JP5030438B2 - Method for producing catalyst and method for producing methacrylic acid - Google Patents

Method for producing catalyst and method for producing methacrylic acid Download PDF

Info

Publication number
JP5030438B2
JP5030438B2 JP2006051770A JP2006051770A JP5030438B2 JP 5030438 B2 JP5030438 B2 JP 5030438B2 JP 2006051770 A JP2006051770 A JP 2006051770A JP 2006051770 A JP2006051770 A JP 2006051770A JP 5030438 B2 JP5030438 B2 JP 5030438B2
Authority
JP
Japan
Prior art keywords
molybdenum
catalyst
producing
parts
molybdenum oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006051770A
Other languages
Japanese (ja)
Other versions
JP2007229561A (en
Inventor
奉正 辰已
啓幸 内藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Chemical Corp
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp, Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Chemical Corp
Priority to JP2006051770A priority Critical patent/JP5030438B2/en
Publication of JP2007229561A publication Critical patent/JP2007229561A/en
Application granted granted Critical
Publication of JP5030438B2 publication Critical patent/JP5030438B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

本発明は、モリブデンを含む固体触媒の製造に用いるモリブデン酸化物、モリブデン酸化物を使用する触媒の製造方法、この方法により製造される触媒、およびこの触媒を用いた(メタ)アクロレイン、(メタ)アクリル酸等の製造方法に関する。   The present invention relates to molybdenum oxide for use in the production of a solid catalyst containing molybdenum, a method for producing a catalyst using molybdenum oxide, a catalyst produced by this method, and (meth) acrolein using this catalyst, (meth) The present invention relates to a method for producing acrylic acid or the like.

モリブデンを含む固体触媒として、例えば、プロピレン、イソブチレン、および/またはtert−ブチルアルコールを分子状酸素で気相接触酸化して(メタ)アクロレインおよび(メタ)アクリル酸を製造するために用いられるモリブデン、ビスマス、および鉄を主成分とする複合酸化物触媒、アクロレインを分子状酸素で気相接触酸化してアクリル酸を製造するために用いられるモリブデンおよびバナジウムを主成分とする複合酸化物触媒、メタクロレインを分子状酸素で気相接触酸化してメタクリル酸を製造するために用いられるモリブデン、リンを主成分とするヘテロポリ酸系触媒などが知られている。   As a solid catalyst containing molybdenum, for example, molybdenum used to produce (meth) acrolein and (meth) acrylic acid by vapor phase catalytic oxidation of propylene, isobutylene, and / or tert-butyl alcohol with molecular oxygen, Composite oxide catalyst based on bismuth and iron, composite oxide catalyst based on molybdenum and vanadium used to produce acrylic acid by vapor phase catalytic oxidation of acrolein with molecular oxygen, methacrolein Molybdenum used for producing methacrylic acid by vapor-phase catalytic oxidation of oxygen with molecular oxygen, heteropolyacid catalyst mainly containing phosphorus, and the like are known.

一方、モリブデンを含む固体触媒の製造原料にモリブデン酸化物を使用した例としては特許文献1〜5が知られており、特許文献5には、X線としてCuKα線を用いたX線回折図における回折ピーク位置と回折強度が規定されたモリブデン酸化物を使用する触媒の製造方法が開示されている。
特開昭57−177347号公報 特開昭58−74142号公報 特開平8−47643号公報 特開平8−196908号公報 特開2004−8834号公報
On the other hand, Patent Documents 1 to 5 are known as examples of using molybdenum oxide as a raw material for producing a solid catalyst containing molybdenum. Patent Document 5 discloses an X-ray diffraction diagram using CuK α rays as X-rays. Discloses a method for producing a catalyst using a molybdenum oxide in which the diffraction peak position and the diffraction intensity are defined.
JP-A-57-177347 JP 58-74142 A JP-A-8-47643 JP-A-8-196908 JP 2004-8834 A

しかしながら、特許文献1〜5等に開示されているモリブデン酸化物を用いて製造された触媒では活性及び選択性の点でまだ不十分であり、更なる改良が望まれていた。   However, catalysts manufactured using molybdenum oxides disclosed in Patent Documents 1 to 5 are still insufficient in terms of activity and selectivity, and further improvements have been desired.

本発明の目的は、活性及び選択性に優れた、モリブデンを含む固体触媒の製造に用いるモリブデン酸化物、このモリブデン酸化物を使用した触媒の製造方法、この方法により製造される触媒、およびこの触媒を用いたメタクリル酸等の製造方法を提供することにある。   An object of the present invention is to provide molybdenum oxide used in the production of a solid catalyst containing molybdenum having excellent activity and selectivity, a method for producing a catalyst using the molybdenum oxide, a catalyst produced by the method, and the catalyst It is in providing the manufacturing method of methacrylic acid etc. using this.

本発明者らは、上記課題を解決するために鋭意検討した結果、高い触媒活性および選択性を有するモリブデン含有固体触媒の製造に好適なモリブデン酸化物および触媒の製造方法を見出すに至った。   As a result of intensive studies to solve the above-mentioned problems, the present inventors have found a molybdenum oxide and a method for producing a catalyst suitable for producing a molybdenum-containing solid catalyst having high catalytic activity and selectivity.

すなわち、本発明は、
モリブデンを含む下記式(1)で表される固体触媒の製造方法であって、モリブデン含有原料として、下記式()で示される圧縮度が0以下で、かつ平均粒子径が20μm以上であるモリブデン酸化物を使用し、モリブデン、リン、およびX元素を含むスラリーを乾燥後焼成する触媒の製造方法である。
M o ・・・・・ (1)
( 式中、Mo 、P 、およびO はそれぞれモリブデン、リン、および酸素を表し、Xはカリウム、ルビジウム、セシウム、およびタリウムからなる群より選ばれた少なくとも1種の元素を表し、Yは鉄、コバルト、ニッケル、銅、亜鉛、マグネシウム、カルシウム、ストロンチウム、バリウム、チタン、バナジウム、クロム、タングステン、マンガン、銀、ホウ素、ケイ素、アルミニウム、ガリウム、ゲルマニウム、スズ、鉛、ヒ素、アンチモン、ビスマス、ニオブ、タンタル、ジルコニウム、インジウム、イオウ、セレン、テルル、ランタン、およびセリウムからなる群より選ばれた少なくとも1種の元素を表す。a 、b 、c 、d 、およびeは各元素の原子比を表し、a=12のとき、b=0 .1〜3、c=0 .01〜3、d=0〜3であり、eは前記各成分の原子価を満足するのに必要な酸素の原子比である。)
圧縮度C=(ρ−ρ)/ρ×100 ・・・・ (
但し、ρは疎充填時のかさ密度、ρは密充填時のかさ密度である。
That is, the present invention
A method for producing a solid catalyst represented by the following formula (1) containing molybdenum, wherein the molybdenum-containing raw material has a degree of compression represented by the following formula ( 2 ) of 40 or less and an average particle size of 20 μm or more. This is a method for producing a catalyst in which a molybdenum oxide is used, and a slurry containing molybdenum, phosphorus, and element X is dried and calcined .
M o a P b X c Y d O e ····· (1)
(Wherein Mo 1, P 2, and O 2 represent molybdenum, phosphorus, and oxygen, respectively, X represents at least one element selected from the group consisting of potassium, rubidium, cesium, and thallium, Y represents iron, Cobalt, nickel, copper, zinc, magnesium, calcium, strontium, barium, titanium, vanadium, chromium, tungsten, manganese, silver, boron, silicon, aluminum, gallium, germanium, tin, lead, arsenic, antimony, bismuth, niobium, Represents at least one element selected from the group consisting of tantalum, zirconium, indium, sulfur, selenium, tellurium, lanthanum, and cerium, a 1, b 2, c 3, d 4, and e represent the atomic ratio of each element; When a = 12, b = 0.0.1-3, c = 0.0.1-3, d = 0-3 And e is an atomic ratio of oxygen necessary to satisfy the valence of each component.)
Compression degree C p = (ρ p −ρ a ) / ρ p × 100 ( 2 )
However, (rho) a is the bulk density at the time of loose filling, and (rho) p is the bulk density at the time of close packing.

