JP4022047B2 - Method for producing methacrylic acid synthesis catalyst, methacrylic acid synthesis catalyst and methacrylic acid production method - Google Patents

Method for producing methacrylic acid synthesis catalyst, methacrylic acid synthesis catalyst and methacrylic acid production method Download PDF

Info

Publication number
JP4022047B2
JP4022047B2 JP2001031407A JP2001031407A JP4022047B2 JP 4022047 B2 JP4022047 B2 JP 4022047B2 JP 2001031407 A JP2001031407 A JP 2001031407A JP 2001031407 A JP2001031407 A JP 2001031407A JP 4022047 B2 JP4022047 B2 JP 4022047B2
Authority
JP
Japan
Prior art keywords
parts
methacrylic acid
catalyst
molybdenum
solid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001031407A
Other languages
Japanese (ja)
Other versions
JP2002233758A (en
Inventor
奉正 辰巳
聖午 渡辺
求 大北
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Chemical Corp
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp, Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Chemical Corp
Priority to JP2001031407A priority Critical patent/JP4022047B2/en
Publication of JP2002233758A publication Critical patent/JP2002233758A/en
Application granted granted Critical
Publication of JP4022047B2 publication Critical patent/JP4022047B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Description

【0001】
【発明の属する技術分野】
本発明は、メタクロレインを分子状酸素により気相接触酸化してメタクリル酸を合成する際に使用するメタクリル酸合成用触媒の製造方法、メタクリル酸合成用触媒およびこの触媒を用いたメタクリル酸の製造方法に関する。
【0002】
【従来の技術】
メタクロレインを分子状酸素により気相接触酸化してメタクリル酸を合成する際に使用する触媒については数多くの提案がなされている。例えば、特開昭50−101316号公報、特開昭53−37614号公報、特開昭54−103819号公報、特開昭57−120547号公報、特開昭60−239439号公報、特開平2−240043号公報等にはモリブデンおよびリンを主成分とする触媒が開示されている。通常、これらの触媒は、各金属成分を含む水性スラリーを乾燥し、必要に応じて成型した後、焼成するという一連の工程で製造される。すなわち、一種類の水性スラリーを調製し、それを元に乾燥、成型、焼成の一連の工程を経て製造される。しかしながら、この方法により得られる触媒では、活性および選択性の点で工業触媒としては必ずしも十分ではない。
【0003】
特開平5−177141号公報には、少なくともモリブデン、リンおよびセシウムを含むヘテロポリ酸系触媒を調製する際に、少なくともモリブデン、リンおよびセシウムを含むヘテロポリ酸塩を得、該ヘテロポリ酸塩の懸濁液に少なくともモリブデンおよびリンを含みセシウムを含まない触媒原料を添加し、得られた液状物を乾燥、焼成して触媒を得る方法、すなわち2段階で触媒を調製する方法が開示されている。この方法により調製される触媒は、ヘテロポリ酸のセシウム塩の小粒子上にセシウムを含まないヘテロポリ酸が結晶成長し、結晶としては安定なセシウム塩の構造をとっているが反応に使用される触媒粒子表面には反応活性が高いセシウムを含まないヘテロポリ酸が存在していると推定され、従来の1段階で調製する方法よりも高い活性、選択性を有することが報告されている。
【0004】
しかしながら、この方法で得られる触媒においても、活性およびメタクリル酸選択性の点で工業触媒としては必ずしも十分ではなく、さらなる触媒性能の向上が望まれている。
【0005】
【発明が解決しようとする課題】
本発明は、メタクロレインを分子状酸素により気相接触酸化してメタクリル酸を合成する際に使用するメタクリル酸合成用触媒の新規な製造方法、この製造方法により得られる高活性、高メタクリル酸選択性のメタクリル酸合成用触媒、および、この触媒を用いた高収率のメタクリル酸の製造方法を提供することを目的とする。
【0006】
【課題を解決するための手段】
上記課題を解決するため鋭意検討を行った結果、本発明者らは、メタクロレインを分子状酸素により気相接触酸化してメタクリル酸を合成する際に使用する触媒について、高活性、高メタクリル酸選択性を有する触媒を得ることができる新規調製法を完成させるに至った。本発明の上記課題は以下の本発明により解決できる。
(1)少なくともモリブデンと、リンと、カリウム、ルビジウム、セシウムおよびタリウムからなる群より選ばれた少なくとも1種の元素であるXとを含むメタクリル酸合成用触媒の製造方法であって、少なくともモリブデン、リンおよびXを含む固形物Aを調製する工程と、少なくともモリブデン、リンおよびXを含む水性スラリーBを調製する工程と、固形物Aと水性スラリーBとを混合する工程と、固形物Aと水性スラリーBとを混合して得られる液状物を乾燥する工程と、この乾燥物を300〜500℃で焼成する工程とを含み、固形物Aに含まれるモリブデンとXの含有比(原子比)は12:2.5〜12:12とし、水性スラリーBに含まれるモリブデンとXの含有比(原子比)は12:0.05〜12:0.4とすることを特徴とするメタクリル酸合成用触媒の製造方法。
(2)前記(1)のメタクリル酸合成用触媒の製造方法により得られるメタクリル酸合成用触媒。
(3)前記(2)のメタクリル酸合成用触媒の存在下でメタクロレインを気相接触酸化することを特徴とするメタクリル酸の製造方法。
【0007】
メタクリル酸合成用触媒の製造方法において、固形物Aに含まれるモリブデンとXの含有比(原子比)は12:2.5〜12:12であり、12:3.05〜12:10、特に12:3.6〜12:8であることが好ましい。また、水性スラリーBに含まれるモリブデンとXの含有比(原子比)は12:0.05〜12:0.4であり、12:0.07〜12:0.35、特に12:0.09〜12:0.3であることが好ましい。
【0008】
【発明の実施の形態】
本発明の新規な製造方法により得られるメタクリル酸製造用触媒は、メタクロレインを分子状酸素により気相接触酸化してメタクリル酸を製造するための触媒であって、高活性、高メタクリル酸選択性を有している。
【0009】
本発明のメタクリル酸合成用触媒の製造方法は、
(1)少なくともモリブデン、リンおよびXを含む固形物Aを調製する工程と、
(2)少なくともモリブデン、リンおよびXを含む水性スラリーBを調製する工程と、
(3)固形物Aと水性スラリーBとを混合する工程と、
(4)固形物Aと水性スラリーBとを混合して得られる液状物を乾燥する工程と、
(5)この乾燥物を300〜500℃で焼成する工程と
を含むものである。ここで、Xは、カリウム、ルビジウム、セシウムおよびタリウムからなる群より選ばれた少なくとも1種の元素を表す。
【0010】
本発明において、固形物Aの調製法としては特に限定されず、共沈法、蒸発乾固法、酸化物混合法等の種々の方法を用いることができる。特に、少なくともモリブデン、リンおよびXを含む水性スラリーを乾燥することにより調製する方法が好ましい。この際、水性スラリーの乾燥方法としては特に限定されず、汎用の箱型乾燥機、噴霧乾燥機、ドラムドライヤー、スラリードライヤー等を用いることができる。また、その調製過程において、300℃以上で熱処理する過程が含まれていないことが好ましい。固形物Aの調製条件は、少なくともモリブデン、リンおよびXを含むメタクリル酸合成用触媒の熱処理前の前駆体の製造方法に従い、適宜決めればよい。
【0011】
固形物Aの調製に用いる原料は特に限定されず、各元素の硝酸塩、炭酸塩、酢酸塩、アンモニウム塩、酸化物、ハロゲン化物等を使用することができる。例えば、モリブデン原料としてはパラモリブデン酸アンモニウム、三酸化モリブデン、モリブデン酸、塩化モリブデン等が使用できる。触媒成分の原料は各元素に対して1種を用いても2種以上を用いてもよい。
【0012】
なお、固形物Aは実質的に固形物であればよく、含水量等に関しては特に規定されない。
【0013】
固形物Aの形状については特に限定されないが、粉体状が好ましい。また、固形物Aを水性スラリーBに混合したときにできるだけ均一に混合されるように固形物Aを粉砕して適当な粒径の粒子にしてもよい。
【0014】
固形物Aは必ずしもヘテロポリ酸塩の構造を有していなくてもよい。本発明においては、固形物Aに含まれるモリブデンとXの含有比(原子比)が重要である。固形物Aに含まれるモリブデンとXの含有比(原子比)は12:2.5〜12:12であり、12:3.05〜12:10、特に12:3.6〜12:8であることが好ましい。
【0015】
また、固形物Aの構成元素は、モリブデン、リンおよびXを含有していれば特に限定されないが、モリブデン、リンおよびX以外に、銅、バナジウム、鉄、コバルト、ニッケル、亜鉛、マグネシウム、カルシウム、ストロンチウム、バリウム、チタン、クロム、タングステン、マンガン、銀、ホウ素、ケイ素、アルミニウム、ガリウム、ゲルマニウム、スズ、鉛、ヒ素、アンチモン、ビスマス、ニオブ、タンタル、ジルコニウム、インジウム、イオウ、セレン、テルル、ランタン、セリウムなどを適宜含んでいてもよい。
【0016】
本発明において、水性スラリーBの調製法は特に限定されない。少なくともモリブデン、リンおよびXを含む水性スラリーであればよい。水性スラリーの水の量も特に限定されないが、固形物Aがすべて再溶解しないようにしなければならない。具体的には、水性スラリーBに含まれるモリブデンと水の質量比は1:0.5〜1:10が好ましい。
【0017】
水性スラリーBの調製に用いる原料は特に限定されず、固形物Aと同様に各元素の硝酸塩、炭酸塩、酢酸塩、アンモニウム塩、酸化物、ハロゲン化物等を使用することができる。例えば、モリブデン原料としてはパラモリブデン酸アンモニウム、三酸化モリブデン、モリブデン酸、塩化モリブデン等が使用できる。触媒成分の原料は各元素に対して1種を用いても2種以上を用いてもよい。
【0018】
水性スラリーBに含まれるモリブデンとXの含有比(原子比)は12:0.05〜12:0.4であり、12:0.07〜12:0.35、特に12:0.09〜12:0.3であることが好ましい。
【0019】
また、水性スラリーBの構成元素は、モリブデン、リンおよびXを含有していれば特に限定されないが、モリブデン、リンおよびX以外に、銅、バナジウム、鉄、コバルト、ニッケル、亜鉛、マグネシウム、カルシウム、ストロンチウム、バリウム、チタン、クロム、タングステン、マンガン、銀、ホウ素、ケイ素、アルミニウム、ガリウム、ゲルマニウム、スズ、鉛、ヒ素、アンチモン、ビスマス、ニオブ、タンタル、ジルコニウム、インジウム、イオウ、セレン、テルル、ランタン、セリウムなどを適宜含んでいてもよい。
【0020】
本発明において、固形物Aと水性スラリーBを混合する際の手順は特に限定されない。混合においては、固形物Aを水性スラリーBに投入することが重要である。また、固形物Aを水性スラリーBへ混合するタイミングについては特に限定されないが、例えば、水性スラリーBを調合した後に固形物Aを投入し、できるだけ均一になるように混合して得られた液状物を乾燥することが好ましい。
【0021】
混合する際の固形物Aに含まれるモリブデンと水性スラリーBに含まれるモリブデンの比(原子比)は、高活性、高メタクリル酸選択性の触媒が得られるので、1:1〜1:30とすることが好ましい。
【0022】
液状物の乾燥方法に関しても特に限定されず、汎用の箱型乾燥機、噴霧乾燥機、ドラムドライヤー、スラリードライヤー等を用いることができる。乾燥条件は適宜決めればよい。
【0023】
固形物Aと水性スラリーBの混合液状物を乾燥して得られた乾燥物はそのまま次の焼成を行なってもよいが、通常は成形してから焼成する。
【0024】
乾燥物を成型する方法としては特に限定されず、通常の打錠成型、押出成型、造粒等の各種成型法を適用することができる。
【0025】
また、成型に際しては、乾燥物に対して従来公知の添加剤、例えば成型物の比表面積、細孔容積および細孔分布を再現性よく制御したり、機械的強度を高めるために、硫酸バリウム、硝酸アンモニウム等の無機塩類、グラファイト等の滑剤、セルロース類、でんぷん、ポリビニルアルコール、ステアリン酸等の有機物、シリカゾル、アルミナゾル等の水酸化物ゾル、ウィスカー、ガラス繊維、炭素繊維等の無機質繊維等を適宜添加してもよい。
【0026】
成型物の形状についても特に限定はなく、球状、円柱状、リング状、板状等の任意の形状に成型できる。
【0027】
本発明では、得られた成型物を300〜500℃の範囲の温度で焼成して本発明のメタクリル酸合成用触媒が得られる。焼成時間については特に限定されないが、良好な触媒が得られるので1時間以上であることが好ましく、通常、40時間以下が好ましい。焼成は、通常、酸素、空気または窒素流通下で行なう。
【0028】
このようにして得られる本発明のメタクリル酸合成用触媒中においては、ヘテロポリ酸またはヘテロポリ酸塩の構造が含まれていることが好ましい。
【0029】
本発明のメタクリル酸合成用触媒は、下記一般式(I)で表される組成を有する複合酸化物であることが好ましい。
【0030】
MoabCucdefg (I)
ここで、式中、Mo、P、Cu、VおよびOはそれぞれモリブデン、リン、銅、バナジウムおよび酸素を表し、Xはカリウム、ルビジウム、セシウムおよびタリウムからなる群より選ばれた少なくとも1種の元素を表し、Yは鉄、コバルト、ニッケル、亜鉛、マグネシウム、カルシウム、ストロンチウム、バリウム、チタン、クロム、タングステン、マンガン、銀、ホウ素、ケイ素、アルミニウム、ガリウム、ゲルマニウム、スズ、鉛、ヒ素、アンチモン、ビスマス、ニオブ、タンタル、ジルコニウム、インジウム、イオウ、セレン、テルル、ランタンおよびセリウムからなる群より選ばれた少なくとも1種の元素を表す。
【0031】
a、b、c、d、e、fおよびgは各元素の原子比を表し、a=12のとき、0.1≦b≦3、0.01≦c≦3、0.01≦d≦3、0.05≦e≦3、0≦f≦3であり、gは前記各成分の原子比を満足するのに必要な酸素の原子比である。
【0032】
本発明により製造される触媒の各成分の存在状態、殊にXの存在状態は複雑であり、厳密には把握されていない。ただし、固形物Aに含まれるXとモリブデンの含有比(原子比)X/Moは2.5/12〜12/12であり、X/Moが3/12より大きい場合は固形物Aは単なるX元素をカチオンとするヘテロポリ酸塩を形成しているとは考えにくい。したがって、特開平5−177141号公報に示された方法により製造されるような触媒の構造、すなわち、モリブデン、リンおよびXを含むヘテロポリ酸塩の結晶粒子の表面をXを含まないヘテロポリ酸が覆った構造になっている可能性は非常に低く、それとは異なる構造をしていると考えられる。また、X/Moが3/12以下では、固形物Aは単なるヘテロポリ酸塩を形成している可能性もあるが、本発明者らは、X/Moが2.5/12以上のときに触媒活性および選択性において良好な触媒が得られることを見出した。
【0033】
次に、本発明のメタクリル酸の製造方法について説明する。本発明のメタクリル酸の製造方法は、上記のような本発明の触媒の存在下でメタクロレインを分子状酸素により気相接触酸化してメタクリル酸を製造するものである。
【0034】
反応は、通常、固定床で行なう。また、触媒層は1層でも2層以上でもよい。
【0035】
原料ガス中のメタクロレインの濃度は広い範囲で変えることができるが、1〜20容量%、特に3〜10容量%が好ましい。原料のメタクロレインは、水、低級飽和アルデヒド等の実質的に反応に影響を与えない不純物を少量含んでいてもよい。
【0036】
接触酸化を行う際の酸素源としては、空気を用いるのが工業的に有利であるが、必要に応じて純酸素で富化した空気等も使用できる。原料ガス中のメタクロレイン対酸素のモル比(容量比)は1:0.5〜1:3が好ましい。
【0037】
原料ガスは反応原料と分子状酸素以外に水を含んでいることが好ましく、また窒素、二酸化炭素等の不活性ガスで希釈して用いることが好ましい。原料ガス中のメタクロレイン対水の容量比は1:0.1〜1:10が好ましい。
【0038】
反応圧力は常圧ないし数気圧まで用いられる。反応温度は200〜450℃の範囲が好ましい。接触時間は2〜7秒が好ましい。
【0039】
【実施例】
以下、本発明の触媒の調製法、および、その触媒を用いた反応例を実施例により説明する。
【0040】
ただし、下記実施例および比較例中の「部」は質量部を意味する。反応試験分析はガスクロマトグラフィーにより行った。触媒組成は触媒原料の仕込み量から求めた。
【0041】
また、実施例、比較例中の反応用原料としてのメタクロレインの転化率、生成したメタクリル酸の選択率および収率は以下のように定義される。
【0042】
メタクロレイン転化率(%)=反応したメタクロレインのモル数/供給したメタクロレインのモル数×100
メタクリル酸選択率(%)=生成したメタクリル酸のモル数/反応したメタクロレインのモル数×100
メタクリル酸収率(%)=生成したメタクリル酸のモル数/供給したメタクロレインのモル数×100
<実施例1>
パラモリブデン酸アンモニウム22.5部、メタバナジン酸アンモニウム1.0部および硝酸カリウム5.4部を純水90部に溶解した。これを撹拌しながら、85%リン酸1.8部を純水2.3部に溶解した溶液を加え、さらに硝酸銅0.3部を純水2.3部に溶解した溶液を加えた。次に、硝酸ビスマス1.6部に60%硝酸1.6部および水9部を加えて得られた硝酸ビスマスの均一溶液を前記混合液に加えた後、95℃に昇温した。これに、60%ヒ酸0.5部を純水2.2部に溶解した溶液を加え、続いて三酸化アンチモン0.5部、二酸化セリウム0.4部を加えた。得られた水性スラリーを加熱撹拌しながら蒸発乾固した後、130℃で16時間乾燥し、粉砕することにより固形物A−1を得た。得られた固形物A−1に含まれるMoとKの含有比(原子比)は12:5であった。
【0043】
別に、水性スラリーに含まれるMoとKの含有比(原子比)が12:0.1になるように水性スラリーB−1を調製した。
【0044】
パラモリブデン酸アンモニウム100部、メタバナジン酸アンモニウム4.4部および硝酸カリウム0.5部を純水400部に溶解した。これを撹拌しながら、85%リン酸8.2部を純水10部に溶解した溶液を加え、さらに硝酸銅1.1部を純水10部に溶解した溶液を加えた。次に、硝酸ビスマス6.9部に60%硝酸7.0部および純水40部を加えて得られた硝酸ビスマスの均一溶液を前記混合液に加えた後、95℃に昇温した。これに、60%ヒ酸2.2部を純水10部に溶解した溶液を加え、続いて三酸化アンチモン2.1部、二酸化セリウム1.6部を加え、撹拌した後、この液状物を70℃に降温して水性スラリーB−1を得た。
【0045】
このようにして得られた固形物A−1全量を水性スラリーB−1に添加し、液状物を加熱撹拌しながら蒸発乾固した後、130℃で16時間乾燥し、得られた乾燥物を粉砕した。こうして得られた紛体100部にグラファイト3.0部を添加し、続いて打錠成型機により、外径5mm、内径2mm、長さ5mmのリング状に成型した。そして、得られた成型物を空気流通下、380℃で5時間焼成して触媒を得た。
【0046】
得られた触媒の酸素以外の元素の組成は、
Mo121.50.8Cu0.1Sb0.3Bi0.3As0.2Ce0.21
であった。
【0047】
得られた触媒を反応管に充填し、メタクロレイン5容量%、酸素10容量%、水蒸気30容量%および窒素55容量%からなる原料ガスを常圧下、反応温度290℃、接触時間3.6秒で通じた。生成物を捕集し、ガスクロマトグラフィーで分析したところ、メタクロレイン転化率91.6%、メタクリル酸選択率89.0%、メタクリル酸収率81.5%であった。
<実施例2>
パラモリブデン酸アンモニウム36部、メタバナジン酸アンモニウム1.6部および硝酸カリウム6部を純水144部に溶解した。これを撹拌しながら、85%リン酸2.9部を純水3.6部に溶解した溶液を加え、さらに硝酸銅0.4部を純水3.6部に溶解した溶液を加えた。次に、硝酸ビスマス2.5部に60%硝酸2.5部および水14.4部を加えて得られた硝酸ビスマスの均一溶液を前記混合液に加えた後、95℃に昇温した。これに、60%ヒ酸0.8部を純水3.6部に溶解した溶液を加え、続いて三酸化アンチモン0.7部、二酸化セリウム0.6部を加えた。得られた水性スラリーを加熱撹拌しながら蒸発乾固した後、130℃で16時間乾燥し、粉砕することにより固形物A−2を得た。得られた固形物A−2に含まれるMoとKの含有比(原子比)は12:3.5であった。
