JP6922993B2 - A method for producing a catalyst for producing α, β-unsaturated carboxylic acid, a method for producing α, β-unsaturated carboxylic acid, and a method for producing an α, β-unsaturated carboxylic acid ester. - Google Patents

A method for producing a catalyst for producing α, β-unsaturated carboxylic acid, a method for producing α, β-unsaturated carboxylic acid, and a method for producing an α, β-unsaturated carboxylic acid ester. Download PDF

Info

Publication number
JP6922993B2
JP6922993B2 JP2019549315A JP2019549315A JP6922993B2 JP 6922993 B2 JP6922993 B2 JP 6922993B2 JP 2019549315 A JP2019549315 A JP 2019549315A JP 2019549315 A JP2019549315 A JP 2019549315A JP 6922993 B2 JP6922993 B2 JP 6922993B2
Authority
JP
Japan
Prior art keywords
carboxylic acid
unsaturated carboxylic
producing
catalyst
molybdenum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019549315A
Other languages
Japanese (ja)
Other versions
JPWO2019078244A1 (en
Inventor
悠 栗原
悠 栗原
拓朗 渡邉
拓朗 渡邉
雄一 田川
雄一 田川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Publication of JPWO2019078244A1 publication Critical patent/JPWO2019078244A1/en
Application granted granted Critical
Publication of JP6922993B2 publication Critical patent/JP6922993B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/14Phosphorus; Compounds thereof
    • B01J27/186Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J27/195Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium with vanadium, niobium or tantalum
    • B01J27/198Vanadium
    • B01J27/199Vanadium with chromium, molybdenum, tungsten or polonium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/038Precipitation; Co-precipitation to form slurries or suspensions, e.g. a washcoat
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/16Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation
    • C07C51/21Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen
    • C07C51/23Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen of oxygen-containing groups to carboxyl groups
    • C07C51/235Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen of oxygen-containing groups to carboxyl groups of —CHO groups or primary alcohol groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C67/00Preparation of carboxylic acid esters
    • C07C67/08Preparation of carboxylic acid esters by reacting carboxylic acids or symmetrical anhydrides with the hydroxy or O-metal group of organic compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C69/00Esters of carboxylic acids; Esters of carbonic or haloformic acids
    • C07C69/52Esters of acyclic unsaturated carboxylic acids having the esterified carboxyl group bound to an acyclic carbon atom
    • C07C69/533Monocarboxylic acid esters having only one carbon-to-carbon double bond
    • C07C69/54Acrylic acid esters; Methacrylic acid esters
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B61/00Other general methods

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

本発明は、α,β−不飽和カルボン酸製造用触媒の製造方法、α,β−不飽和カルボン酸の製造方法、及びα,β−不飽和カルボン酸エステルの製造方法に関する。 The present invention relates to a method for producing a catalyst for producing an α, β-unsaturated carboxylic acid, a method for producing an α, β-unsaturated carboxylic acid, and a method for producing an α, β-unsaturated carboxylic acid ester.

α,β−不飽和アルデヒドを分子状酸素により気相接触酸化してα,β−不飽和カルボン酸を製造する際に用いられる触媒としては、リンモリブデン酸、リンモリブデン酸塩等のヘテロポリ酸又はその塩を主成分とする触媒が知られている。該触媒の製造方法については数多くの検討がなされており、その多くは、まず触媒を構成する各元素を含む水性スラリー又は水溶液を調製し、その後これを乾燥し、焼成することで触媒を製造している。 The catalyst used when α, β-unsaturated aldehyde is vapor-phase catalytically oxidized with molecular oxygen to produce α, β-unsaturated carboxylic acid is a heteropolyacid such as phosphomolybdic acid or phosphomolybate. A catalyst whose main component is the salt is known. Many studies have been conducted on the method for producing the catalyst, and most of them first prepare an aqueous slurry or an aqueous solution containing each element constituting the catalyst, and then dry and calcin the catalyst to produce the catalyst. ing.

このような触媒の基本的な性能は、主に元素組成、結晶構造、粒子径などに依存するが、その制御には、水性スラリー又は水溶液の調製過程の条件を制御することが求められる。一般に、水性スラリー又は水溶液の調製に用いられる原料としては、水溶性の原料及び水に不溶性の原料ともに使用可能である。しかしながら、特に水に不溶性の原料を用いる場合、原料の物性が触媒性能に大きな影響を与えることが知られている。例えば特許文献1には、圧縮度が60以下のモリブデン酸化物を原料に用いることで、高い触媒活性及び選択性を有するモリブデン含有固体触媒を製造できることが記載されている。また、特許文献2には、X線としてCuKα線を用いたX線回折図における回折ピーク位置と回折強度が規定されたモリブデン酸化物を原料として使用する触媒の製造方法が開示されている。 The basic performance of such a catalyst mainly depends on the elemental composition, crystal structure, particle size, etc., but its control is required to control the conditions of the preparation process of the aqueous slurry or aqueous solution. Generally, as a raw material used for preparing an aqueous slurry or an aqueous solution, both a water-soluble raw material and a water-insoluble raw material can be used. However, it is known that the physical characteristics of the raw material have a great influence on the catalytic performance, especially when a raw material insoluble in water is used. For example, Patent Document 1 describes that a molybdenum-containing solid catalyst having high catalytic activity and selectivity can be produced by using a molybdenum oxide having a compression degree of 60 or less as a raw material. Further, Patent Document 2 discloses a method for producing a catalyst using a molybdenum oxide having a defined diffraction peak position and diffraction intensity in an X-ray diffraction diagram using CuKα rays as X-rays as a raw material.

特開2007−229561号公報Japanese Unexamined Patent Publication No. 2007-229561 特開2004−8834号公報Japanese Unexamined Patent Publication No. 2004-8834

しかしながら、特許文献1、2に開示されているモリブデン酸化物を用いて製造した触媒では、α,β−不飽和カルボン酸の収率が未だ不十分であり、更なる触媒の改良が望まれる。 However, in the catalyst produced using the molybdenum oxide disclosed in Patent Documents 1 and 2, the yield of α, β-unsaturated carboxylic acid is still insufficient, and further improvement of the catalyst is desired.

本発明は、高い収率でα,β−不飽和カルボン酸を製造できる触媒を提供することを目的とする。 An object of the present invention is to provide a catalyst capable of producing an α, β-unsaturated carboxylic acid in a high yield.

本発明は、以下の[1]から[12]である。 The present invention is the following [1] to [ 12 ].

[1]モリブデン原料として、粒子径分布測定により得られる頻度分布曲線において、粒子径が6μm以下の粒子の割合が2〜55体積%であるモリブデン酸化物を使用するα,β−不飽和カルボン酸製造用触媒の製造方法であって、
(i)少なくとも前記モリブデン原料及びリン原料を含む触媒原料と水を混合して得られた水性スラリー(I)を、90〜150℃に加熱してヘテロポリ酸を含む水性スラリー又は水溶液(II)を得る工程と、
(ii)前記水性スラリー又は水溶液(II)に金属カチオン含有化合物を添加して、ヘテロポリ酸塩が析出した水性スラリー(III)を得る工程と、
(iii)前記水性スラリー(III)を乾燥し、触媒前駆体乾燥物を得る工程と、
(iv)前記触媒前駆体乾燥物を熱処理し、触媒を得る工程と、
を有し、前記工程(i)において、前記水性スラリー(I)の温度が60℃に到達してから90℃に到達するまでの時間が5〜40分である、α,β−不飽和カルボン酸製造用触媒の製造方法
[1] α, β-unsaturated carboxylic acid using molybdenum oxide as a molybdenum raw material in which the proportion of particles having a particle size of 6 μm or less is 2 to 55% by volume in the frequency distribution curve obtained by measuring the particle size distribution. It is a manufacturing method of a catalyst for manufacturing.
(I) An aqueous slurry (I) obtained by mixing water with a catalyst raw material containing at least the molybdenum raw material and a phosphorus raw material is heated to 90 to 150 ° C. to prepare an aqueous slurry or an aqueous solution (II) containing a heteropolyacid. The process of obtaining and
(Ii) A step of adding a metal cation-containing compound to the aqueous slurry or aqueous solution (II) to obtain an aqueous slurry (III) in which a heteropolylate is precipitated.
(Iii) A step of drying the aqueous slurry (III) to obtain a dried catalyst precursor, and
(Iv) A step of heat-treating the dried catalyst precursor to obtain a catalyst, and
In the step (i), the time from when the temperature of the aqueous slurry (I) reaches 60 ° C. to when it reaches 90 ° C. is 5 to 40 minutes, α, β-unsaturated carboxylic acid. A method for producing a catalyst for producing an acid .

]前記工程(i)において、前記水性スラリー(I)の温度が60℃に到達してから90℃に到達するまでの時間が7〜30分である、[]に記載のα,β−不飽和カルボン酸製造用触媒の製造方法。 [ 2 ] The α, according to [1 ], wherein in the step (i), the time from when the temperature of the aqueous slurry (I) reaches 60 ° C. to when it reaches 90 ° C. is 7 to 30 minutes. A method for producing a catalyst for producing β-unsaturated carboxylic acid.

]前記モリブデン原料が、粒子径が6μm以下の粒子の割合が2〜35体積%であるモリブデン酸化物である、[1]または[2]に記載のα,β−不飽和カルボン酸製造用触媒の製造方法。 [ 3 ] Production of α, β-unsaturated carboxylic acid according to [1] or [2] , wherein the molybdenum raw material is a molybdenum oxide in which the proportion of particles having a particle size of 6 μm or less is 2 to 35% by volume. Method for manufacturing catalyst for use.

