JP3028327B2 - Method for producing methacrolein and methacrylic acid - Google Patents

Method for producing methacrolein and methacrylic acid

Info

Publication number
JP3028327B2
JP3028327B2 JP4357969A JP35796992A JP3028327B2 JP 3028327 B2 JP3028327 B2 JP 3028327B2 JP 4357969 A JP4357969 A JP 4357969A JP 35796992 A JP35796992 A JP 35796992A JP 3028327 B2 JP3028327 B2 JP 3028327B2
Authority
JP
Japan
Prior art keywords
catalyst
supported
catalytically active
reaction
active component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP4357969A
Other languages
Japanese (ja)
Other versions
JPH06192144A (en
Inventor
聖午 渡辺
仁 吉岡
眞人 大谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Chemical Corp
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp, Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Chemical Corp
Priority to JP4357969A priority Critical patent/JP3028327B2/en
Publication of JPH06192144A publication Critical patent/JPH06192144A/en
Application granted granted Critical
Publication of JP3028327B2 publication Critical patent/JP3028327B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、イソブチレン又は三級
ブタノールを分子状酸素により気相接触酸化してメタク
ロレイン及びメタクリル酸を製造する方法に関する。
The present invention relates to a method for producing methacrolein and methacrylic acid by subjecting isobutylene or tertiary butanol to gas-phase catalytic oxidation with molecular oxygen.

【0002】[0002]

【従来の技術】従来、イソブチレン又は三級ブタノール
を高温気相下で接触酸化してメタクロレイン及びメタク
リル酸を製造する際に用いられる触媒に関して、例えば
特開昭56−2926号公報、特開昭56−16134
1号公報、特開昭59−31727号公報、特開昭60
−28824号公報等数多くの提案がなされている。こ
れらは主として触媒を構成する成分及びその比率に関す
るものである。しかしながら、これらの公知の触媒を用
いて工業的にメタクロレイン及びメタクリル酸の製造を
実施する場合には種々の困難を伴う。
2. Description of the Related Art Conventionally, catalysts used for producing methacrolein and methacrylic acid by subjecting isobutylene or tertiary butanol to catalytic oxidation in a high-temperature gas phase are disclosed in, for example, JP-A-56-2926, 56-16134
No. 1, JP-A-59-31727, JP-A-60-31727
Many proposals have been made, such as Japanese Patent No. 28824. These mainly relate to the components constituting the catalyst and the ratio thereof. However, various difficulties are involved when industrially producing methacrolein and methacrylic acid using these known catalysts.

【0003】上記酸化反応は発熱反応であるため、触媒
層における蓄熱が大きい。工業的には目的生成物の生産
性を高める必要があるが、原料ガス中のイソブチレン又
は三級ブタノールの濃度を不用意に高めると、触媒層の
原料ガス入口部付近でホットスポット(局所的異常高温
帯)を生じ易い。一般に、ホットスポットが生じた場
合、逐次酸化が促進されることにより目的生成物収率が
低下することが多い。さらには、ホットスポットでは熱
負荷により触媒を変質劣化させてしまい、触媒寿命に多
大な悪影響を与えることもある。このため、原料ガス中
のイソブチレン又は三級ブタノールの濃度をある程度低
くするなど、反応条件にかなりの制約を受けているのが
現状である。
[0003] Since the above-mentioned oxidation reaction is an exothermic reaction, heat storage in the catalyst layer is large. Industrially, it is necessary to increase the productivity of the target product. However, if the concentration of isobutylene or tertiary butanol in the raw material gas is increased carelessly, hot spots (local abnormalities) near the raw material gas inlet of the catalyst layer will occur. (High temperature zone). In general, when a hot spot occurs, the sequential oxidation is promoted, and the yield of the target product often decreases. Furthermore, in a hot spot, the catalyst deteriorates and deteriorates due to a heat load, which may have a great adverse effect on the catalyst life. For this reason, at present, reaction conditions are considerably restricted, such as lowering the concentration of isobutylene or tertiary butanol in the raw material gas to some extent.

【0004】このホットスポットでの蓄熱を抑制するこ
とは工業的に高収率でメタクロレイン及びメタクリル酸
を製造する上でも、また、触媒の変質劣化を抑え長期間
にわたり安定した運転を可能とする上でも非常に重要で
ある。
[0004] Suppressing the heat storage at the hot spot enables the production of methacrolein and methacrylic acid in a high yield industrially, and also enables the stable operation for a long period of time by suppressing the deterioration of the catalyst. It is also very important above.

【0005】ホットスポットの発生防止策として、発熱
の大きな部分、具体的には原料ガス入口部付近の触媒を
不活性担体で希釈する方法は公知である。一般に、固定
床多管型反応器にて当反応を実施する場合、通常外径3
〜10mm程度の大きさを有する成型触媒又は担持触媒
が用いられる。これらの触媒体と不活性担体をむらなく
均一に混合することは非常に困難である。各反応管ごと
に触媒の希釈むらが生じた場合、各反応管ごとに発熱挙
動も異なるため、安定した運転が極めて難しくなる。し
たがって、工業的見地からこの用法はあまり好ましいと
はいえない。
As a measure for preventing the generation of hot spots, a method of diluting a catalyst which generates a large amount of heat, specifically, a catalyst near an inlet of a raw material gas, with an inert carrier is known. Generally, when the reaction is carried out in a fixed-bed multitubular reactor, the outer diameter is usually 3
A molded catalyst or a supported catalyst having a size of about 10 to 10 mm is used. It is very difficult to mix these catalyst bodies and the inert carrier uniformly. When uneven catalyst dilution occurs in each reaction tube, the heat generation behavior differs for each reaction tube, and therefore, stable operation becomes extremely difficult. Therefore, from an industrial point of view, this usage is not very favorable.

【0006】特開平3−200733号公報、同3−2
15441号公報及び同3−294238号公報には、
固定床多管型反応器を用いてイソブチレン又は三級ブタ
ノールを分子状酸素により気相接触酸化してメタクロレ
イン及びメタクリル酸を製造する方法において、触媒層
を分割して複数個の反応帯を設け、この複数個の反応帯
に、触媒構成元素の種類及び/又は比率及び触媒調製時
の焼成温度を変えることにより活性を調節した触媒を充
填して上記酸化反応を実施する方法が開示されている。
JP-A-3-200733 and 3-2
No. 15441 and 3-294238,
In a method for producing methacrolein and methacrylic acid by gas-phase catalytic oxidation of isobutylene or tertiary butanol with molecular oxygen using a fixed-bed multitubular reactor, a catalyst layer is divided to provide a plurality of reaction zones. A method is disclosed in which the plurality of reaction zones are filled with a catalyst whose activity is adjusted by changing the type and / or ratio of the constituent elements of the catalyst and the calcination temperature at the time of preparing the catalyst to carry out the oxidation reaction. .