【0048】
実施例1と同様にして得られた水性スラリーB−1に固形物A−2全量を添加し、実施例1と同様にして紛体を得、続いて成型、焼成を行い、触媒を得た。
【0049】
得られた触媒の酸素以外の元素の組成は、
Mo121.50.8Cu0.1Sb0.3Bi0.3As0.2Ce0.21
であった。
【0050】
得られた触媒を反応管に充填し、実施例1と同様にして反応を行った。その結果、メタクロレイン転化率91.5%、メタクリル酸選択率88.9%、メタクリル酸収率81.3%であった。
<実施例3>
パラモリブデン酸アンモニウム10部、メタバナジン酸アンモニウム0.4部および硝酸カリウム4.3部を純水40部に溶解した。これを撹拌しながら、85%リン酸0.8部を純水1部に溶解した溶液を加え、さらに硝酸銅0.1部を純水1部に溶解した溶液を加えた。次に、硝酸ビスマス0.7部に60%硝酸0.7部および水4部を加えて得られた硝酸ビスマスの均一溶液を前記混合液に加えた後、95℃に昇温した。これに、60%ヒ酸0.2部を純水1部に溶解した溶液を加え、続いて三酸化アンチモン0.2部、二酸化セリウム0.2部を加えた。得られた水性スラリーを加熱撹拌しながら蒸発乾固した後、130℃で16時間乾燥し、粉砕することにより固形物A−3を得た。得られた固形物A−3に含まれるMoとKの含有比(原子比)は12:9であった。
【0051】
別に、水性スラリーに含まれるMoとKの含有比(原子比)が12:0.2になるように水性スラリーB−2を調製した。
【0052】
パラモリブデン酸アンモニウム100部、メタバナジン酸アンモニウム4.4部および硝酸カリウム1部を純水400部に溶解した。これを撹拌しながら、85%リン酸8.2部を純水10部に溶解した溶液を加え、さらに硝酸銅1.1部を純水10部に溶解した溶液を加えた。次に、硝酸ビスマス6.9部に60%硝酸7.0部および純水40部を加えて得られた硝酸ビスマスの均一溶液を前記混合液に加えた後、95℃に昇温した。これに、60%ヒ酸2.2部を純水10部に溶解した溶液を加え、続いて三酸化アンチモン2.1部、二酸化セリウム1.6部を加え、撹拌した後、この液状物を70℃に降温して水性スラリーB−2を得た。
【0053】
このようにして得られた固形物A−3を水性スラリーB−2に全量添加し、実施例1と同様にして紛体を得、続いて成型、焼成を行い、触媒を得た。
【0054】
得られた触媒の酸素以外の元素の組成は、
Mo121.50.8Cu0.1Sb0.3Bi0.3As0.2Ce0.21
であった。
【0055】
得られた触媒を反応管に充填し、実施例1と同様にして反応を行った。その結果、メタクロレイン転化率91.4%、メタクリル酸選択率88.8%、メタクリル酸収率81.2%であった。
<実施例4>
パラモリブデン酸アンモニウム42.5部、メタバナジン酸アンモニウム2部および硝酸カリウム6.1部を純水170部に溶解した。これを撹拌しながら、85%リン酸3.5部を純水4.3部に溶解した溶液を加え、さらに硝酸銅0.5部を純水4.3部に溶解した溶液を加えた。次に、硝酸ビスマス3部に60%硝酸3部および水17部を加えて得られた硝酸ビスマスの均一溶液を前記混合液に加えた後、95℃に昇温した。これに、60%ヒ酸1部を純水4.3部に溶解した溶液を加え、続いて三酸化アンチモン0.9部、二酸化セリウム0.7部を加えた。得られた水性スラリーを加熱撹拌しながら蒸発乾固した後、130℃で16時間乾燥し、粉砕することにより固形物A−4を得た。得られた固形物A−4に含まれるMoとKの含有比(原子比)は12:3であった。
【0056】
別に、水性スラリーに含まれるMoとKの含有比(原子比)が12:0.15になるように水性スラリーB−3を調製した。
【0057】
パラモリブデン酸アンモニウム100部、メタバナジン酸アンモニウム4.4部および硝酸カリウム0.7部を純水400部に溶解した。これを撹拌しながら、85%リン酸8.2部を純水10部に溶解した溶液を加え、さらに硝酸銅1.1部を純水10部に溶解した溶液を加えた。次に、硝酸ビスマス6.9部に60%硝酸7.0部および純水40部を加えて得られた硝酸ビスマスの均一溶液を前記混合液に加えた後、95℃に昇温した。これに、60%ヒ酸2.2部を純水10部に溶解した溶液を加え、続いて三酸化アンチモン2.1部、二酸化セリウム1.6部を加え、撹拌した後、この液状物を70℃に降温して水性スラリーB−3を得た。
【0058】
このようにして得られた固形物A−4を水性スラリーB−3に全量添加し、実施例1と同様にして紛体を得、続いて成型、焼成を行い、触媒を得た。
【0059】
得られた触媒の酸素以外の元素の組成は、
Mo121.50.8Cu0.1Sb0.3Bi0.3As0.2Ce0.21
であった。
【0060】
得られた触媒を反応管に充填し、実施例1と同様にして反応を行った。その結果、メタクロレイン転化率91.1%、メタクリル酸選択率88.9%、メタクリル酸収率81.0%であった。
<実施例5>
パラモリブデン酸アンモニウム9部、メタバナジン酸アンモニウム0.4部および硝酸カリウム4.7部を純水36部に溶解した。これを撹拌しながら、85%リン酸0.7部を純水0.9部に溶解した溶液を加え、さらに硝酸銅0.1部を純水0.9部に溶解した溶液を加えた。次に、硝酸ビスマス0.6部に60%硝酸0.6部および水3.6部を加えて得られた硝酸ビスマスの均一溶液を前記混合液に加えた後、95℃に昇温した。これに、60%ヒ酸0.2部を純水0.9部に溶解した溶液を加え、続いて三酸化アンチモン0.2部、二酸化セリウム0.2部を加えた。得られた水性スラリーを加熱撹拌しながら蒸発乾固した後、130℃で16時間乾燥し、粉砕することにより固形物A−5を得た。得られた固形物A−5に含まれるMoとKの含有比(原子比)は12:11であった。
【0061】
実施例1と同様にして得られた水性スラリーB−1に固形物A−5全量を添加し、実施例1と同様にして紛体を得、続いて成型、焼成を行い、触媒を得た。
【0062】
得られた触媒の酸素以外の元素の組成は、
Mo121.50.8Cu0.1Sb0.3Bi0.3As0.2Ce0.21
であった。
【0063】
得られた触媒を反応管に充填し、実施例1と同様にして反応を行った。その結果、メタクロレイン転化率91.0%、メタクリル酸選択率88.9%、メタクリル酸収率80.9%であった。
<比較例1>
パラモリブデン酸アンモニウム100部、メタバナジン酸アンモニウム4.4部および硝酸カリウム4.8部を純水400部に溶解した。これを撹拌しながら、85%リン酸8.2部を純水10部に溶解した溶液を加え、さらに硝酸銅1.1部を純水10部に溶解した溶液を加えた。次に、硝酸ビスマス6.9部に60%硝酸7.0部および水40部を加えて得られた硝酸ビスマスの均一溶液を前記混合液に加えた後、95℃に昇温した。これに、60%ヒ酸2.2部を純水10部に溶解した溶液を加え、続いて三酸化アンチモン2.1部、二酸化セリウム1.6部を加えた。得られた水性スラリーを加熱撹拌しながら蒸発乾固した後、130℃で16時間乾燥し、粉砕することにより固形物A−6を得た。
【0064】
こうして得られた固形物A−6を実施例1と同様にして成型、焼成を行い、触媒を得た。
【0065】
得られた触媒の酸素以外の元素の組成は、
Mo121.50.8Cu0.1Sb0.3Bi0.3As0.2Ce0.21
であった。
【0066】
得られた触媒を反応管に充填し、実施例1と同様にして反応を行った。その結果、メタクロレイン転化率90.0%、メタクリル酸選択率88.2%、メタクリル酸収率79.4%であった
<比較例2>
パラモリブデン酸アンモニウム90部、メタバナジン酸アンモニウム4部および硝酸カリウム8.6部を純水360部に溶解した。これを撹拌しながら、85%リン酸7.4部を純水9部に溶解した溶液を加え、さらに硝酸銅1部を純水9部に溶解した溶液を加えた。次に、硝酸ビスマス6.2部に60%硝酸6.3部および水36部を加えて得られた硝酸ビスマスの均一溶液を前記混合液に加えた後、95℃に昇温した。これに、60%ヒ酸2部を純水9部に溶解した溶液を加え、続いて三酸化アンチモン1.9部、二酸化セリウム1.5部を加えた。得られた水性スラリーを加熱撹拌しながら蒸発乾固した後、130℃で16時間乾燥し、粉砕することにより固形物A−7を得た。得られた固形物A−7に含まれるMoとKの含有比(原子比)は12:2であった。
【0067】
実施例1と同様にして得られた水性スラリーB−1に固形物A−7全量を添加し、実施例1と同様にして紛体を得、続いて成型、焼成を行い、触媒を得た。
【0068】
得られた触媒の酸素以外の元素の組成は、
Mo121.50.8Cu0.1Sb0.3Bi0.3As0.2Ce0.21
であった。
【0069】
得られた触媒を反応管に充填し、実施例1と同様にして反応を行った。その結果、メタクロレイン転化率90.3%、メタクリル酸選択率88.3%、メタクリル酸収率79.7%であった。
<比較例3>
パラモリブデン酸アンモニウム6.9部、メタバナジン酸アンモニウム0.3部および硝酸カリウム4.6部を純水27.6部に溶解した。これを撹拌しながら、85%リン酸0.6部を純水0.7部に溶解した溶液を加え、さらに硝酸銅0.1部を純水0.7部に溶解した溶液を加えた。次に、硝酸ビスマス0.5部に60%硝酸0.5部および水2.7部を加えて得られた硝酸ビスマスの均一溶液を前記混合液に加えた後、95℃に昇温した。これに、60%ヒ酸0.2部を純水0.7部に溶解した溶液を加え、続いて三酸化アンチモン0.1部、二酸化セリウム0.1部を加えた。得られた水性スラリーを加熱撹拌しながら蒸発乾固した後、130℃で16時間乾燥し、粉砕することにより固形物A−8を得た。得られた固形物A−8に含まれるMoとKの含有比(原子比)は12:14であった。
【0070】
実施例1と同様にして得られた水性スラリーB−1に固形物A−8全量を添加し、実施例1と同様にして紛体を得、続いて成型、焼成を行い、触媒を得た。
【0071】
得られた触媒の酸素以外の元素の組成は、
Mo121.50.8Cu0.1Sb0.3Bi0.3As0.2Ce0.21
であった。
【0072】
得られた触媒を反応管に充填し、実施例1と同様にして反応を行った。その結果、メタクロレイン転化率90.2%、メタクリル酸選択率88.2%、メタクリル酸収率79.6%であった。
<比較例4>
パラモリブデン酸アンモニウム40部、メタバナジン酸アンモニウム1.8部および硝酸カリウム6.7部を純水160部に溶解した。これを撹拌しながら、85%リン酸3.3部を純水4部に溶解した溶液を加え、さらに硝酸銅0.5部を純水4部に溶解した溶液を加えた。次に、硝酸ビスマス2.8部に60%硝酸2.8部および水16部を加えて得られた硝酸ビスマスの均一溶液を前記混合液に加えた後、95℃に昇温した。これに、60%ヒ酸0.9部を純水4部に溶解した溶液を加え、続いて三酸化アンチモン0.8部、二酸化セリウム0.7部を加えた。得られた水性スラリーを加熱撹拌しながら蒸発乾固した後、130℃で16時間乾燥し、粉砕することにより固形物A−9を得た。得られた固形物A−9に含まれるMoとKの含有比(原子比)は12:3.5であった。
【0073】
別に、パラモリブデン酸アンモニウム100部、メタバナジン酸アンモニウム4.4部を純水400部に溶解した。これを撹拌しながら、85%リン酸8.2部を純水10部に溶解した溶液を加え、さらに硝酸銅1.1部を純水10部に溶解した溶液を加えた。次に、硝酸ビスマス6.9部に60%硝酸7.0部および純水40部を加えて得られた硝酸ビスマスの均一溶液を前記混合液に加えた後、95℃に昇温した。これに、60%ヒ酸2.2部を純水10部に溶解した溶液を加え、続いて三酸化アンチモン2.1部、二酸化セリウム1.6部を加え、撹拌した後、この液状物を70℃に降温して水性スラリーB−4を得た。
【0074】
このようにして得られた固形物A−9全量を水性スラリーB−4に添加し、実施例1と同様にして紛体を得、続いて成型、焼成を行い、触媒を得た。
【0075】
得られた触媒の酸素以外の元素の組成は、
Mo121.50.8Cu0.1Sb0.3Bi0.3As0.2Ce0.21
であった。
【0076】
得られた触媒を反応管に充填し、実施例1と同様にして反応を行った。その結果、メタクロレイン転化率90.1%、メタクリル酸選択率88.2%、メタクリル酸収率79.5%であった。
<実施例6>
パラモリブデン酸アンモニウム28.3部、メタバナジン酸アンモニウム0.8部および硝酸セシウム10.4部を純水113.2部に溶解した。これを攪拌しながら、85%リン酸2.3部を純水2.8部に溶解した溶液を加え、95℃に昇温した。次いで、硝酸銅1.0部、硝酸第二鉄2.2部、硝酸亜鉛0.4部および硝酸マグネシウム0.5部を純水22.7部に溶解した溶液を加えた。さらにこの混合液を100℃で30分間攪拌した。得られた水性スラリーを並流式噴霧乾燥機により、乾燥機入口温度300℃、スラリー噴霧用回転盤20000回転/分の条件で乾燥し、固形物A−10を得た。得られた固形物A−10に含まれるMoとCsの含有比(原子比)は12:4であった。
【0077】
別に、水性スラリーに含まれるMoとCsの含有比(原子比)が12:0.15になるように水性スラリーB−5を調製した。
【0078】
パラモリブデン酸アンモニウム100部、メタバナジン酸アンモニウム2.8部および硝酸セシウム1.4部を純水400部に溶解した。これを攪拌しながら、85%リン酸8.2部を純水10部に溶解した溶液を加え、95℃に昇温した。次いで、硝酸銅3.4部、硝酸第二鉄7.6部、硝酸亜鉛1.4部および硝酸マグネシウム1.8部を純水80部に溶解した溶液を加え、よく混合した後、この液状物を70℃に降温し、水性スラリーB−5を得た。
【0079】
このようにして得られた固形物A−10を水性スラリーB−5に全量添加し、よく混合した後、混合液を100℃で30分間攪拌した。得られた水性スラリーを並流式噴霧乾燥機により、乾燥機入口温度300℃、スラリー噴霧用回転盤20000回転/分の条件で乾燥した。得られた乾燥物100部にグラファイト3部を添加し、続いて打錠成形機により、外径5mm、内径2mm、長さ3mmのリング状に成形した。そして、得られた成形物を空気流通下、380℃で5時間焼成して触媒を得た。
【0080】
得られた触媒の酸素以外の元素の組成は、
Mo121.50.5Cu0.3Fe0.4Mg0.15Zn0.1Cs1
であった。
【0081】
得られた触媒を反応管に充填し、実施例1と同様にして反応を行った。その結果、メタクロレイン反応率89.0%、メタクリル酸選択率86.8%、メタクリル酸収率77.3%であった。
<比較例5>
パラモリブデン酸アンモニウム100部、メタバナジン酸アンモニウム2.8部および硝酸セシウム9.2部を純水400部に溶解した。これを攪拌しながら、85%リン酸8.2部を純水10部に溶解した溶液を加え、95℃に昇温した。次いで、硝酸銅3.4部、硝酸第二鉄7.6部、硝酸亜鉛1.4部および硝酸マグネシウム1.8部を純水80部に溶解した溶液を加えた。さらにこの混合液を100℃で30分間攪拌した。そして、得られた水性スラリーを実施例6と同様にして乾燥を行い、固形物A−11を得た。
【0082】
このようにして得られた固形物A−11を実施例6と同様にして成型、焼成を行い、触媒を得た。
【0083】
得られた触媒の酸素以外の元素の組成は、
Mo121.50.5Cu0.3Fe0.4Mg0.15Zn0.1Cs1
であった。
【0084】
得られた触媒を反応管に充填し、実施例1と同様にして反応を行った。その結果、メタクロレイン反応率87.4%、メタクリル酸選択率85.8%、メタクリル酸収率75.0%であった。
【0085】
【発明の効果】
本発明の新規な製造方法により得られるメタクリル酸合成用触媒は、メタクロレインの気相接触酸化反応において、高活性、高メタクリル酸選択性、高収率でメタクリル酸を生成させるという優れた効果を有する。この触媒によって効率的にメタクリル酸を製造することが可能になり、工業的な価値は極めて高い。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing a methacrylic acid synthesis catalyst used for synthesizing methacrylic acid by gas phase catalytic oxidation of methacrolein with molecular oxygen, a catalyst for methacrylic acid synthesis, and production of methacrylic acid using the catalyst. Regarding the method.
[0002]
[Prior art]
Many proposals have been made on a catalyst used for synthesizing methacrylic acid by gas phase catalytic oxidation of methacrolein with molecular oxygen. For example, JP-A-50-101316, JP-A-53-37614, JP-A-54-103819, JP-A-57-120547, JP-A-60-239439, JP-A-2 No. 240043 discloses a catalyst mainly composed of molybdenum and phosphorus. Usually, these catalysts are produced by a series of steps in which an aqueous slurry containing each metal component is dried, shaped as necessary, and then fired. That is, one type of aqueous slurry is prepared and manufactured through a series of steps of drying, molding and firing. However, the catalyst obtained by this method is not necessarily sufficient as an industrial catalyst in terms of activity and selectivity.
[0003]
JP-A-5-177141 discloses a heteropolyacid salt containing at least molybdenum, phosphorus and cesium when preparing a heteropolyacid catalyst containing at least molybdenum, phosphorus and cesium, and a suspension of the heteropolyacid salt. Discloses a method of obtaining a catalyst by adding a catalyst raw material containing at least molybdenum and phosphorus and not containing cesium, and drying and calcining the obtained liquid material, that is, a method of preparing a catalyst in two stages. The catalyst prepared by this method is a catalyst used for the reaction, although a heteropolyacid not containing cesium grows on small particles of the cesium salt of the heteropolyacid and has a structure of a stable cesium salt as a crystal. It is presumed that there is a cesium-free heteropolyacid having a high reaction activity on the particle surface, and it has been reported that the particle surface has higher activity and selectivity than the conventional one-step preparation method.
[0004]
However, the catalyst obtained by this method is not necessarily sufficient as an industrial catalyst in terms of activity and methacrylic acid selectivity, and further improvement in catalyst performance is desired.
[0005]
[Problems to be solved by the invention]