]前記モリブデン原料が、粒子径が6μm以下の粒子の割合が2〜15体積%であるモリブデン酸化物である、[]に記載のα,β−不飽和カルボン酸製造用触媒の製造方法。 [ 4 ] Production of the catalyst for producing α, β-unsaturated carboxylic acid according to [3 ], wherein the molybdenum raw material is a molybdenum oxide in which the proportion of particles having a particle size of 6 μm or less is 2 to 15% by volume. Method.

]前記α,β−不飽和カルボン酸製造用触媒が、下記式(1)で表される組成を有する、[1]から[]のいずれかに記載のα,β−不飽和カルボン酸製造用触媒の製造方法。
aMobcCudefgh (1)
(式(1)中、P、Mo、V、Cu及びOは、それぞれ、リン、モリブデン、バナジウム、銅及び酸素を示す元素記号である。Aはアンチモン、ビスマス、砒素、ゲルマニウム、ジルコニウム、テルル、銀、セレン、ケイ素、タングステン及びホウ素からなる群から選択される少なくとも1種の元素を表し、Eは鉄、亜鉛、クロム、マグネシウム、カルシウム、ストロンチウム、タンタル、コバルト、ニッケル、マンガン、バリウム、チタン、スズ、鉛、ニオブ、インジウム、硫黄、パラジウム、ガリウム、セリウム及びランタンからなる群から選択される少なくとも1種の元素を表し、Gはリチウム、ナトリウム、カリ
ウム、ルビジウム、セシウム及びタリウムからなる群から選択される少なくとも1種の元素を表す。a〜hは、各元素の原子比率を表し、b=12のとき、a=0.5〜3、c=0.01〜3、d=0.01〜2、e=0〜3、f=0〜3、g=0.01〜3であり、hは前記各元素の原子価を満足するのに必要な酸素の原子比率である。)。
[ 5 ] The α, β-unsaturated carboxylic acid according to any one of [1] to [4 ], wherein the catalyst for producing α, β-unsaturated carboxylic acid has a composition represented by the following formula (1). A method for producing a catalyst for producing an acid.
P a Mo b V c Cu d A e E f G g Oh (1)
(In formula (1), P, Mo, V, Cu and O are element symbols indicating phosphorus, molybdenum, vanadium, copper and oxygen, respectively. A is antimony, bismuth, arsenic, germanium, zirconium, tellurium, respectively. Represents at least one element selected from the group consisting of silver, selenium, silicon, tungsten and boron, where E represents iron, zinc, chromium, magnesium, calcium, strontium, tantalum, cobalt, nickel, manganese, barium, titanium, Represents at least one element selected from the group consisting of tin, lead, niobium, indium, sulfur, palladium, gallium, cerium and lanthanum, where G is selected from the group consisting of lithium, sodium, potassium, rubidium, cesium and tarium. Represents at least one element to be formed. A to h represent the atomic ratio of each element, and when b = 12, a = 0.5 to 3, c = 0.01 to 3, d = 0.01. ~ 2, e = 0 to 3, f = 0 to 3, g = 0.01 to 3, and h is the atomic ratio of oxygen required to satisfy the atomic value of each element.).

]前記モリブデン原料として三酸化モリブデンを50質量%以上使用する、[1]から[]のいずれかに記載のα,β−不飽和カルボン酸製造用触媒の製造方法。 [ 6 ] The method for producing an α, β-unsaturated carboxylic acid production catalyst according to any one of [1] to [5 ], wherein 50% by mass or more of molybdenum trioxide is used as the molybdenum raw material.

]前記モリブデン原料として三酸化モリブデンを70質量%以上使用する、[]に記載のα,β−不飽和カルボン酸製造用触媒の製造方法。 [ 7 ] The method for producing an α, β-unsaturated carboxylic acid production catalyst according to [6 ], wherein 70% by mass or more of molybdenum trioxide is used as the molybdenum raw material.

]前記α,β−不飽和カルボン酸製造用触媒は、α,β−不飽和アルデヒドを分子状酸素により気相接触酸化してα,β−不飽和カルボン酸を製造する際に用いられる触媒であって、前記α,β−不飽和アルデヒドが(メタ)アクロレインであり、かつ前記α,β−不飽和カルボン酸が(メタ)アクリル酸である、[1]から[]のいずれかに記載のα,β−不飽和カルボン酸製造用触媒の製造方法。 [ 8 ] The catalyst for producing α, β-unsaturated carboxylic acid is used when α, β-unsaturated aldehyde is vapor-phase catalytically oxidized with molecular oxygen to produce α, β-unsaturated carboxylic acid. Any of [1] to [7 ], which is a catalyst, wherein the α, β-unsaturated aldehyde is (meth) acrolein and the α, β-unsaturated carboxylic acid is (meth) acrylic acid. The method for producing a catalyst for producing an α, β-unsaturated carboxylic acid according to.

][1]から[]のいずれかに記載の方法によりα,β−不飽和カルボン酸製造用触媒を製造し、該触媒を用いてα,β−不飽和アルデヒドを分子状酸素により気相接触酸化してα,β−不飽和カルボン酸を製造するα,β−不飽和カルボン酸の製造方法。 [ 9 ] A catalyst for producing α, β-unsaturated carboxylic acid is produced by the method according to any one of [1] to [ 8], and α, β-unsaturated aldehyde is produced by molecular oxygen using the catalyst. A method for producing an α, β-unsaturated carboxylic acid by vapor-phase catalytic oxidation to produce an α, β-unsaturated carboxylic acid.

10][1]から[]のいずれかに記載の方法により製造されたα,β−不飽和カルボン酸製造用触媒を用いて、α,β−不飽和アルデヒドを分子状酸素により気相接触酸化してα,β−不飽和カルボン酸を製造するα,β−不飽和カルボン酸の製造方法。 [ 10 ] Using the catalyst for producing α, β-unsaturated carboxylic acid produced by the method according to any one of [1] to [ 8], the gas phase of α, β-unsaturated aldehyde with molecular oxygen. A method for producing an α, β-unsaturated carboxylic acid by catalytic oxidation to produce an α, β-unsaturated carboxylic acid.

11][]又は[10]に記載の方法により製造されたα,β−不飽和カルボン酸をエステル化するα,β−不飽和カルボン酸エステルの製造方法。 [ 11 ] A method for producing an α, β-unsaturated carboxylic acid ester, which esterifies an α, β-unsaturated carboxylic acid produced by the method according to [9 ] or [ 10].

12][]又は[10]に記載の方法によりα,β−不飽和カルボン酸を製造し、該α,β−不飽和カルボン酸をエステル化するα,β−不飽和カルボン酸エステルの製造方法。 [ 12 ] A α, β-unsaturated carboxylic acid ester for producing an α, β-unsaturated carboxylic acid by the method described in [9 ] or [ 10] and esterifying the α, β-unsaturated carboxylic acid. Production method.

本発明によれば、高い収率でα,β−不飽和カルボン酸を製造できる触媒を提供することができる。 According to the present invention, it is possible to provide a catalyst capable of producing an α, β-unsaturated carboxylic acid in a high yield.

実施例1〜4及び比較例1〜3における三酸化モリブデンの粒子径分布を示す図である。It is a figure which shows the particle size distribution of molybdenum trioxide in Examples 1 to 4 and Comparative Examples 1 to 3.

[α,β−不飽和カルボン酸製造用触媒]
本発明に係る方法により製造されるα,β−不飽和カルボン酸製造用触媒は、少なくともモリブデンを含むが、リン及びモリブデンを含むことが好ましく、下記式(1)で表される組成を有することがより好ましい。これにより、α,β−不飽和カルボン酸の製造において高収率でα,β−不飽和カルボン酸を製造できる。なお、触媒の元素組成は、触媒をアンモニア水に溶解した溶液をICP発光分析法で分析することによって求めた値とする。
aMobcCudefgh (1)
[Catalyst for producing α, β-unsaturated carboxylic acid]
The catalyst for producing α, β-unsaturated carboxylic acid produced by the method according to the present invention contains at least molybdenum, but preferably contains phosphorus and molybdenum, and has a composition represented by the following formula (1). Is more preferable. As a result, α, β-unsaturated carboxylic acid can be produced in high yield in the production of α, β-unsaturated carboxylic acid. The elemental composition of the catalyst is a value obtained by analyzing a solution of the catalyst in aqueous ammonia by ICP emission spectrometry.
P a Mo b V c Cu d A e E f G g Oh (1)