【0007】しかし乍ら、一般に、触媒構成元素の種類
及び/又は比率又は調製時の焼成温度の異なる触媒は、
活性だけでなく選択性、触媒寿命等種々の性質において
も異なった挙動を示す。したがって、構成元素の種類及
び/又は比率を変えることにより触媒の活性を調節する
ためには、目的生成物選択率及び触媒寿命をある程度犠
牲にせざるを得ない。したがって、この方法ではホット
スポットの発生防止策としてはある程度の効果が望める
ものの、工業的に長期間にわたり高収率でメタクロレイ
ン及びメタクリル酸を製造する方法としては好ましい手
法ではない。
However, in general, catalysts having different types and / or ratios of the catalyst constituent elements or different calcination temperatures at the time of preparation,
It shows different behavior not only in activity but also in various properties such as selectivity and catalyst life. Therefore, in order to adjust the activity of the catalyst by changing the types and / or ratios of the constituent elements, the selectivity of the target product and the life of the catalyst have to be sacrificed to some extent. Therefore, although this method can be expected to have a certain effect as a measure for preventing the generation of hot spots, it is not a preferable method for industrially producing methacrolein and methacrylic acid in a high yield over a long period of time.

【0008】また、特開昭51−127013号公報に
は、プロピレン又はイソブチレンから不飽和アルデヒド
及び不飽和カルボン酸を製造する方法において、本質的
に同一組成からなる担持触媒と成型触媒を組み合わせて
用いる方法が開示されている。しかし、担持触媒と成型
触媒の両方を用いることは触媒の製造を煩雑にするばか
りでなく、触媒コストをも著しく増大させることにな
り、結果的には目的生成物である不飽和アルデヒド及び
不飽和カルボン酸の製造コストを高める要因となる。し
たがって、この方法を工業的に用いることは好ましくな
い。以上、説明したように今迄に知られた触媒、反応手
段は充分とは言い難く、触媒製造工程及び目的生成物製
造工程の実用性の点で工業的見地から更に改良が望まれ
ている。
JP-A-51-127003 discloses a method for producing an unsaturated aldehyde and an unsaturated carboxylic acid from propylene or isobutylene using a combination of a supported catalyst having essentially the same composition and a molded catalyst. A method is disclosed. However, the use of both a supported catalyst and a molded catalyst not only complicates the production of the catalyst, but also significantly increases the cost of the catalyst. As a result, the unsaturated aldehydes and unsaturated This is a factor that increases the production cost of the carboxylic acid. Therefore, it is not preferable to use this method industrially. As described above, the catalysts and reaction means known so far are hardly sufficient, and further improvement is desired from the industrial point of view in terms of practicability of the catalyst production process and the target product production process.

【0009】[0009]

【発明が解決しようとする課題】本発明は、イソブチレ
ン又は三級ブタノールからメタクロレイン及びメタクリ
ル酸を有利に合成するための製造法の提供を目的として
いる。
SUMMARY OF THE INVENTION The object of the present invention is to provide a process for the advantageous synthesis of methacrolein and methacrylic acid from isobutylene or tertiary butanol.

【0010】[0010]

【課題を解決するための手段】本発明は、固定床多管型
反応器を用いてイソブチレン又は第三級ブタノールを分
子状酸素により気相接触酸化してメタクロレイン及びメ
タクリル酸を製造する方法において、 (1)触媒として、一般式 Moa Bib Fec Ad Xe Yf Zg O
h (式中、Mo,Bi,Fe及びOはそれぞれモリブデ
ン、ビスマス、鉄及び酸素を表し、Aはニッケル及び/
又はコバルト、Xはマグネシウム、亜鉛、マンガン、ス
ズ及び鉛からなる群より選ばれた少なくとも1種の元
素、Yはリン、ホウ素、イオウ、テルル、ケイ素、セレ
ン、ゲルマニウム、セリウム、ニオブ、アルミニウム、
チタン、ジルコニウム、タングステン及びアンチモンか
らなる群から選ばれた少なくとも1種の元素、Zはカリ
ウム、ナトリウム、ルビジウム、セシウム及びタリウム
からなる群より選ばれた少なくとも1種の元素を示す。
但し、a,b,c,d,e,f,g及びhは各元素の原
子比を表し、a=12のとき、0.1≦b≦5,0.1
≦c≦5,1≦d≦12,0≦e≦10,0≦f≦1
0,0.01≦g≦3であり、hは前記各成分の原子価
を満足するのに必要な酸素原子数である。)で表される
複合酸化物からなる触媒活性成分を、不活性担体100
重量部に対し該触媒活性成分の担持量が10〜400重
量部となるように担持した担持触媒を使用し、 (2)各応管内の触媒層を管軸方向に2層以上に分割し
て設けた複数個の反応帯に、 (3)上記(1)の触媒において、担体単位重量に対す
る触媒活性成分の担持量を変更して調製した複数の担持
触媒を原料ガス入口部から出口部に向かって担持量がよ
り高くなるように充填して反応させることを特徴とする
メタクロレイン及びメタクリル酸の製造方法にある。
SUMMARY OF THE INVENTION The present invention relates to a method for producing methacrolein and methacrylic acid by gas phase catalytic oxidation of isobutylene or tertiary butanol with molecular oxygen using a fixed-bed multitubular reactor. (1) As a catalyst, a general formula Moa Bib Fec Ad Xe Yf Zg O
h (wherein, Mo, Bi, Fe and O represent molybdenum, bismuth, iron and oxygen, respectively, A represents nickel and / or
Or cobalt, X is at least one element selected from the group consisting of magnesium, zinc, manganese, tin and lead, Y is phosphorus, boron, sulfur, tellurium, silicon, selenium, germanium, cerium, niobium, aluminum,
Z represents at least one element selected from the group consisting of potassium, sodium, rubidium, cesium and thallium, and Z represents at least one element selected from the group consisting of titanium, zirconium, tungsten and antimony.
Here, a, b, c, d, e, f, g and h represent the atomic ratio of each element, and when a = 12, 0.1 ≦ b ≦ 5, 0.1
≤c≤5, 1≤d≤12, 0≤e≤10, 0≤f≤1
0,0.01 ≦ g ≦ 3, and h is the number of oxygen atoms necessary to satisfy the valence of each component. The catalytically active component comprising the composite oxide represented by
A supported catalyst supported such that the amount of the catalytically active component supported is 10 to 400 parts by weight with respect to parts by weight. (2) The catalyst layer in each tube is divided into two or more layers in the tube axis direction. In the plurality of reaction zones provided, (3) a plurality of supported catalysts prepared by changing the supported amount of the catalytically active component per unit weight of the carrier in the catalyst of (1) above from the raw material gas inlet to the outlet. And carrying out the reaction so as to increase the amount supported by the method, thereby producing methacrolein and methacrylic acid.