The present invention provides a novel method for producing a catalyst for synthesizing methacrylic acid to be used when synthesizing methacrylic acid by gas phase catalytic oxidation of methacrolein with molecular oxygen, and a highly active, high methacrylic acid selection obtained by this production method It is an object of the present invention to provide a methacrylic acid synthesis catalyst and a method for producing methacrylic acid with a high yield using the catalyst.
[0006]
[Means for Solving the Problems]
As a result of intensive studies to solve the above problems, the present inventors have found that a catalyst used for synthesizing methacrylic acid by vapor-phase catalytic oxidation of methacrolein with molecular oxygen is highly active and highly methacrylic acid. A new preparation method capable of obtaining a catalyst having selectivity has been completed. The above-mentioned problems of the present invention can be solved by the following present invention.
(1) A method for producing a catalyst for synthesizing methacrylic acid comprising at least molybdenum, phosphorus, and X which is at least one element selected from the group consisting of potassium, rubidium, cesium and thallium, comprising at least molybdenum, Preparing a solid A containing phosphorus and X, preparing an aqueous slurry B containing at least molybdenum, phosphorus and X, mixing the solid A and the aqueous slurry B, solid A and aqueous The content ratio (atomic ratio) of molybdenum and X contained in the solid material A includes the step of drying the liquid material obtained by mixing the slurry B and the step of firing the dried material at 300 to 500 ° C. 12: 2.5 to 12:12, and the content ratio (atomic ratio) of molybdenum and X contained in the aqueous slurry B is 12: 0.05 to 12: 0.4. Method for producing methacrylic acid synthesis catalysts.
(2) A catalyst for synthesizing methacrylic acid obtained by the method for producing a catalyst for synthesizing methacrylic acid of (1).
(3) A method for producing methacrylic acid, comprising subjecting methacrolein to gas phase catalytic oxidation in the presence of the catalyst for synthesizing methacrylic acid according to (2).
[0007]
In the method for producing a catalyst for synthesizing methacrylic acid, the content ratio (atomic ratio) of molybdenum and X contained in the solid A is 12: 2.5 to 12:12, particularly 12: 3.05 to 12:10, It is preferable that it is 12: 3.6-12: 8. Moreover, the content ratio (atomic ratio) of molybdenum and X contained in the aqueous slurry B is 12: 0.05 to 12: 0.4, 12: 0.07 to 12: 0.35, particularly 12: 0. It is preferable that it is 09-12: 0.3.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
The catalyst for producing methacrylic acid obtained by the novel production method of the present invention is a catalyst for producing methacrylic acid by vapor-phase catalytic oxidation of methacrolein with molecular oxygen, which has high activity and high methacrylic acid selectivity. have.
[0009]
The method for producing a catalyst for synthesizing methacrylic acid according to the present invention comprises:
(1) preparing a solid A containing at least molybdenum, phosphorus and X;
(2) preparing an aqueous slurry B containing at least molybdenum, phosphorus and X;
(3) mixing the solid A and the aqueous slurry B;
(4) drying the liquid obtained by mixing the solid A and the aqueous slurry B;
(5) a step of firing the dried product at 300 to 500 ° C;
Is included. Here, X represents at least one element selected from the group consisting of potassium, rubidium, cesium and thallium.
[0010]
In the present invention, the method for preparing the solid A is not particularly limited, and various methods such as a coprecipitation method, an evaporation to dryness method, and an oxide mixing method can be used. In particular, a method of preparing an aqueous slurry containing at least molybdenum, phosphorus and X is preferable. At this time, the drying method of the aqueous slurry is not particularly limited, and a general-purpose box dryer, spray dryer, drum dryer, slurry dryer, or the like can be used. Further, it is preferable that the preparation process does not include a process of heat treatment at 300 ° C. or higher. The preparation conditions of the solid A may be appropriately determined according to the method for producing the precursor before heat treatment of the catalyst for synthesizing methacrylic acid containing at least molybdenum, phosphorus and X.
[0011]
The raw material used for preparation of the solid substance A is not specifically limited, The nitrate, carbonate, acetate, ammonium salt, oxide, halide, etc. of each element can be used. For example, ammonium paramolybdate, molybdenum trioxide, molybdic acid, molybdenum chloride, etc. can be used as the molybdenum raw material. The raw material of the catalyst component may be used alone or in combination of two or more for each element.
[0012]
In addition, the solid substance A should just be a solid substance substantially, and it does not prescribe | regulate regarding water content etc. in particular.
[0013]
The shape of the solid A is not particularly limited, but a powder is preferable. Further, the solid A may be pulverized into particles having an appropriate particle size so that the solid A is mixed as uniformly as possible when the solid A is mixed with the aqueous slurry B.
[0014]
The solid A does not necessarily have a heteropoly acid salt structure. In the present invention, the content ratio (atomic ratio) of molybdenum and X contained in the solid A is important. The content ratio (atomic ratio) of molybdenum and X contained in the solid A is 12: 2.5 to 12:12, and 12: 3.05 to 12:10, particularly 12: 3.6 to 12: 8. Preferably there is.
[0015]
Further, the constituent element of the solid A is not particularly limited as long as it contains molybdenum, phosphorus and X, but besides molybdenum, phosphorus and X, copper, vanadium, iron, cobalt, nickel, zinc, magnesium, calcium, Strontium, barium, titanium, chromium, tungsten, manganese, silver, boron, silicon, aluminum, gallium, germanium, tin, lead, arsenic, antimony, bismuth, niobium, tantalum, zirconium, indium, sulfur, selenium, tellurium, lanthanum, Cerium or the like may be included as appropriate.
[0016]
In the present invention, the preparation method of the aqueous slurry B is not particularly limited. What is necessary is just an aqueous slurry containing at least molybdenum, phosphorus and X. The amount of water in the aqueous slurry is not particularly limited, but it must be ensured that all solid A is not redissolved. Specifically, the mass ratio of molybdenum and water contained in the aqueous slurry B is preferably 1: 0.5 to 1:10.
[0017]
The raw material used for the preparation of the aqueous slurry B is not particularly limited, and as with the solid A, nitrates, carbonates, acetates, ammonium salts, oxides, halides and the like of each element can be used. For example, ammonium paramolybdate, molybdenum trioxide, molybdic acid, molybdenum chloride, etc. can be used as the molybdenum raw material. The raw material of the catalyst component may be used alone or in combination of two or more for each element.
[0018]
The content ratio (atomic ratio) of molybdenum and X contained in the aqueous slurry B is 12: 0.05 to 12: 0.4, 12: 0.07 to 12: 0.35, particularly 12: 0.09 to 12: 0.3 is preferred.
[0019]
The constituent elements of the aqueous slurry B are not particularly limited as long as they contain molybdenum, phosphorus and X, but besides molybdenum, phosphorus and X, copper, vanadium, iron, cobalt, nickel, zinc, magnesium, calcium, Strontium, barium, titanium, chromium, tungsten, manganese, silver, boron, silicon, aluminum, gallium, germanium, tin, lead, arsenic, antimony, bismuth, niobium, tantalum, zirconium, indium, sulfur, selenium, tellurium, lanthanum, Cerium or the like may be included as appropriate.
[0020]
In the present invention, the procedure for mixing the solid A and the aqueous slurry B is not particularly limited. In mixing, it is important to put the solid A into the aqueous slurry B. Further, the timing of mixing the solid A into the aqueous slurry B is not particularly limited. For example, after the aqueous slurry B is prepared, the solid A is charged and mixed to be as uniform as possible. Is preferably dried.
[0021]
The ratio (atomic ratio) of molybdenum contained in the solid substance A and molybdenum contained in the aqueous slurry B upon mixing is 1: 1 to 1:30 because a highly active and high methacrylic acid selective catalyst is obtained. It is preferable to do.
[0022]
The method for drying the liquid material is not particularly limited, and a general-purpose box-type dryer, spray dryer, drum dryer, slurry dryer, or the like can be used. What is necessary is just to determine drying conditions suitably.
[0023]
The dried product obtained by drying the mixed liquid of the solid material A and the aqueous slurry B may be subjected to the subsequent firing as it is, but is usually fired after being molded.
[0024]
The method for molding the dried product is not particularly limited, and various molding methods such as ordinary tableting molding, extrusion molding, and granulation can be applied.
[0025]
In molding, a conventionally known additive to the dried product, for example, to control the specific surface area, pore volume and pore distribution of the molded product with good reproducibility, or to increase mechanical strength, barium sulfate, Inorganic salts such as ammonium nitrate, lubricants such as graphite, organic substances such as celluloses, starch, polyvinyl alcohol, stearic acid, hydroxide sols such as silica sol and alumina sol, inorganic fibers such as whiskers, glass fibers, and carbon fibers are added as appropriate. May be.