式(1)中、P、Mo、V、Cu及びOは、それぞれ、リン、モリブデン、バナジウム、銅及び酸素を示す元素記号である。Aはアンチモン、ビスマス、砒素、ゲルマニウム、ジルコニウム、テルル、銀、セレン、ケイ素、タングステン及びホウ素からなる群から選択される少なくとも1種の元素を表し、Eは鉄、亜鉛、クロム、マグネシウム、カルシウム、ストロンチウム、タンタル、コバルト、ニッケル、マンガン、バリウム、チタン、スズ、鉛、ニオブ、インジウム、硫黄、パラジウム、ガリウム、セリウム及びランタンからなる群から選択される少なくとも1種の元素を表し、Gはリチウム、ナトリウム、カリウム、ルビジウム、セシウム及びタリウムからなる群から選択される少なくとも1種の元素を表す。a〜hは、各元素の原子比率を表し、b=12のとき、a=0.5〜3、c=0.01〜3、d=0.01〜2、e=0〜3、f=0〜3、g=0.01〜3であり、hは前記各元素の原子価を満足するのに必要な酸素の原子比率である。
また、触媒は、式(1)に記載のない元素を少量含んでいても良い。
In formula (1), P, Mo, V, Cu and O are element symbols indicating phosphorus, molybdenum, vanadium, copper and oxygen, respectively. A represents at least one element selected from the group consisting of antimony, bismuth, arsenic, germanium, zirconium, tellurium, silver, selenium, silicon, tungsten and boron, and E represents iron, zinc, chromium, magnesium, calcium, Represents at least one element selected from the group consisting of strontium, tantalum, cobalt, nickel, manganese, barium, titanium, tin, lead, niobium, indium, sulfur, palladium, gallium, cerium and lanthanum, where G represents lithium, Represents at least one element selected from the group consisting of sodium, potassium, rubidium, cesium and thallium. a to h represent the atomic ratio of each element, and when b = 12, a = 0.5 to 3, c = 0.01 to 3, d = 0.01 to 2, e = 0 to 3, f. = 0 to 3, g = 0.01 to 3, and h is the atomic ratio of oxygen required to satisfy the valence of each element.
Further, the catalyst may contain a small amount of an element not described in the formula (1).

本発明に係る方法により製造されるα,β−不飽和カルボン酸製造用触媒は、α,β−不飽和アルデヒドを分子状酸素により気相接触酸化してα,β−不飽和カルボン酸を製造する際に用いられることが好ましい。また、α,β−不飽和アルデヒドが(メタ)アクロレインであり、かつα,β−不飽和カルボン酸が(メタ)アクリル酸であることが好ましい。 The catalyst for producing α, β-unsaturated carboxylic acid produced by the method according to the present invention produces α, β-unsaturated carboxylic acid by vapor-phase catalytic oxidation of α, β-unsaturated aldehyde with molecular oxygen. It is preferable to be used when Further, it is preferable that the α, β-unsaturated aldehyde is (meth) acrolein and the α, β-unsaturated carboxylic acid is (meth) acrylic acid.

[α,β−不飽和カルボン酸製造用触媒の製造方法]
本発明に係るα,β−不飽和カルボン酸製造用触媒の製造方法では、モリブデン原料として、粒子径分布測定により得られる頻度分布曲線において、粒子径が6μm以下の粒子の割合が2〜55体積%であるモリブデン酸化物を使用する。なお、モリブデン酸化物の粒子径分布測定は、レーザー回折式粒度分布測定装置SALD−7000(製品名、島津製作所社製)を用い、純水500gに対してモリブデン酸化物0.02〜0.1gを分散させ、30秒間撹拌させた後に行われる。また、本発明では、粒子径が1000μm以下の粒子の積算体積を全粒子体積として頻度分布曲線を求める。
[Manufacturing method of catalyst for producing α, β-unsaturated carboxylic acid]
In the method for producing a catalyst for producing α, β-unsaturated carboxylic acid according to the present invention, the proportion of particles having a particle size of 6 μm or less is 2 to 55 volumes in the frequency distribution curve obtained by measuring the particle size distribution as a molybdenum raw material. Use% molybdenum oxide. The particle size distribution of molybdenum oxide was measured using a laser diffraction type particle size distribution measuring device SALD-7000 (product name, manufactured by Shimadzu Corporation), and 0.02 to 0.1 g of molybdenum oxide was obtained with respect to 500 g of pure water. Is dispersed and stirred for 30 seconds. Further, in the present invention, the frequency distribution curve is obtained by assuming the integrated volume of particles having a particle size of 1000 μm or less as the total particle volume.

本発明では、上述の粒子径分布測定により得られる頻度分布曲線において、粒子径1000μm以下の粒子における粒子径が6μm以下の粒子の割合が2〜55体積%であるモリブデン酸化物をモリブデン原料に用いてα,β−不飽和カルボン酸製造用触媒を製造する。これにより、得られた触媒に好適な活性点が形成され、触媒活性が向上し、α,β−不飽和カルボン酸の収率を向上させることができると考えられる。 In the present invention, in the frequency distribution curve obtained by the above-mentioned particle size distribution measurement, a molybdenum oxide in which the proportion of particles having a particle size of 6 μm or less in particles having a particle size of 1000 μm or less is 2 to 55% by volume is used as a molybdenum raw material. To produce a catalyst for producing α, β-unsaturated carboxylic acid. As a result, it is considered that suitable active sites are formed in the obtained catalyst, the catalytic activity is improved, and the yield of α, β-unsaturated carboxylic acid can be improved.

本発明に係るα,β−不飽和カルボン酸製造用触媒の製造方法は、前記モリブデン酸化物をモリブデン原料として使用する以外は特に限定されず、例えば前記モリブデン酸化物を含む原料と水を混合して水性スラリー又は水溶液を得る工程を有することができる。しかしながら、α,β−不飽和カルボン酸の収率がより向上する観点から、前記方法は以下の工程(i)から(iv)を有することが好ましい。
(i)少なくともモリブデン原料及びリン原料を含む触媒原料と水を混合して得られた水性スラリー(I)を、90〜150℃に加熱してヘテロポリ酸を含む水性スラリー又は水溶液(II)を得る工程。
(ii)前記水性スラリー又は水溶液(II)に金属カチオン含有化合物を添加して、ヘテロポリ酸塩が析出した水性スラリー(III)を得る工程。
(iii)前記水性スラリー(III)を乾燥し、触媒前駆体乾燥物を得る工程。
(iv)前記触媒前駆体乾燥物を熱処理し、触媒を得る工程。
The method for producing a catalyst for producing α, β-unsaturated carboxylic acid according to the present invention is not particularly limited except that the molybdenum oxide is used as a molybdenum raw material, and for example, a raw material containing the molybdenum oxide and water are mixed. Can have a step of obtaining an aqueous slurry or an aqueous solution. However, from the viewpoint of further improving the yield of α, β-unsaturated carboxylic acid, the method preferably has the following steps (i) to (iv).
(I) An aqueous slurry (I) obtained by mixing water with a catalyst raw material containing at least a molybdenum raw material and a phosphorus raw material is heated to 90 to 150 ° C. to obtain an aqueous slurry or an aqueous solution (II) containing a heteropolyacid. Process.
(Ii) A step of adding a metal cation-containing compound to the aqueous slurry or aqueous solution (II) to obtain an aqueous slurry (III) in which a heteropolylate is precipitated.
(Iii) A step of drying the aqueous slurry (III) to obtain a dried catalyst precursor.
(Iv) A step of heat-treating the dried catalyst precursor to obtain a catalyst.

また、本発明に係るα,β−不飽和カルボン酸製造用触媒の製造方法は、後述する成形工程をさらに有しても良い。 Further, the method for producing a catalyst for producing an α, β-unsaturated carboxylic acid according to the present invention may further include a molding step described later.

(工程(i))
工程(i)では、少なくともモリブデン原料及びリン原料を含む触媒原料と水を混合して得られた水性スラリー(I)を、90〜150℃に加熱してヘテロポリ酸を含む水性スラリー又は水溶液(II)を得る。なお、水性スラリー(I)を加熱した後、水性スラリーになる場合も水溶液になる場合もある。そのため、これらを「水性スラリー又は水溶液(II)」と総称する。また、触媒が前記式(1)で表される組成を有する場合、前記式(1)で表される組成に含まれるG以外の元素を、前記触媒原料として水と混合し、水性スラリー(I)を得ることが好ましい。
(Step (i))
In the step (i), the aqueous slurry (I) obtained by mixing water with a catalyst raw material containing at least a molybdenum raw material and a phosphorus raw material is heated to 90 to 150 ° C. to heat an aqueous slurry or an aqueous solution (II) containing a heteropolyacid. ). After heating the aqueous slurry (I), it may become an aqueous slurry or an aqueous solution. Therefore, these are collectively referred to as "aqueous slurry or aqueous solution (II)". When the catalyst has a composition represented by the formula (1), an element other than G contained in the composition represented by the formula (1) is mixed with water as the catalyst raw material, and the aqueous slurry (I) is mixed. ) Is preferably obtained.

水性スラリー(I)を加熱するとモリブデン原料が水に溶解するが、このときの溶解速度は、モリブデン原料の粒子径分布により変化する。この溶解速度が、得られる触媒の活性点に影響を与えていると推測される。 When the aqueous slurry (I) is heated, the molybdenum raw material dissolves in water, and the dissolution rate at this time changes depending on the particle size distribution of the molybdenum raw material. It is presumed that this dissolution rate affects the active site of the obtained catalyst.

モリブデン原料としては、粒子径分布測定により得られる頻度分布曲線において、粒子径が6μm以下の粒子の割合が2〜55体積%であるモリブデン酸化物を使用する。これにより、α,β−不飽和アルデヒドの分子状酸素による気相接触酸化に好適な活性点が形成される。該割合の下限は5体積%以上が好ましく、10体積%以上がより好ましい。また、上限は35体積%以下が好ましく、30体積%以下がより好ましく、25体積%以下がさらに好ましく、20体積%以下が特に好ましく、15体積%以下が最も好ましい。 As the molybdenum raw material, a molybdenum oxide having a particle size of 6 μm or less and a particle size of 2 to 55% by volume is used in the frequency distribution curve obtained by measuring the particle size distribution. As a result, an active site suitable for vapor-phase catalytic oxidation of α, β-unsaturated aldehyde with molecular oxygen is formed. The lower limit of the ratio is preferably 5% by volume or more, more preferably 10% by volume or more. The upper limit is preferably 35% by volume or less, more preferably 30% by volume or less, further preferably 25% by volume or less, particularly preferably 20% by volume or less, and most preferably 15% by volume or less.