【0011】本発明において、触媒活性成分を構成する
元素の原料としては特に限定されるものではないが、通
常は酸化物又は強熱することにより酸化物になり得る塩
化物、水酸化物、硫酸塩、硝酸塩、炭酸塩、アンモニウ
ム塩又はそれらの混合物が用いられる。
In the present invention, the raw materials of the elements constituting the catalytically active component are not particularly limited, but are usually oxides or chlorides, hydroxides, sulfuric acids which can be turned into oxides by heating. Salts, nitrates, carbonates, ammonium salts or mixtures thereof are used.

【0012】本発明において、担体の種類については特
に限定はなく、シリカ、アルミナ、シリカ・アルミナ、
炭化ケイ素、ジルコニア、マグネシア、チタニア等の通
常の担体が用いられる。また、その形状についても特に
限定されるのもではなく、球状、円柱状、リング状、板
状等が挙げられる。
In the present invention, the type of the carrier is not particularly limited, and silica, alumina, silica-alumina,
Conventional carriers such as silicon carbide, zirconia, magnesia, and titania are used. Also, the shape is not particularly limited, and examples thereof include a sphere, a column, a ring, and a plate.

【0013】本発明において用いる触媒活性成分は、公
知の方法で調製される。一般に、不飽和アルデヒド及び
不飽和カルボン酸合成用触媒の触媒活性成分の調製法で
は、400〜600℃程度で熱処理する工程が含まれる
場合が多い。本発明では、このようにして得られた触媒
活性成分を担体に担持することにより担持触媒を製造し
ても良いし、また、熱処理前の触媒前駆体を担体に担持
した後、得られた担持体を該温度で熱処理することによ
り担持触媒を製造しても良い。
The catalytically active component used in the present invention is prepared by a known method. In general, a method for preparing a catalytically active component of a catalyst for synthesizing an unsaturated aldehyde and an unsaturated carboxylic acid often includes a step of performing a heat treatment at about 400 to 600 ° C. In the present invention, a supported catalyst may be produced by supporting the catalyst active component thus obtained on a carrier, or the catalyst precursor obtained before the heat treatment may be supported on a carrier, The supported catalyst may be produced by heat-treating the body at the temperature.

【0014】触媒活性成分を担体に担持する手段として
は特に限定されるものではなく、通常の含浸担持法、浸
漬担持法等が用いられる。また、担持量の比較的多いも
のを調製する場合、触媒活性成分又は触媒前駆体を液状
物に分散したスラリーを担体に付着させつつ、同時に該
液状物を気化蒸発させる方法が特に好ましい。ここで用
いられる液状物については特に限定はなく、水、アルコ
ール類、ケトン類、エステル類等加熱により容易に気化
蒸発し、かつ触媒に対して無害なものであれば良い。工
業的には水が特に好ましい。
The means for supporting the catalytically active component on the carrier is not particularly limited, and a usual impregnation-supporting method, immersion-supporting method or the like is used. In addition, in the case of preparing a material having a relatively large carrying amount, a method in which a slurry in which a catalyst active component or a catalyst precursor is dispersed in a liquid material is attached to a carrier and the liquid material is simultaneously vaporized and evaporated is particularly preferable. The liquid used here is not particularly limited, and may be water, alcohols, ketones, esters, etc., as long as they are easily vaporized and evaporated by heating and harmless to the catalyst. Water is particularly preferred industrially.

【0015】スラリーを担体に付着させつつ同時に液状
物を気化蒸発させる方法としては例えば、回転している
ドラム内で流動状態にある担体に該スラリーを振りかけ
又は吹きつけにより付着させ、同時にドラムの外部から
加熱するかもしくは担体へ直接熱風又は赤外線等を照射
することにより該液状物を気化蒸発させる方法が容易に
実施でき好ましい。また、この方法による場合、用いら
れる担体の形状は板状等よりも球状の方が好ましい。
As a method of simultaneously evaporating and evaporating a liquid material while attaching the slurry to the carrier, for example, the slurry is attached to the carrier in a flowing state in a rotating drum by spraying or spraying, and at the same time, externally of the drum. It is preferable to easily evaporate and evaporate the liquid material by heating the solution from above or directly irradiating the carrier with hot air or infrared rays. In this method, the shape of the carrier used is preferably spherical rather than plate-like.

【0016】さらに、触媒活性成分層の比表面積、細孔
容積及び細孔分布を再現性良く制御したり、機械的強度
を高めたりするために、硫酸バリウム、硝酸アンモニウ
ム等の無機塩類、セルロース類、でんぷん、ポリビニル
アルコール、ステアリン酸等の有機物、シリカゾル、ア
ルミナゾル等の水酸化物ゾル、ウィスカー、ガラス繊
維、炭素繊維等の無機質繊維等を適宜添加しても良い。
Further, in order to control the specific surface area, pore volume and pore distribution of the catalytically active component layer with good reproducibility and to increase mechanical strength, inorganic salts such as barium sulfate and ammonium nitrate, celluloses, etc. Organic substances such as starch, polyvinyl alcohol, and stearic acid, hydroxide sols such as silica sol and alumina sol, whiskers, glass fibers, and inorganic fibers such as carbon fibers may be appropriately added.

【0017】本発明は、各反応管内の触媒層を管軸方向
に2層以上に分割して設けた複数個の反応帯に担体単位
重量に対する触媒活性成分の担持量を変更して調製した
複数の担持触媒を原料ガス入口部から出口部に向かって
担持量がより高くなるように充填する。
According to the present invention, there are provided a plurality of reaction zones provided by dividing the catalyst layer in each reaction tube into two or more layers in the tube axis direction, by changing the amount of the catalytically active component supported per unit weight of the carrier. Is loaded so that the supported amount becomes higher from the raw material gas inlet toward the outlet.

【0018】一般に、担体単位重量に対する触媒活性成
分の担持量の異なる担持触媒を同種の触媒活性成分及び
担体を用いて同様の方法で調製した場合、得られる担持
触媒の単位重量あたりの触媒活性は触媒活性成分含有量
の増加、すなわち担持量の増加に伴い増加する。また、
担持触媒における触媒活性成分層の厚みも担持量の増加
に伴い増加する。
In general, when supported catalysts having different amounts of the catalytically active component supported per unit weight of the carrier are prepared by the same method using the same type of the catalytically active component and the carrier, the catalytic activity per unit weight of the obtained supported catalyst is as follows. It increases with an increase in the content of the catalytically active component, that is, with an increase in the supported amount. Also,
The thickness of the catalytically active component layer in the supported catalyst also increases as the amount of supported catalyst increases.