[0026]
The shape of the molded product is not particularly limited, and the molded product can be molded into an arbitrary shape such as a spherical shape, a cylindrical shape, a ring shape, or a plate shape.
[0027]
In this invention, the obtained molding is baked at the temperature of the range of 300-500 degreeC, and the catalyst for methacrylic acid synthesis | combination of this invention is obtained. The calcining time is not particularly limited, but is preferably 1 hour or longer, and usually 40 hours or shorter, because a good catalyst can be obtained. Firing is usually performed in a stream of oxygen, air or nitrogen.
[0028]
The thus obtained methacrylic acid synthesis catalyst of the present invention preferably contains a heteropolyacid or heteropolyacid salt structure.
[0029]
The catalyst for synthesizing methacrylic acid of the present invention is preferably a composite oxide having a composition represented by the following general formula (I).
[0030]
MoaPbCucVdXeYfOg          (I)
Here, in the formula, Mo, P, Cu, V and O each represent molybdenum, phosphorus, copper, vanadium and oxygen, and X is at least one element selected from the group consisting of potassium, rubidium, cesium and thallium Y represents iron, cobalt, nickel, zinc, magnesium, calcium, strontium, barium, titanium, chromium, tungsten, manganese, silver, boron, silicon, aluminum, gallium, germanium, tin, lead, arsenic, antimony, bismuth And at least one element selected from the group consisting of niobium, tantalum, zirconium, indium, sulfur, selenium, tellurium, lanthanum and cerium.
[0031]
a, b, c, d, e, f and g represent the atomic ratio of each element. When a = 12, 0.1 ≦ b ≦ 3, 0.01 ≦ c ≦ 3, 0.01 ≦ d ≦ 3, 0.05 ≦ e ≦ 3, 0 ≦ f ≦ 3, and g is an atomic ratio of oxygen necessary to satisfy the atomic ratio of each component.
[0032]
The existence state of each component of the catalyst produced according to the present invention, particularly the existence state of X, is complicated and has not been grasped strictly. However, the content ratio (atomic ratio) X / Mo of X and molybdenum contained in the solid A is 2.5 / 12 to 12/12. When X / Mo is larger than 3/12, the solid A is simply It is unlikely that a heteropolyacid salt having an X element as a cation is formed. Therefore, the structure of the catalyst as produced by the method disclosed in JP-A-5-177141, that is, the surface of the crystal particles of the heteropolyacid salt containing molybdenum, phosphorus and X is covered with a heteropolyacid containing no X. It is very unlikely that the structure is different, and it is considered that the structure is different. In addition, when X / Mo is 3/12 or less, the solid A may form a simple heteropolyacid salt. It has been found that a catalyst having good catalytic activity and selectivity can be obtained.
[0033]
Next, the manufacturing method of methacrylic acid of this invention is demonstrated. The method for producing methacrylic acid of the present invention is a method for producing methacrylic acid by gas phase catalytic oxidation of methacrolein with molecular oxygen in the presence of the catalyst of the present invention as described above.
[0034]
The reaction is usually carried out in a fixed bed. The catalyst layer may be one layer or two or more layers.
[0035]
The concentration of methacrolein in the raw material gas can be varied within a wide range, but is preferably 1 to 20% by volume, particularly 3 to 10% by volume. The raw material methacrolein may contain a small amount of impurities such as water and lower saturated aldehyde that do not substantially affect the reaction.
[0036]
As the oxygen source for the catalytic oxidation, it is industrially advantageous to use air. However, if necessary, air enriched with pure oxygen can also be used. The molar ratio (volume ratio) of methacrolein to oxygen in the raw material gas is preferably 1: 0.5 to 1: 3.
[0037]
The raw material gas preferably contains water in addition to the reaction raw material and molecular oxygen, and is preferably diluted with an inert gas such as nitrogen or carbon dioxide. The volume ratio of methacrolein to water in the raw material gas is preferably 1: 0.1 to 1:10.
[0038]
The reaction pressure is from normal pressure to several atmospheres. The reaction temperature is preferably in the range of 200 to 450 ° C. The contact time is preferably 2 to 7 seconds.
[0039]
【Example】
EXAMPLES Hereinafter, the preparation method of the catalyst of this invention and the reaction example using the catalyst are demonstrated by an Example.
[0040]
However, “parts” in the following Examples and Comparative Examples means parts by mass. Reaction test analysis was performed by gas chromatography. The catalyst composition was determined from the amount of catalyst raw material charged.
[0041]
Further, the conversion rate of methacrolein as a raw material for reaction in Examples and Comparative Examples, the selectivity and yield of methacrylic acid produced are defined as follows.
[0042]
Conversion rate of methacrolein (%) = number of moles of reacted methacrolein / number of moles of methacrolein supplied × 100
Methacrylic acid selectivity (%) = number of moles of methacrylic acid produced / number of moles of reacted methacrolein × 100
Methacrylic acid yield (%) = number of moles of methacrylic acid produced / number of moles of methacrolein supplied × 100
<Example 1>
22.5 parts of ammonium paramolybdate, 1.0 part of ammonium metavanadate and 5.4 parts of potassium nitrate were dissolved in 90 parts of pure water. While stirring this, a solution in which 1.8 parts of 85% phosphoric acid was dissolved in 2.3 parts of pure water was added, and a solution in which 0.3 part of copper nitrate was dissolved in 2.3 parts of pure water was further added. Next, a uniform solution of bismuth nitrate obtained by adding 1.6 parts of 60% nitric acid and 9 parts of water to 1.6 parts of bismuth nitrate was added to the mixture, and the temperature was raised to 95 ° C. To this was added a solution prepared by dissolving 0.5 parts of 60% arsenic acid in 2.2 parts of pure water, followed by 0.5 parts of antimony trioxide and 0.4 parts of cerium dioxide. The obtained aqueous slurry was evaporated to dryness while stirring with heating, dried at 130 ° C. for 16 hours, and pulverized to obtain solid A-1. The content ratio (atomic ratio) of Mo and K contained in the obtained solid A-1 was 12: 5.
[0043]
Separately, an aqueous slurry B-1 was prepared so that the content ratio (atomic ratio) of Mo and K contained in the aqueous slurry was 12: 0.1.
[0044]
100 parts of ammonium paramolybdate, 4.4 parts of ammonium metavanadate and 0.5 parts of potassium nitrate were dissolved in 400 parts of pure water. While stirring this, a solution in which 8.2 parts of 85% phosphoric acid was dissolved in 10 parts of pure water was added, and a solution in which 1.1 parts of copper nitrate was dissolved in 10 parts of pure water was further added. Next, a uniform solution of bismuth nitrate obtained by adding 7.0 parts of 60% nitric acid and 40 parts of pure water to 6.9 parts of bismuth nitrate was added to the mixture, and the temperature was raised to 95 ° C. To this was added a solution obtained by dissolving 2.2 parts of 60% arsenic acid in 10 parts of pure water, and subsequently 2.1 parts of antimony trioxide and 1.6 parts of cerium dioxide were added and stirred. The temperature was lowered to 70 ° C. to obtain an aqueous slurry B-1.
[0045]
The total amount of the solid A-1 thus obtained was added to the aqueous slurry B-1, the liquid was evaporated to dryness while stirring with heating, and then dried at 130 ° C. for 16 hours. Crushed. To 100 parts of the powder thus obtained, 3.0 parts of graphite was added, and then molded into a ring shape having an outer diameter of 5 mm, an inner diameter of 2 mm, and a length of 5 mm by a tableting machine. The obtained molded product was calcined at 380 ° C. for 5 hours under air flow to obtain a catalyst.
[0046]
The composition of elements other than oxygen in the obtained catalyst is
Mo12P1.5V0.8Cu0.1Sb0.3Bi0.3As0.2Ce0.2K1
Met.
[0047]
The obtained catalyst was filled in a reaction tube, and a raw material gas consisting of 5% by volume of methacrolein, 10% by volume of oxygen, 30% by volume of water vapor and 55% by volume of nitrogen was used at normal pressure, reaction temperature of 290 ° C., and contact time of 3.6 seconds. I communicated with. When the product was collected and analyzed by gas chromatography, methacrolein conversion was 91.6%, methacrylic acid selectivity was 89.0%, and methacrylic acid yield was 81.5%.
<Example 2>
36 parts of ammonium paramolybdate, 1.6 parts of ammonium metavanadate and 6 parts of potassium nitrate were dissolved in 144 parts of pure water. While stirring this, a solution in which 2.9 parts of 85% phosphoric acid was dissolved in 3.6 parts of pure water was added, and a solution in which 0.4 part of copper nitrate was dissolved in 3.6 parts of pure water was further added. Next, a homogeneous solution of bismuth nitrate obtained by adding 2.5 parts of 60% nitric acid and 14.4 parts of water to 2.5 parts of bismuth nitrate was added to the mixture, and the temperature was raised to 95 ° C. A solution prepared by dissolving 0.8 part of 60% arsenic acid in 3.6 parts of pure water was added thereto, followed by 0.7 part of antimony trioxide and 0.6 part of cerium dioxide. The obtained aqueous slurry was evaporated to dryness while stirring with heating, dried at 130 ° C. for 16 hours, and pulverized to obtain solid A-2. The content ratio (atomic ratio) of Mo and K contained in the obtained solid A-2 was 12: 3.5.