また、前記モリブデン酸化物は、粒子径が30〜200μmの粒子の割合が35〜90体積%であることが好ましい。該割合の下限は40体積%以上がより好ましく、50体積%以上がさらに好ましく、60体積%以上が特に好ましく、70体積%以上が最も好ましい。また、上限は85体積%以下がより好ましく、80体積%以下がさらに好ましい。これにより、α,β−不飽和アルデヒドの分子状酸素による気相接触酸化に、より好適な活性点が形成される。 Further, in the molybdenum oxide, the proportion of particles having a particle size of 30 to 200 μm is preferably 35 to 90% by volume. The lower limit of the ratio is more preferably 40% by volume or more, further preferably 50% by volume or more, particularly preferably 60% by volume or more, and most preferably 70% by volume or more. Further, the upper limit is more preferably 85% by volume or less, and further preferably 80% by volume or less. As a result, a more suitable active site for vapor-phase catalytic oxidation of α, β-unsaturated aldehyde with molecular oxygen is formed.

モリブデン酸化物中のモリブデンと酸素の原子比率は特に限定されず、例えば、モリブデン:酸素の原子比率が1:2の二酸化モリブデン、1:3の三酸化モリブデン等が挙げられる。ただし、α,β−不飽和カルボン酸の収率がより向上する観点から、モリブデン原料として、粒子径が6μm以下の粒子の割合が2〜55体積%である三酸化モリブデンを50質量%以上使用することが好ましい。三酸化モリブデンの割合の下限は70質量%以上がより好ましく、90質量%以上がさらに好ましい。モリブデン酸化物には、例えば、ナトリウム、カリウム、鉄、鉛、硫酸根、硝酸根、及びアンモニウム根などの不純物が微量含まれていても良いが、これらの不純物の含有量は少ないほど好ましく、これらの不純物を含まないことが特に好ましい。 The atomic ratio of molybdenum to oxygen in the molybdenum oxide is not particularly limited, and examples thereof include molybdenum dioxide having a molybdenum: oxygen atomic ratio of 1: 2 and molybdenum trioxide having an atomic ratio of 1: 3. However, from the viewpoint of further improving the yield of α, β-unsaturated carboxylic acid, 50% by mass or more of molybdenum trioxide having a particle size of 6 μm or less is 2 to 55% by volume is used as a molybdenum raw material. It is preferable to do so. The lower limit of the proportion of molybdenum trioxide is more preferably 70% by mass or more, further preferably 90% by mass or more. The molybdenum oxide may contain trace impurities such as sodium, potassium, iron, lead, sulfate root, nitrate root, and ammonium root, but the smaller the content of these impurities, the more preferable. It is particularly preferable that it does not contain the impurities of.

本発明に係るモリブデン酸化物の製造方法としては、例えば以下の方法が挙げられる。モリブデンを含む鉱石を焙焼して得られた粗三酸化モリブデンを純水に分散させた後、アンモニア水に溶解する。この溶液を濾過後、塩酸を添加してpH調整を行って得られた沈殿物を、純水、硝酸アンモニウムや塩化アンモニウム等を少量含む水溶液で分散・洗浄する。その後、遠心濾過等により含水量を低減して前駆体沈殿物を得て、これを乾燥後焼成し、モリブデン酸化物を得ることができる。また、前記前駆体沈殿物にアンモニア水を添加して溶解・晶析して得られたパラモリブデン酸アンモニウムを焼成する方法も挙げられる。後者の方法の方が、前者の方法よりも得られるモリブデン酸化物の粒子径を小さくすることができる。さらに、前記焼成温度によってもモリブデン酸化物の粒子径を調整することができる。焼成温度を低くすることで得られるモリブデン酸化物の粒子径が小さくなり、焼成温度を高くすることで得られるモリブデン酸化物の粒子径が大きくなる傾向がある。また、上記方法で製造したモリブデン酸化物に対して、必要に応じて、粒子径が6μm以下の粒子の割合が2〜55体積%、好ましくは2〜35体積%、より好ましくは2〜15体積%となるように粉砕操作や分級操作をしても良い。粉砕操作としては、ボールミル、ロッドミル、SAGミル、自生粉砕ミル、小石ミル、高圧粉砕ロール、縦軸インパクタミル、ジェットミル等の装置を用いる方法が挙げられる。分級操作としては、ふるいによる方法、重力や遠心力を用いる方法(半自由渦式分級機、強制渦式分級機)等が挙げられる。また、本発明に係るモリブデン酸化物として、前述の方法により製造された、異なる粒度分布を有する複数のモリブデン酸化物を混合したものを用いても良い。 Examples of the method for producing the molybdenum oxide according to the present invention include the following methods. The crude molybdenum trioxide obtained by roasting an ore containing molybdenum is dispersed in pure water and then dissolved in aqueous ammonia. After filtering this solution, hydrochloric acid is added to adjust the pH, and the obtained precipitate is dispersed and washed with an aqueous solution containing a small amount of pure water, ammonium nitrate, ammonium chloride, or the like. Then, the water content is reduced by centrifugal filtration or the like to obtain a precursor precipitate, which is dried and then calcined to obtain a molybdenum oxide. Another method is to calcin the ammonium paramolybdate obtained by adding aqueous ammonia to the precursor precipitate to dissolve and crystallize it. The latter method can reduce the particle size of the molybdenum oxide obtained than the former method. Further, the particle size of the molybdenum oxide can be adjusted by the firing temperature. The particle size of the molybdenum oxide obtained by lowering the calcination temperature tends to decrease, and the particle size of the molybdenum oxide obtained by increasing the calcination temperature tends to increase. Further, with respect to the molybdenum oxide produced by the above method, the proportion of particles having a particle size of 6 μm or less is 2 to 55% by volume, preferably 2 to 35% by volume, and more preferably 2 to 15 volumes, if necessary. A crushing operation or a classification operation may be performed so as to be%. Examples of the crushing operation include a method using an apparatus such as a ball mill, a rod mill, a SAG mill, a self-made crushing mill, a pebble mill, a high-pressure crushing roll, a vertical axis impactor mill, and a jet mill. Examples of the classification operation include a method using a sieve, a method using gravity or centrifugal force (semi-free vortex type classifier, forced vortex type classifier), and the like. Further, as the molybdenum oxide according to the present invention, a mixture of a plurality of molybdenum oxides having different particle size distributions produced by the above-mentioned method may be used.

リン原料としては、例えば正リン酸、五酸化リン、リン酸アンモニウム、リン酸セシウム等が挙げられる。これらは一種を用いても良く、二種以上を併用しても良い。 Examples of the phosphorus raw material include orthophosphoric acid, phosphorus pentoxide, ammonium phosphate, cesium phosphate and the like. These may be used alone or in combination of two or more.

モリブデン原料及びリン原料以外の触媒原料の種類は特に限定されず、各元素の硫酸塩、硝酸塩、炭酸塩、重炭酸塩、酢酸塩、アンモニウム塩、酸化物、水酸化物、塩化物、ハロゲン化物、オキソ酸、オキソ酸塩等が挙げられる。銅原料としては、例えば硫酸銅、硝酸銅、酢酸銅、酸化銅、塩化銅等が挙げられる。バナジウム原料としては、例えばバナジン酸アンモニウム、メタバナジン酸アンモニウム、五酸化バナジウム、塩化バナジウム等が挙げられる。これらは一種を用いても良く、二種以上を併用しても良い。 The types of catalyst raw materials other than molybdenum raw materials and phosphorus raw materials are not particularly limited, and sulfates, nitrates, carbonates, bicarbonates, acetates, ammonium salts, oxides, hydroxides, chlorides, and halides of each element are not particularly limited. , Oxoic acid, oxolate salt and the like. Examples of the copper raw material include copper sulfate, copper nitrate, copper acetate, copper oxide, copper chloride and the like. Examples of the vanadium raw material include ammonium vanadate, ammonium metavanadate, vanadium pentoxide, vanadium chloride and the like. These may be used alone or in combination of two or more.

ヘテロポリ酸を含む水性スラリー又は水溶液(II)の調製は、水に前記触媒原料の一部又は全てを加えて得られる水性スラリー(I)を、加熱しながら攪拌する方法により行うことが簡便であり好ましい。水性スラリー(I)は、水に前記触媒原料の水溶液、水性スラリー又は水性ゾルを添加して得ることもできる。水性スラリー(I)を、90〜150℃に加熱することで水性スラリー又は水溶液(II)を得ることが好ましい。加熱温度の下限は95℃以上、上限は130℃以下がより好ましい。該加熱温度を90℃以上とすることで、前記触媒原料から効率的にヘテロポリ酸が生成される。また、該加熱温度を150℃以下とすることで、水性スラリー又は水溶液中の水の蒸発を抑制することができる。 It is convenient to prepare the aqueous slurry or aqueous solution (II) containing the heteropolyacid by a method of stirring the aqueous slurry (I) obtained by adding a part or all of the catalyst raw materials to water while heating. preferable. The aqueous slurry (I) can also be obtained by adding an aqueous solution of the catalyst raw material, an aqueous slurry or an aqueous sol to water. It is preferable to heat the aqueous slurry (I) to 90 to 150 ° C. to obtain an aqueous slurry or an aqueous solution (II). The lower limit of the heating temperature is more preferably 95 ° C. or higher, and the upper limit is more preferably 130 ° C. or lower. By setting the heating temperature to 90 ° C. or higher, a heteropolyacid is efficiently produced from the catalyst raw material. Further, by setting the heating temperature to 150 ° C. or lower, evaporation of water in the aqueous slurry or aqueous solution can be suppressed.