【0019】本発明では、担持量の異なる複数の担持触
媒を反応管内の原料ガス入口部から出口部に向かって担
持量がより高くなるように充填する。すなわち、活性が
最も低く、触媒活性成分層の厚みが最も小さい担持触媒
を入口部に、活性が最も高く、触媒活性成分層の厚みが
最も大きい担持触媒が出口部に配置される。入口部で
は、反応物質であるイソブチレン又は三級ブタノール濃
度が高いため、反応頻度が高くなりやすい。この部分に
比較的活性の低い触媒を配置することにより、酸化反応
による発熱を抑制することができる。さらに、この部分
に触媒活性成分層の薄い触媒を配置することにより、触
媒の除熱を促進し、蓄熱を抑える効果も期待される。一
方出口部側に担持量の高い触媒を配置することによりプ
ロセス全体としての触媒活性及び触媒寿命は十分実用的
な水準にまで達する。
In the present invention, a plurality of supported catalysts having different supported amounts are packed so that the supported amount becomes higher from the raw material gas inlet to the outlet in the reaction tube. That is, the supported catalyst having the lowest activity and the smallest thickness of the catalytically active component layer is disposed at the inlet, and the supported catalyst having the highest activity and the largest thickness of the catalytically active component layer is disposed at the outlet. At the inlet, the reaction frequency is likely to be high because the concentration of isobutylene or tertiary butanol as a reactant is high. By arranging a catalyst having relatively low activity in this portion, heat generation due to the oxidation reaction can be suppressed. Furthermore, by disposing a catalyst having a thin catalytically active component layer in this portion, it is expected that the heat removal of the catalyst is promoted and the heat storage is suppressed. On the other hand, by arranging a catalyst with a high loading on the outlet side, the catalyst activity and catalyst life as a whole process reach a sufficiently practical level.

【0020】不活性担体に対する触媒活性成分の担持量
としては、不活性担体100重量部に対して触媒活性成
分を10〜400重量部担持するのが好ましい。詳しく
は、原料ガス入口部に配置される触媒では、不活性担体
100重量部に対して触媒活性成分を10〜200重量
部、原料ガス出口部に配置される触媒では、不活性担体
100重量部に対して触媒活性成分を100〜400重
量部程度担持するのが好ましい。
The amount of the catalytically active component supported on the inert carrier is preferably 10 to 400 parts by weight of the catalytically active component per 100 parts by weight of the inert carrier. Specifically, in the case of the catalyst disposed at the raw material gas inlet, 10 to 200 parts by weight of the catalytically active component is used with respect to 100 parts by weight of the inert carrier. It is preferable that about 100 to 400 parts by weight of the catalytically active component is supported.

【0021】本発明において、反応管内の触媒層を管軸
方向に分割して設ける反応帯の数については、2〜4層
とすることが好ましい。反応帯の数を多くするほど、触
媒層の温度分布制御の効果は増すが、触媒の製造及び充
填が著しく煩雑になるため、4層を超える分割は好まし
くない。工業的には2〜4層に分割することにより十分
目的とする効果を得ることができる。また、分割比につ
いては、各層の触媒をいかなる担持量にするかによって
左右されるため一概に特定できず、全体として最適な活
性、選択率が得られるように適宜選択する。
In the present invention, the number of reaction zones provided by dividing the catalyst layer in the reaction tube in the tube axis direction is preferably 2 to 4 layers. As the number of reaction zones increases, the effect of controlling the temperature distribution of the catalyst layer increases, but the production and packing of the catalyst become extremely complicated, so that division exceeding four layers is not preferred. Industrially, the intended effect can be sufficiently obtained by dividing into two to four layers. In addition, the splitting ratio cannot be specified unconditionally because it depends on the amount of the catalyst in each layer, and is appropriately selected so as to obtain optimum activity and selectivity as a whole.

【0022】本発明の、イソブチレン又は三級ブタノー
ルを分子状酸素により気相接触酸化して、メタクロレイ
ン及びメタクリル酸を製造するに際しては、イソブチレ
ン又は三級ブタノール対酸素のモル比は1:0.5〜3
が好ましい。原料のイソブチレン又は三級ブタノールは
不活性ガスで希釈して用いることが好ましい。酸化に用
いられる分子状酸素は純酸素ガスでも良いが、工業的に
は空気が有利である。反応圧力は常圧ないし数気圧まで
用いられる。反応温度は200〜450℃の範囲が好ま
しい。
In the production of methacrolein and methacrylic acid by gas-phase catalytic oxidation of isobutylene or tertiary butanol with molecular oxygen according to the present invention, the molar ratio of isobutylene or tertiary butanol to oxygen is 1: 0. 5-3
Is preferred. It is preferable that the raw material isobutylene or tertiary butanol is diluted with an inert gas before use. The molecular oxygen used for the oxidation may be pure oxygen gas, but air is industrially advantageous. The reaction pressure is from normal pressure to several atmospheres. The reaction temperature is preferably in the range of 200 to 450 ° C.

【0023】[0023]

【実施例】本発明の実施例を以下に示す。説明文中の
「部」は重量部を意味し、また、分析はクロマトグラフ
ィーにより行った。反応用原料としてのイソブチレン又
は三級ブタノールの反応率、生成されるメタクロレイン
及びメタクリル酸の選択率及びΔTは以下のように定義
される。
Embodiments of the present invention will be described below. "Parts" in the description means parts by weight, and the analysis was performed by chromatography. The conversion of isobutylene or tertiary butanol as a raw material for the reaction, the selectivity of methacrolein and methacrylic acid to be produced, and ΔT are defined as follows.

【0024】[0024]

【数1】 (Equation 1)

【数2】 (Equation 2)

【数3】 (Equation 3)

【数4】 (Equation 4)

【0025】実施例1 水6000部に、パラモリブデン酸アンモニウム300
0部、硝酸セシウム165.6部、酸化スズ19.1
部、二酸化ケイ素85.1部、二酸化チタン1.1部及
び三酸化アンチモン103.2部を加え加熱撹拌した
(A液)。別に、水5000部に60%硝酸450部を
加え、均一にした後、硝酸ビスマス618.2部を加え
溶解した。これに硝酸第二鉄1430.2部、硝酸ニッ
ケル823.3部、硝酸コバルト2059.9部、硝酸
マグネシウム290.5部及び硝酸セリウム12.3部
を順次加え溶解した(B液)。A液にB液を加えスラリ
ー状とした後、加熱撹拌し水の大部分を蒸発させた。得
られたケーキ状物質を120℃で10時間乾燥した後、
500℃で5時間焼成し、24メッシュ以下に粉砕し
た。
EXAMPLE 1 300 parts of ammonium paramolybdate were added to 6000 parts of water.
0 parts, 165.6 parts of cesium nitrate, 19.1 parts of tin oxide
, 85.1 parts of silicon dioxide, 1.1 parts of titanium dioxide and 103.2 parts of antimony trioxide, and the mixture was heated and stirred (Solution A). Separately, 450 parts of 60% nitric acid was added to 5000 parts of water to make the mixture uniform, and then 618.2 parts of bismuth nitrate was added and dissolved. 1430.2 parts of ferric nitrate, 823.3 parts of nickel nitrate, 2059.9 parts of cobalt nitrate, 290.5 parts of magnesium nitrate and 12.3 parts of cerium nitrate were sequentially added and dissolved (solution B). The solution B was added to the solution A to form a slurry, which was then heated and stirred to evaporate most of the water. After drying the obtained cake-like substance at 120 ° C. for 10 hours,
It was baked at 500 ° C. for 5 hours and pulverized to 24 mesh or less.