また本発明は、この製造方法により得られる固体触媒の存在下で、メタクロレインを分子状酸素により気相接触酸化するメタクリル酸の製造方法である。
The present invention is also a method for producing methacrylic acid, in which methacrolein is vapor-phase contact oxidized with molecular oxygen in the presence of a solid catalyst obtained by this production method .

本発明によれば、モリブデンを含む固体触媒の製造に好適なリブデン酸化物を原料として活性及び選択性が優れた触媒を製造することができる。さらにこの触媒を用いることにより、リル酸高収率で製造することができる。
According to the present invention, it is possible to produce a suitable motor Ribuden oxides was superior activity and selectivity as a raw material a catalyst for the production of a solid catalyst comprising molybdenum. Further, by using this catalyst, it is possible to produce a meta click acrylic acid in high yield.

本発明のモリブデン酸化物はモリブデンを含む固体触媒の製造原料に適している。モリブデン酸化物中のモリブデンと酸素の原子比は特に限定されず、例えば、モリブデン:酸素の原子比が1:2の二酸化モリブデン、1:3の三酸化モリブデン等が挙げられるが、好ましくは三酸化モリブデンである。   The molybdenum oxide of the present invention is suitable as a raw material for producing a solid catalyst containing molybdenum. The atomic ratio between molybdenum and oxygen in the molybdenum oxide is not particularly limited, and examples thereof include molybdenum dioxide having an atomic ratio of molybdenum: oxygen of 1: 2, molybdenum trioxide of 1: 3, etc., preferably trioxide. Molybdenum.

モリブデン酸化物には、例えば、ナトリウム、カリウム、鉄、鉛、硫酸根、硝酸根、およびアンモニウム根など微量の不純物が含まれていても構わないが、これらの不純物は少ないほど好ましく、含まないことが特に好ましい。   Molybdenum oxide may contain trace amounts of impurities such as sodium, potassium, iron, lead, sulfate, nitrate, and ammonium. For example, the smaller the amount, the less preferable. Is particularly preferred.

本発明におけるモリブデン酸化物は、例えばモリブデンを含む鉱石を焙焼して得られた粗三酸化モリブデンを純水に分散させた後アンモニア水に溶解し、濾過後の溶液に塩酸水溶液を添加してpH調整を行って得られた沈殿物を純水、硝酸アンモニウムや塩化アンモニウムの薄い水溶液で分散・洗浄し、遠心濾過等により含水量を低減して得た前駆体沈殿物を乾燥後焼成する方法、前駆体沈殿物にアンモニア水を添加して溶解・晶析して得られたパラモリブデン酸アンモニウムを焼成する方法等により製造できる。   The molybdenum oxide in the present invention is prepared by, for example, dispersing crude molybdenum trioxide obtained by roasting ore containing molybdenum in pure water and then dissolving in ammonia water, and adding an aqueous hydrochloric acid solution to the solution after filtration. A method in which the precipitate obtained by adjusting the pH is dispersed and washed with pure water, a thin aqueous solution of ammonium nitrate or ammonium chloride, and the precursor precipitate obtained by reducing the water content by centrifugal filtration or the like is dried and fired, It can be produced by a method of baking ammonium paramolybdate obtained by adding ammonia water to the precursor precipitate and dissolving and crystallizing the precipitate.

また、モリブデン酸化物の原料としては、プロピレン、イソブチレン、またはtert−ブチルアルコールを分子状酸素で気相接触酸化して(メタ)アクロレインおよび(メタ)アクリル酸を製造するために用いられるモリブデン、ビスマス、および鉄を主成分とする複合酸化物触媒、アクロレインを分子状酸素で気相接触酸化してアクリル酸を製造するために用いられるモリブデンおよびバナジウムを主成分とする複合酸化物触媒、メタクロレインを分子状酸素で気相接触酸化してメタクリル酸を製造するために用いられるモリブデン、リンを主成分とするヘテロポリ酸系触媒等の各種使用済み触媒から回収されたモリブデン含有物(以下、回収モリブデンという。)を用いることができる。   In addition, as a raw material of molybdenum oxide, molybdenum, bismuth used for producing (meth) acrolein and (meth) acrylic acid by vapor-phase catalytic oxidation of propylene, isobutylene, or tert-butyl alcohol with molecular oxygen. And a composite oxide catalyst mainly composed of iron, a composite oxide catalyst composed mainly of molybdenum and vanadium used to produce acrylic acid by vapor-phase catalytic oxidation of acrolein with molecular oxygen, methacrolein Molybdenum-containing material recovered from various used catalysts such as molybdenum and phosphorous-based heteropolyacid catalyst (hereinafter referred to as recovered molybdenum). .) Can be used.

各種使用済み触媒から回収モリブデンを得る方法として、例えば、反応に使用されたプロピレン、イソブチレン及び/又はtert-ブチルアルコールを分子状酸素で気相接触酸化して(メタ)アクロレイン及び(メタ)アクリル酸を製造するために用いられるモリブデン、ビスマス、鉄を主成分とする複合酸化物触媒から回収モリブデンを得る場合は、水酸化ナトリウム水溶液、およびアンモニア水等に溶解した後に不溶物を濾別した溶液に塩酸や硝酸などを加えて得られるモリブデン含有沈殿を焼成する方法等を用いることができる。   As a method for obtaining recovered molybdenum from various used catalysts, for example, propylene, isobutylene and / or tert-butyl alcohol used in the reaction is vapor-phase catalytically oxidized with molecular oxygen to (meth) acrolein and (meth) acrylic acid. When recovering molybdenum from a composite oxide catalyst mainly composed of molybdenum, bismuth, and iron used to produce the product, dissolve it in an aqueous solution of sodium hydroxide and aqueous ammonia, and then separate the insoluble matter by filtration. A method of firing a molybdenum-containing precipitate obtained by adding hydrochloric acid, nitric acid, or the like can be used.