[0048]
The total amount of the solid A-2 was added to the aqueous slurry B-1 obtained in the same manner as in Example 1, to obtain a powder in the same manner as in Example 1, followed by molding and firing to obtain a catalyst.
[0049]
The composition of elements other than oxygen in the obtained catalyst is
Mo12P1.5V0.8Cu0.1Sb0.3Bi0.3As0.2Ce0.2K1
Met.
[0050]
The obtained catalyst was filled in a reaction tube, and a reaction was carried out in the same manner as in Example 1. As a result, methacrolein conversion was 91.5%, methacrylic acid selectivity was 88.9%, and methacrylic acid yield was 81.3%.
<Example 3>
10 parts of ammonium paramolybdate, 0.4 parts of ammonium metavanadate and 4.3 parts of potassium nitrate were dissolved in 40 parts of pure water. While stirring this, a solution in which 0.8 part of 85% phosphoric acid was dissolved in 1 part of pure water was added, and a solution in which 0.1 part of copper nitrate was dissolved in 1 part of pure water was further added. Next, a uniform solution of bismuth nitrate obtained by adding 0.7 parts of 60% nitric acid and 4 parts of water to 0.7 parts of bismuth nitrate was added to the mixture, and the temperature was raised to 95 ° C. A solution prepared by dissolving 0.2 part of 60% arsenic acid in 1 part of pure water was added thereto, followed by addition of 0.2 part of antimony trioxide and 0.2 part of cerium dioxide. The obtained aqueous slurry was evaporated to dryness with heating and stirring, then dried at 130 ° C. for 16 hours, and pulverized to obtain a solid A-3. The content ratio (atomic ratio) of Mo and K contained in the obtained solid A-3 was 12: 9.
[0051]
Separately, an aqueous slurry B-2 was prepared so that the content ratio (atomic ratio) of Mo and K contained in the aqueous slurry was 12: 0.2.
[0052]
100 parts of ammonium paramolybdate, 4.4 parts of ammonium metavanadate and 1 part of potassium nitrate were dissolved in 400 parts of pure water. While stirring this, a solution in which 8.2 parts of 85% phosphoric acid was dissolved in 10 parts of pure water was added, and a solution in which 1.1 parts of copper nitrate was dissolved in 10 parts of pure water was further added. Next, a uniform solution of bismuth nitrate obtained by adding 7.0 parts of 60% nitric acid and 40 parts of pure water to 6.9 parts of bismuth nitrate was added to the mixture, and the temperature was raised to 95 ° C. To this was added a solution obtained by dissolving 2.2 parts of 60% arsenic acid in 10 parts of pure water, and subsequently 2.1 parts of antimony trioxide and 1.6 parts of cerium dioxide were added and stirred. The temperature was lowered to 70 ° C. to obtain an aqueous slurry B-2.
[0053]
The total amount of the solid A-3 thus obtained was added to the aqueous slurry B-2 to obtain a powder in the same manner as in Example 1, followed by molding and firing to obtain a catalyst.
[0054]
The composition of elements other than oxygen in the obtained catalyst is
Mo12P1.5V0.8Cu0.1Sb0.3Bi0.3As0.2Ce0.2K1
Met.
[0055]
The obtained catalyst was filled in a reaction tube, and a reaction was carried out in the same manner as in Example 1. As a result, methacrolein conversion was 91.4%, methacrylic acid selectivity was 88.8%, and methacrylic acid yield was 81.2%.
<Example 4>
42.5 parts of ammonium paramolybdate, 2 parts of ammonium metavanadate and 6.1 parts of potassium nitrate were dissolved in 170 parts of pure water. While stirring this, a solution in which 3.5 parts of 85% phosphoric acid was dissolved in 4.3 parts of pure water was added, and a solution in which 0.5 part of copper nitrate was dissolved in 4.3 parts of pure water was further added. Next, a uniform solution of bismuth nitrate obtained by adding 3 parts of 60% nitric acid and 17 parts of water to 3 parts of bismuth nitrate was added to the mixture, and the temperature was raised to 95 ° C. To this was added a solution prepared by dissolving 1 part of 60% arsenic acid in 4.3 parts of pure water, followed by 0.9 part of antimony trioxide and 0.7 part of cerium dioxide. The obtained aqueous slurry was evaporated to dryness while stirring with heating, dried at 130 ° C. for 16 hours, and pulverized to obtain a solid A-4. The content ratio (atomic ratio) of Mo and K contained in the obtained solid A-4 was 12: 3.
[0056]
Separately, an aqueous slurry B-3 was prepared such that the content ratio (atomic ratio) of Mo and K contained in the aqueous slurry was 12: 0.15.
[0057]
100 parts of ammonium paramolybdate, 4.4 parts of ammonium metavanadate and 0.7 parts of potassium nitrate were dissolved in 400 parts of pure water. While stirring this, a solution in which 8.2 parts of 85% phosphoric acid was dissolved in 10 parts of pure water was added, and a solution in which 1.1 parts of copper nitrate was dissolved in 10 parts of pure water was further added. Next, a uniform solution of bismuth nitrate obtained by adding 7.0 parts of 60% nitric acid and 40 parts of pure water to 6.9 parts of bismuth nitrate was added to the mixture, and the temperature was raised to 95 ° C. To this was added a solution obtained by dissolving 2.2 parts of 60% arsenic acid in 10 parts of pure water, and subsequently 2.1 parts of antimony trioxide and 1.6 parts of cerium dioxide were added and stirred. The temperature was lowered to 70 ° C. to obtain an aqueous slurry B-3.
[0058]
The total amount of the solid A-4 thus obtained was added to the aqueous slurry B-3 to obtain a powder in the same manner as in Example 1, followed by molding and firing to obtain a catalyst.
[0059]
The composition of elements other than oxygen in the obtained catalyst is
Mo12P1.5V0.8Cu0.1Sb0.3Bi0.3As0.2Ce0.2K1
Met.
[0060]
The obtained catalyst was filled in a reaction tube, and a reaction was carried out in the same manner as in Example 1. As a result, methacrolein conversion was 91.1%, methacrylic acid selectivity was 88.9%, and methacrylic acid yield was 81.0%.
<Example 5>
9 parts of ammonium paramolybdate, 0.4 parts of ammonium metavanadate and 4.7 parts of potassium nitrate were dissolved in 36 parts of pure water. While stirring this, a solution in which 0.7 part of 85% phosphoric acid was dissolved in 0.9 part of pure water was added, and a solution in which 0.1 part of copper nitrate was dissolved in 0.9 part of pure water was further added. Next, a uniform solution of bismuth nitrate obtained by adding 0.6 parts of 60% nitric acid and 3.6 parts of water to 0.6 parts of bismuth nitrate was added to the mixture, and the temperature was raised to 95 ° C. A solution prepared by dissolving 0.2 part of 60% arsenic acid in 0.9 part of pure water was added thereto, followed by addition of 0.2 part of antimony trioxide and 0.2 part of cerium dioxide. The obtained aqueous slurry was evaporated to dryness with heating and stirring, then dried at 130 ° C. for 16 hours, and pulverized to obtain a solid A-5. The content ratio (atomic ratio) of Mo and K contained in the obtained solid A-5 was 12:11.
[0061]
The total amount of the solid A-5 was added to the aqueous slurry B-1 obtained in the same manner as in Example 1, to obtain a powder in the same manner as in Example 1, followed by molding and firing to obtain a catalyst.
[0062]
The composition of elements other than oxygen in the obtained catalyst is
Mo12P1.5V0.8Cu0.1Sb0.3Bi0.3As0.2Ce0.2K1
Met.
[0063]
The obtained catalyst was filled in a reaction tube, and a reaction was carried out in the same manner as in Example 1. As a result, methacrolein conversion was 91.0%, methacrylic acid selectivity was 88.9%, and methacrylic acid yield was 80.9%.
<Comparative Example 1>
100 parts of ammonium paramolybdate, 4.4 parts of ammonium metavanadate and 4.8 parts of potassium nitrate were dissolved in 400 parts of pure water. While stirring this, a solution in which 8.2 parts of 85% phosphoric acid was dissolved in 10 parts of pure water was added, and a solution in which 1.1 parts of copper nitrate was dissolved in 10 parts of pure water was further added. Next, a uniform solution of bismuth nitrate obtained by adding 7.0 parts of 60% nitric acid and 40 parts of water to 6.9 parts of bismuth nitrate was added to the mixed solution, and then the temperature was raised to 95 ° C. To this was added a solution prepared by dissolving 2.2 parts of 60% arsenic acid in 10 parts of pure water, followed by 2.1 parts of antimony trioxide and 1.6 parts of cerium dioxide. The obtained aqueous slurry was evaporated to dryness with heating and stirring, then dried at 130 ° C. for 16 hours, and pulverized to obtain a solid A-6.
[0064]
The solid A-6 thus obtained was molded and fired in the same manner as in Example 1 to obtain a catalyst.
[0065]
The composition of elements other than oxygen in the obtained catalyst is
Mo12P1.5V0.8Cu0.1Sb0.3Bi0.3As0.2Ce0.2K1
Met.
[0066]
The obtained catalyst was filled in a reaction tube, and a reaction was carried out in the same manner as in Example 1. As a result, methacrolein conversion was 90.0%, methacrylic acid selectivity was 88.2%, and methacrylic acid yield was 79.4%.
<Comparative example 2>