【0026】こうして得られた触媒活性成分の組成は次
式で示される。 Mo12Bi0.9Fe2.5NiCoMg0.8
Sn0.1SiCe0.02 Ti0.01Sb0.5Cs0.6Ox (式中、Mo,Bi,Fe,Ni,Co,Mg,Sn,
Si,Ce,Ti,Sb,Cs及びOはそれぞれモリブ
デン、ビスマス、鉄、ニッケル、コバルト、マグネシウ
ム、スズ、ケイ素、セリウム、チタン、アンチモン、セ
シウム及び酸素を表す。また、元素記号右部の数字は各
元素の原子比であり、Xは前記各成分の原子価を満足す
るのに必要な酸素原子数である。)水450部に得られ
た触媒活性成分300部及び平均直径10μm、平均長
さ約200μmのガラス繊維21部を混合し、均一なス
ラリー状にした(スラリーC)。直径5mmの球状アル
ミナ担体1000部を、回転しているドラム内で流動さ
せながら、該担体にスラリーCをスプレーを用いて徐々
に吹きつけ、同時にドラム外部からガスバーナーにより
加熱し、水分を気化蒸発させた。スラリーC全量の吹き
つけが終了した後、得られた担持体をさらに130℃で
3時間乾燥して触媒(1)を得た。
The composition of the thus obtained catalytically active component is as follows:
It is shown by the formula. Mo12Bi0.9Fe2.5Ni2Co5Mg0.8
Sn0.1Si1Ce0.02  Ti0.01Sb0.5Cs0.6Ox (where Mo, Bi, Fe, Ni, Co, Mg, Sn,
Si, Ce, Ti, Sb, Cs and O are each molybdenum
Den, bismuth, iron, nickel, cobalt, magnesium
, Tin, silicon, cerium, titanium, antimony,
Represents calcium and oxygen. The numbers on the right side of the element symbols are
X is the atomic ratio of the elements, and X satisfies the valence of each component.
Is the number of oxygen atoms required to ) Obtained in 450 parts of water
300 parts of catalyst active ingredient and average diameter 10 μm, average length
Mix 21 parts of glass fiber of about 200 μm
It was made into a rally (slurry C). Spherical Al with a diameter of 5mm
1000 parts of the mina carrier are fluidized in the rotating drum.
And slowly apply the slurry C to the carrier using a spray.
At the same time as the gas burner from outside the drum
Heat was applied to evaporate the water. Spraying the entire amount of slurry C
After the setting is completed, the obtained support is further heated at 130 ° C.
After drying for 3 hours, catalyst (1) was obtained.

【0027】次に、水1200部に上記で得られた触媒
活性成分800部及び平均直径10μm、平均長さ約2
00μmのガラス繊維56部を混合し、均一なスラリー
状にした(スラリーD)。直径5mmの球状アルミナ坦
体1000部を、回転しているドラム内で流動させなが
ら、該担体にスラリーDをスプレーを用いて徐々に吹き
つけ、同時にドラム外部からガスバーナーにより加熱
し、水分を気化蒸発させた。スラリーD全量の吹きつけ
が終了した後、得られた担持体をさらに130℃で3時
間乾燥して触媒(2)を得た。
Next, 800 parts of the catalyst active component obtained above, an average diameter of 10 μm and an average length of about 2 parts were added to 1200 parts of water.
56 parts of 00 μm glass fibers were mixed to form a uniform slurry (slurry D). While flowing 1000 parts of a spherical alumina carrier having a diameter of 5 mm in a rotating drum, slurry D is gradually sprayed on the carrier using a spray, and at the same time, the water is vaporized by heating from the outside of the drum by a gas burner. Evaporated. After spraying the entire amount of the slurry D was completed, the obtained support was further dried at 130 ° C. for 3 hours to obtain a catalyst (2).

【0028】別に、水3000部に上記で得られた触媒
活性成分2000部及び平均直径10μm、平均長さ約
200μmのガラス繊維140部を混合し、均一なスラ
リー状にした(スラリーE)。直径5mmの球状アルミ
ナ坦体1000部を、回転しているドラム内で流動させ
ながら、該担体にスラリーEをスプレーを用いて徐々に
吹きつけ、同時にドラム外部からガスバーナーにより加
熱し、水分を気化蒸発させた。スラリーE全量の吹きつ
けが終了した後、得られた担持体をさらに130℃で3
時間乾燥して触媒(3)を得た。触媒(1),(2)及
び(3)の触媒活性成分の組成及び担体単位重量に対す
る触媒活性成分の担持量を表1に再記する。
Separately, 3000 parts of water were mixed with 2000 parts of the catalytically active component obtained above and 140 parts of glass fibers having an average diameter of 10 μm and an average length of about 200 μm to form a uniform slurry (slurry E). While flowing 1000 parts of a spherical alumina carrier having a diameter of 5 mm in a rotating drum, a slurry E is gradually sprayed on the carrier by using a spray, and at the same time, the water is vaporized by heating from the outside of the drum by a gas burner. Evaporated. After the spraying of the entire amount of the slurry E was completed, the obtained support was further cooled at 130 ° C. for 3 hours.
After drying for an hour, catalyst (3) was obtained. Table 1 shows the composition of the catalytically active components of the catalysts (1), (2) and (3) and the amount of the catalytically active components carried per unit weight of the carrier.

【0029】直径25.4mmのステンレス製反応器の
原料ガス入口部に触媒(1)300mlを充填し、反応
器中央部に触媒(2)400mlを充填し、原料ガス出
口部に触媒(3)を500ml充填した。上記反応器入
口からイソブチレン5容量%、酸素12容量%、水蒸気
10容量%及び窒素73容量%の原料混合ガスを導入
し、反応温度345℃、空間速度1400hr−1で反
応を行った。結果を表2に示す。
A stainless steel reactor having a diameter of 25.4 mm is charged with 300 ml of catalyst (1) at the inlet of raw material gas, 400 ml of catalyst (2) at the center of the reactor, and catalyst (3) at outlet of raw material gas. Was charged to 500 ml. A raw material mixture gas containing 5% by volume of isobutylene, 12% by volume of oxygen, 10% by volume of steam and 73% by volume of nitrogen was introduced from the inlet of the reactor, and the reaction was carried out at a reaction temperature of 345 ° C. and a space velocity of 1400 hr −1 . Table 2 shows the results.