また、反応に使用されたメタクロレインを分子状酸素で気相接触酸化してメタクリル酸を製造するために用いられるモリブデン、リンを主成分とするヘテロポリ酸系触媒から回収モリブデンを得る場合は、水酸化ナトリウム水溶液、アンモニア水等に溶解した後に不溶物を濾別し、次いで、塩酸、硝酸、およびアンモニア水などでpHを調整した後にマグネシウムを含む化合物を添加し、生成した沈殿物を除去して得られたろ液に塩酸や硝酸などを加えて得られる沈殿を焼成する方法等を用いることができる。   Also, when recovering molybdenum from a heteropolyacid catalyst mainly composed of molybdenum or phosphorus, which is used to produce methacrylic acid by vapor phase catalytic oxidation of methacrolein used in the reaction with molecular oxygen, After dissolving in an aqueous solution of sodium oxide, aqueous ammonia, etc., the insoluble matter is filtered off, and after adjusting the pH with hydrochloric acid, nitric acid, aqueous ammonia, etc., a compound containing magnesium is added, and the generated precipitate is removed. A method of baking a precipitate obtained by adding hydrochloric acid, nitric acid, or the like to the obtained filtrate can be used.

また、回収モリブデンから得られたモリブデン酸化物には、ナトリウム、カリウム、硫酸根、硝酸根、アンモニウム根、鉄、鉛、ビスマス、コバルト、アンチモン、リン、バナジウム、およびセシウムなど回収工程で混入する化合物に由来する微量の不純物や触媒構成元素が含まれていてもかまわないが、これらの不純物は少ないほど好ましく、含まれないことが特に好ましい。   In addition, molybdenum oxide obtained from recovered molybdenum includes compounds such as sodium, potassium, sulfate, nitrate, ammonium, iron, lead, bismuth, cobalt, antimony, phosphorus, vanadium, and cesium that are mixed during the recovery process. Trace amounts of impurities and catalyst constituent elements derived from can be contained, but it is more preferable that these impurities are less, and it is particularly preferable that they are not included.

本発明において固体触媒の原料として用いられるモリブデン酸化物の圧縮度は0以下であり、かつ平均粒子径が20μm以上である。このような圧縮度のモリブデン酸化物を用いることによって活性及び選択性に優れた固体触媒を製造することができる。圧縮度は、粉体の流動性を表す指数であって、この値が大きくなる程、粉体の流動性が低くなる。圧縮度Cは、疎充填のかさ密度ρと密充填のかさ密度ρから前記の式(2)によって算出される。これらのかさ密度は、Carrの流動性指数測定方法に基づいて以下の条件で測定される。
Compression of the molybdenum oxide used as a raw material of the solid catalyst in the present invention 4 0 der less is, and an average particle diameter of Ru der than 20 [mu] m. By using molybdenum oxide having such a compressibility, a solid catalyst having excellent activity and selectivity can be produced. The degree of compression is an index representing the fluidity of the powder. The larger the value, the lower the fluidity of the powder. The degree of compression C p is calculated by the above equation (2) from the bulk density ρ a of loose filling and the bulk density ρ p of dense filling. These bulk densities are measured under the following conditions based on Carr's fluidity index measurement method.

即ち、内径50mm、深さ51mm、容量100(cc)の円筒状セル容器に、ロートを通して粉体を落下させて充填した後にセル容器上の余分な部分を摺り切り板にて摺り切って、充填された粉体の重量とセル容器の容積より疎充填のかさ密度ρを求める。尚、ロートの最下端部とセル容器の上端部の距離は190mmである。同様にして粉体をセル容器に充填した後にタッピングストローク18(mm)、タッピング速度1(回/秒)でタッピングを開始し、粉体を追加しながら180回タッピングを行った後、セル容器上の余分部分を摺り切り板にて摺り切って、充填された粉体の重量とセル容器の容積から密充填のかさ密度ρ求める。 That is, powder is dropped through a funnel into a cylindrical cell container having an inner diameter of 50 mm, a depth of 51 mm, and a capacity of 100 (cc), and then the excess part on the cell container is scraped off with a scraping plate. It has been seeking a bulk density [rho a sparse filling than the volume weight and the cell container of the powder. The distance between the lowest end of the funnel and the upper end of the cell container is 190 mm. Similarly, after filling the cell container with powder, tapping was started at a tapping stroke of 18 (mm) and a tapping speed of 1 (times / second), and after tapping 180 times while adding powder, Then, the excess portion is scraped off with a scraping plate, and the bulk density ρ p of the dense filling is obtained from the weight of the filled powder and the volume of the cell container.

モリブデン酸化物の圧縮度は0以下であることが好ましく、より好ましくは0以下ある。なお、圧縮度は小さいほど好ましく、その下限は0である。
Compression of the molybdenum oxide is preferably 4 0 or less, more preferably 3 0 or less. The smaller the degree of compression, the better. The lower limit is 0.

圧縮度が0以下のモリブデン酸化物は、モリブデン酸化物前駆体沈殿の粒子径をコントロールする方法、モリブデン酸化物前駆体沈殿中の水分率を乾燥等によって調整した後に焼成する方法、モリブデン酸化物前駆体沈殿をアンモニア水に溶解した後に晶析によって得られたパラモリブデン酸アンモニウムを焼成する方法、モリブデン酸化物前駆体の焼成温度および/または焼成時間を調整する方法、モリブデン酸化物を分級する方法等によって得ることができる。これらの方法の中ではモリブデン酸化物前駆体沈殿物中の水分率を乾燥等によって調整した後に焼成する方法、パラモリブデン酸アンモニウムを焼成する方法、およびモリブデン酸化物を分級する方法等が好ましい。
Molybdenum oxide having a degree of compression of 40 or less is a method of controlling the particle diameter of molybdenum oxide precursor precipitation, a method of firing after adjusting the moisture content in molybdenum oxide precursor precipitation by drying, etc., molybdenum oxide A method of firing ammonium paramolybdate obtained by crystallization after dissolving the precursor precipitate in aqueous ammonia, a method of adjusting the firing temperature and / or firing time of the molybdenum oxide precursor, and a method of classifying molybdenum oxide Etc. can be obtained. Among these methods, a method of firing after adjusting the moisture content in the molybdenum oxide precursor precipitate by drying or the like, a method of firing ammonium paramolybdate, a method of classifying molybdenum oxide, and the like are preferable.

モリブデン酸化物前駆体沈殿物を焼成する場合、沈殿物中の水分率は15質量%以下であることが好ましく、10質量%以下であることがより好ましい。水分率が15質量%以下であると、焼成後にかたまりとなる部分が少なくて粉体の凝集状態がコントロールされるので、圧縮度が小さくなる方向に働くものと考えられる。焼成条件は、モリブデン酸化物の製造に用いる原料、モリブデン酸化物前駆体の製造方法または組成によって異なるが、空気等の酸素含有ガス雰囲気下で300〜600℃、0.5時間以上であることが好ましい。   When the molybdenum oxide precursor precipitate is fired, the moisture content in the precipitate is preferably 15% by mass or less, and more preferably 10% by mass or less. If the moisture content is 15% by mass or less, it is considered that the degree of compression is reduced because the agglomerated state of the powder is controlled because there are few portions that become clumped after firing. The firing conditions vary depending on the raw material used for the production of molybdenum oxide, the production method or composition of the molybdenum oxide precursor, but must be 300 to 600 ° C. for 0.5 hour or longer in an oxygen-containing gas atmosphere such as air. preferable.