90 parts of ammonium paramolybdate, 4 parts of ammonium metavanadate and 8.6 parts of potassium nitrate were dissolved in 360 parts of pure water. While stirring this, a solution in which 7.4 parts of 85% phosphoric acid was dissolved in 9 parts of pure water was added, and a solution in which 1 part of copper nitrate was dissolved in 9 parts of pure water was added. Next, a uniform solution of bismuth nitrate obtained by adding 6.3 parts of 60% nitric acid and 36 parts of water to 6.2 parts of bismuth nitrate was added to the mixture, and the temperature was raised to 95 ° C. To this was added a solution prepared by dissolving 2 parts of 60% arsenic acid in 9 parts of pure water, followed by 1.9 parts of antimony trioxide and 1.5 parts of cerium dioxide. The resulting aqueous slurry was evaporated to dryness while stirring with heating, dried at 130 ° C. for 16 hours, and pulverized to obtain a solid A-7. The content ratio (atomic ratio) of Mo and K contained in the obtained solid A-7 was 12: 2.
[0067]
The total amount of the solid A-7 was added to the aqueous slurry B-1 obtained in the same manner as in Example 1, to obtain a powder in the same manner as in Example 1, followed by molding and firing to obtain a catalyst.
[0068]
The composition of elements other than oxygen in the obtained catalyst is
Mo12P1.5V0.8Cu0.1Sb0.3Bi0.3As0.2Ce0.2K1
Met.
[0069]
The obtained catalyst was filled in a reaction tube, and a reaction was carried out in the same manner as in Example 1. As a result, methacrolein conversion was 90.3%, methacrylic acid selectivity was 88.3%, and methacrylic acid yield was 79.7%.
<Comparative Example 3>
6.9 parts of ammonium paramolybdate, 0.3 part of ammonium metavanadate and 4.6 parts of potassium nitrate were dissolved in 27.6 parts of pure water. While stirring this, a solution in which 0.6 part of 85% phosphoric acid was dissolved in 0.7 part of pure water was added, and a solution in which 0.1 part of copper nitrate was dissolved in 0.7 part of pure water was further added. Next, a uniform solution of bismuth nitrate obtained by adding 0.5 part of 60% nitric acid and 2.7 parts of water to 0.5 part of bismuth nitrate was added to the mixture, and the temperature was raised to 95 ° C. To this was added a solution prepared by dissolving 0.2 part of 60% arsenic acid in 0.7 part of pure water, followed by 0.1 part of antimony trioxide and 0.1 part of cerium dioxide. The obtained aqueous slurry was evaporated to dryness while stirring with heating, dried at 130 ° C. for 16 hours, and pulverized to obtain a solid A-8. The content ratio (atomic ratio) of Mo and K contained in the obtained solid A-8 was 12:14.
[0070]
The total amount of the solid A-8 was added to the aqueous slurry B-1 obtained in the same manner as in Example 1, to obtain a powder in the same manner as in Example 1, followed by molding and firing to obtain a catalyst.
[0071]
The composition of elements other than oxygen in the obtained catalyst is
Mo12P1.5V0.8Cu0.1Sb0.3Bi0.3As0.2Ce0.2K1
Met.
[0072]
The obtained catalyst was filled in a reaction tube, and a reaction was carried out in the same manner as in Example 1. As a result, methacrolein conversion was 90.2%, methacrylic acid selectivity was 88.2%, and methacrylic acid yield was 79.6%.
<Comparative example 4>
40 parts of ammonium paramolybdate, 1.8 parts of ammonium metavanadate and 6.7 parts of potassium nitrate were dissolved in 160 parts of pure water. While stirring this, a solution in which 3.3 parts of 85% phosphoric acid was dissolved in 4 parts of pure water was added, and a solution in which 0.5 part of copper nitrate was dissolved in 4 parts of pure water was further added. Next, a uniform solution of bismuth nitrate obtained by adding 2.8 parts of 60% nitric acid and 16 parts of water to 2.8 parts of bismuth nitrate was added to the mixture, and the temperature was raised to 95 ° C. To this was added a solution prepared by dissolving 0.9 parts of 60% arsenic acid in 4 parts of pure water, followed by 0.8 parts of antimony trioxide and 0.7 parts of cerium dioxide. The obtained aqueous slurry was evaporated to dryness while stirring with heating, dried at 130 ° C. for 16 hours, and pulverized to obtain a solid A-9. The content ratio (atomic ratio) of Mo and K contained in the obtained solid A-9 was 12: 3.5.
[0073]
Separately, 100 parts of ammonium paramolybdate and 4.4 parts of ammonium metavanadate were dissolved in 400 parts of pure water. While stirring this, a solution in which 8.2 parts of 85% phosphoric acid was dissolved in 10 parts of pure water was added, and a solution in which 1.1 parts of copper nitrate was dissolved in 10 parts of pure water was further added. Next, a uniform solution of bismuth nitrate obtained by adding 7.0 parts of 60% nitric acid and 40 parts of pure water to 6.9 parts of bismuth nitrate was added to the mixture, and the temperature was raised to 95 ° C. To this was added a solution obtained by dissolving 2.2 parts of 60% arsenic acid in 10 parts of pure water, and subsequently 2.1 parts of antimony trioxide and 1.6 parts of cerium dioxide were added and stirred. The temperature was lowered to 70 ° C. to obtain an aqueous slurry B-4.
[0074]
The total amount of the solid A-9 thus obtained was added to the aqueous slurry B-4 to obtain a powder in the same manner as in Example 1, followed by molding and firing to obtain a catalyst.
[0075]
The composition of elements other than oxygen in the obtained catalyst is
Mo12P1.5V0.8Cu0.1Sb0.3Bi0.3As0.2Ce0.2K1
Met.
[0076]
The obtained catalyst was filled in a reaction tube, and a reaction was carried out in the same manner as in Example 1. As a result, methacrolein conversion was 90.1%, methacrylic acid selectivity was 88.2%, and methacrylic acid yield was 79.5%.
<Example 6>
28.3 parts of ammonium paramolybdate, 0.8 part of ammonium metavanadate and 10.4 parts of cesium nitrate were dissolved in 113.2 parts of pure water. While stirring this, a solution prepared by dissolving 2.3 parts of 85% phosphoric acid in 2.8 parts of pure water was added, and the temperature was raised to 95 ° C. Next, a solution prepared by dissolving 1.0 part of copper nitrate, 2.2 parts of ferric nitrate, 0.4 part of zinc nitrate and 0.5 part of magnesium nitrate in 22.7 parts of pure water was added. Further, this mixed solution was stirred at 100 ° C. for 30 minutes. The obtained aqueous slurry was dried by a co-current type spray dryer under the conditions of a dryer inlet temperature of 300 ° C. and a slurry spray rotating disk at 20000 rpm, and a solid A-10 was obtained. The content ratio (atomic ratio) of Mo and Cs contained in the obtained solid A-10 was 12: 4.
[0077]
Separately, an aqueous slurry B-5 was prepared so that the content ratio (atomic ratio) of Mo and Cs contained in the aqueous slurry was 12: 0.15.
[0078]
100 parts of ammonium paramolybdate, 2.8 parts of ammonium metavanadate and 1.4 parts of cesium nitrate were dissolved in 400 parts of pure water. While stirring this, a solution prepared by dissolving 8.2 parts of 85% phosphoric acid in 10 parts of pure water was added, and the temperature was raised to 95 ° C. Next, a solution obtained by dissolving 3.4 parts of copper nitrate, 7.6 parts of ferric nitrate, 1.4 parts of zinc nitrate and 1.8 parts of magnesium nitrate in 80 parts of pure water was added and mixed well. The product was cooled to 70 ° C. to obtain an aqueous slurry B-5.
[0079]
The total amount of the solid A-10 thus obtained was added to the aqueous slurry B-5 and mixed well, and then the mixture was stirred at 100 ° C. for 30 minutes. The obtained aqueous slurry was dried by a co-current type spray dryer under the conditions of a dryer inlet temperature of 300 ° C. and a slurry spray rotating disk of 20000 rpm. 3 parts of graphite was added to 100 parts of the obtained dried product, and then formed into a ring shape having an outer diameter of 5 mm, an inner diameter of 2 mm, and a length of 3 mm by a tableting machine. The obtained molded product was calcined at 380 ° C. for 5 hours under air flow to obtain a catalyst.
[0080]
The composition of elements other than oxygen in the obtained catalyst is
Mo12P1.5V0.5Cu0.3Fe0.4Mg0.15Zn0.1Cs1
Met.
[0081]
The obtained catalyst was filled in a reaction tube, and a reaction was carried out in the same manner as in Example 1. As a result, the methacrolein reaction rate was 89.0%, the methacrylic acid selectivity was 86.8%, and the methacrylic acid yield was 77.3%.
<Comparative Example 5>
100 parts of ammonium paramolybdate, 2.8 parts of ammonium metavanadate and 9.2 parts of cesium nitrate were dissolved in 400 parts of pure water. While stirring this, a solution prepared by dissolving 8.2 parts of 85% phosphoric acid in 10 parts of pure water was added, and the temperature was raised to 95 ° C. Next, a solution in which 3.4 parts of copper nitrate, 7.6 parts of ferric nitrate, 1.4 parts of zinc nitrate and 1.8 parts of magnesium nitrate were dissolved in 80 parts of pure water was added. Further, this mixed solution was stirred at 100 ° C. for 30 minutes. And the obtained aqueous slurry was dried like Example 6, and solid substance A-11 was obtained.
[0082]
The solid A-11 thus obtained was molded and fired in the same manner as in Example 6 to obtain a catalyst.
[0083]
The composition of elements other than oxygen in the obtained catalyst is
Mo12P1.5V0.5Cu0.3Fe0.4Mg0.15Zn0.1Cs1
Met.
[0084]
The obtained catalyst was filled in a reaction tube, and a reaction was carried out in the same manner as in Example 1. As a result, the methacrolein reaction rate was 87.4%, the methacrylic acid selectivity was 85.8%, and the methacrylic acid yield was 75.0%.
[0085]
【The invention's effect】
The catalyst for synthesizing methacrylic acid obtained by the novel production method of the present invention has the excellent effect of producing methacrylic acid with high activity, high methacrylic acid selectivity and high yield in the gas phase catalytic oxidation reaction of methacrolein. Have. This catalyst makes it possible to produce methacrylic acid efficiently, and its industrial value is extremely high.