前述の通り、モリブデン原料として、粒子径分布測定により得られる頻度分布曲線において、粒子径が6μm以下の粒子の割合が2〜55体積%であるモリブデン酸化物を使用した場合、前記水性スラリー(I)を加熱し、前記モリブデン原料が水に溶解するときの溶解速度が、得られる触媒の活性点に影響を与えていると推測される。このとき、前記水性スラリー(I)の温度が60℃に到達してから90℃に到達するまでの間に前記モリブデン原料が水に溶解する。そのため、この時間を調整することで、α,β−不飽和アルデヒドの分子状酸素による気相接触酸化に、より好適な活性点を形成させることができる。前記水性スラリー(I)の温度が60℃に到達してから90℃に到達するまでの時間は、好ましくは5〜40分、より好ましくは7〜30分である。 As described above, when a molybdenum oxide having a particle size of 6 μm or less and a particle size of 2 to 55% by volume is used as the molybdenum raw material in the frequency distribution curve obtained by measuring the particle size distribution, the aqueous slurry (I) ) Is heated, and it is presumed that the dissolution rate when the molybdenum raw material is dissolved in water affects the active point of the obtained catalyst. At this time, the molybdenum raw material dissolves in water between the time when the temperature of the aqueous slurry (I) reaches 60 ° C. and the time when the temperature reaches 90 ° C. Therefore, by adjusting this time, a more suitable active site can be formed for the vapor phase catalytic oxidation of α, β-unsaturated aldehyde by molecular oxygen. The time from when the temperature of the aqueous slurry (I) reaches 60 ° C. to when it reaches 90 ° C. is preferably 5 to 40 minutes, more preferably 7 to 30 minutes.

前記水性スラリー(I)において、温度が60℃に到達してから90℃に到達するまでの時間は、昇温速度の調整等により制御することができる。また、前記水性スラリー(I)の温度は単調増加させても良く、昇温速度を適宜変化させながら制御しても良い。 In the aqueous slurry (I), the time from when the temperature reaches 60 ° C to when it reaches 90 ° C can be controlled by adjusting the temperature rising rate or the like. Further, the temperature of the aqueous slurry (I) may be monotonically increased, or may be controlled while appropriately changing the temperature rising rate.

調製される水性スラリー又は水溶液(II)のpHは、α,β−不飽和カルボン酸の収率向上の観点から4以下が好ましく、2以下がより好ましい。水性スラリー又は水溶液(II)のpHが高い場合には、硝酸根等を多く含むように各原料を選択することが好ましい。 The pH of the prepared aqueous slurry or aqueous solution (II) is preferably 4 or less, more preferably 2 or less, from the viewpoint of improving the yield of α, β-unsaturated carboxylic acid. When the pH of the aqueous slurry or aqueous solution (II) is high, it is preferable to select each raw material so as to contain a large amount of nitrate roots and the like.

工程(i)において水性スラリー又は水溶液(II)中にヘテロポリ酸が形成されているか否かは、NICOLET6700FT−IR(製品名、Thermo electron社製)等を用いた赤外吸収分析及びX線回折装置X’Pert PRO MPD(製品名、PANaltical社製)等を用いたX線回折分析により確認することができる。 Whether or not a heteropolymetalate is formed in the aqueous slurry or the aqueous solution (II) in the step (i) is determined by an infrared absorption analysis and an X-ray diffractometer using NICOLET6700FT-IR (product name, manufactured by Thermo electron) or the like. It can be confirmed by X-ray diffraction analysis using X'Pert PRO MPD (product name, manufactured by PANALTICAL) or the like.

(工程(ii))
工程(ii)では、工程(i)で得られた水性スラリー又は水溶液(II)に金属カチオン含有化合物を添加して、ヘテロポリ酸塩が析出した水性スラリー(III)を得る。金属カチオン含有化合物としては、リチウム、ナトリウム、カリウム、ルビジウム、セシウム及びタリウムからなる群から選択される少なくとも1種の元素(前記式(1)のGに相当)を含む化合物を用いることが好ましい。また、工程(ii)では、金属カチオン含有化合物に加えて、アンモニウム化合物を添加することが好ましい。アンモニウム化合物を添加することにより、α,β−不飽和アルデヒドの分子状酸素による気相接触酸化に好適な結晶構造が形成される。アンモニウム化合物としては、炭酸水素アンモニウム、炭酸アンモニウム、硝酸アンモニウム、アンモニア水等が挙げられる。これらのアンモニウム化合物は、一種を用いても良く、二種以上を併用しても良い。
(Step (ii))
In step (ii), a metal cation-containing compound is added to the aqueous slurry or aqueous solution (II) obtained in step (i) to obtain an aqueous slurry (III) in which a heteropolylate is precipitated. As the metal cation-containing compound, it is preferable to use a compound containing at least one element (corresponding to G in the above formula (1)) selected from the group consisting of lithium, sodium, potassium, rubidium, cesium and thallium. Further, in the step (ii), it is preferable to add an ammonium compound in addition to the metal cation-containing compound. By adding the ammonium compound, a crystal structure suitable for vapor-phase catalytic oxidation of α, β-unsaturated aldehyde with molecular oxygen is formed. Examples of the ammonium compound include ammonium hydrogen carbonate, ammonium carbonate, ammonium nitrate, aqueous ammonia and the like. These ammonium compounds may be used alone or in combination of two or more.

金属カチオン含有化合物及びアンモニウム化合物は、溶媒に溶解又は懸濁させて添加することが好ましい。溶媒としては、水、エチルアルコール、アセトン等が挙げられる。ただし、前記工程(i)で得られる水性スラリー又は水溶液(II)と同じ水を溶媒として用いることが好ましい。金属カチオン含有化合物及び必要に応じて添加されるアンモニウム化合物を添加した後の水性スラリー又は水溶液の攪拌時間は、1〜300分が好ましく、下限は10分以上、上限は30分以下がより好ましい。また、攪拌時の水性スラリー又は水溶液の温度は、50〜100℃が好ましく、下限は80℃以上がより好ましい。攪拌時間を1分以上、温度を50℃以上とすることで、ヘテロポリ酸の金属塩及びアンモニウム塩を十分に形成させることができる。一方、攪拌時間を300分以下、温度を100℃以下とすることで、目的とするヘテロポリ酸の金属塩及びアンモニウム塩以外の化合物の形成を抑制することができる。 The metal cation-containing compound and the ammonium compound are preferably added after being dissolved or suspended in a solvent. Examples of the solvent include water, ethyl alcohol, acetone and the like. However, it is preferable to use the same water as the aqueous slurry or aqueous solution (II) obtained in the step (i) as the solvent. The stirring time of the aqueous slurry or aqueous solution after adding the metal cation-containing compound and the ammonium compound added as needed is preferably 1 to 300 minutes, the lower limit is preferably 10 minutes or more, and the upper limit is more preferably 30 minutes or less. The temperature of the aqueous slurry or aqueous solution during stirring is preferably 50 to 100 ° C., and the lower limit is more preferably 80 ° C. or higher. By setting the stirring time to 1 minute or more and the temperature to 50 ° C. or higher, the metal salt and ammonium salt of the heteropolyacid can be sufficiently formed. On the other hand, by setting the stirring time to 300 minutes or less and the temperature to 100 ° C. or less, the formation of compounds other than the target heteropolyacid metal salt and ammonium salt can be suppressed.

析出させるヘテロポリ酸塩(ヘテロポリ酸の金属塩及びアンモニウム塩)は、ケギン型構造を有していても、ドーソン型構造等のケギン型以外の構造を有していても構わないが、α,β−不飽和カルボン酸の収率向上の観点から、ケギン型構造を有することが好ましい。ケギン型構造を有するヘテロポリ酸塩を析出させる方法としては、工程(ii)において得られる水性スラリー(III)のpHを3以下に調整する方法が挙げられる。なお、析出したヘテロポリ酸塩の構造は、NICOLET6700FT−IR(製品名、Thermo electron社製)を用いた赤外吸収分析及びX線回折装置X’Pert PRO MPD(製品名、PANaltical社製)を用いたX線回折分析により確認することができる。 The heteropolylate to be precipitated (metal salt and ammonium salt of heteropolyacid) may have a kegin-type structure or a structure other than the kegin-type structure such as a Dawson-type structure, but α, β -From the viewpoint of improving the yield of unsaturated carboxylic acid, it is preferable to have a kegin-type structure. Examples of the method for precipitating the heteropolylate having a kegin-type structure include a method for adjusting the pH of the aqueous slurry (III) obtained in the step (ii) to 3 or less. For the structure of the precipitated heteropolylate, an infrared absorption analysis using NICOLET6700FT-IR (product name, manufactured by Thermo electron) and an X-ray diffractometer X'Pert PRO MPD (product name, manufactured by PANALTICAL) are used. It can be confirmed by the X-ray diffraction analysis.