分級によってモリブデン酸化物の圧縮度をコントロールする場合、分級は焼成後に行う
ことが好ましい。分級の条件は、モリブデン酸化物前駆体沈殿の沈殿生成条件、焼成条件
等により異なるが、分級後のモリブデン酸化物の平均粒子径が0μm以上になるように分級範囲を決定することが望ましい。
When controlling the degree of compression of molybdenum oxide by classification, classification is preferably performed after firing. The classification conditions vary depending on the precipitation conditions for the molybdenum oxide precursor precipitation, the firing conditions, and the like, but it is desirable to determine the classification range so that the average particle diameter of the molybdenum oxide after classification is 20 μm or more.

本発明のモリブデン酸化物を用いて製造された触媒が従来の触媒に比べて活性及び選択性が優れている理由は明らかではないが、圧縮度が0よりも大きなモリブデン酸化物を使用した場合と比較すると、触媒製造時にモリブデン酸化物と他の原料との反応性に何らかの変化が生じ、これによって触媒上の活性点に何らかの変化が生じて活性及び選択性が向上するものと推定している。
The reason why the catalyst produced using the molybdenum oxide of the present invention is superior in activity and selectivity compared to the conventional catalyst is not clear, but when a molybdenum oxide having a degree of compression greater than 40 is used. , It is estimated that some change occurs in the reactivity of molybdenum oxide and other raw materials during the production of the catalyst, which causes some change in the active point on the catalyst and improves the activity and selectivity. .

次にモリブデン含有原料として前述のモリブデン酸化物を使用し、モリブデン、リン、
およびX 元素を含むスラリーを乾燥後焼成する式()の固体触媒の製造方法ついて説明する。
Next, using the aforementioned molybdenum oxide as a molybdenum-containing raw material, molybdenum, phosphorus,
And a slurry containing X element about the manufacturing method of the solid catalyst of formula (1) is fired after drying will be described.

本発明の固体触媒は、圧縮度が0以下のモリブデン酸化物を使用し、共沈法、蒸発乾固法、および酸化物混合法等の種々の方法を用いて製造することができる。モリブデン酸化物以外の原料としては各元素の硝酸塩、炭酸塩、酢酸塩、アンモニウム塩、酸化物、酸素酸、およびハロゲン化物等を単独または組み合わせて使用することができる。例えば、リンの原料としてはリン酸、五酸化二リン、およびリン酸アンモニウム等が、バナジウムの原料としてはメタバナジン酸アンモニウム、五酸化バナジウム、および塩化バナジウム等が使用できる。
The solid catalyst of the present invention can be produced by using molybdenum oxide having a compressibility of 40 or less and using various methods such as coprecipitation method, evaporation to dryness method, and oxide mixing method. As raw materials other than molybdenum oxide, nitrates, carbonates, acetates, ammonium salts, oxides, oxygen acids, halides, and the like of each element can be used alone or in combination. For example, phosphoric acid, diphosphorus pentoxide, and ammonium phosphate can be used as the raw material for phosphorus, and ammonium metavanadate, vanadium pentoxide, vanadium chloride, and the like can be used as the raw material for vanadium.

また、上記モリブデン酸化物が、反応に使用した固体触媒から回収したものであり、触媒構成元素由来の不純物を含む場合には、触媒の製造の際に、不純物の含有量を考慮して、これらの元素を含む原料の添加量を調整することが好ましい。例えば、モリブデン酸化物中にカリウムおよびセシウムなどの元素が含まれる場合は、触媒の製造の際に添加するカリウムおよびセシウムなどの元素を含む原料、例えば、硝酸カリウム、硝酸セシウム、および重炭酸セシウムなどの添加量を調整して目的とする組成を有する触媒を製造することが好ましい。また、これらの元素を含む原料の添加量を調整した際は、原料中に含まれる対イオンの不足分を追加してもよいし追加しなくてもよい。例えば、硝酸カリウムや硝酸セシウムの添加量を減らしてカリウムやセシウム元素の添加量を調整した場合は、不足する硝酸イオンは硝酸などを加えることによって調整してもよい。   Further, when the molybdenum oxide is recovered from the solid catalyst used in the reaction and contains impurities derived from catalyst constituent elements, the content of the impurities is taken into consideration when the catalyst is manufactured. It is preferable to adjust the addition amount of the raw material containing these elements. For example, when elements such as potassium and cesium are contained in the molybdenum oxide, raw materials containing elements such as potassium and cesium to be added in the production of the catalyst, such as potassium nitrate, cesium nitrate, and cesium bicarbonate It is preferable to produce a catalyst having the desired composition by adjusting the addition amount. Moreover, when adjusting the addition amount of the raw material containing these elements, the shortage of the counter ion contained in the raw material may or may not be added. For example, when the addition amount of potassium nitrate or cesium nitrate is reduced to adjust the addition amount of potassium or cesium element, the insufficient nitrate ions may be adjusted by adding nitric acid or the like.

具体的な触媒の製造方法について説明する。式()で表される組成を有する触媒を製造するには、上記モリブデン酸化物とモリブデン酸化物以外の製造原料用いてモリブデン、リン、およびX元素を含むスラリーを乾燥したものを焼成する方法を用いることができる
A specific method for producing the catalyst will be described. In order to produce a catalyst having a composition represented by the formula ( 1 ), a method of firing a slurry containing molybdenum, phosphorus, and X element using a production raw material other than the molybdenum oxide and the molybdenum oxide. Can be used .

本発明において、スラリーの乾燥方法としては、箱型乾燥機、噴霧乾燥機、ドラムドライヤー、およびスラリードライヤー等を用いる乾燥方法が挙げられる。その際に得られた乾燥物(触媒前駆体)は粉体状である方が後に触媒を成形する上で好ましい。乾燥物はそのまま成形してもよいし、焼成した後に成形してもよい。成形方法としては、例えば、打錠成型、押出成形、造粒、および担持等が挙げられる。担持触媒の担体としては、例えば、シリカ、アルミナ、シリカ・アルミナ、およびシリコンカーバイド等の不活性担体が挙げられる。成形に際しては、成形物の比表面積、細孔容積、および細孔分布を制御したり、機械的強度を高めたりする目的で、例えば、硫酸バリウムおよび硝酸アンモニウム等の無機塩類、グラファイト等の滑剤、セルロース類、でんぷん、ポリビニルアルコール、およびステアリン酸等の有機物、シリカゾルおよびアルミナゾル等の水酸化物ゾル、ウィスカー、ガラス繊維および炭素繊維等の無機質繊維等の添加物を適宜添加してもよい。   In the present invention, examples of the slurry drying method include a drying method using a box dryer, a spray dryer, a drum dryer, a slurry dryer, and the like. The dried product (catalyst precursor) obtained at this time is preferably in the form of a powder when molding the catalyst later. The dried product may be molded as it is, or may be molded after firing. Examples of the molding method include tableting molding, extrusion molding, granulation, and support. Examples of the supported catalyst carrier include inert carriers such as silica, alumina, silica / alumina, and silicon carbide. In molding, for example, inorganic salts such as barium sulfate and ammonium nitrate, lubricants such as graphite, cellulose, etc., for the purpose of controlling the specific surface area, pore volume and pore distribution of the molded product, and increasing mechanical strength Additives such as organic substances such as starch, polyvinyl alcohol and stearic acid, hydroxide sols such as silica sol and alumina sol, inorganic fibers such as whiskers, glass fibers and carbon fibers may be added as appropriate.