Claims (9)

少なくともモリブデンと、リンと、カリウム、ルビジウム、セシウムおよびタリウムからなる群より選ばれた少なくとも1種の元素であるXとを含むメタクリル酸合成用触媒の製造方法であって、
少なくともモリブデン、リンおよびXを含む固形物Aを調製する工程と、
少なくともモリブデン、リンおよびXを含む水性スラリーBを調製する工程と、
固形物Aと水性スラリーBとを混合する工程と、
固形物Aと水性スラリーBとを混合して得られる液状物を乾燥する工程と、
この乾燥物を300〜500℃で焼成する工程とを含み、
固形物Aに含まれるモリブデンとXの含有比(原子比)は12:2.5〜12:12とし、
水性スラリーBに含まれるモリブデンとXの含有比(原子比)は12:0.05〜12:0.4とすることを特徴とするメタクリル酸合成用触媒の製造方法。
A method for producing a catalyst for synthesizing methacrylic acid comprising at least molybdenum, phosphorus, and X, which is at least one element selected from the group consisting of potassium, rubidium, cesium and thallium,
Preparing a solid A comprising at least molybdenum, phosphorus and X;
Preparing an aqueous slurry B comprising at least molybdenum, phosphorus and X;
Mixing the solid A and the aqueous slurry B;
Drying the liquid obtained by mixing the solid A and the aqueous slurry B;
And baking the dried product at 300 to 500 ° C.
The content ratio (atomic ratio) of molybdenum and X contained in the solid A is 12: 2.5 to 12:12,
A method for producing a catalyst for synthesizing methacrylic acid, wherein the content ratio (atomic ratio) of molybdenum and X contained in the aqueous slurry B is 12: 0.05 to 12: 0.4.
固形物Aを調製する工程が、少なくともモリブデン、リンおよびXを含む水性スラリーを乾燥するものである請求項1記載のメタクリル酸合成用触媒の製造方法。2. The method for producing a catalyst for synthesizing methacrylic acid according to claim 1, wherein the step of preparing the solid A comprises drying an aqueous slurry containing at least molybdenum, phosphorus and X. 固形物Aに含まれるモリブデンとXの含有比(原子比)を12:3.05〜12:10とする請求項1または2記載のメタクリル酸合成用触媒の製造方法。The method for producing a catalyst for synthesizing methacrylic acid according to claim 1 or 2, wherein the content ratio (atomic ratio) of molybdenum and X contained in the solid A is 12: 3.05 to 12:10. 固形物Aに含まれるモリブデンとXの含有比(原子比)を12:3.6〜12:8とする請求項1または2記載のメタクリル酸合成用触媒の製造方法。The method for producing a catalyst for synthesizing methacrylic acid according to claim 1 or 2, wherein the content ratio (atomic ratio) of molybdenum and X contained in the solid A is 12: 3.6 to 12: 8. 水性スラリーBに含まれるモリブデンとXの含有比(原子比)を12:0.07〜12:0.35とする請求項1または2記載のメタクリル酸合成用触媒の製造方法。The method for producing a catalyst for synthesizing methacrylic acid according to claim 1 or 2, wherein the content ratio (atomic ratio) of molybdenum and X contained in the aqueous slurry B is 12: 0.07 to 12: 0.35. 水性スラリーBに含まれるモリブデンとXの含有比(原子比)を12:0.09〜12:0.3とする請求項1または2記載のメタクリル酸合成用触媒の製造方法。The method for producing a catalyst for methacrylic acid synthesis according to claim 1 or 2, wherein a content ratio (atomic ratio) of molybdenum and X contained in the aqueous slurry B is 12: 0.09 to 12: 0.3. 請求項1〜6のいずれかに記載のメタクリル酸合成用触媒の製造方法により得られるメタクリル酸合成用触媒。The catalyst for methacrylic acid synthesis obtained by the manufacturing method of the catalyst for methacrylic acid synthesis in any one of Claims 1-6. 下記一般式(I)で表される複合酸化物である請求項7記載のメタクリル酸合成用触媒。
MoabCucdefg (I)
(式中、Mo、P、Cu、VおよびOはそれぞれモリブデン、リン、銅、バナジウムおよび酸素を表し、Xはカリウム、ルビジウム、セシウムおよびタリウムからなる群より選ばれた少なくとも1種の元素を表し、Yは鉄、コバルト、ニッケル、亜鉛、マグネシウム、カルシウム、ストロンチウム、バリウム、チタン、クロム、タングステン、マンガン、銀、ホウ素、ケイ素、アルミニウム、ガリウム、ゲルマニウム、スズ、鉛、ヒ素、アンチモン、ビスマス、ニオブ、タンタル、ジルコニウム、インジウム、イオウ、セレン、テルル、ランタンおよびセリウムからなる群より選ばれた少なくとも1種の元素を表す。a、b、c、d、e、fおよびgは各元素の原子比を表し、a=12のとき、0.1≦b≦3、0.01≦c≦3、0.01≦d≦3、0.05≦e≦3、0≦f≦3であり、gは前記各成分の原子比を満足するのに必要な酸素の原子比である。)
The catalyst for synthesizing methacrylic acid according to claim 7, which is a composite oxide represented by the following general formula (I).
Mo a P b Cu c V d X e Y f O g (I)
(Wherein Mo, P, Cu, V and O represent molybdenum, phosphorus, copper, vanadium and oxygen, respectively, and X represents at least one element selected from the group consisting of potassium, rubidium, cesium and thallium. , Y is iron, cobalt, nickel, zinc, magnesium, calcium, strontium, barium, titanium, chromium, tungsten, manganese, silver, boron, silicon, aluminum, gallium, germanium, tin, lead, arsenic, antimony, bismuth, niobium Represents at least one element selected from the group consisting of tantalum, tantalum, zirconium, indium, sulfur, selenium, tellurium, lanthanum and cerium, wherein a, b, c, d, e, f and g are atomic ratios of the respective elements. When a = 12, 0.1 ≦ b ≦ 3, 0.01 ≦ c ≦ 3, 0.01 A d ≦ 3,0.05 ≦ e ≦ 3,0 ≦ f ≦ 3, g is the atomic ratio of oxygen required to satisfy the atomic ratio of the respective components.)
請求項7または8記載のメタクリル酸合成用触媒の存在下でメタクロレインを気相接触酸化するメタクリル酸の製造方法。A method for producing methacrylic acid, comprising subjecting methacrolein to gas phase catalytic oxidation in the presence of the catalyst for synthesizing methacrylic acid according to claim 7 or 8.
JP2001031407A 2001-02-07 2001-02-07 Method for producing methacrylic acid synthesis catalyst, methacrylic acid synthesis catalyst and methacrylic acid production method Expired - Fee Related JP4022047B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001031407A JP4022047B2 (en) 2001-02-07 2001-02-07 Method for producing methacrylic acid synthesis catalyst, methacrylic acid synthesis catalyst and methacrylic acid production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001031407A JP4022047B2 (en) 2001-02-07 2001-02-07 Method for producing methacrylic acid synthesis catalyst, methacrylic acid synthesis catalyst and methacrylic acid production method