(工程(iii))
工程(iii)では、工程(ii)で得られた水性スラリー(III)を乾燥し、触媒前駆体乾燥物を得る。乾燥方法としては、例えば、ドラム乾燥法、気流乾燥法、蒸発乾固法、噴霧乾燥法等が挙げられる。乾燥温度は120〜500℃が好ましく、下限は140℃以上、上限は350℃以下がより好ましい。乾燥は、水性スラリー(III)が乾固するまで行うことができる。触媒前駆体乾燥物の水分含有率は、0.1〜4.5質量%が好ましい。なお、これらの条件は、所望する触媒前駆体乾燥物の形状や大きさにより適宣選択することができる。
(Step (iii))
In the step (iii), the aqueous slurry (III) obtained in the step (iii) is dried to obtain a dried catalyst precursor. Examples of the drying method include a drum drying method, an air flow drying method, an evaporation drying method, a spray drying method and the like. The drying temperature is preferably 120 to 500 ° C., the lower limit is 140 ° C. or higher, and the upper limit is 350 ° C. or lower. Drying can be carried out until the aqueous slurry (III) dries. The water content of the dried catalyst precursor is preferably 0.1 to 4.5% by mass. These conditions can be appropriately selected depending on the shape and size of the desired dried catalyst precursor.

(成形工程)
成形工程では、工程(iii)で得られた触媒前駆体乾燥物を成形することができる。成形に用いられる装置としては、打錠成形機、押出成形機、加圧成形機、転動造粒機等の粉体用成形機が挙げられる。成形品の形状としては特に制限はなく、球形粒状、リング状、円柱形ペレット状、星型状、成形後に粉砕分級した顆粒状等の任意の形状が挙げられる。成形する際には、担体に担持しても良く、また、必要に応じて例えばグラファイト、タルク等の公知の添加剤や有機物、無機物由来の公知のバインダーを添加しても良い。本発明では、工程(iii)で得られた触媒前駆体乾燥物、及び該触媒前駆体乾燥物を成形したものをまとめて触媒前駆体乾燥物と示す。
(Molding process)
In the molding step, the dried catalyst precursor obtained in the step (iii) can be molded. Examples of the apparatus used for molding include powder molding machines such as a tableting molding machine, an extrusion molding machine, a pressure molding machine, and a rolling granulator. The shape of the molded product is not particularly limited, and any shape such as spherical granules, ring-shaped, cylindrical pellet-shaped, star-shaped, and granules crushed and classified after molding can be mentioned. At the time of molding, it may be supported on a carrier, and if necessary, a known additive such as graphite or talc or a known binder derived from an organic substance or an inorganic substance may be added. In the present invention, the dried catalyst precursor obtained in the step (iii) and the molded dried catalyst precursor are collectively referred to as a dried catalyst precursor.

(工程(iv))
工程(iv)では、工程(iii)又は成形工程で得られた触媒前駆体乾燥物を熱処理し、触媒を得る。熱処理条件としては特に限定はないが、例えば空気等の酸素含有ガス及び不活性ガスの少なくとも一方の流通下で行うことができる。熱処理温度は200〜500℃であることが好ましく、下限は300℃以上、上限は450℃以下であることがより好ましい。熱処理時間は0.5〜40時間が好ましく、下限は1時間以上であることがより好ましい。なお、工程(iii)の後に前記成形工程を行わない場合、工程(iv)で得られた熱処理後の触媒に対し、前記成形工程を実施しても良い。
(Process (iv))
In the step (iv), the dried catalyst precursor obtained in the step (iii) or the molding step is heat-treated to obtain a catalyst. The heat treatment conditions are not particularly limited, but can be carried out under the flow of at least one of an oxygen-containing gas such as air and an inert gas, for example. The heat treatment temperature is preferably 200 to 500 ° C., more preferably the lower limit is 300 ° C. or higher and the upper limit is 450 ° C. or lower. The heat treatment time is preferably 0.5 to 40 hours, and the lower limit is more preferably 1 hour or more. If the molding step is not performed after the step (iii), the molding step may be performed on the catalyst after the heat treatment obtained in the step (iv).

[α,β−不飽和カルボン酸の製造方法]
本発明では、本発明に係る方法によりα,β−不飽和カルボン酸製造用触媒を製造し、該触媒を用いてα,β−不飽和アルデヒドを分子状酸素により気相接触酸化してα,β−不飽和カルボン酸を製造する。また、本発明に係るα,β−不飽和カルボン酸の製造方法は、本発明に係る方法により製造されたα,β−不飽和カルボン酸製造用触媒を用いて、α,β−不飽和アルデヒドを分子状酸素により気相接触酸化してα,β−不飽和カルボン酸を製造する方法である。
[Method for producing α, β-unsaturated carboxylic acid]
In the present invention, a catalyst for producing α, β-unsaturated carboxylic acid is produced by the method according to the present invention, and α, β-unsaturated aldehyde is vapor-phase catalytically oxidized with molecular oxygen using the catalyst to produce α, β-unsaturated carboxylic acid. Produces β-unsaturated carboxylic acids. Further, in the method for producing an α, β-unsaturated carboxylic acid according to the present invention, an α, β-unsaturated aldehyde is produced using a catalyst for producing an α, β-unsaturated carboxylic acid produced by the method according to the present invention. Is a method for producing α, β-unsaturated carboxylic acid by vapor-phase catalytic oxidation with molecular oxygen.

本発明に係る方法において、前記α,β−不飽和アルデヒドとしては、(メタ)アクロレイン、クロトンアルデヒド(β−メチルアクロレイン)、シンナムアルデヒド(β−フェニルアクロレイン)等が挙げられる。中でも、目的生成物の収率の観点から、(メタ)アクロレインであることが好ましく、メタクロレインであることがより好ましい。製造されるα,β−不飽和カルボン酸は、α,β−不飽和アルデヒドのアルデヒド基がカルボキシル基に変換されたα,β−不飽和カルボン酸である。具体的には、α,β−不飽和アルデヒドが(メタ)アクロレインの場合、(メタ)アクリル酸が得られる。なお、「(メタ)アクロレイン」はアクロレイン及びメタクロレインを示し、「(メタ)アクリル酸」はアクリル酸及びメタクリル酸を示す。 In the method according to the present invention, examples of the α, β-unsaturated aldehyde include (meth) acrolein, crotonaldehyde (β-methylacrolein), and cinnamaldehyde (β-phenylacrolein). Above all, from the viewpoint of the yield of the target product, (meth) acrolein is preferable, and methacrolein is more preferable. The α, β-unsaturated carboxylic acid produced is an α, β-unsaturated carboxylic acid in which the aldehyde group of the α, β-unsaturated aldehyde is converted into a carboxyl group. Specifically, when the α, β-unsaturated aldehyde is (meth) acrolein, (meth) acrylic acid is obtained. In addition, "(meth) acrolein" indicates acrolein and methacrolein, and "(meth) acrylic acid" indicates acrylic acid and methacrylic acid.

以下、代表例として、本発明に係る方法により製造されたメタクリル酸製造用触媒の存在下、メタクロレインを分子状酸素により気相接触酸化してメタクリル酸を製造する方法について説明する。 Hereinafter, as a representative example, a method for producing methacrylic acid by vapor-phase catalytic oxidation of methacrolein with molecular oxygen in the presence of a catalyst for producing methacrylic acid produced by the method according to the present invention will be described.

この方法では、メタクロレイン及び分子状酸素を含む原料ガスと、本発明に係る触媒とを接触させることでメタクリル酸を製造する。この反応では、固定床型反応器を使用することができる。具体的には、反応管内に触媒を充填し、該反応器へ原料ガスを供給することにより反応を行うことができる。触媒層は1層でも良く、活性の異なる複数の触媒をそれぞれ複数の層に分けて充填しても良い。また、活性を制御するために、メタクリル酸製造用触媒を不活性担体により希釈し充填しても良い。 In this method, methacrylic acid is produced by contacting a raw material gas containing methacrolein and molecular oxygen with a catalyst according to the present invention. A fixed bed reactor can be used for this reaction. Specifically, the reaction can be carried out by filling the reaction tube with a catalyst and supplying the raw material gas to the reactor. The catalyst layer may be one layer, or a plurality of catalysts having different activities may be divided into a plurality of layers and filled. Further, in order to control the activity, the catalyst for producing methacrylic acid may be diluted with an inert carrier and filled.

原料ガス中のメタクロレインの濃度は特に限定されないが、1〜20容量%が好ましく、下限は3容量%以上、上限は10容量%以下がより好ましい。原料であるメタクロレインは、低級飽和アルデヒド等の本反応に実質的な影響を与えない不純物を少量含んでいても良い。 The concentration of methacrolein in the raw material gas is not particularly limited, but is preferably 1 to 20% by volume, more preferably 3% by volume or more at the lower limit and 10% by volume or less at the upper limit. The raw material, methacrolein, may contain a small amount of impurities such as lower saturated aldehyde that do not substantially affect the reaction.