【0030】比較例1 実施例1において、触媒(1)のみを1200ml充填
した外は実施例1と同様に反応を行った。結果を表2に
示す。 比較例2 実施例1において、触媒(2)のみを1200ml充填
した外は実施例1と同様に反応を行った。結果を表2に
示す。 比較例3 実施例1において、触媒(3)のみを1200ml充填
した外は実施例1と同様に反応を行った。結果を表2に
示す。
Comparative Example 1 A reaction was carried out in the same manner as in Example 1, except that only 1200 ml of the catalyst (1) was charged. Table 2 shows the results. Comparative Example 2 A reaction was carried out in the same manner as in Example 1, except that only 1200 ml of the catalyst (2) was charged. Table 2 shows the results. Comparative Example 3 A reaction was carried out in the same manner as in Example 1 except that only 1200 ml of the catalyst (3) was charged. Table 2 shows the results.

【0031】実施例1及び比較例1〜3の結果から、触
媒(1)は活性が著しく低く、触媒(2)もやや低活性
であり、一方触媒(3)では活性は十分に高いが、反応
温度とホットスポット部温度の差(ΔT)が非常に大き
くなるため、選択率の低下が著しく、結局いずれにおい
ても合計単流収率が低いのに対し、これら触媒(1)、
(2)及び(3)を組み合わせた本発明の方法において
は目的とするメタクロレイン及びメタクリル酸が高収率
で得られることがわかる。
From the results of Example 1 and Comparative Examples 1 to 3, the activity of the catalyst (1) is remarkably low, and the activity of the catalyst (2) is slightly lower, while the activity of the catalyst (3) is sufficiently high. Since the difference (ΔT) between the reaction temperature and the hot spot temperature becomes very large, the selectivity is remarkably reduced, and the total single stream yield is low in any case.
It can be seen that the desired methacrolein and methacrylic acid can be obtained in high yield in the method of the present invention combining (2) and (3).

【0032】実施例2 表1に示す触媒活性成分組成及び担体単位重量に対する
触媒活性成分の担持量を有する触媒(4)及び(5)を
実施例1と同様にして調製した。直径25.4mmのス
テンレス製反応器の原料ガス入口部に触媒(4)400
mlを充填し、原料ガス出口部に触媒(5)800ml
を充填し、反応器入口から三級ブチルアルコール5容量
%、酸素12容量%、水蒸気10容量%及び窒素73容
量%の原料混合ガスを導入し、反応温度345℃、空間
速度1400hr−1で反応を行った。結果を表3に示
す。
Example 2 Catalysts (4) and (5) having the catalytically active component composition shown in Table 1 and the amount of the catalytically active component supported per unit weight of the carrier were prepared in the same manner as in Example 1. The catalyst (4) 400 was placed at the raw material gas inlet of a stainless steel reactor having a diameter of 25.4 mm.
of the catalyst (5) at the outlet of the raw material gas.
And a raw material mixed gas of tertiary butyl alcohol 5% by volume, oxygen 12% by volume, steam 10% by volume and nitrogen 73% by volume is introduced from the reactor inlet, and the reaction is performed at a reaction temperature of 345 ° C. and a space velocity of 1400 hr −1 . Was done. Table 3 shows the results.

【0033】比較例4 実施例2と同組成の触媒活性成分を用い、実施例2と同
様にして、触媒(6)を調製した。この触媒の担体単位
重量に対する触媒活性成分の担持量を表1に示す。実施
例2において触媒(6)のみを1200ml充填した外
は実施例2と同様に反応を行った。結果を表3に示す。 実施例3 表1に示す触媒活性成分組成及び担体単位重量に対する
触媒活性成分の担持量を有する触媒(7)及び触媒
(8)を実施例1と同様にして調製した。直径25.4
mmのステンレス製反応器の原料ガス入口部に触媒
(7)600mlを充填し、原料ガス出口部に触媒
(8)600mlを充填し、続いて、実施例1と同様に
して反応を行った。結果を表2に示す。
Comparative Example 4 A catalyst (6) was prepared in the same manner as in Example 2 except that a catalytically active component having the same composition as in Example 2 was used. Table 1 shows the amount of the catalytically active component carried per unit weight of the catalyst. The reaction was carried out in the same manner as in Example 2 except that only 1200 ml of the catalyst (6) was charged in Example 2. Table 3 shows the results. Example 3 A catalyst (7) and a catalyst (8) having the catalytically active component composition and the amount of the catalytically active component supported per unit weight of the carrier shown in Table 1 were prepared in the same manner as in Example 1. Diameter 25.4
A 600 mm catalyst (7) was charged into the raw material gas inlet of a stainless steel reactor having a diameter of 200 mm, and a 600 ml catalyst (8) was charged into the raw material gas outlet. Subsequently, the reaction was carried out in the same manner as in Example 1. Table 2 shows the results.

【0034】比較例5 実施例3において触媒(8)のみを1200ml充填し
た外は実施例3と同様に反応を行った。結果を表2に示
す。 実施例4 実施例3において、反応を5000時間まで長期にわた
って行った外は実施例3と同様にして反応を行った。結
果を表2に示す。 比較例6 比較例5において、反応を5000時間まで長期にわた
って行った外は比較例5と同様にして反応を行った。結
果を表2に示す。
Comparative Example 5 A reaction was carried out in the same manner as in Example 3 except that only 1200 ml of the catalyst (8) was charged. Table 2 shows the results. Example 4 A reaction was carried out in the same manner as in Example 3 except that the reaction was carried out for a long period of time up to 5000 hours. Table 2 shows the results. Comparative Example 6 The reaction was performed in the same manner as in Comparative Example 5, except that the reaction was performed for a long period of time up to 5000 hours. Table 2 shows the results.

【0035】実施例3、4及び比較例5、6の結果か
ら、本発明の方法によれば、ΔTが非常に低いため、触
媒活性の経時劣化が少なく、5000時間反応後でも活
性低下は非常に僅かであり、収率の低下はほとんどな
い。したがって、本発明の方法によれば、長期にわたり
安定した連続運転を行うことができる。
From the results of Examples 3 and 4 and Comparative Examples 5 and 6, according to the method of the present invention, since ΔT is very low, the deterioration of the catalyst activity with time is small, and even after 5000 hours of reaction, the activity decreases very much. And the yield is hardly reduced. Therefore, according to the method of the present invention, stable continuous operation can be performed for a long time.

【0036】実施例5 実施例1と同様にして触媒(9)、(10)及び(1
1)を調製した。これらの触媒活性成分の組成及び担体
単位重量に対する触媒活性成分の担持量を表1に示す。
直径25.4mmのステンレス製反応器の原料ガス入口
部に上記触媒(9)300mlを充填し、反応器中央部
に上記触媒(10)400mlを充填し、原料ガス出口
部に上記触媒(11)500mlを充填し、続いて、実
施例1と同様にして反応を行った。結果を表2に示す。
Example 5 In the same manner as in Example 1, the catalysts (9), (10) and (1)
1) was prepared. Table 1 shows the composition of these catalytically active components and the amount of the catalytically active components carried per unit weight of the carrier.
A stainless steel reactor having a diameter of 25.4 mm is charged with 300 ml of the catalyst (9) at the inlet of the raw material gas, 400 ml of the catalyst (10) at the center of the reactor, and the catalyst (11) at the outlet of the raw gas. 500 ml was charged, and the reaction was carried out in the same manner as in Example 1. Table 2 shows the results.

【0037】実施例6 実施例5において原料混合ガス中のイソブチレン及び窒
素の濃度をそれぞれ6容量%及び72容量%に変更した
外は実施例5と同様にして反応を行った。結果を表2に
示す。 比較例7 実施例5において、触媒(10)のみを1200ml充
填した外は実施例5と同様に反応を行った。結果を表2
に示す。
Example 6 A reaction was carried out in the same manner as in Example 5 except that the concentrations of isobutylene and nitrogen in the raw material mixed gas were changed to 6% by volume and 72% by volume, respectively. Table 2 shows the results. Comparative Example 7 A reaction was carried out in the same manner as in Example 5, except that only 1200 ml of the catalyst (10) was charged. Table 2 shows the results
Shown in

【0038】比較例8 実施例6において、触媒(10)のみを1200ml充
填した外は実施例6と同様に反応を行った。結果を表2
に示す。実施例5、6及び比較例7、8の結果から、本
発明の方法によれば、ΔTが低く抑えられるため、イソ
ブチレンの濃度を上げた場合の収率の低下が非常に少な
いことがわかる。 実施例7 実施例1と同様にして、触媒(12)及び(13)を調
製した。これらの触媒活性成分の組成及び担体単位重量
に対する触媒活性成分の担持量を表1に示す。直径2
5.4mmのステンレス製反応器の原料ガス入口部に上
記触媒(12)500mlを充填し、原料ガス出口部に
上記触媒(13)700mlを充填し、続いて、実施例
1と同様にして反応を行った。結果を表2に示す。
Comparative Example 8 A reaction was carried out in the same manner as in Example 6, except that only 1200 ml of the catalyst (10) was charged. Table 2 shows the results
Shown in From the results of Examples 5 and 6 and Comparative Examples 7 and 8, it can be seen that according to the method of the present invention, since ΔT is suppressed to a low level, the decrease in the yield when the concentration of isobutylene is increased is extremely small. Example 7 In the same manner as in Example 1, catalysts (12) and (13) were prepared. Table 1 shows the composition of these catalytically active components and the amount of the catalytically active components carried per unit weight of the carrier. Diameter 2
A 5.4 mm stainless steel reactor was charged with 500 ml of the catalyst (12) at the raw material gas inlet and 700 ml of the catalyst (13) at the raw gas outlet, and then reacted in the same manner as in Example 1. Was done. Table 2 shows the results.

【0039】比較例9 実施例7において、反応器の原料ガス入口部に上記触媒
(13)700mlを充填し、原料ガス出口部に上記触
媒(12)500mlを充填した外は実施例7と同様に
して反応を行った。結果を表2に示す。
Comparative Example 9 Same as Example 7 except that the reactor was charged with 700 ml of the catalyst (13) at the raw material gas inlet and 500 ml of the catalyst (12) at the raw gas outlet. The reaction was carried out. Table 2 shows the results.

【0040】[0040]

【表1】 [Table 1]

【0041】[0041]

【表2】 [Table 2]

【0042】[0042]

【表3】 [Table 3]

【0043】[0043]

【発明の効果】本発明によれば(1)高取率で目的生産
物が得られ、(2)ホットスポット部における蓄熱を抑
制でき、(3)ホットスポット部における逐次酸化等の
副反応が抑制でき、(4)熱負荷による触媒の変質劣化
が防止できるなどの多大の効果により、安定かつ安全に
長期にわたり高収率でメタクロレイン及びメタクリル酸
を製造することができる。
According to the present invention, (1) a target product can be obtained at a high yield, (2) heat storage at a hot spot can be suppressed, and (3) side reactions such as sequential oxidation at a hot spot can be suppressed. (4) Methacrolein and methacrylic acid can be produced stably and safely at high yield over a long period of time due to a great effect of preventing deterioration of the catalyst due to heat load.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI C07C 47/22 C07C 47/22 57/05 57/05 // C07B 61/00 300 C07B 61/00 300 (56)参考文献 特開 平3−200733(JP,A) 特公 昭53−30688(JP,B2) (58)調査した分野(Int.Cl.7,DB名) C07C 27/00 330 C07C 27/12 - 27/14 C07C 47/22 C07C 45/32 - 45/35 C07C 57/05 - 57/055 ────────────────────────────────────────────────── ─── Continued on the front page (51) Int.Cl. 7 Identification code FI C07C 47/22 C07C 47/22 57/05 57/05 // C07B 61/00 300 C07B 61/00 300 (56) References Special Kaihei 3-200733 (JP, A) Japanese Patent Publication No. 53-30688 (JP, B2) (58) Fields investigated (Int. Cl. 7 , DB name) C07C 27/00 330 C07C 27/12-27/14 C07C 47/22 C07C 45/32-45/35 C07C 57/05-57/055