成形体を焼成する場合、焼成は反応器に充填する前に行っても、反応器の中で行ってもよい。焼成条件は、用いる触媒の原料、触媒組成、および調製条件等によって異なるが、空気等の酸素含有ガスおよび/または不活性ガス流通下で好ましくは300〜500℃、より好ましくは300〜450℃で、好ましくは0.5時間以上、より好ましくは1〜40時間である。   When the molded body is fired, the firing may be performed before filling the reactor or in the reactor. The firing conditions vary depending on the raw material of the catalyst to be used, the catalyst composition, the preparation conditions, etc., but preferably 300 to 500 ° C., more preferably 300 to 450 ° C. under the flow of oxygen-containing gas such as air and / or inert gas. , Preferably 0.5 hours or more, more preferably 1 to 40 hours.

本発明の方法で製造された触媒を用いる反応は公知の反応条件が採用される。   Known reaction conditions are adopted for the reaction using the catalyst produced by the method of the present invention.

以下に、メタクロレインの気相接触酸化によりメタクリル酸を製造する方法ついて説明する。
Hereinafter, the vapor-phase catalytic oxidation of methacrolein is described how to produce methacrylic acid.

反応器の形式は特に限定されないが、例えば、固定床反応器および流動床反応器などが利用でき、固定床反応器が好ましく、固定床多管式反応器が特に好ましい。反応は原料と分子状酸素とを含む混合ガス(以下、原料ガスという。)を反応器中の触媒に接触させることにより行う。   The type of the reactor is not particularly limited. For example, a fixed bed reactor and a fluidized bed reactor can be used, a fixed bed reactor is preferable, and a fixed bed multitubular reactor is particularly preferable. The reaction is carried out by bringing a mixed gas containing raw material and molecular oxygen (hereinafter referred to as raw material gas) into contact with the catalyst in the reactor.

式(固体触媒を用いてロレインの気相接触酸化によりリル酸を製造する場合、原料ガス中のロレインの濃度は広い範囲で変えることができるが、1〜20容量% が好ましく、特に3〜10容量% が好ましい。原料のロレイン中には、水および低級飽和アルデヒド等の実質的に反応に影響を与えない不純物が少量含まれていてもよい。
When producing the meta click acrylic acid by vapor phase catalytic oxidation of meta click Lorraine using a solid catalyst of formula (1), the concentration of meta click Lorraine in the raw material gas can be varied over a wide range, 1 to 20% by volume is preferable, and 3 to 10% by volume is particularly preferable. Raw material in meta click Lorraine of impurities does not substantially affect reaction such as water and lower saturated aldehydes may contain minor amounts.

原料ガス中の分子状酸素の量はロレインの0 .4 〜4モル倍が好ましく、特に0 .5〜3モル倍が好ましい。原料ガスの分子状酸素源には空気を用いるのが工業的に有利であるが、必要に応じて純酸素で酸素を富化した空気も使用できる。また原料ガスは、窒素および炭酸ガス等の不活性ガス、並びに水蒸気等で希釈されていることが好ましい。
0 The amount of molecular oxygen in the feed gas of meta click Lorraine. 4 to 4 molar times are preferable, especially 0. 5-3 mole times is preferable. Although it is industrially advantageous to use air as the molecular oxygen source of the raw material gas, air enriched with pure oxygen can be used as necessary. The source gas is preferably diluted with an inert gas such as nitrogen and carbon dioxide, and water vapor.

気相接触酸化の反応圧力は大気圧〜数気圧程度である。反応は固定床で行うことが好ましい。固体触媒は担体に担持させたものであっても、その他の添加成分を混合したものであってもよい。固体触媒を反応管に充填し、反応温度は、200〜450℃が好ましく、より好ましくは250〜400℃である。原料ガスと触媒の接触時間は1.5〜15秒が好ましく、より好ましくは2〜7秒である。   The reaction pressure of gas phase catalytic oxidation is about atmospheric pressure to several atmospheres. The reaction is preferably carried out in a fixed bed. The solid catalyst may be supported on a carrier or may be a mixture of other additive components. The reaction tube is filled with a solid catalyst, and the reaction temperature is preferably 200 to 450 ° C, more preferably 250 to 400 ° C. The contact time between the raw material gas and the catalyst is preferably 1.5 to 15 seconds, more preferably 2 to 7 seconds.

以下、本発明を実施例により説明する。実施例おいび比較例において「部」は質量部を意味する。原料ガスと生成物の分析はガスクロマトグラフィーで行った。また、原料の転化率、生成物の選択率、および生成物の単流収率は以下のように定義される。
転化率(%)=(B/A)×100
選択率(%)=(C/B)×100
単流収率(%)=(C/A)×100
ここで、Aは供給した原料のモル数、Bは反応した原料のモル数、およびCは反応で生成した生成物のモル数である。
Hereinafter, the present invention will be described with reference to examples. In the examples and comparative examples, “parts” means parts by mass. The analysis of the raw material gas and the product was performed by gas chromatography. In addition, the conversion rate of raw materials, the selectivity of products, and the single stream yield of products are defined as follows.
Conversion rate (%) = (B / A) × 100
Selectivity (%) = (C / B) × 100
Single flow yield (%) = (C / A) × 100
Here, A is the number of moles of the supplied raw material, B is the number of moles of the reacted raw material, and C is the number of moles of the product generated by the reaction.

また、モリブデン酸化物の平均粒子径と粒子径分布の標準偏差は、レーザ回折式粒度分布測定装置SALD−7000(島津製作所社製)を用いて測定した。なお、この測定は体積基準で行った。   Moreover, the average particle diameter of molybdenum oxide and the standard deviation of the particle diameter distribution were measured using a laser diffraction particle size distribution analyzer SALD-7000 (manufactured by Shimadzu Corporation). This measurement was performed on a volume basis.

〔実施例1〜および比較例1〜3
(モリブデン酸化物1〜5の製造)
モリブデン鉱石を焙焼して得られた粗三酸化モリブデン100部を純水400部の入ったガラス製容器中に分散させた。これを29質量%アンモニア水で溶解した後に不溶部を濾別・除去した。次いで、36質量% 塩酸を加えてpHを1.0に調整した後、攪拌しながら30℃で3時間保持、得られた沈殿物を濾過、2質量% 硝酸アンモニウム水溶液で分散・洗浄した後に濾過してモリブデン酸化物前駆体沈殿物を得た。これを500℃で3時間焼成し、分級して分級条件の異なるモリブデン酸化物1〜5を得た。モリブデン酸化物1〜5の平均粒子径、粒径分布の標準偏差、および圧縮度を表1に示す。
[Examples 1 and 2 and Comparative Examples 1 to 3 ]
(Production of molybdenum oxides 1 to 5)
100 parts of crude molybdenum trioxide obtained by roasting molybdenum ore was dispersed in a glass container containing 400 parts of pure water. This was dissolved in 29% by mass aqueous ammonia, and then the insoluble part was filtered off and removed. Next, 36 mass% hydrochloric acid was added to adjust the pH to 1.0, and the mixture was kept at 30 ° C for 3 hours with stirring. The resulting precipitate was filtered, dispersed and washed with a 2 mass% ammonium nitrate aqueous solution, and then filtered. As a result, a molybdenum oxide precursor precipitate was obtained. This was fired at 500 ° C. for 3 hours and classified to obtain molybdenum oxides 1 to 5 having different classification conditions. Table 1 shows the average particle size, standard deviation of the particle size distribution, and degree of compression of molybdenum oxides 1 to 5.

(触媒1〜5の製造)
純水400部に上記「モリブデン酸化物1」100部に対して、85質量%リン酸7.3部、五酸化バナジウム4.7部、酸化銅0.9部及び酸化鉄0.2部を加え、還流下で5時間攪拌した。得られた混合液を50℃まで冷却した後、29質量%アンモニア水37.4部を滴下し、15分間攪拌した。次いで、硝酸セシウム9.0部を純水30部に溶解した溶液を滴下し、15分間攪拌した後に加熱攪拌しながら蒸発乾固し、固形物を得た。得られた固形物を130℃で16時間乾燥したものを加圧成型し、さらに破砕後、篩を用いて0.85〜1.70mmのものを分取し、空気流通下に380℃で5時間熱処理して触媒1(酸素原子を除く組成:Mo121.1Fe0.05Cu0.20.9Cs0.8)を得た。また、「モリブデン酸化物1」をモリブデン酸化物2〜5にそれぞれ変更した以外は触媒1と同様にして同様の組成の触媒2〜5を製造した。
(Production of catalysts 1 to 5)
In 400 parts of pure water, 7.3 parts of 85% by mass phosphoric acid, 4.7 parts of vanadium pentoxide, 0.9 part of copper oxide and 0.2 part of iron oxide are added to 100 parts of the above-mentioned “molybdenum oxide 1”. The mixture was further stirred for 5 hours under reflux. After cooling the obtained liquid mixture to 50 degreeC, 37.4 parts of 29 mass% ammonia water was dripped, and it stirred for 15 minutes. Next, a solution in which 9.0 parts of cesium nitrate was dissolved in 30 parts of pure water was added dropwise, stirred for 15 minutes, and then evaporated to dryness while stirring with heating to obtain a solid. The solid material obtained was dried at 130 ° C. for 16 hours, pressure-molded, and further crushed, and then separated into 0.85 to 1.70 mm pieces using a sieve, and 5% at 380 ° C. under air flow. The catalyst 1 (composition excluding oxygen atoms: Mo 12 P 1.1 Fe 0.05 Cu 0.2 V 0.9 Cs 0.8 ) was obtained by heat treatment for a period of time. Further, catalysts 2 to 5 having the same composition were produced in the same manner as catalyst 1 except that “molybdenum oxide 1” was changed to molybdenum oxides 2 to 5, respectively.

(メタクリル酸の製造)
この触媒1〜5を反応管に充填し、メタクロレイン5容量%、酸素10容量%、水蒸気30容量%及び窒素55容量%の混合ガスを反応温度290℃、接触時間3.6秒で通じて反応を行い、ガスクロマトグラフにより反応物を分析した。結果を表1に示す。
(Production of methacrylic acid)
The catalysts 1 to 5 are filled in a reaction tube, and a mixed gas of 5% by volume of methacrolein, 10% by volume of oxygen, 30% by volume of water vapor and 55% by volume of nitrogen is passed at a reaction temperature of 290 ° C. and a contact time of 3.6 seconds. The reaction was performed and the reaction product was analyzed by gas chromatography. The results are shown in Table 1.

〔実施例
実施例で得られた「モリブデン酸化物4」100部に対して、85質量%リン酸6.7部、五酸化バナジウム2.6部を純水800 部に加え、還流下で3 時間加熱攪拌した。これに酸化銅1.4部を加え、さらに還流下で2時間加熱攪拌した。還流後の混合液を50 ℃に冷却し、硝酸カリウム7.1部を純水40 部に溶解した溶液を加え、さらに硝酸アンモニウム9.8部を純水40部に溶解した溶液を加え、加熱攪拌しながら蒸発乾固した。このようにして得られた固形物を実施例1の触媒1 の製造と同様に乾燥、成形、粉砕、篩分級及び焼成を実施して触媒6( 酸素原子を除く組成: M o12Cu0.30.51.2)を得た。
[Example 3 ]
To 100 parts of “molybdenum oxide 4” obtained in Example 2 , 6.7 parts of 85% by mass phosphoric acid and 2.6 parts of vanadium pentoxide are added to 800 parts of pure water and heated under reflux for 3 hours. Stir. To this, 1.4 parts of copper oxide was added, and the mixture was further heated and stirred under reflux for 2 hours. The mixture after refluxing is cooled to 50 ° C., a solution in which 7.1 parts of potassium nitrate is dissolved in 40 parts of pure water is added, and a solution in which 9.8 parts of ammonium nitrate is dissolved in 40 parts of pure water is added, followed by stirring with heating. While evaporating to dryness. The solid material thus obtained was dried, shaped, pulverized, sieve classified and calcined in the same manner as in the production of catalyst 1 of Example 1 to obtain catalyst 6 (composition excluding oxygen atoms: M o 12 P 1 Cu 0.3 V 0.5 K 1.2 ) was obtained.

触媒6を用い、反応温度を285℃とした以外は実施例1と同じ反応条件で反応を行った。結果を表1に示す。   The reaction was performed under the same reaction conditions as in Example 1 except that the catalyst 6 was used and the reaction temperature was 285 ° C. The results are shown in Table 1.

〔比較例
比較例で得られたモリブデン酸化物5を使用した以外は実施例と同様にして触媒7(酸素原子を除く組成:M o12C u0.30.51.2)を得、反応を行った。結果を表1 に示す。
[Comparative Example 4 ]
Except that the molybdenum oxide 5 obtained in Comparative Example 3 was used, a catalyst 7 (composition excluding oxygen atoms: M o 12 P 1 Cu 0.3 V 0.5 K 1.2 was obtained in the same manner as in Example 3. ) To obtain a reaction. The results are shown in Table 1.

〔実施例及び比較例
(モリブデン酸化物6〜7の製造)
メタクリル酸の製造に使用された使用済み触媒100部(モリブデン55.8部、リン1.5部、バナジウム1.2部、銅0.6部、鉄0.1部、ヒ素0.7部及びセシウム7.7部を含む)を純水400部に分散させた。これに45質量% 水酸化ナトリウム水溶液130部を加え、60℃ で3時間攪拌後に残渣をろ別した。この溶液を36質量% 塩酸で中和した後に、塩化マグネシウム6水和物20.5部を純水50部に溶解させた溶液と29質量% アンモニア水4 .5部を加え、さらに29質量%アンモニア水を加えてp H を9に調整した後、攪拌しながら30℃で3時間保持し、生成した沈殿物と溶液をろ別した。このようにして得られた溶液に36質量%塩酸を加えてpHを1.0に調整した後、攪拌しながら30℃で3時間保持した。このようにして得られた沈殿を実施例1と同様の手順で乾燥、焼成、分級し、分級条件の異なるモリブデン酸化物6および7 を得た。なお、モリブデン酸化物6にはモリブデン54 .3 部、バナジウム1.0 部及びセシウム2 . 9 部が含まれていた。
[Example 4 and Comparative Example 5 ]
(Production of molybdenum oxide 6-7)
100 parts spent catalyst used in the production of methacrylic acid (55.8 parts molybdenum, 1.5 parts phosphorus, 1.2 parts vanadium, 0.6 parts copper, 0.1 parts iron, 0.7 parts arsenic and Cesium (7.7 parts) was dispersed in 400 parts of pure water. To this was added 130 parts of a 45% by weight aqueous sodium hydroxide solution, and the mixture was stirred at 60 ° C. for 3 hours, and the residue was filtered off. After neutralizing this solution with 36% by mass hydrochloric acid, 20.5 parts of magnesium chloride hexahydrate was dissolved in 50 parts of pure water and 29% by mass of aqueous ammonia 4. After adding 5 parts and further adding 29% by mass of ammonia water to adjust the pH to 9, the mixture was kept at 30 ° C. for 3 hours with stirring, and the produced precipitate and the solution were separated by filtration. 36% by mass hydrochloric acid was added to the solution thus obtained to adjust the pH to 1.0, and the solution was kept at 30 ° C. for 3 hours with stirring. The precipitate thus obtained was dried, calcined and classified in the same procedure as in Example 1 to obtain molybdenum oxides 6 and 7 having different classification conditions. The molybdenum oxide 6 includes molybdenum 54. 3 parts, 1.0 part vanadium and cesium 2. Nine copies were included.

(触媒8〜9の製造)
上記のモリブデン酸化物6あるいは7の全量(モリブデンとして54.3部)、五酸化バナジウム0.4部、85質量%リン酸5.4部、60質量%ヒ酸2.2部を純水160部に加え、還流下で5時間加熱攪拌した。これを50℃まで冷却した後、硝酸セシウム6.7部を純水15部に溶解した溶液を加え、攪拌しながら混合液の温度を70℃に昇温した。次いで、29質量%アンモニア水27.4部を加え、得られた混合液を70℃にて90分間攪拌した後、硝酸銅2.3部を純水8部に溶解した溶液、硝酸鉄1.0部を純水8部に溶解した溶液を加えた。更にこの混合液を加熱攪拌しながら蒸発乾固した。このようにして得られた固形物を実施例1の触媒1の製造と同様に乾燥、成形、粉砕、篩分級および焼成を実施して触媒8および9(酸素原子を除く組成:Mo12As0.2Fe0.05Cu0.20.5Cs1.2)を得た。
(Production of catalysts 8-9)
The total amount of the above molybdenum oxide 6 or 7 (54.3 parts as molybdenum), 0.4 part of vanadium pentoxide, 5.4 parts of 85% by mass phosphoric acid, and 2.2 parts of 60% by mass arsenic acid were added to pure water 160. The mixture was heated and stirred for 5 hours under reflux. After cooling this to 50 ° C., a solution in which 6.7 parts of cesium nitrate was dissolved in 15 parts of pure water was added, and the temperature of the mixture was raised to 70 ° C. while stirring. Subsequently, 27.4 parts of 29 mass% ammonia water was added, and the obtained mixed liquid was stirred at 70 ° C. for 90 minutes. Then, a solution in which 2.3 parts of copper nitrate was dissolved in 8 parts of pure water, iron nitrate 1. A solution in which 0 part was dissolved in 8 parts of pure water was added. The mixture was evaporated to dryness while stirring with heating. The solid material thus obtained was dried, shaped, pulverized, sieve classified and calcined in the same manner as in the production of the catalyst 1 of Example 1 to obtain catalysts 8 and 9 (composition excluding oxygen atoms: Mo 12 P 1 As 0.2 Fe 0.05 Cu 0.2 V 0.5 Cs 1.2 ) was obtained.

(メタクリル酸の製造)
上記で得られた触媒8および9を用いて実施例1と同じ反応条件で反応を行った。結果を表1に示す。

Figure 0005030438
(Production of methacrylic acid)
The reaction was performed under the same reaction conditions as in Example 1 using the catalysts 8 and 9 obtained above. The results are shown in Table 1.
Figure 0005030438

Claims (2)

モリブデンを含む下記式( 1 ) で表される固体触媒の製造方法であって、モリブデン含有原料として、下記式( ) で示される圧縮度が0 以下で、かつ平均粒子径が20μm以上であるモリブデン酸化物を使用し、モリブデン、リン、およびX元素を含むスラリーを乾燥後焼成する触媒の製造方法。
M o ・・・・・ ( 1 )
( 式中、Mo 、P 、およびO はそれぞれモリブデン、リン、および酸素を表し、X はカリウム、ルビジウム、セシウム、およびタリウムからなる群より選ばれた少なくとも1 種の元素を表し、Y は鉄、コバルト、ニッケル、銅、亜鉛、マグネシウム、カルシウム、ストロンチウム、バリウム、チタン、バナジウム、クロム、タングステン、マンガン、銀、ホウ素、ケイ素、アルミニウム、ガリウム、ゲルマニウム、スズ、鉛、ヒ素、アンチモン、ビスマス、ニオブ、タンタル、ジルコニウム、インジウム、イオウ、セレン、テルル、ランタン、およびセリウムからなる群より選ばれた少なくとも1種の元素を表す。a 、b 、c 、d 、およびeは各元素の原子比を表し、a = 1 2 のとき、b = 0 . 1 〜 3 、c = 0 .0 1 〜 3 、d = 0 〜 3 であり、e は前記各成分の原子価を満足するのに必要な酸素の原子比である。)
圧縮度C = ( ρ − ρ ) / ρ × 1 0 0 ・・・・ (
但し、ρ は疎充填時のかさ密度、ρ は密充填時のかさ密度である。
A method for producing a solid catalyst represented by the following formula (1) containing molybdenum, wherein the molybdenum-containing raw material has a compression degree represented by the following formula ( 2 ) of 40 or less and an average particle diameter of 20 μm or more. A method for producing a catalyst, comprising using a certain molybdenum oxide , and drying and calcining a slurry containing molybdenum, phosphorus, and an X element.
M o a P b X c Y d O e ····· (1)
(Wherein Mo 1, P 2, and O 2 represent molybdenum, phosphorus, and oxygen, respectively, X 1 represents at least one element selected from the group consisting of potassium, rubidium, cesium, and thallium, and Y 1 represents iron, Cobalt, nickel, copper, zinc, magnesium, calcium, strontium, barium, titanium, vanadium, chromium, tungsten, manganese, silver, boron, silicon, aluminum, gallium, germanium, tin, lead, arsenic, antimony, bismuth, niobium, Represents at least one element selected from the group consisting of tantalum, zirconium, indium, sulfur, selenium, tellurium, lanthanum, and cerium, a 1, b 2, c 3, d 4, and e represent the atomic ratio of each element; When a = 1 2, b = 0.1-3, c = 0.01-3 D = 0 to 3 and e is an atomic ratio of oxygen necessary to satisfy the valence of each component.)
Compression degree C p = (ρ p - ρ a) / ρ p × 1 0 0 ···· (2)
However, (rho) a is the bulk density at the time of loose filling, and (rho) p is the bulk density at the time of close packing.
求項に記載の製造方法により得られる固体触媒の存在下で、メタクロレインを分子状酸素により気相接触酸化するメタクリル酸の製造方法。 Motomeko in the presence of a solid catalyst obtained by the method described in 1, manufacturing method for methacrylic acid vapor phase catalytic oxidation of methacrolein with molecular oxygen.
JP2006051770A 2006-02-28 2006-02-28 Method for producing catalyst and method for producing methacrylic acid Active JP5030438B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006051770A JP5030438B2 (en) 2006-02-28 2006-02-28 Method for producing catalyst and method for producing methacrylic acid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006051770A JP5030438B2 (en) 2006-02-28 2006-02-28 Method for producing catalyst and method for producing methacrylic acid

Publications (2)

Publication Number Publication Date
JP2007229561A JP2007229561A (en) 2007-09-13
JP5030438B2 true JP5030438B2 (en) 2012-09-19

Family

ID=38550693

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006051770A Active JP5030438B2 (en) 2006-02-28 2006-02-28 Method for producing catalyst and method for producing methacrylic acid

Country Status (1)

Country Link
JP (1) JP5030438B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1987877A3 (en) 2007-03-29 2010-10-13 Nippon Shokubai Co., Ltd. Oxide catalyst, process for producing acrolein or acrylic acid and process for producing water-absorbent resin
JP2008264766A (en) * 2007-03-29 2008-11-06 Nippon Shokubai Co Ltd Oxide catalyst, manufacturing method of acrolein or acrylic acid and manufacturing method of water-absorptive resin using acrylic acid
JP5680973B2 (en) * 2011-01-05 2015-03-04 三井金属鉱業株式会社 Method for producing yttrium manganate YMnO3
JP5691841B2 (en) * 2011-05-25 2015-04-01 住友金属鉱山株式会社 Easily soluble molybdenum trioxide particles and method for producing the same
CN103073416A (en) * 2013-01-29 2013-05-01 新兴能源科技有限公司 Preparation method of propenoic acid
JP6922993B2 (en) 2017-10-20 2021-08-18 三菱ケミカル株式会社 A method for producing a catalyst for producing α, β-unsaturated carboxylic acid, a method for producing α, β-unsaturated carboxylic acid, and a method for producing an α, β-unsaturated carboxylic acid ester.
KR20190129762A (en) 2018-05-11 2019-11-20 엘지전자 주식회사 Method for preparing transition metal oxide fine particles

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4131486B2 (en) * 1999-07-09 2008-08-13 日本化薬株式会社 Auto-igniting enhancer composition
JP4634633B2 (en) * 2001-03-30 2011-02-16 三菱レイヨン株式会社 Unsaturated carboxylic acid synthesis catalyst, preparation method thereof, and synthesis method of unsaturated carboxylic acid using the catalyst
JP4933709B2 (en) * 2001-09-26 2012-05-16 三菱レイヨン株式会社 Method for producing catalyst for synthesis of unsaturated carboxylic acid
JP4242597B2 (en) * 2002-02-28 2009-03-25 株式会社日本触媒 Unsaturated aldehyde synthesis catalyst, production method thereof, and production method of unsaturated aldehyde using the catalyst
JP2004008834A (en) * 2002-06-03 2004-01-15 Mitsubishi Rayon Co Ltd Method for producing catalyst for use in manufacturing methacrylic acid
JP4745653B2 (en) * 2003-12-05 2011-08-10 三菱レイヨン株式会社 Method for producing methacrylic acid
JP4514024B2 (en) * 2004-02-09 2010-07-28 日本化薬株式会社 Gunpowder molded body and gas generator having the same
JP4961132B2 (en) * 2005-11-09 2012-06-27 三菱レイヨン株式会社 Method for producing catalyst for producing methacrylic acid, and method for producing methacrylic acid

Also Published As

Publication number Publication date
JP2007229561A (en) 2007-09-13

Similar Documents

Publication Publication Date Title
JP4764338B2 (en) Molybdenum recovery method and catalyst production method
RU2119908C1 (en) Method of synthesis of acrylic acid
US7414008B2 (en) Catalyst for synthesis of unsaturated aldehyde, production process for said catalyst, and production process for unsaturated aldehyde using said catalyst
KR101431293B1 (en) Fluidized-bed catalyst for the production of acrylonitrile and process for the production of acrylonitrile
JP5030438B2 (en) Method for producing catalyst and method for producing methacrylic acid
KR100986898B1 (en) Multi-metal oxide catalyst and method for producing methacrylic acid by using the same
KR101722061B1 (en) Catalyst for oxidation of saturated and unsaturated aldehydes to unsaturated carboxylic acid comprising a heteropoly acid, method of making and method of using thereof
JP5011176B2 (en) Catalyst for synthesizing acrylonitrile and method for producing acrylonitrile
US5250485A (en) Process for preparing catalysts used for production of methacrolein and methacrylic acid
JPWO2007032228A1 (en) Molybdenum recovery method and catalyst production method
JP2020506047A (en) Method for preparing propylene ammoxidation catalyst
JP4442317B2 (en) Method for producing composite oxide catalyst
WO2004089959A2 (en) Mixed metal oxide catalysts for the production of unsaturated aldehydes from olefins
JP4022047B2 (en) Method for producing methacrylic acid synthesis catalyst, methacrylic acid synthesis catalyst and methacrylic acid production method
JP4863436B2 (en) Catalysts for the synthesis of unsaturated aldehydes and unsaturated carboxylic acids
JP5100520B2 (en) Method for producing catalyst for synthesizing α, β-unsaturated carboxylic acid
JP3690939B2 (en) Catalyst for synthesizing methacrylic acid and method for producing methacrylic acid
JP4285084B2 (en) Method for producing catalyst for producing methacrylic acid and method for producing methacrylic acid
JP4989857B2 (en) Method for refilling molded body
JP2005058909A (en) Production method for catalyst for synthesizing methacrylic acid
JP4811977B2 (en) Method for producing catalyst for synthesis of methacrylic acid
JP5885019B2 (en) Method for producing a catalyst for methacrylic acid production
JP4947753B2 (en) Catalyst for methacrylic acid synthesis and method for producing methacrylic acid
JP4236415B2 (en) Catalyst for methacrylic acid synthesis and method for producing methacrylic acid
JP2011115681A (en) Catalyst for synthesizing unsaturated aldehyde and unsaturated carboxylic acid

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090226

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110104

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120329

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120522

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120621

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120626

R151 Written notification of patent or utility model registration

Ref document number: 5030438

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150706

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150706

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250