原料ガス中の分子状酸素の濃度は、メタクロレイン1モルに対して0.4〜4モルが好ましく、下限は0.5モル以上、上限は3モル以下がより好ましい。なお、分子状酸素源としては、経済性の観点から空気が好ましい。必要であれば、空気に純酸素を加えて分子状酸素を富化した気体を用いても良い。 The concentration of molecular oxygen in the raw material gas is preferably 0.4 to 4 mol, more preferably 0.5 mol or more, and an upper limit of 3 mol or less with respect to 1 mol of methacrolein. As the molecular oxygen source, air is preferable from the viewpoint of economy. If necessary, a gas enriched with molecular oxygen by adding pure oxygen to air may be used.

原料ガスは、メタクロレイン及び分子状酸素を、窒素、炭酸ガス等の不活性ガスで希釈したものであっても良い。さらに、原料ガスに水蒸気を加えても良い。水蒸気の存在下で反応を行うことにより、メタクリル酸をより高い収率で得ることができる。原料ガス中の水蒸気の濃度は、0.1〜50容量%が好ましく、下限は1容量%以上、上限は40容量%以下がより好ましい。 The raw material gas may be a gas obtained by diluting methacrolein and molecular oxygen with an inert gas such as nitrogen or carbon dioxide. Further, water vapor may be added to the raw material gas. By carrying out the reaction in the presence of water vapor, methacrylic acid can be obtained in a higher yield. The concentration of water vapor in the raw material gas is preferably 0.1 to 50% by volume, more preferably 1% by volume or more at the lower limit and 40% by volume or less at the upper limit.

原料ガスとメタクリル酸製造用触媒との接触時間は、1.5〜15秒が好ましい。反応圧力は、0.1〜1MPa(G)が好ましい。ただし、(G)はゲージ圧であることを意味する。反応温度は200〜450℃が好ましく、下限は250℃以上、上限は400℃以下がより好ましい。 The contact time between the raw material gas and the catalyst for producing methacrylic acid is preferably 1.5 to 15 seconds. The reaction pressure is preferably 0.1 to 1 MPa (G). However, (G) means that it is a gauge pressure. The reaction temperature is preferably 200 to 450 ° C., the lower limit is 250 ° C. or higher, and the upper limit is 400 ° C. or lower.

[α,β−不飽和カルボン酸エステルの製造方法]
本発明に係るα,β−不飽和カルボン酸エステルの製造方法は、本発明に係る方法により製造されたα,β−不飽和カルボン酸をエステル化する方法である。また、本発明に係るα,β−不飽和カルボン酸エステルの製造方法は、本発明に係る方法によりα,β−不飽和カルボン酸を製造し、該α,β−不飽和カルボン酸をエステル化する方法である。これらの方法によれば、α,β−不飽和アルデヒドの気相接触酸化により得られるα,β−不飽和カルボン酸を用いて、α,β−不飽和カルボン酸エステルを得ることができる。α,β−不飽和カルボン酸と反応させるアルコールとしては特に限定されず、例えばメタノール、エタノール、イソプロパノール、n−ブタノール、イソブタノール等が挙げられる。得られるα,β−不飽和カルボン酸エステルとしては、例えば(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸プロピル、(メタ)アクリル酸ブチル等が挙げられる。反応は、スルホン酸型カチオン交換樹脂等の酸性触媒の存在下で行うことができる。反応温度は50〜200℃が好ましい。
[Method for producing α, β-unsaturated carboxylic acid ester]
The method for producing an α, β-unsaturated carboxylic acid ester according to the present invention is a method for esterifying an α, β-unsaturated carboxylic acid produced by the method according to the present invention. Further, in the method for producing an α, β-unsaturated carboxylic acid ester according to the present invention, α, β-unsaturated carboxylic acid is produced by the method according to the present invention, and the α, β-unsaturated carboxylic acid is esterified. How to do it. According to these methods, α, β-unsaturated carboxylic acid ester can be obtained by using α, β-unsaturated carboxylic acid obtained by vapor phase catalytic oxidation of α, β-unsaturated aldehyde. The alcohol to be reacted with α, β-unsaturated carboxylic acid is not particularly limited, and examples thereof include methanol, ethanol, isopropanol, n-butanol, isobutanol and the like. Examples of the obtained α, β-unsaturated carboxylic acid ester include methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, and butyl (meth) acrylate. The reaction can be carried out in the presence of an acidic catalyst such as a sulfonic acid type cation exchange resin. The reaction temperature is preferably 50 to 200 ° C.

以下、実施例及び比較例により本発明を詳細に説明するが、本発明はこれらの実施例に限定されるものではない。実施例及び比較例中の「部」は質量部を意味する。原料ガス及び生成物の分析は、ガスクロマトグラフィーを用いて行った。ガスクロマトグラフィーの結果から、メタクリル酸収率を下記式にて求めた。 Hereinafter, the present invention will be described in detail with reference to Examples and Comparative Examples, but the present invention is not limited to these Examples. “Parts” in Examples and Comparative Examples means parts by mass. Analysis of the source gas and product was performed using gas chromatography. From the result of gas chromatography, the yield of methacrylic acid was calculated by the following formula.

メタクリル酸収率(%)=(B/A)×100
式中、Aは反応器へ供給したメタクロレインのモル数、Bは生成したメタクリル酸のモル数である。
Methacrylic acid yield (%) = (B / A) x 100
In the formula, A is the number of moles of methacrolein supplied to the reactor, and B is the number of moles of methacrylic acid produced.

三酸化モリブデンの粒子径分布測定は、レーザー回折式粒度分布測定装置SALD−7000(製品名、島津製作所社製)を用い、純水500gに対して三酸化モリブデン0.02〜0.1gを分散させ、30秒間撹拌させた後に行った。 To measure the particle size distribution of molybdenum trioxide, 0.02 to 0.1 g of molybdenum trioxide was dispersed in 500 g of pure water using a laser diffraction type particle size distribution measuring device SALD-7000 (product name, manufactured by Shimadzu Corporation). It was allowed to stir for 30 seconds.

(実施例1)
純水400部に、図1において実施例1として示す粒子径分布を有する三酸化モリブデン(粒子径が6μm以下の粒子の割合:2.9体積%)100部、メタバナジン酸アンモニウム3.4部、85質量%リン酸水溶液9.4部を純水6.0部で希釈した希釈物、及び硝酸銅(II)三水和物2.1部を純水4.5部に溶解した溶解物を添加して、水性スラリー(I)を得た。該水性スラリー(I)を攪拌しながら25℃から95℃に昇温し、液温を95℃に保ちつつ2時間攪拌し、ヘテロポリ酸を含む水性スラリー(II)を得た。このとき、前記水性スラリー(I)の温度が60℃に到達してから90℃に到達するまでの時間は15分であった。さらに液温を95℃に保ち撹拌しながら、重炭酸セシウム13.5部を純水24部に溶解した溶解物と炭酸アンモニウム9.2部を純水26部に溶解した溶解物を滴下して攪拌し、ヘテロポリ酸のセシウム塩及びアンモニウム塩を析出させた。析出したヘテロポリ酸のセシウム塩及びアンモニウム塩は、ケギン型構造を有していた。その後、液温を95℃に保ちつつ15分間撹拌した。得られた水性スラリー(III)をスプレードライヤーで乾燥し、触媒前駆体乾燥物を得た。得られた触媒前駆体乾燥物を押出成形することで直径5.5mm、高さ5.5mmの円柱状に成形し、空気流通下、380℃で10時間熱処理することで触媒を製造した。該触媒の酸素以外の組成は、P1.4Mo120.5Cu0.15Cs1.2であった。
(Example 1)
In 400 parts of pure water, 100 parts of molybdenum trioxide (ratio of particles having a particle size of 6 μm or less: 2.9% by volume) having the particle size distribution shown as Example 1 in FIG. 1, 3.4 parts of ammonium metavanadate, A dilution of 9.4 parts of an 85 mass% aqueous phosphate solution diluted with 6.0 parts of pure water, and a solution of 2.1 parts of copper (II) nitrate trihydrate dissolved in 4.5 parts of pure water. Addition gave an aqueous slurry (I). The aqueous slurry (I) was heated from 25 ° C. to 95 ° C. with stirring and stirred for 2 hours while maintaining the liquid temperature at 95 ° C. to obtain an aqueous slurry (II) containing a heteropolyacid. At this time, the time from when the temperature of the aqueous slurry (I) reached 60 ° C. to when it reached 90 ° C. was 15 minutes. Further, while maintaining the liquid temperature at 95 ° C. and stirring, a solution in which 13.5 parts of cesium bicarbonate was dissolved in 24 parts of pure water and a solution in which 9.2 parts of ammonium carbonate were dissolved in 26 parts of pure water were added dropwise. Stirring allowed the cesium and ammonium salts of the heteropolyacid to precipitate. The precipitated heteropolyacid cesium salt and ammonium salt had a kegin-type structure. Then, the mixture was stirred for 15 minutes while keeping the liquid temperature at 95 ° C. The obtained aqueous slurry (III) was dried with a spray dryer to obtain a dried catalyst precursor. The obtained dried catalyst precursor was extruded into a columnar shape having a diameter of 5.5 mm and a height of 5.5 mm, and heat-treated at 380 ° C. for 10 hours under air flow to produce a catalyst. The composition of the catalyst other than oxygen was P 1.4 Mo 12 V 0.5 Cu 0.15 Cs 1.2 .