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 固定床多管型反応器を用いてイソブチレ
ン又は第三級ブタノールを分子状酸素により気相接触酸
化してメタクロレイン及びメタクリル酸を製造する方法
において、 (1)触媒として、一般式 Moa Bib Fec Ad Xe Yf Zg O
h (式中、Mo,Bi,Fe及びOはそれぞれモリブデ
ン、ビスマス、鉄及び酸素を表し、Aはニッケル及び/
又はコバルト、Xはマグネシウム、亜鉛、マンガン、ス
ズ及び鉛からなる群より選ばれた少なくとも1種の元
素、Yはリン、ホウ素、イオウ、テルル、ケイ素、セレ
ン、ゲルマニウム、セリウム、ニオブ、アルミニウム、
チタン、ジルコニウム、タングステン及びアンチモンか
らなる群から選ばれた少なくとも1種の元素、Zはカリ
ウム、ナトリウム、ルビジウム、セシウム及びタリウム
からなる群より選ばれた少なくとも1種の元素を示す。
但し、a,b,c,d,e,f,g及びhは各元素の原
子比を表し、a=12のとき、0.1≦b≦5,0.1
≦c≦5,1≦d≦12,0≦e≦10,0≦f≦1
0,0.01≦g≦3であり、hは前記各成分の原子価
を満足するのに必要な酸素原子数である。)で表される
複合酸化物からなる触媒活性成分を、不活性担体100
重量部に対し該触媒活性成分の担持量が10〜400重
量部となるように担持した担持触媒を使用し、 (2)各応管内の触媒層を管軸方向に2層以上に分割し
て設けた複数個の反応帯に、 (3)上記(1)の触媒において、担体単位重量に対す
る触媒活性成分の担持量を変更して調製した複数の担持
触媒を原料ガス入口部から出口部に向かって担持量がよ
り高くなるように充填して反応させることを特徴とする
メタクロレイン及びメタクリル酸の製造方法。
1. A method for producing methacrolein and methacrylic acid by subjecting isobutylene or tertiary butanol to gas-phase catalytic oxidation with molecular oxygen using a fixed-bed multitubular reactor, comprising the steps of: Formula Moa Bib Fec Ad Xe Yf Zg O
h (wherein, Mo, Bi, Fe and O represent molybdenum, bismuth, iron and oxygen, respectively, A represents nickel and / or
Or cobalt, X is at least one element selected from the group consisting of magnesium, zinc, manganese, tin and lead, Y is phosphorus, boron, sulfur, tellurium, silicon, selenium, germanium, cerium, niobium, aluminum,
Z represents at least one element selected from the group consisting of potassium, sodium, rubidium, cesium and thallium, and Z represents at least one element selected from the group consisting of titanium, zirconium, tungsten and antimony.
Here, a, b, c, d, e, f, g and h represent the atomic ratio of each element, and when a = 12, 0.1 ≦ b ≦ 5, 0.1
≤c≤5, 1≤d≤12, 0≤e≤10, 0≤f≤1
0,0.01 ≦ g ≦ 3, and h is the number of oxygen atoms necessary to satisfy the valence of each component. The catalytically active component comprising the composite oxide represented by
A supported catalyst supported such that the amount of the catalytically active component supported is 10 to 400 parts by weight with respect to parts by weight. (2) The catalyst layer in each tube is divided into two or more layers in the tube axis direction. In the plurality of reaction zones provided, (3) a plurality of supported catalysts prepared by changing the supported amount of the catalytically active component per unit weight of the carrier in the catalyst of (1) above from the raw material gas inlet to the outlet. A method for producing methacrolein and methacrylic acid, characterized in that the reaction is carried out by filling the mixture so as to increase the amount supported.
【請求項2】 反応帯の数2〜4であることを特徴とす
る請求項1のメタクロレイン及びメタクリル酸の製造方
法。
2. The method for producing methacrolein and methacrylic acid according to claim 1, wherein the number of reaction zones is 2 to 4.
JP4357969A 1992-12-25 1992-12-25 Method for producing methacrolein and methacrylic acid Expired - Lifetime JP3028327B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4357969A JP3028327B2 (en) 1992-12-25 1992-12-25 Method for producing methacrolein and methacrylic acid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4357969A JP3028327B2 (en) 1992-12-25 1992-12-25 Method for producing methacrolein and methacrylic acid

Publications (2)

Publication Number Publication Date
JPH06192144A JPH06192144A (en) 1994-07-12
JP3028327B2 true JP3028327B2 (en) 2000-04-04

Family

ID=18456882

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4357969A Expired - Lifetime JP3028327B2 (en) 1992-12-25 1992-12-25 Method for producing methacrolein and methacrylic acid

Country Status (1)

Country Link
JP (1) JP3028327B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7588739B2 (en) 2003-07-14 2009-09-15 Mitsubishi Rayon Co., Ltd. Fixed bed multitube reactor
JP5130562B2 (en) * 2007-11-06 2013-01-30 日本化薬株式会社 Method for producing methacrolein and / or methacrylic acid
WO2012063771A1 (en) * 2010-11-10 2012-05-18 日本化薬株式会社 Catalyst for producing methacrolein and methacrylic acid, and process for production thereof
SG11201600352XA (en) 2013-07-18 2016-02-26 Nippon Kayaku Kk Method for producing unsaturated aldehyde and/or unsaturated carboxylic acid
KR102612311B1 (en) 2015-07-10 2023-12-08 닛뽄 가야쿠 가부시키가이샤 Method for producing acrolein, methacrolein, acrylic acid or methacrylic acid
KR20190063191A (en) 2017-11-29 2019-06-07 롯데케미칼 주식회사 Manufacturing method of catalysts for producing methacrolein or methacrylic acid having excellent heat-removing performance and mechanical strength
KR102283568B1 (en) 2019-12-20 2021-07-28 한화토탈 주식회사 Feedstock treatment method for manufacturing Methacrolein and Methacrylic acid

Also Published As

Publication number Publication date
JPH06192144A (en) 1994-07-12

Similar Documents

Publication Publication Date Title
KR100487883B1 (en) Manufacturing method of acrolein and acrylic acid
EP0450596B1 (en) Process for producing unsaturated aldehydes and unsaturated acids
JP5348814B2 (en) Method for catalytic gas phase oxidation of acrolein to acrylic acid
US5929275A (en) Catalyst and process for producing unsaturated aldehyde and unsaturated acid
JP3943284B2 (en) Acrylic acid production method
JP3744750B2 (en) Composite oxide catalyst and method for producing acrylic acid
JP2001048817A (en) Method for producing acrolein and acrylic acid
JP3276984B2 (en) Supported catalyst for synthesis of unsaturated aldehyde and unsaturated carboxylic acid and method for producing the same
JP2574948B2 (en) Method for producing methacrylic acid
JP3028327B2 (en) Method for producing methacrolein and methacrylic acid
JP2001011010A (en) Production of methacrylic acid
US4552978A (en) Oxidation of unsaturated aldehydes
JPH09316023A (en) Production of (meth)acrylic acid
WO2002098827A1 (en) Process for producing (meth)acrolein and/or (meth)acrylic acid
JP2004002209A (en) Method for producing unsaturated aldehyde
JP2988660B2 (en) Method for producing methacrolein and methacrylic acid
JP4950986B2 (en) Method for producing methacrolein and / or methacrylic acid
JP2003146920A (en) Method for producing acrolein and acrylic acid
JP2638241B2 (en) Method for producing methacrolein and methacrylic acid
JP2659839B2 (en) Method for producing methacrolein and methacrylic acid
JP3523455B2 (en) Fixed bed reactor and method for producing unsaturated carboxylic acid
JP4745653B2 (en) Method for producing methacrylic acid
JP2015120133A (en) Catalyst for producing acrylic acid, and method for producing acrylic acid by using catalyst
JP4301484B2 (en) Method for producing methacrylic acid
JP2934267B2 (en) Method for producing methacrolein and methacrylic acid

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090204

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100204

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110204

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110204

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120204

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120204

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120204

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130204

Year of fee payment: 13

EXPY Cancellation because of completion of term