Publications (2)

Publication Number Publication Date
JP2002233758A JP2002233758A (en) 2002-08-20
JP4022047B2 true JP4022047B2 (en) 2007-12-12

Family

ID=18895495

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001031407A Expired - Fee Related JP4022047B2 (en) 2001-02-07 2001-02-07 Method for producing methacrylic acid synthesis catalyst, methacrylic acid synthesis catalyst and methacrylic acid production method

Country Status (1)

Country Link
JP (1) JP4022047B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7732367B2 (en) * 2005-07-25 2010-06-08 Saudi Basic Industries Corporation Catalyst for methacrolein oxidation and method for making and using same
US7649111B2 (en) * 2005-07-25 2010-01-19 Saudi Basic Industries Corporation Catalyst for the oxidation of a mixed aldehyde feedstock to methacrylic acid and methods for making and using same
US7649112B2 (en) * 2005-07-25 2010-01-19 Saudi Basic Industries Corporation Integrated plant for producing 2-ethyl-hexanol and methacrylic acid and a method based thereon
US7273829B2 (en) * 2005-12-22 2007-09-25 Saudi Basic Industries Corporation Catalyst for oxidation of saturated and unsaturated aldehydes to unsaturated carboxylic acid, method of making and method of using thereof
JP5362370B2 (en) * 2009-01-14 2013-12-11 三菱レイヨン株式会社 Method for producing catalyst for synthesis of methacrylic acid
JP5214500B2 (en) * 2009-03-09 2013-06-19 住友化学株式会社 Method for producing catalyst for producing methacrylic acid and method for producing methacrylic acid
DE102010010587A1 (en) 2009-03-09 2010-11-18 Sumitomo Chemical Co. Ltd. Reproduction of catalyst for methacrylic acid production consists of heteropolyacid compound involves preparing aqueous slurry, drying to obtain solid heteropolyacid compound, preparing another aqueous slurry, drying and baking
JP5214499B2 (en) * 2009-03-09 2013-06-19 住友化学株式会社 Method for regenerating catalyst for methacrylic acid production and method for producing methacrylic acid
JP4900449B2 (en) * 2009-10-30 2012-03-21 住友化学株式会社 Method for producing catalyst for producing methacrylic acid and method for producing methacrylic acid
JP4900532B2 (en) * 2011-10-14 2012-03-21 住友化学株式会社 Method for producing catalyst for producing methacrylic acid and method for producing methacrylic acid

Also Published As

Publication number Publication date
JP2002233758A (en) 2002-08-20

Similar Documents

Publication Publication Date Title
US9656248B2 (en) Catalyst for producing unsaturated aldehyde and/or unsaturated carboxylic acid, method for producing same, and method for producing unsaturated aldehyde and/or unsaturated carboxylic acid
JP4022047B2 (en) Method for producing methacrylic acid synthesis catalyst, methacrylic acid synthesis catalyst and methacrylic acid production method
JP4925415B2 (en) Method for producing a catalyst for methacrylic acid production
JP5030438B2 (en) Method for producing catalyst and method for producing methacrylic acid
JP4933709B2 (en) Method for producing catalyst for synthesis of unsaturated carboxylic acid
JP2009220052A (en) Manufacturing method of catalyst for acrylonitrile synthesis, and manufacturing method of acrylonitrile
JP3690939B2 (en) Catalyst for synthesizing methacrylic acid and method for producing methacrylic acid
JP4863436B2 (en) Catalysts for the synthesis of unsaturated aldehydes and unsaturated carboxylic acids
WO2019141203A1 (en) Catalyst for preparing methacrylic acid by oxidation of methacrolein and preparation method therefor
JP5210835B2 (en) Method for producing catalyst for acrylonitrile synthesis and method for producing acrylonitrile
JP4811977B2 (en) Method for producing catalyst for synthesis of methacrylic acid
JP2005058909A (en) Production method for catalyst for synthesizing methacrylic acid
JP3342794B2 (en) Method for producing supported catalyst for synthesis of methacrolein and methacrylic acid
JP3797148B2 (en) Method for producing catalyst for producing methacrylic acid and method for producing methacrylic acid
JP4947753B2 (en) Catalyst for methacrylic acid synthesis and method for producing methacrylic acid
JP3995381B2 (en) Catalyst for producing methacrylic acid and method for producing methacrylic acid
JP3668386B2 (en) Catalyst for synthesizing methacrolein and methacrylic acid and method for producing methacrolein and methacrylic acid
JP4745766B2 (en) Catalyst for producing methacrylic acid, method for producing the same, and method for producing methacrylic acid
JP4236415B2 (en) Catalyst for methacrylic acid synthesis and method for producing methacrylic acid
JP4933736B2 (en) Catalyst for producing methacrylic acid, method for producing the same, and method for producing methacrylic acid
JP4017864B2 (en) Method for producing catalyst for producing methacrylic acid, and method for producing methacrylic acid
JP2003154273A (en) Method for manufacturing catalyst for manufacture of methacrylic acid, catalyst for manufacture of methacrylic acid and method for manufacturing methacrylic acid
JP2004268027A (en) Method of producing methacrylic acid production catalyst
JP4301484B2 (en) Method for producing methacrylic acid
JP3764805B2 (en) Method for preparing catalyst for production of methacrylic acid and method for producing methacrylic acid

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041117

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070905

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070912

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070928

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101005

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4022047

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101005

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111005

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111005

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111005

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121005

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121005

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121005

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131005

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees