるアンモニア根またはアンモニア根および硝酸根の量とする。
なお、触媒中のアンモニア根量の測定はケルダール法により、硝酸根量の測定はイオンクロマトグラフィーを用いて行う。
In the present invention, the catalyst filled in each catalyst layer may be diluted with an inert carrier or the like and is not particularly limited. However, in this case, the amount of ammonia radical or ammonia radical and nitrate radical per part by mass of the catalyst is the quantity of ammonia radical or ammonia radical and nitrate radical contained in the total amount of the inert carrier and the catalyst.
The amount of ammonia radicals in the catalyst is measured by the Kjeldahl method, and the amount of nitrate radicals is measured by ion chromatography.

また、各触媒層に充填されている触媒のアンモニア根またはアンモニア根および硝酸根を除く組成は、同一のものであっても異なるものであってもよく特に限定はされない。異なる組成を有する触媒が充填されている場合は、各触媒層に用いられている触媒が、同程度の量のアンモニア根またはアンモニア根および硝酸根を有する際の活性が大きく異ならないように触媒の組成を選択することが好ましい。   Further, the composition of the catalyst filled in each catalyst layer excluding the ammonia radical or ammonia radical and nitrate radical may be the same or different and is not particularly limited. When catalysts having different compositions are packed, the catalyst used in each catalyst layer is not greatly different in activity when having the same amount of ammonia or ammonia and nitrate. It is preferable to select the composition.

本発明では、このように各触媒層に充填されている触媒単位質量部あたりに含まれるアンモニア根の含有量を調整することにより、長期にわたって高い収率で安定にメタクリル酸を製造することができるようになる。これは、先にも記載したとおり反応管中でのホットスポット部の発生が抑制されるからである。   In the present invention, methacrylic acid can be stably produced at a high yield over a long period of time by adjusting the content of the ammonia radicals contained per mass part of the catalyst packed in each catalyst layer. It becomes like this. This is because the generation of hot spot portions in the reaction tube is suppressed as described above.

ホットスポット部の発生が抑制される理由として、アンモニア根の含有量が多い触媒は、反応初期における酸点がアンモニウムイオンとして存在したり、また、活性点にアンモニア根が吸着したりしている。このため、アンモニア根の含有量が少ない触媒よりも酸点をはじめとする活性点が少なく、低い活性を示す。したがって、原料濃度の高い入口側の触媒層などにおける酸化反応を適度に抑制でき、過度の反応熱の発生を抑制できるためと推定している。   The reason why the generation of hot spots is suppressed is that the catalyst having a high content of ammonia radicals has an acid site at the initial stage of the reaction as ammonium ions, or an ammonia radical is adsorbed at the active site. For this reason, the number of active sites including acid sites is less than that of a catalyst having a low ammonia radical content, and the activity is low. Therefore, it is estimated that the oxidation reaction in the catalyst layer on the inlet side having a high raw material concentration can be moderately suppressed and the generation of excessive reaction heat can be suppressed.

また、このようにアンモニア根の含有量が多い触媒は、反応運転期間中にアンモニア根が脱離する。これにより、触媒中に酸点などをはじめとする新たな活性点が発現する。すなわち、反応初期に見かけ上低い活性を示し、反応が進行するにつれて新たな活性点が発現するために活性が向上する。また、これと同時に反応開始時から存在する活性点の劣化が進行する。この新たな活性点の発現による活性の向上と反応開始時から存在する活性点の劣化による活性低下のバランスがとれることにより長期にわたって安定にメタクリル酸を製造することができるようになると本発明者らは推測している。   Further, in such a catalyst having a high content of ammonia radicals, the ammonia radicals are eliminated during the reaction operation period. As a result, new active sites such as acid sites appear in the catalyst. That is, apparently low activity is shown at the beginning of the reaction, and as the reaction proceeds, a new active site is expressed, and thus the activity is improved. At the same time, the degradation of the active sites existing from the start of the reaction proceeds. The present inventors will be able to produce methacrylic acid stably over a long period of time by balancing the improvement in activity due to the expression of the new active site and the decrease in activity due to the degradation of the active site existing from the start of the reaction. Guess.

また、本発明において、硝酸根の役割については明らかではないが、反応運転期間中にアンモニア根が脱離して新たな活性点が発現する際のアンモニア根の脱離速度をコントロールしているのではないかと本発明者らは推測している。すなわち、ホットスポット部の発生しやすい反応ガスの入口側の触媒層に充填された触媒が、出口側の触媒層に充填された触媒よりも多くの硝酸根を含むことにより、入口側の触媒層に充填された触媒から急速にアンモニア根が脱離してホットスポット部が発生することを抑制していると本発明者らは推測している。   Also, in the present invention, the role of nitrate radicals is not clear, but the ammonia radical elimination rate when the ammonia radicals are eliminated during the operation period and a new active site is expressed is controlled. The present inventors have speculated that this is not the case. That is, the catalyst packed in the catalyst layer on the inlet side of the reaction gas, which is likely to generate hot spots, contains more nitrate radicals than the catalyst packed in the catalyst layer on the outlet side, so that the catalyst layer on the inlet side The present inventors presume that the ammonia radical is rapidly desorbed from the catalyst packed in the catalyst and the generation of a hot spot portion is suppressed.

なお、本発明は必ずしも反応の開始から触媒の寿命が尽きるまでの全ての期間に渡って実施する必要はなく、反応管中でホットスポット部が発生し、メタクリル酸の収率が低下したり、あるいは触媒の熱劣化が進行したりする可能性の高い反応初期段階において実施することが好ましい。   The present invention does not necessarily have to be carried out over the entire period from the start of the reaction until the end of the life of the catalyst, a hot spot is generated in the reaction tube, and the yield of methacrylic acid is reduced. Or it is preferable to carry out in the initial stage of the reaction where the thermal deterioration of the catalyst is likely to proceed.

本発明において、各触媒層に充填される触媒は、モリブデンとリンを含んでいる複合酸化物であればよく、アンモニア根と硝酸根を除く触媒の組成は式(1)のものが好ましく、特に好ましくは式(1’)である。   In the present invention, the catalyst filled in each catalyst layer may be a composite oxide containing molybdenum and phosphorus, and the composition of the catalyst excluding the ammonia and nitrate radicals is preferably that of the formula (1). Preferably it is Formula (1 ').

Moabcde (1)
(式中、Mo、PおよびOはそれぞれモリブデン、リンおよび酸素を表し、Xはカリウム、ルビジウム、セシウムおよびタリウムからなる群より選ばれた少なくとも1種の元素を表し、Yは鉄、コバルト、ニッケル、銅、亜鉛、マグネシウム、カルシウム、ストロンチウム、バリウム、チタン、バナジウム、クロム、タングステン、マンガン、銀、ホウ素、ケイ素、アルミニウム、ガリウム、ゲルマニウム、スズ、鉛、ヒ素、アンチモン、ビスマス、ニオブ、タンタル、ジルコニウム、インジウム、イオウ、セレン、テルル、ランタンおよびセリウムからなる群より選ばれた少なくとも1種の元素を表す。a、b、c、dおよびeは各元素の原子比を表し、a=12のとき、0.1≦b≦3、0.01≦c≦3、0≦d≦3であり、eは前記各成分の原子比を満足するのに必要な酸素の原子比である。)
Mo a P b X c Y d O e (1)
(In the formula, Mo, P and O represent molybdenum, phosphorus and oxygen, respectively, X represents at least one element selected from the group consisting of potassium, rubidium, cesium and thallium, and Y represents iron, cobalt and nickel. , Copper, zinc, magnesium, calcium, strontium, barium, titanium, vanadium, chromium, tungsten, manganese, silver, boron, silicon, aluminum, gallium, germanium, tin, lead, arsenic, antimony, bismuth, niobium, tantalum, zirconium Represents at least one element selected from the group consisting of aluminium, indium, sulfur, selenium, tellurium, lanthanum and cerium, wherein a, b, c, d and e represent the atomic ratio of each element, and when a = 12. 0.1 ≦ b ≦ 3, 0.01 ≦ c ≦ 3, 0 ≦ d ≦ 3, and e is An atomic ratio of oxygen required to satisfy the atomic ratio of the components.)

MoabcY’d'Cufge (1’)
(式中、Mo、P、Cu、VおよびOはそれぞれモリブデン、リン、銅、バナジウムおよび酸素を表し、Xはカリウム、ルビジウム、セシウムおよびタリウムからなる群より選ばれた少なくとも1種の元素を表し、好ましくはカリウム、ルビジウムおよびセシウムである。Y’は鉄、コバルト、ニッケル、亜鉛、マグネシウム、カルシウム、ストロンチウム、バリウム、チタン、クロム、タングステン、マンガン、銀、ホウ素、ケイ素、アルミニウム、ガリウム、ゲルマニウム、スズ、鉛、ヒ素、アンチモン、ビスマス、ニオブ、タンタル、ジルコニウム、インジウム、イオウ、セレン、テルル、ランタンおよびセリウムからなる群より選ばれた少なくとも1種の元素を表し、好ましくは鉄、亜鉛、ゲルマニウム、ヒ素、アンチモン、ランタンおよびセリウムである。a、b、c、d’、f、gおよびeは各元素の原子比を表し、a=12のとき、bは0.1≦b≦3、好ましくは0.5≦b≦3である。同様にcは0.01≦c≦3、好ましくは0.1≦c≦3である。同様にd’は0≦d’≦2.98、好ましくは0≦d’≦2.5である。同様にfは0.01≦f≦2.99、好ましくは0.01≦f≦2である。同様にgは0.01≦g≦2.99、好ましくは0.01≦g≦2であり、eは前記各成分の原子比を満足するのに必要な酸素の原子比である。ただし、d’+f+gは0.02≦(d’+f+g)≦3である。)
Mo a P b X c Y ' d' Cu f V g O e (1 ')
(Wherein Mo, P, Cu, V and O represent molybdenum, phosphorus, copper, vanadium and oxygen, respectively, and X represents at least one element selected from the group consisting of potassium, rubidium, cesium and thallium. Y ′ is iron, cobalt, nickel, zinc, magnesium, calcium, strontium, barium, titanium, chromium, tungsten, manganese, silver, boron, silicon, aluminum, gallium, germanium, preferably potassium, rubidium and cesium Represents at least one element selected from the group consisting of tin, lead, arsenic, antimony, bismuth, niobium, tantalum, zirconium, indium, sulfur, selenium, tellurium, lanthanum and cerium, preferably iron, zinc, germanium, Arsenic, antimony, lanthanum A, b, c, d ′, f, g and e represent the atomic ratio of each element, and when a = 12, b is 0.1 ≦ b ≦ 3, preferably 0.5 ≦. b ≦ 3 Similarly c is 0.01 ≦ c ≦ 3, preferably 0.1 ≦ c ≦ 3 Similarly d ′ is 0 ≦ d ′ ≦ 2.98, preferably 0 ≦ d ′. ≦ 2.5 Similarly f is 0.01 ≦ f ≦ 2.99, preferably 0.01 ≦ f ≦ 2, and similarly g is 0.01 ≦ g ≦ 2.99, preferably 0. .01 ≦ g ≦ 2, and e is an atomic ratio of oxygen necessary to satisfy the atomic ratio of each component, where d ′ + f + g is 0.02 ≦ (d ′ + f + g) ≦ 3. .)

本発明に用いる触媒の製造方法は特に限定されず、共沈法、蒸発乾固法、酸化物混合法等を用いることができる。触媒の調製に用いる原料は、特に限定されず、各元素の硝酸塩、炭酸塩、酢酸塩、アンモニウム塩、酸化物、ハロゲン化物、酸素酸等を組み合わせて使用することができる。例えば、モリブデンの原料としてはパラモリブデン酸アンモニウム、三酸化モリブデン、モリブデン酸、塩化モリブデン等、リンの原料としては、リン酸、五酸化リン、リン酸アンモニウム等が使用できる。   The method for producing the catalyst used in the present invention is not particularly limited, and a coprecipitation method, an evaporation to dryness method, an oxide mixing method, or the like can be used. The raw materials used for the preparation of the catalyst are not particularly limited, and nitrates, carbonates, acetates, ammonium salts, oxides, halides, oxygen acids and the like of each element can be used in combination. For example, ammonium paramolybdate, molybdenum trioxide, molybdic acid, molybdenum chloride, and the like can be used as the molybdenum source, and phosphoric acid, phosphorus pentoxide, ammonium phosphate, and the like can be used as the phosphorus source.

具体的な触媒の調製方法としては、少なくともモリブデン、リンおよびXを含む水性スラリーを乾燥したものを焼成する方法が挙げられる。水性スラリーの乾燥方法は特に限定されず、箱型乾燥機、噴霧乾燥機、ドラムドライヤー、スラリードライヤー等を用いる乾燥方法が使用できる。その際に得られる乾燥物(触媒前駆体)は成形を考慮して粉体状であることが好ましい。乾燥物はそのまま成形してもよいし、焼成した後に成形してもよい。成形方法としては特に限定されず、例えば、打錠成形、押出成形、造粒、担持等が挙げられる。担持触媒の担体としては、例えば、シリカ、アルミナ、シリカ・アルミナ、シリコンカーバイド等の不活性担体が挙げられる。成形に際しては、成形物の比表面積、細孔容積および細孔分布を制御したり、機械的強度を高めたりする目的で、例えば、硫酸バリウム、硝酸アンモニウム等の無機塩類、グラファイト等の滑剤、セルロース類、でんぷん、ポリビニルアルコール、ステアリン酸等の有機物、シリカゾル、アルミナゾル等の水酸化物ゾル、ウィスカー、ガラス繊維、炭素繊維等の無機質繊維等の添加剤を適宜添加してもよい。   As a specific method for preparing the catalyst, a method in which an aqueous slurry containing at least molybdenum, phosphorus and X is dried is calcined. The drying method of the aqueous slurry is not particularly limited, and a drying method using a box dryer, a spray dryer, a drum dryer, a slurry dryer, or the like can be used. The dried product (catalyst precursor) obtained at that time is preferably in the form of a powder in consideration of molding. The dried product may be molded as it is, or may be molded after firing. It does not specifically limit as a shaping | molding method, For example, tableting shaping | molding, extrusion molding, granulation, carrying | support etc. are mentioned. Examples of the supported catalyst carrier include inert carriers such as silica, alumina, silica / alumina, and silicon carbide. In the molding, for the purpose of controlling the specific surface area, pore volume and pore distribution of the molded product or increasing the mechanical strength, for example, inorganic salts such as barium sulfate and ammonium nitrate, lubricants such as graphite, celluloses, etc. Additives such as organic substances such as starch, polyvinyl alcohol and stearic acid, hydroxide sols such as silica sol and alumina sol, inorganic fibers such as whiskers, glass fibers and carbon fibers may be added as appropriate.

成形した成形体を焼成する場合、焼成は反応管に充填する前に行っても、反応管の中で行ってもよい。焼成条件は、用いる触媒の原料、触媒組成、調製条件等によって異なるので一概には言えないが、通常、空気等の酸素含有ガス流通下および/または不活性ガス流通下で300〜500℃、好ましくは300〜450℃で、0.5時間以上、好ましくは1〜40時間行われる。   When the molded body is fired, the firing may be performed before filling the reaction tube or in the reaction tube. The firing conditions vary depending on the raw material of the catalyst to be used, the catalyst composition, the preparation conditions, etc., and cannot generally be said, but usually 300 to 500 ° C., preferably under an oxygen-containing gas flow and / or an inert gas flow such as air. Is performed at 300 to 450 ° C. for 0.5 hour or longer, preferably 1 to 40 hours.

本発明では、触媒中にアンモニア根またはアンモニア根および硝酸根を導入するために、成形体の成形時に少なくとも1種のアンモニア根またはアンモニア根および硝酸根の前駆化合物を使用してもよい。   In the present invention, in order to introduce ammonia radicals or ammonia radicals and nitrate radicals into the catalyst, at least one ammonia root or ammonia radical and nitrate radical precursor compound may be used during molding of the molded article.

なお、反応器内に充填される一部の触媒層は、前記のアンモニア根含有量および/または硝酸根についての関係を満足する限り、アンモニア根および/または硝酸根を含まない触媒が充填された触媒層であってもよい。しかし、より長期にわたって安定にメタクリル酸を製造することができることから、全ての触媒層の触媒にはアンモニア根またはアンモニア根および硝酸根が含まれていることが好ましい。   Note that a part of the catalyst layer filled in the reactor was filled with a catalyst not containing ammonia and / or nitrate as long as the relationship with respect to the content of ammonia and / or nitrate was satisfied. It may be a catalyst layer. However, since methacrylic acid can be produced stably over a longer period of time, it is preferable that the catalyst of all catalyst layers contains ammonia radicals or ammonia radicals and nitrate radicals.

本発明のメタクリル酸の製造方法で反応を行う際の条件は特に限定されず、公知の反応条件を適用することができる。以下に、反応条件について説明する。   Conditions for carrying out the reaction in the method for producing methacrylic acid of the present invention are not particularly limited, and known reaction conditions can be applied. Below, reaction conditions are demonstrated.

触媒充填部に流通させる原料ガスは少なくともメタクロレインと分子状酸素を含有するものである。   The raw material gas circulated in the catalyst filling part contains at least methacrolein and molecular oxygen.

原料ガス中のメタクロレインの濃度は広い範囲で変えることができるが、1〜20容量%が好ましく、特に3〜10容量%が好ましい。原料のメタクロレインには、水、低級飽和アルデヒド等の実質的に反応に影響を与えない不純物が少量含まれている場合があるが、原料ガスにはこのようなメタクロレイン由来の不純物が含まれていてもよい。   The concentration of methacrolein in the raw material gas can be varied within a wide range, but is preferably 1 to 20% by volume, particularly preferably 3 to 10% by volume. The raw material methacrolein may contain a small amount of impurities that do not substantially affect the reaction, such as water, lower saturated aldehydes, etc., but the raw material gas contains such an impurity derived from methacrolein. It may be.

原料ガス中の分子状酸素の濃度はメタクロレインの0.4〜4倍モルが好ましく、特に0.5〜3倍モルが好ましい。原料ガスの分子状酸素源には空気を用いるのが工業的に有利であるが、必要に応じて純酸素で富化した空気も使用できる。また原料ガスは、窒素、炭酸ガス等の不活性ガス、水蒸気等で希釈されていることが好ましい。   The concentration of molecular oxygen in the raw material gas is preferably 0.4 to 4 times mol, more preferably 0.5 to 3 times mol of methacrolein. Although it is industrially advantageous to use air as the molecular oxygen source of the source gas, air enriched with pure oxygen can also be used if necessary. The source gas is preferably diluted with an inert gas such as nitrogen or carbon dioxide, water vapor or the like.

気相接触酸化の反応圧力は常圧〜数気圧である。反応温度は、通常200〜450℃、好ましくは250〜400℃である。原料ガスと触媒の接触時間は通常1.5〜15秒、好ましくは2〜7秒である。   The reaction pressure for gas phase catalytic oxidation is from atmospheric pressure to several atmospheres. The reaction temperature is usually 200 to 450 ° C., preferably 250 to 400 ° C. The contact time between the source gas and the catalyst is usually 1.5 to 15 seconds, preferably 2 to 7 seconds.

以下、本発明を実施例を用いて説明する。実施例および比較例中の「部」は質量部を意味する。メタクリル酸の製造における原料ガスと生成物の分析はガスクロマトグラフィーを用い、触媒中のアンモニア根の測定はケルダール法により、硝酸根の測定はイオンクロマトグラフィーを用いて行った。また、原料であるメタクロレインの転化率、生成したメタクリル酸の選択率および収率は以下のように定義される。
メタクロレイン転化率(%)=(B/A)×100
メタクリル酸選択率(%)=(C/B)×100
メタクリル酸単流収率(%)=(C/A)×100
ここで、Aは供給したメタクロレインのモル数、Bは反応したメタクロレインのモル数、Cは生成したメタクリル酸のモル数である。
Hereinafter, the present invention will be described using examples. “Parts” in Examples and Comparative Examples means parts by mass. In the production of methacrylic acid, the raw material gas and the product were analyzed by gas chromatography, the ammonia radical in the catalyst was measured by the Kjeldahl method, and the nitrate radical was measured by ion chromatography. Further, the conversion rate of the raw material methacrolein, the selectivity of the produced methacrylic acid and the yield are defined as follows.
Conversion rate of methacrolein (%) = (B / A) × 100
Methacrylic acid selectivity (%) = (C / B) × 100
Methacrylic acid single stream yield (%) = (C / A) × 100
Here, A is the number of moles of methacrolein supplied, B is the number of moles of reacted methacrolein, and C is the number of moles of methacrylic acid produced.

〔実施例1〕
パラモリブデン酸アンモニウム100部、メタバナジン酸アンモニウム4.4部および硝酸セシウム9.2部を純水300部に加熱溶解した。これに85質量%リン酸8.7部を純水10部に溶解した溶液、ついで三酸化アンチモン5.5部を加え、攪拌しながら95℃に昇温した後、硝酸銅1.1部を純水10部に溶解した溶液を加えた。更にこの混合液を95℃で15分間攪拌した後に加熱攪拌しながら蒸発乾固し、得られた固形物を130℃で16時間乾燥させた後に粉砕した。こうして得られた粉体100部にグラファイト3部を添加し、続いて打錠成形機により、外径5mm、内径2mm、長さ5mmのリング状に成形した。
[Example 1]
100 parts of ammonium paramolybdate, 4.4 parts of ammonium metavanadate and 9.2 parts of cesium nitrate were dissolved by heating in 300 parts of pure water. A solution obtained by dissolving 8.7 parts of 85% by mass phosphoric acid in 10 parts of pure water, then 5.5 parts of antimony trioxide was added, and the temperature was raised to 95 ° C. with stirring. A solution dissolved in 10 parts of pure water was added. The mixture was stirred at 95 ° C. for 15 minutes and then evaporated to dryness while stirring with heating. The obtained solid was dried at 130 ° C. for 16 hours and then pulverized. 3 parts of graphite was added to 100 parts of the powder thus obtained, and then formed into a ring shape having an outer diameter of 5 mm, an inner diameter of 2 mm, and a length of 5 mm by a tableting machine.

(触媒1の調製)
このようにして得られた成形体を空気焼成下に370℃で5時間焼成して「触媒1」を得た。触媒1の酸素原子とアンモニア根と硝酸根を除く組成は、
Mo121.60.8Cu0.1Sb0.8Cs1
であり、触媒単位質量部あたりに含まれるアンモニア根の平均値は0.0061部、硝酸根の平均値は0.000072部であった。
(Preparation of catalyst 1)
The molded body thus obtained was calcined at 370 ° C. for 5 hours under air calcining to obtain “Catalyst 1”. The composition of catalyst 1 excluding oxygen atoms, ammonia radicals and nitrate radicals is
Mo 12 P 1.6 V 0.8 Cu 0.1 Sb 0.8 Cs 1
The average value of ammonia radicals contained per part by mass of the catalyst was 0.0061 parts, and the average value of nitrate radicals was 0.000072 parts.

(触媒2の調製)
触媒1の調製と同様、前記成形工程で得られた成形体を空気焼成下に390℃で5時間焼成して「触媒2」を得た。触媒2の酸素原子とアンモニア根と硝酸根を除く組成は、
Mo121.60.8Cu0.1Sb0.8Cs1
と触媒1と同じであり、触媒単位質量部あたりに含まれるアンモニア根の平均値は0.0024部、硝酸根の平均値は0.000036部であった。
(Preparation of catalyst 2)
Similarly to the preparation of catalyst 1, the molded product obtained in the molding step was calcined at 390 ° C. for 5 hours under air calcining to obtain “catalyst 2”. The composition of catalyst 2 excluding oxygen atoms, ammonia radicals and nitrate radicals is
Mo 12 P 1.6 V 0.8 Cu 0.1 Sb 0.8 Cs 1
The average value of ammonia radicals contained per catalyst unit mass part was 0.0024 parts, and the average value of nitrate radicals was 0.000036 parts.

(メタクリル酸の製造)
内径14mmの反応管1本を有する固定床管型反応器を用いてメタクリル酸の製造を行った。反応管の原料ガス入口側には触媒1を10g、出口側には触媒2を10g充填し、メタクロレイン5容量%、酸素10容量%、水蒸気20容量%および窒素65容量%からなる原料ガスを反応温度290℃、接触時間3.6秒で通じた。結果を表1に示した。また、反応開始から2000時間までの期間の触媒層中における熱媒浴の温度と触媒層の温度との差の最大値(ΔTmax)は19℃であった。
(Production of methacrylic acid)
Methacrylic acid was produced using a fixed bed tubular reactor having one reaction tube with an inner diameter of 14 mm. 10 g of catalyst 1 is filled in the raw material gas inlet side of the reaction tube, and 10 g of catalyst 2 is filled in the outlet side. The reaction temperature was 290 ° C., and the contact time was 3.6 seconds. The results are shown in Table 1. In addition, the maximum value (ΔTmax) of the difference between the temperature of the heat medium bath in the catalyst layer and the temperature of the catalyst layer in the period from the start of the reaction to 2000 hours was 19 ° C.

〔実施例2〕
(触媒3の調製)
実施例1と同様にして得た成形体を空気焼成下に370℃で3時間焼成して「触媒3」を得た。触媒3の酸素原子とアンモニア根と硝酸根を除く組成は、
Mo121.60.8Cu0.1Sb0.8Cs1
と触媒1と同じであり、触媒単位質量部あたりに含まれるアンモニア根の平均値は0.0071部、硝酸根の平均値は0.000096部であった。
[Example 2]
(Preparation of catalyst 3)
A molded product obtained in the same manner as in Example 1 was calcined at 370 ° C. for 3 hours under air calcining to obtain “Catalyst 3”. The composition of catalyst 3 excluding oxygen atoms, ammonia radicals and nitrate radicals is
Mo 12 P 1.6 V 0.8 Cu 0.1 Sb 0.8 Cs 1
The average value of ammonia radicals contained per catalyst unit mass part was 0.0071 parts, and the average value of nitrate radicals was 0.000096 parts.

(触媒4の調製)
実施例1と同様にして得た成形体を空気焼成下に390℃で7時間焼成して「触媒4」を得た。触媒4の酸素原子とアンモニア根と硝酸根を除く組成は、
Mo121.60.8Cu0.1Sb0.8Cs1
と触媒1と同じであり、触媒単位質量部あたりに含まれるアンモニア根の平均値は0.0014部、硝酸根の平均値は0.000012部であった。
(Preparation of catalyst 4)
The molded body obtained in the same manner as in Example 1 was calcined at 390 ° C. for 7 hours under air calcining to obtain “Catalyst 4”. The composition of catalyst 4 excluding oxygen atoms, ammonia radicals and nitrate radicals is
Mo 12 P 1.6 V 0.8 Cu 0.1 Sb 0.8 Cs 1
The average value of ammonia radicals contained per catalyst unit mass part was 0.0014 parts, and the average value of nitrate radicals was 0.000012 parts.

(メタクリル酸の製造)
反応管の原料ガス入口側に触媒3を10g、出口側に触媒4を10g充填した以外は実施例1と同様にしてメタクリル酸の製造を行った。結果を表1に示した。また、このときの触媒層中におけるΔTmaxは23℃であった。
(Production of methacrylic acid)
Methacrylic acid was produced in the same manner as in Example 1 except that 10 g of the catalyst 3 was charged on the raw material gas inlet side of the reaction tube and 10 g of the catalyst 4 was charged on the outlet side. The results are shown in Table 1. Further, ΔTmax in the catalyst layer at this time was 23 ° C.

〔実施例3〕
(触媒5の調製)
実施例1と同様にして得た成形体を空気焼成下に380℃で3時間焼成して「触媒5」を得た。触媒5の酸素原子とアンモニア根と硝酸根を除く組成は、
Mo121.60.8Cu0.1Sb0.8Cs1
と触媒1と同じであり、触媒単位質量部あたりに含まれるアンモニア根の平均値は0.0049部、硝酸根の平均値は0.000063部であった。
Example 3
(Preparation of catalyst 5)
A molded body obtained in the same manner as in Example 1 was calcined at 380 ° C. for 3 hours under air calcining to obtain “Catalyst 5”. The composition of catalyst 5 excluding oxygen atoms, ammonia radicals and nitrate radicals is
Mo 12 P 1.6 V 0.8 Cu 0.1 Sb 0.8 Cs 1
The average value of ammonia radicals contained per catalyst unit mass part was 0.0049 parts, and the average value of nitrate radicals was 0.000063 parts.

(触媒6の調製)
実施例1と同様にして得た成形体を空気焼成下に380℃で7時間焼成して「触媒6」を得た。触媒6の酸素原子とアンモニア根と硝酸根を除く組成は、
Mo121.60.8Cu0.1Sb0.8Cs1
と触媒1と同じであり、触媒単位質量部あたりに含まれるアンモニア根の平均値は0.0036部、硝酸根の平均値は0.000045部であった。
(Preparation of catalyst 6)
A molded body obtained in the same manner as in Example 1 was calcined at 380 ° C. for 7 hours under air calcining to obtain “Catalyst 6”. The composition of catalyst 6 excluding oxygen atoms, ammonia radicals and nitrate radicals is
Mo 12 P 1.6 V 0.8 Cu 0.1 Sb 0.8 Cs 1
The average value of ammonia radicals contained per catalyst unit mass part was 0.0036 parts, and the average value of nitrate radicals was 0.000045 parts.

(メタクリル酸の製造)
反応管の原料ガス入口側に触媒5を10g、出口側に触媒6を10g充填した以外は実施例1と同様にしてメタクリル酸の製造を行った。結果を表1に示した。また、このときの触媒層中におけるΔTmaxは21℃であった。
(Production of methacrylic acid)
Methacrylic acid was produced in the same manner as in Example 1 except that 10 g of the catalyst 5 was charged on the raw material gas inlet side of the reaction tube and 10 g of the catalyst 6 was charged on the outlet side. The results are shown in Table 1. Further, ΔTmax in the catalyst layer at this time was 21 ° C.

〔比較例1〕
(触媒7の調製)
実施例1と同様にして得た成形体を空気焼成下に380℃で5時間焼成して「触媒7」を得た。触媒7の酸素原子とアンモニア根と硝酸根を除く組成は、
Mo121.60.8Cu0.1Sb0.8Cs1
と触媒1と同じであり、触媒単位質量部あたりに含まれるアンモニア根の平均値は0.0043部、硝酸根の平均値は0.000054部であった。
[Comparative Example 1]
(Preparation of catalyst 7)
A molded body obtained in the same manner as in Example 1 was calcined at 380 ° C. for 5 hours under air calcining to obtain “Catalyst 7”. The composition of catalyst 7, excluding oxygen atoms, ammonia radicals and nitrate radicals,
Mo 12 P 1.6 V 0.8 Cu 0.1 Sb 0.8 Cs 1
The average value of ammonia radicals contained per catalyst unit mass part was 0.0043 parts, and the average value of nitrate radicals was 0.000054 parts.

(メタクリル酸の製造)
反応管に触媒7のみを20g充填した以外は実施例1と同様にしてメタクリル酸の製造を行った。結果を表1に示した。また、このときの触媒層中におけるΔTmaxは33℃であった。
(Production of methacrylic acid)
Methacrylic acid was produced in the same manner as in Example 1 except that 20 g of catalyst 7 alone was charged in the reaction tube. The results are shown in Table 1. Further, ΔTmax in the catalyst layer at this time was 33 ° C.

〔比較例2〕
(メタクリル酸の製造)
反応管の原料ガス入口側に触媒2を10g、出口側に触媒1を10g充填した以外は実施例1と同様にしてメタクリル酸の製造を行った。結果を表1に示した。また、このときの触媒層中におけるΔTmaxは38℃であった。
[Comparative Example 2]
(Production of methacrylic acid)
Methacrylic acid was produced in the same manner as in Example 1 except that 10 g of catalyst 2 was charged on the raw material gas inlet side of the reaction tube and 10 g of catalyst 1 was charged on the outlet side. The results are shown in Table 1. Further, ΔTmax in the catalyst layer at this time was 38 ° C.

〔実施例4〕
(触媒8の調製)
三酸化モリブデン100部、五酸化バナジウム2.6部、85質量%リン酸6.7部を純水800部に加え、還流下で3時間加熱攪拌した。これに酸化銅1.4部を加え、さらに還流下で2時間加熱攪拌した。還流後の混合液を50℃に冷却し、硝酸カリウム7.1部を純水40部に溶解した溶液を加え、さらに硝酸アンモニウム14.7部を純水60部に溶解した溶液を加え、加熱攪拌しながら蒸発乾固した。得られた固形物を実施例1と同様の方法で乾燥および成形を施した。このようにして得られた成形体を空気焼成下に380℃で5時間焼成して「触媒8」を得た。触媒8の酸素原子とアンモニア根と硝酸根を除く組成は、
Mo1210.5Cu0.31.2
であり、触媒単位質量部あたりに含まれるアンモニア根の平均値は0.0060部、硝酸根の平均値は0.000052部であった。
Example 4
(Preparation of catalyst 8)
100 parts of molybdenum trioxide, 2.6 parts of vanadium pentoxide, and 6.7 parts of 85 mass% phosphoric acid were added to 800 parts of pure water, and the mixture was heated and stirred for 3 hours under reflux. To this, 1.4 parts of copper oxide was added, and the mixture was further heated and stirred under reflux for 2 hours. The mixture after reflux is cooled to 50 ° C., a solution in which 7.1 parts of potassium nitrate is dissolved in 40 parts of pure water is added, a solution in which 14.7 parts of ammonium nitrate is dissolved in 60 parts of pure water is added, and the mixture is stirred with heating. While evaporating to dryness. The obtained solid was dried and molded in the same manner as in Example 1. The molded body thus obtained was calcined at 380 ° C. for 5 hours under air calcining to obtain “Catalyst 8”. The composition of catalyst 8 excluding oxygen atoms, ammonia radicals and nitrate radicals is
Mo 12 P 1 V 0.5 Cu 0.3 K 1.2
The average value of ammonia radicals contained per catalyst unit mass part was 0.0060 parts, and the average value of nitrate radicals was 0.000052 parts.

(触媒9の調製)
前記、触媒8の調製において、硝酸アンモニウム14.7部を純水60部に溶解した溶液を、硝酸アンモニウム9.8部を純水40部に溶解した溶液に変更した以外は触媒8の調製と同様にして成形体を得た。このようにして得られた成形体を空気焼成下に390℃で5時間焼成して「触媒9」を得た。触媒9の酸素原子とアンモニア根と硝酸根を除く組成は、
Mo1210.5Cu0.31.2
と触媒8と同じであり、触媒単位質量部あたりに含まれるアンモニア根の平均値は0.0026部、硝酸根の平均値は0.000016部であった。
(Preparation of catalyst 9)
In the preparation of the catalyst 8, the same procedure as in the preparation of the catalyst 8 was performed except that a solution in which 14.7 parts of ammonium nitrate was dissolved in 60 parts of pure water was changed to a solution in which 9.8 parts of ammonium nitrate was dissolved in 40 parts of pure water. Thus, a molded body was obtained. The molded body thus obtained was calcined at 390 ° C. for 5 hours under air calcining to obtain “Catalyst 9”. The composition of catalyst 9 excluding oxygen atoms, ammonia radicals and nitrate radicals is
Mo 12 P 1 V 0.5 Cu 0.3 K 1.2
The average value of ammonia radicals contained per catalyst unit mass part was 0.0026 parts, and the average value of nitrate radicals was 0.000016 parts.

(メタクリル酸の製造)
反応管の原料ガス入口側に触媒8を8g、出口側に触媒9を12g充填し、反応温度を290℃から285℃に変更した以外は実施例1と同様にしてメタクリル酸の製造を行った。結果を表1に示した。また、このときの触媒層中におけるΔTmaxは21℃であった。
(Production of methacrylic acid)
Methacrylic acid was produced in the same manner as in Example 1 except that 8 g of catalyst 8 was charged on the raw material gas inlet side of the reaction tube and 12 g of catalyst 9 was charged on the outlet side, and the reaction temperature was changed from 290 ° C. to 285 ° C. . The results are shown in Table 1. Further, ΔTmax in the catalyst layer at this time was 21 ° C.

〔比較例3〕
(触媒10の調製)
実施例4中の触媒9の調製と同様にして得られた成形体を空気焼成下に380℃で5時間焼成して「触媒10」を得た。触媒12の酸素原子とアンモニア根と硝酸根を除く組成は、
Mo1210.5Cu0.31.2
と触媒8と同じであり、触媒単位質量部あたりに含まれるアンモニア根の平均値は0.0039部、硝酸根の平均値は0.000034部であった。
[Comparative Example 3]
(Preparation of catalyst 10)
A molded product obtained in the same manner as in the preparation of the catalyst 9 in Example 4 was calcined at 380 ° C. for 5 hours under air calcining to obtain “Catalyst 10”. The composition of the catalyst 12 excluding oxygen atoms, ammonia radicals and nitrate radicals is
Mo 12 P 1 V 0.5 Cu 0.3 K 1.2
The average value of the ammonia radicals contained per catalyst unit mass part was 0.0039 parts, and the average value of the nitrate radicals was 0.000034 parts.

(メタクリル酸の製造)
反応管に触媒10のみを20g充填した以外は実施例4と同様にしてメタクリル酸の製造を行った。結果を表1に示した。また、このときの触媒層中におけるΔTmaxは32℃であった。
(Production of methacrylic acid)
Methacrylic acid was produced in the same manner as in Example 4 except that 20 g of catalyst 10 alone was charged in the reaction tube. The results are shown in Table 1. Further, ΔTmax in the catalyst layer at this time was 32 ° C.

〔実施例5〕
パラモリブデン酸アンモニウム100部、メタバナジン酸アンモニウム2.8部および硝酸セシウム9.2部を純水400部に溶解した。これを攪拌しながら、85%リン酸8.2部を純水10部に溶解した溶液を加え、95℃に昇温した。次いで、硝酸銅3.4部、硝酸第二鉄7.6部、硝酸亜鉛1.4部および硝酸マグネシウム1.8部を純水80部に溶解した溶液を加えた。さらにこの混合液を100℃で30分間攪拌した。得られた水性スラリーを並流式噴霧乾燥機により、乾燥機入口温度300℃、スラリー噴霧用回転盤20000回転/分の条件で乾燥した。このようにして得られた乾燥物を実施例1と同様の方法で乾燥および成形を施した。
Example 5
100 parts of ammonium paramolybdate, 2.8 parts of ammonium metavanadate and 9.2 parts of cesium nitrate were dissolved in 400 parts of pure water. While stirring this, a solution prepared by dissolving 8.2 parts of 85% phosphoric acid in 10 parts of pure water was added, and the temperature was raised to 95 ° C. Next, a solution prepared by dissolving 3.4 parts of copper nitrate, 7.6 parts of ferric nitrate, 1.4 parts of zinc nitrate and 1.8 parts of magnesium nitrate in 80 parts of pure water was added. Further, this mixed solution was stirred at 100 ° C. for 30 minutes. The obtained aqueous slurry was dried by a co-current type spray dryer under the conditions of a dryer inlet temperature of 300 ° C. and a slurry spray rotating disk of 20000 rpm. The dried product thus obtained was dried and molded in the same manner as in Example 1.

(触媒11の調製)
このようにして得られた成形体を空気焼成下に370℃で5時間焼成して「触媒11」を得た。触媒11の酸素原子とアンモニア根と硝酸根を除く組成は、
Mo121.50.5Cu0.3Fe0.4Mg0.15Zn0.1Cs1
であり、触媒単位質量部あたりに含まれるアンモニア根の平均値は0.0051部、硝酸根の平均値は0.000046部であった。
(Preparation of catalyst 11)
The molded body thus obtained was calcined at 370 ° C. for 5 hours under air calcining to obtain “Catalyst 11”. The composition of catalyst 11 excluding oxygen atoms, ammonia radicals and nitrate radicals is
Mo 12 P 1.5 V 0.5 Cu 0.3 Fe 0.4 Mg 0.15 Zn 0.1 Cs 1
The average value of ammonia radicals contained per catalyst part by mass was 0.0051 parts, and the average value of nitrate radicals was 0.000046 parts.

(触媒12の調製)
触媒11の調製と同様、前記成形工程で得られた成形体を空気焼成下に390℃で5時間焼成して「触媒12」を得た。触媒12の酸素原子とアンモニア根と硝酸根を除く組成は、
Mo121.50.5Cu0.3Fe0.4Mg0.15Zn0.1Cs1
と触媒11と同じであり、触媒単位質量部あたりに含まれるアンモニア根の平均値は0.0022部、硝酸根の平均値は0.000022部であった。
(Preparation of catalyst 12)
Similar to the preparation of the catalyst 11, the molded body obtained in the molding step was calcined at 390 ° C. for 5 hours under air calcining to obtain “catalyst 12”. The composition of the catalyst 12 excluding oxygen atoms, ammonia radicals and nitrate radicals is
Mo 12 P 1.5 V 0.5 Cu 0.3 Fe 0.4 Mg 0.15 Zn 0.1 Cs 1
The average value of ammonia radicals contained per catalyst unit mass part was 0.0022 parts, and the average value of nitrate radicals was 0.000022 parts.

(メタクリル酸の製造)
反応管の原料ガス入口側に触媒11を12g、出口側に触媒12を8g充填した以外は実施例1と同様にしてメタクリル酸の製造を行った。結果を表1に示した。また、このときの触媒層中におけるΔTmaxは18℃であった。
(Production of methacrylic acid)
Methacrylic acid was produced in the same manner as in Example 1 except that 12 g of the catalyst 11 was charged on the raw material gas inlet side of the reaction tube and 8 g of the catalyst 12 was charged on the outlet side. The results are shown in Table 1. Further, ΔTmax in the catalyst layer at this time was 18 ° C.

〔比較例4〕
(触媒13の調製)
実施例5と同様にして得た成形体を空気焼成下に380℃で5時間焼成して「触媒13」を得た。触媒13の酸素原子とアンモニア根と硝酸根を除く組成は、
Mo121.50.5Cu0.3Fe0.4Mg0.15Zn0.1Cs1
と触媒11と同じであり、触媒単位質量部あたりに含まれるアンモニア根の平均値は0.0039部、硝酸根の平均値は0.000034部であった。
[Comparative Example 4]
(Preparation of catalyst 13)
A molded body obtained in the same manner as in Example 5 was calcined at 380 ° C. for 5 hours under air calcining to obtain “Catalyst 13”. The composition of catalyst 13 excluding oxygen atoms, ammonia radicals and nitrate radicals is
Mo 12 P 1.5 V 0.5 Cu 0.3 Fe 0.4 Mg 0.15 Zn 0.1 Cs 1
The average value of ammonia radicals contained per catalyst unit mass part was 0.0039 parts, and the average value of nitrate radicals was 0.000034 parts.

(メタクリル酸の製造)
反応管に触媒13のみを20g充填した以外は実施例1と同様にしてメタクリル酸の製造を行った。結果を表1に示した。また、このときの触媒層中におけるΔTmaxは29℃であった。
(Production of methacrylic acid)
Methacrylic acid was produced in the same manner as in Example 1 except that 20 g of catalyst 13 alone was charged in the reaction tube. The results are shown in Table 1. Further, ΔTmax in the catalyst layer at this time was 29 ° C.

〔実施例6〕
パラモリブデン酸アンモニウム100部を純水200部に70℃で溶解した。そこへメタバナジン酸アンモニウム2.8部、85質量%リン酸8.2部を純水30部に溶解した溶液、硝酸銅1.1部を純水30部に溶解した溶液および硝酸鉄3.8部を純水10部に溶解した溶液を順次加え、これを攪拌しながら90℃まで加熱し、液温を90℃に保ちつつ5時間攪拌し後に、硝酸セシウム9.2部を純水100部に溶解した溶液を加え、加熱攪拌しながら蒸発乾固し、得られた固形物を130℃で16時間乾燥させた後に粉砕した。こうして得られた粉体を実施例1と同様の方法で成形し、成形体を得た。
Example 6
100 parts of ammonium paramolybdate was dissolved in 200 parts of pure water at 70 ° C. The solution which melt | dissolved 2.8 parts of ammonium metavanadate, 8.2 parts of 85 mass% phosphoric acid in 30 parts of pure water, the solution which melt | dissolved 1.1 parts of copper nitrate in 30 parts of pure water, and iron nitrate 3.8 there. A solution prepared by dissolving 10 parts of pure water in 10 parts was sequentially added and heated to 90 ° C. while stirring. After stirring for 5 hours while maintaining the liquid temperature at 90 ° C., 9.2 parts of cesium nitrate was added to 100 parts of pure water. The solution dissolved in was added and evaporated to dryness with heating and stirring. The obtained solid was dried at 130 ° C. for 16 hours and then pulverized. The powder thus obtained was molded in the same manner as in Example 1 to obtain a molded body.

(触媒14の調製)
このようにして得られた成形体を空気焼成下に390℃で5時間焼成して「触媒14」を得た。触媒14の酸素原子とアンモニア根と硝酸根を除く組成は、
Mo121.50.5Cu0.1Fe0.2Cs1
であり、触媒層単位質量部あたりに含まれるアンモニア根の平均値は0.0027部、硝酸根の平均値は0.000024部であった。
(Preparation of catalyst 14)
The molded body thus obtained was calcined at 390 ° C. for 5 hours under air calcining to obtain “Catalyst 14”. The composition of catalyst 14 excluding oxygen atoms, ammonia radicals and nitrate radicals is
Mo 12 P 1.5 V 0.5 Cu 0.1 Fe 0.2 Cs 1
The average value of ammonia radicals contained per unit mass of catalyst layer was 0.0027 parts, and the average value of nitrate radicals was 0.000024 parts.

(メタクリル酸の製造)
反応管の原料ガスの入口側に触媒1を10g、出口側に触媒14を10g充填した以外は実施例1と同様にしてメタクリル酸の製造を行った。結果を表1に示した。また、このときの触媒層中におけるΔTmaxは20℃であった。
(Production of methacrylic acid)
Methacrylic acid was produced in the same manner as in Example 1 except that 10 g of catalyst 1 was charged on the inlet side of the raw material gas of the reaction tube and 10 g of catalyst 14 was charged on the outlet side. The results are shown in Table 1. Further, ΔTmax in the catalyst layer at this time was 20 ° C.

〔実施例7〕
(触媒15の調製)
実施例6と同様にして得た成形体を空気焼成下に370℃で5時間焼成して「触媒15」を得た。触媒15の酸素原子とアンモニア根と硝酸根を除く組成は、
Mo121.50.5Cu0.1Fe0.2Cs1
であり、触媒層単位質量部あたりに含まれるアンモニア根の平均値は0.0065部、硝酸根の平均値は0.000060部であった。
Example 7
(Preparation of catalyst 15)
A molded body obtained in the same manner as in Example 6 was calcined at 370 ° C. for 5 hours under air calcining to obtain “Catalyst 15”. The composition of catalyst 15 excluding oxygen atoms, ammonia radicals and nitrate radicals is
Mo 12 P 1.5 V 0.5 Cu 0.1 Fe 0.2 Cs 1
The average value of ammonia radicals contained per unit mass part of the catalyst layer was 0.0065 parts, and the average value of nitrate radicals was 0.000060 parts.

(メタクリル酸の製造)
反応管の原料ガスの入口側に触媒15を10g、出口側に触媒2を10g充填した以外は実施例1と同様にしてメタクリル酸の製造を行った。結果を表1に示した。また、このときの触媒層中におけるΔTmaxは18℃であった。
(Production of methacrylic acid)
Methacrylic acid was produced in the same manner as in Example 1 except that 10 g of the catalyst 15 was charged on the inlet side of the raw material gas of the reaction tube and 10 g of the catalyst 2 was charged on the outlet side. The results are shown in Table 1. Further, ΔTmax in the catalyst layer at this time was 18 ° C.

〔比較例5〕
(触媒16の調製)
実施例6と同様にして得た成形体を空気焼成下に380℃で5時間焼成して「触媒16」を得た。触媒16の酸素原子とアンモニア根と硝酸根を除く組成は、
Mo121.50.5Cu0.1Fe0.2Cs1
であり、触媒層単位質量部あたりに含まれるアンモニア根の平均値は0.0044部、硝酸根の平均値は0.000048部であった。
[Comparative Example 5]
(Preparation of catalyst 16)
A molded body obtained in the same manner as in Example 6 was calcined at 380 ° C. for 5 hours under air calcining to obtain “Catalyst 16”. The composition of catalyst 16 excluding oxygen atoms, ammonia radicals and nitrate radicals is
Mo 12 P 1.5 V 0.5 Cu 0.1 Fe 0.2 Cs 1
The average value of ammonia radicals contained per unit mass part of the catalyst layer was 0.0044 parts, and the average value of nitrate radicals was 0.000048 parts.

(メタクリル酸の製造)
反応管に触媒16のみを20g充填した以外は実施例1と同様にしてメタクリル酸の製造を行った。結果を表1に示した。また、このときの触媒層中におけるΔTmaxは35℃であった。
(Production of methacrylic acid)
Methacrylic acid was produced in the same manner as in Example 1 except that 20 g of catalyst 16 alone was charged in the reaction tube. The results are shown in Table 1. Further, ΔTmax in the catalyst layer at this time was 35 ° C.

〔実施例8〕
(触媒17の調製)
実施例1と同様にして得た成形体20gを実施例1と同様の反応管に充填した後、乾燥空気を接触時間10秒で供給しながら25℃/hrで380℃まで昇温し、そのまま5時間焼成して「触媒17」を得た。触媒17のアンモニア根と硝酸根を除く組成は、
Mo121.60.8Cu0.1Sb0.8Cs1
であった。
Example 8
(Preparation of catalyst 17)
After 20 g of the molded body obtained in the same manner as in Example 1 was filled in the same reaction tube as in Example 1, the temperature was raised to 380 ° C. at 25 ° C./hr while supplying dry air at a contact time of 10 seconds, and left as it was. Calcination was performed for 5 hours to obtain “Catalyst 17”. The composition of the catalyst 17 excluding the ammonia and nitrate radicals is
Mo 12 P 1.6 V 0.8 Cu 0.1 Sb 0.8 Cs 1
Met.

(メタクリル酸の製造)
焼成終了後反応器の温度を290℃まで降温した後、実施例1と同様の反応ガスを焼成時の空気供給とは逆向きに接触時間3.6秒で通じた。結果を表1に示した。また、このときの触媒層中におけるΔTmaxは22℃であった。
(Production of methacrylic acid)
After the completion of the firing, the temperature of the reactor was lowered to 290 ° C., and then the same reaction gas as in Example 1 was passed in a contact time of 3.6 seconds in the opposite direction to the air supply during firing. The results are shown in Table 1. Further, ΔTmax in the catalyst layer at this time was 22 ° C.

(アンモニア根および硝酸根の定量)
触媒17の調製と同様にして得た触媒を反応管より取り出した後にアンモニア根と硝酸根の定量を行った結果、基準位置よりも原料ガスの入口側(焼成ガスの出口側)に充填された触媒単位質量部あたりに含まれるアンモニア根の平均値は0.0054部、硝酸根の平均値は0.000068部であり、基準位置よりも原料ガスの出口側(焼成ガスの入口側)に充填された触媒単位質量部あたりに含まれるアンモニア根の平均値は0.0031部、硝酸根の平均値は0.000041部であった。
(Quantification of ammonia and nitrate radicals)
The catalyst obtained in the same manner as in the preparation of the catalyst 17 was taken out from the reaction tube, and then the ammonia and nitrate radicals were quantified. As a result, the raw material gas was filled on the inlet side (firing gas outlet side) from the reference position. The average value of ammonia radicals contained per catalyst part by mass is 0.0054 parts, and the average value of nitrate radicals is 0.000068 parts, filling the outlet side of the raw material gas (firing gas inlet side) from the reference position. The average value of ammonia radicals contained per mass part of the catalyst unit was 0.0031 parts, and the average value of nitrate radicals was 0.000041 parts.

〔比較例6〕
(触媒18の調製)
実施例1と同様にして得た成形体10gと実施例4の触媒8の調製と同様にして得た成形体9.3gを実施例1と同様の反応管に充填した後、乾燥空気を後者の成形体から前者の成形体が充填された方向に向かって接触時間10秒で供給しながら25℃/hrで380℃まで昇温し、そのまま8時間焼成して「触媒18」を得た。触媒18のアンモニア根と硝酸根を除く組成は、基準位置よりも焼成ガスの出口側(後のメタクリル酸製造における原料ガスの入口側)が、
Mo121.60.8Cu0.1Sb0.8Cs1
であり、焼成ガスの入口側(後のメタクリル酸製造における原料ガスの出口側)が、
Mo1210.5Cu0.31.2
であった。
[Comparative Example 6]
(Preparation of catalyst 18)
10 g of the molded body obtained in the same manner as in Example 1 and 9.3 g of the molded body obtained in the same manner as in the preparation of the catalyst 8 in Example 4 were filled in a reaction tube similar to that in Example 1, and then dry air was added to the latter. While being fed in the direction in which the former molded body was filled from the molded body of No. 1 with a contact time of 10 seconds, the temperature was raised to 380 ° C. at 25 ° C./hr and calcined for 8 hours to obtain “Catalyst 18”. The composition of the catalyst 18 excluding the ammonia and nitrate radicals is such that the outlet side of the calcined gas (the inlet side of the raw material gas in the subsequent production of methacrylic acid) from the reference position,
Mo 12 P 1.6 V 0.8 Cu 0.1 Sb 0.8 Cs 1
The inlet side of the firing gas (the outlet side of the raw material gas in the subsequent methacrylic acid production)
Mo 12 P 1 V 0.5 Cu 0.3 K 1.2
Met.

(メタクリル酸の製造)
焼成終了後反応器の温度を290℃まで降温した後、実施例1と同様の反応ガスを焼成時の空気供給とは逆向きに接触時間3.6秒で通じた。結果を表1に示した。また、このときの触媒層中におけるΔTmaxは30℃であった。
(Production of methacrylic acid)
After the completion of the firing, the temperature of the reactor was lowered to 290 ° C., and then the same reaction gas as in Example 1 was passed in a contact time of 3.6 seconds in the opposite direction to the air supply during firing. The results are shown in Table 1. Further, ΔTmax in the catalyst layer at this time was 30 ° C.

(アンモニア根および硝酸根の定量)
触媒18の調製と同様にして得た触媒を反応管より取り出した後にアンモニア根と硝酸根の定量を行った結果、基準位置よりも原料ガスの入口側(焼成ガスの出口側)に充填された触媒単位質量部あたりに含まれるアンモニア根の平均値は0.0044部、硝酸根の平均値は0.000058部であり、基準位置よりも原料ガスの出口側(焼成ガスの入口側)に充填された触媒単位質量部あたりに含まれるアンモニア根の平均値は0.0041部、硝酸根の平均値は0.000036部であった。
(Quantification of ammonia and nitrate radicals)
The catalyst obtained in the same manner as in the preparation of the catalyst 18 was taken out of the reaction tube and then the ammonia and nitrate radicals were quantified. As a result, the catalyst was filled on the source gas inlet side (firing gas outlet side) from the reference position. The average value of ammonia radicals contained per catalyst unit mass is 0.0044 parts, and the average value of nitrate radicals is 0.000058 parts, filling the raw material gas outlet side (firing gas inlet side) from the reference position. The average value of ammonia radicals contained per mass part of the catalyst unit was 0.0041 parts, and the average value of nitrate radicals was 0.000036 parts.

Figure 0004745653
Figure 0004745653

Claims (5)

触媒充填部が原料ガスの入口側から出口側に分割され、触媒単位質量部あたりに含まれるアンモニアおよび/またはアンモニウムイオンの含有量が異なる触媒が充填された複数の触媒層からなる固定床管型反応器を用いて、メタクロレインを分子状酸素で気相接触酸化するメタクリル酸の製造方法において、
触媒充填部に充填された触媒の量が、管軸方向に沿って、反応管あたりの全充填量の50質量%となる位置を基準位置とし、
基準位置より原料ガスの入口側に充填された触媒単位質量部あたりに含まれるアンモニアおよび/またはアンモニウムイオン含有量の平均値が0.02質量部以下であり、
基準位置より原料ガスの出口側に充填された触媒単位質量部あたりに含まれるアンモニアおよび/またはアンモニウムイオン含有量の平均値と、基準位置より原料ガスの入口側に充填された触媒単位質量部あたりに含まれるアンモニアおよび/またはアンモニウムイオン含有量の平均値の比が、質量比で1:α(1.3≦α≦10)であることを特徴とするメタクリル酸の製造方法。
Fixed bed tube type consisting of a plurality of catalyst layers in which the catalyst filling part is divided from the inlet side to the outlet side of the raw material gas and filled with catalysts having different contents of ammonia and / or ammonium ions contained per unit mass part of the catalyst In a method for producing methacrylic acid, in which methacrolein is vapor-phase catalytically oxidized with molecular oxygen using a reactor,
The reference position is a position where the amount of the catalyst filled in the catalyst filling portion is 50% by mass of the total filling amount per reaction tube along the tube axis direction,
The average value of the ammonia and / or ammonium ion content contained per unit mass part of the catalyst charged on the inlet side of the raw material gas from the reference position is 0.02 parts by mass or less,
The average value of the ammonia and / or ammonium ion content contained per unit mass part of the catalyst charged from the reference position to the outlet side of the raw material gas, and per unit mass part of the catalyst charged from the reference position to the inlet side of the raw material gas The ratio of the average value of ammonia and / or ammonium ion content contained in the methacrylic acid is 1: α (1.3 ≦ α ≦ 10) by mass ratio.
前記基準位置より原料ガスの出口側に充填された触媒単位質量部あたりに含まれるアンモニアおよび/またはアンモニウムイオンの含有量の平均値が0.0005〜0.01質量部であることを特徴とする請求項1記載のメタクリル酸の製造方法。   The average value of the content of ammonia and / or ammonium ions contained per unit mass of the catalyst charged on the outlet side of the raw material gas from the reference position is 0.0005 to 0.01 parts by mass. The method for producing methacrylic acid according to claim 1. 触媒充填部に充填された触媒の量が、管軸方向に沿って、反応管あたりの全充填量の50質量%となる位置を基準位置とし、
基準位置より原料ガスの入口側に充填された触媒単位質量部あたりに含まれる硝酸および/または硝酸イオン含有量の平均値が0.0003質量部以下であり、
基準位置より原料ガスの出口側に充填された触媒単位質量部あたりに含まれる硝酸および/または硝酸イオン含有量の平均値と、基準位置より原料ガスの入口側に充填された触媒単位質量部あたりに含まれる硝酸および/または硝酸イオン含有量の平均値の比が、質量比で1:β(1.1≦β≦10)であることを特徴とする請求項1または2記載のメタクリル酸の製造方法。
The reference position is a position where the amount of the catalyst filled in the catalyst filling portion is 50% by mass of the total filling amount per reaction tube along the tube axis direction,
The average value of nitric acid and / or nitrate ion content contained per unit mass part of the catalyst charged on the inlet side of the raw material gas from the reference position is 0.0003 parts by mass or less,
The average value of nitric acid and / or nitrate ion content contained per unit mass part of the catalyst charged from the reference position to the outlet side of the raw material gas, and per unit mass part of the catalyst charged from the reference position to the inlet side of the raw material gas The ratio of the average value of nitric acid and / or nitrate ion content contained in the methacrylic acid according to claim 1 or 2, wherein the mass ratio is 1: β (1.1 ≦ β ≦ 10). Production method.
前記基準位置より原料ガスの出口側に充填された触媒単位質量部あたりに含まれる硝酸および/または硝酸イオンの含有量の平均値が0.000001〜0.0001質量部であることを特徴とする請求項1〜3いずれかに記載のメタクリル酸の製造方法。   The average value of the content of nitric acid and / or nitrate ions contained per unit mass part of the catalyst charged on the outlet side of the raw material gas from the reference position is 0.000001 to 0.0001 parts by mass. The manufacturing method of methacrylic acid in any one of Claims 1-3. 触媒が下記式(1)の組成で表される複合酸化物であることを特徴とする請求項1〜4いずれかに記載のメタクリル酸の製造方法。
Moabcde (1)
(式中、Mo、PおよびOはそれぞれモリブデン、リンおよび酸素を表し、Xはカリウム、ルビジウム、セシウムおよびタリウムからなる群より選ばれた少なくとも1種の元素を表し、Yは鉄、コバルト、ニッケル、銅、亜鉛、マグネシウム、カルシウム、ストロンチウム、バリウム、チタン、バナジウム、クロム、タングステン、マンガン、銀、ホウ素、ケイ素、アルミニウム、ガリウム、ゲルマニウム、スズ、鉛、ヒ素、アンチモン、ビスマス、ニオブ、タンタル、ジルコニウム、インジウム、イオウ、セレン、テルル、ランタンおよびセリウムからなる群より選ばれた少なくとも1種の元素を表す。a、b、c、dは、a=12として、0.1≦b≦3、0.01≦c≦3、0≦d≦3を満足する各元素の原子比であり、eは前記a、b、c、dで表される各元素の前記原子比を満足するのに必要な酸素の原子比である。)
The method for producing methacrylic acid according to any one of claims 1 to 4, wherein the catalyst is a composite oxide represented by the composition of the following formula (1).
Mo a P b X c Y d O e (1)
(In the formula, Mo, P and O represent molybdenum, phosphorus and oxygen, respectively, X represents at least one element selected from the group consisting of potassium, rubidium, cesium and thallium, and Y represents iron, cobalt and nickel. , Copper, zinc, magnesium, calcium, strontium, barium, titanium, vanadium, chromium, tungsten, manganese, silver, boron, silicon, aluminum, gallium, germanium, tin, lead, arsenic, antimony, bismuth, niobium, tantalum, zirconium , Indium, sulfur, selenium, tellurium, lanthanum, and cerium represent at least one element selected from the group consisting of a, b, c, and d , a = 12, 0.1 ≦ b ≦ 3, 0 .01 ≦ c ≦ 3, atomic ratio of each element satisfying 0 ≦ d ≦ 3, e is a, (This is the atomic ratio of oxygen necessary to satisfy the atomic ratio of each element represented by b, c, and d .)
JP2004351326A 2003-12-05 2004-12-03 Method for producing methacrylic acid Active JP4745653B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004351326A JP4745653B2 (en) 2003-12-05 2004-12-03 Method for producing methacrylic acid

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2003407460 2003-12-05
JP2003407460 2003-12-05
JP2004351326A JP4745653B2 (en) 2003-12-05 2004-12-03 Method for producing methacrylic acid

Publications (2)

Publication Number Publication Date
JP2005187463A JP2005187463A (en) 2005-07-14
JP4745653B2 true JP4745653B2 (en) 2011-08-10

Family

ID=34797663

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004351326A Active JP4745653B2 (en) 2003-12-05 2004-12-03 Method for producing methacrylic acid

Country Status (1)

Country Link
JP (1) JP4745653B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4756890B2 (en) * 2005-03-29 2011-08-24 日本化薬株式会社 Catalyst for producing methacrylic acid and method for producing the same
JP2006314923A (en) 2005-05-12 2006-11-24 Nippon Kayaku Co Ltd Manufacturing method of catalyst for producing methacrylic acid
JP5030438B2 (en) * 2006-02-28 2012-09-19 三菱レイヨン株式会社 Method for producing catalyst and method for producing methacrylic acid
JP5107084B2 (en) * 2008-02-12 2012-12-26 三菱レイヨン株式会社 Method for producing methacrylic acid
KR20140099453A (en) * 2011-11-17 2014-08-12 닛뽄 가야쿠 가부시키가이샤 Catalyst for production of methacrylic acid and method for producing methacrylic acid using same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000070721A (en) * 1998-09-01 2000-03-07 Mitsubishi Rayon Co Ltd Production of methacrylic acid
JP2003171339A (en) * 2001-12-05 2003-06-20 Mitsubishi Rayon Co Ltd Method for producing methacrylic acid

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2574948B2 (en) * 1990-02-08 1997-01-22 株式会社日本触媒 Method for producing methacrylic acid
JP3465350B2 (en) * 1994-06-22 2003-11-10 住友化学工業株式会社 Method for producing catalyst for methacrylic acid production
JP3772389B2 (en) * 1996-05-10 2006-05-10 三菱化学株式会社 Method for producing oxidation catalyst and method for producing methacrylic acid

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000070721A (en) * 1998-09-01 2000-03-07 Mitsubishi Rayon Co Ltd Production of methacrylic acid
JP2003171339A (en) * 2001-12-05 2003-06-20 Mitsubishi Rayon Co Ltd Method for producing methacrylic acid

Also Published As

Publication number Publication date
JP2005187463A (en) 2005-07-14

Similar Documents

Publication Publication Date Title
JP3943284B2 (en) Acrylic acid production method
EP0450596B1 (en) Process for producing unsaturated aldehydes and unsaturated acids
JP5919870B2 (en) Method for producing acrylonitrile production catalyst and method for producing acrylonitrile using the acrylonitrile production catalyst
JP6674441B2 (en) Catalyst for producing unsaturated aldehyde and / or unsaturated carboxylic acid, method for producing the same, and method for producing unsaturated aldehyde and / or unsaturated carboxylic acid
US8586499B2 (en) Method for producing catalyst for preparation of methacrylic acid and method for preparing methacrylic acid
WO2017010159A1 (en) Method for producing unsaturated aldehyde and/or unsaturated carboxylic acid
JP5680373B2 (en) Catalyst and method for producing acrylic acid
JP7356923B2 (en) Method for producing heteropolyacid compound, method for producing heteropolyacid compound and methacrylic acid
JP4745653B2 (en) Method for producing methacrylic acid
JP5214500B2 (en) Method for producing catalyst for producing methacrylic acid and method for producing methacrylic acid
JP4200744B2 (en) Method for producing catalyst for producing methacrylic acid and method for producing methacrylic acid
JPH09299803A (en) Oxidation catalyst, manufacture thereof and preparation of methacrylic acid
JP5892826B2 (en) Method for producing methacrylic acid
JP3028327B2 (en) Method for producing methacrolein and methacrylic acid
JP3772392B2 (en) Composite oxide catalyst and method for producing methacrylic acid
JP5340732B2 (en) Method for producing methacrylic acid
JP5069152B2 (en) Unsaturated carboxylic acid synthesis catalyst, method for producing the same, and method for producing unsaturated carboxylic acid using the catalyst
JP2005058909A (en) Production method for catalyst for synthesizing methacrylic acid
JP3772389B2 (en) Method for producing oxidation catalyst and method for producing methacrylic acid
WO2012063771A1 (en) Catalyst for producing methacrolein and methacrylic acid, and process for production thereof
JP4301484B2 (en) Method for producing methacrylic acid
JP4895303B2 (en) Method for producing catalyst for producing methacrylic acid, catalyst for producing methacrylic acid, and method for producing methacrylic acid
JP2013086008A (en) Method for producing catalyst for producing methacrylic acid, and method for producing methacrylic acid
JP2013091016A (en) Method for producing catalyst for producing methacrylic acid, and method for producing methacrylic acid
JP5590382B2 (en) Process for producing unsaturated aldehyde and / or unsaturated carboxylic acid

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071113

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110202

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110404

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110426

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110512

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140520

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4745653

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140520

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140520

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140520

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250