前記触媒を反応管に充填し、メタクロレイン5容量%、酸素10容量%、水蒸気30容量%、及び窒素55容量%の原料ガスを、反応温度310℃、前記原料ガスと前記触媒との接触時間7.1秒で通じた。反応器から得られる生成物を捕集し、ガスクロマトグラフィーで分析してメタクリル酸収率を算出した。結果を表1に示す。 The catalyst is filled in a reaction tube, and a raw material gas having 5% by volume of metachlorine, 10% by volume of oxygen, 30% by volume of water vapor, and 55% by volume of nitrogen is used at a reaction temperature of 310 ° C. and a contact time between the raw material gas and the catalyst. It took 7.1 seconds. The product obtained from the reactor was collected and analyzed by gas chromatography to calculate the methacrylic acid yield. The results are shown in Table 1.

(実施例2〜4、比較例1〜3)
実施例1において用いた三酸化モリブデン100部の代わりに、図1において各実施例、比較例として示す粒子径分布を有する三酸化モリブデン(粒子径が6μm以下の粒子の割合は表1に記載)100部を用いた以外は、実施例1と同様に触媒を製造し、メタクリル酸収率を算出した。結果を表1に示す。なお、実施例2〜4及び比較例1〜3においても、実施例1と同様に、析出したヘテロポリ酸のセシウム塩及びアンモニウム塩はケギン型構造を有していた。
(Examples 2 to 4, Comparative Examples 1 to 3)
Instead of 100 parts of molybdenum trioxide used in Example 1, molybdenum trioxide having a particle size distribution shown in each Example and Comparative Example in FIG. 1 (the proportion of particles having a particle size of 6 μm or less is shown in Table 1). A catalyst was produced in the same manner as in Example 1 except that 100 parts were used, and the methacrylic acid yield was calculated. The results are shown in Table 1. In Examples 2 to 4 and Comparative Examples 1 to 3, the precipitated heteropolyacid cesium salt and ammonium salt had a kegin-type structure as in Example 1.

(実施例5〜8)
実施例1において、水性スラリー(I)の温度が60℃に到達してから90℃に到達するまでの時間を、それぞれ表1に示すとおりに調整した以外は、実施例1と同様に触媒を製造し、メタクリル酸収率を算出した。結果を表1に示す。なお実施例5〜8においても、実施例1と同様に、析出したヘテロポリ酸のセシウム塩及びアンモニウム塩はケギン型構造を有していた。
(Examples 5 to 8)
In Example 1, the catalyst was used in the same manner as in Example 1 except that the time from when the temperature of the aqueous slurry (I) reached 60 ° C. to when it reached 90 ° C. was adjusted as shown in Table 1. It was produced and the yield of methacrylic acid was calculated. The results are shown in Table 1. In Examples 5 to 8, as in Example 1, the precipitated heteropolyacid cesium salt and ammonium salt had a kegin-type structure.

Figure 0006922993
Figure 0006922993

表1に示すように、モリブデン原料として、粒子径分布における粒子径が6μm以下の粒子の割合が2〜55体積%であるモリブデン酸化物を使用した実施例1〜8では、高い収率でメタクリル酸が得られた。また実施例1〜8の中でも、水性スラリー(I)の温度が60℃に到達してから90℃に到達するまでの時間が5〜40分の範囲内である実施例1〜6は、よりメタクリル酸収率が高く、7〜30分の範囲内である実施例1〜4は、特にメタクリル酸収率が高かった。一方、モリブデン原料として、粒子径分布における粒子径が6μm以下の粒子の割合が前記範囲外であるモリブデン酸化物を使用した比較例1〜3では、いずれも実施例と比較してメタクリル酸収率が低いものとなった。 As shown in Table 1, in Examples 1 to 8 in which molybdenum oxide in which the proportion of particles having a particle size of 6 μm or less in the particle size distribution was 2 to 55% by volume was used as the molybdenum raw material, methacryl was obtained in a high yield. Acid was obtained. Further, among Examples 1 to 8, Examples 1 to 6 in which the time from when the temperature of the aqueous slurry (I) reaches 60 ° C to reaching 90 ° C is within the range of 5 to 40 minutes are higher. Examples 1 to 4, which had a high methacrylic acid yield and was in the range of 7 to 30 minutes, had a particularly high methacrylic acid yield. On the other hand, in Comparative Examples 1 to 3 in which the molybdenum oxide in which the proportion of particles having a particle size of 6 μm or less in the particle size distribution was out of the above range was used as the molybdenum raw material, the methacrylic acid yields were all compared with those in Examples. Became low.

この出願は、2017年10月20日に出願された日本出願特願2017−203592を基礎とする優先権を主張し、その開示の全てをここに取り込む。 This application claims priority on the basis of Japanese application Japanese Patent Application No. 2017-203592 filed on October 20, 2017, and incorporates all of its disclosures herein.

以上、実施形態及び実施例を参照して本願発明を説明したが、本願発明は上記実施形態及び実施例に限定されるものではない。本願発明の構成や詳細には、本願発明のスコープ内で当業者が理解し得る様々な変更をすることができる。 Although the present invention has been described above with reference to the embodiments and examples, the present invention is not limited to the above embodiments and examples. Various changes that can be understood by those skilled in the art can be made within the scope of the present invention in terms of the structure and details of the present invention.

本発明によれば、α,β−不飽和アルデヒドから高い収率でα,β−不飽和カルボン酸を製造することができるα,β−不飽和カルボン酸製造用触媒を提供することができ、工業的に有用である。
According to the present invention, it is possible to provide a catalyst for producing α, β-unsaturated carboxylic acid, which can produce α, β-unsaturated carboxylic acid from α, β-unsaturated aldehyde in a high yield. Industrially useful.

Claims (12)

モリブデン原料として、粒子径分布測定により得られる頻度分布曲線において、粒子径が6μm以下の粒子の割合が2〜55体積%であるモリブデン酸化物を使用するα,β−不飽和カルボン酸製造用触媒の製造方法であって、
(i)少なくとも前記モリブデン原料及びリン原料を含む触媒原料と水を混合して得られた水性スラリー(I)を、90〜150℃に加熱してヘテロポリ酸を含む水性スラリー又は水溶液(II)を得る工程と、
(ii)前記水性スラリー又は水溶液(II)に金属カチオン含有化合物を添加して、ヘテロポリ酸塩が析出した水性スラリー(III)を得る工程と、
(iii)前記水性スラリー(III)を乾燥し、触媒前駆体乾燥物を得る工程と、
(iv)前記触媒前駆体乾燥物を熱処理し、触媒を得る工程と、
を有し、前記工程(i)において、前記水性スラリー(I)の温度が60℃に到達してから90℃に到達するまでの時間が5〜40分である、α,β−不飽和カルボン酸製造用触媒の製造方法
As a molybdenum raw material, a catalyst for producing α, β-unsaturated carboxylic acid using molybdenum oxide in which the proportion of particles having a particle size of 6 μm or less is 2 to 55% by volume in the frequency distribution curve obtained by measuring the particle size distribution. It is a manufacturing method of
(I) An aqueous slurry (I) obtained by mixing water with a catalyst raw material containing at least the molybdenum raw material and a phosphorus raw material is heated to 90 to 150 ° C. to prepare an aqueous slurry or an aqueous solution (II) containing a heteropolyacid. The process of obtaining and
(Ii) A step of adding a metal cation-containing compound to the aqueous slurry or aqueous solution (II) to obtain an aqueous slurry (III) in which a heteropolylate is precipitated.
(Iii) A step of drying the aqueous slurry (III) to obtain a dried catalyst precursor, and
(Iv) A step of heat-treating the dried catalyst precursor to obtain a catalyst, and
In the step (i), the time from when the temperature of the aqueous slurry (I) reaches 60 ° C. to when it reaches 90 ° C. is 5 to 40 minutes, α, β-unsaturated carboxylic acid. A method for producing a catalyst for producing an acid .
前記工程(i)において、前記水性スラリー(I)の温度が60℃に到達してから90℃に到達するまでの時間が7〜30分である、請求項に記載のα,β−不飽和カルボン酸製造用触媒の製造方法。 The α, β- deficiency according to claim 1 , wherein in the step (i), the time from when the temperature of the aqueous slurry (I) reaches 60 ° C. to when it reaches 90 ° C. is 7 to 30 minutes. A method for producing a catalyst for producing a saturated carboxylic acid. 前記モリブデン原料が、粒子径が6μm以下の粒子の割合が2〜35体積%であるモリブデン酸化物である、請求項1または2に記載のα,β−不飽和カルボン酸製造用触媒の製造方法。 The method for producing an α, β-unsaturated carboxylic acid production catalyst according to claim 1 or 2 , wherein the molybdenum raw material is a molybdenum oxide in which the proportion of particles having a particle size of 6 μm or less is 2 to 35% by volume. .. 前記モリブデン原料が、粒子径が6μm以下の粒子の割合が2〜15体積%であるモリブデン酸化物である、請求項に記載のα,β−不飽和カルボン酸製造用触媒の製造方法。 The method for producing a catalyst for producing an α, β-unsaturated carboxylic acid according to claim 3 , wherein the molybdenum raw material is a molybdenum oxide in which the proportion of particles having a particle size of 6 μm or less is 2 to 15% by volume. 前記α,β−不飽和カルボン酸製造用触媒が、下記式(1)で表される組成を有する、請求項1からのいずれか1項に記載のα,β−不飽和カルボン酸製造用触媒の製造方法。
aMobcCudefgh (1)
(式(1)中、P、Mo、V、Cu及びOは、それぞれ、リン、モリブデン、バナジウム、銅及び酸素を示す元素記号である。Aはアンチモン、ビスマス、砒素、ゲルマニウム、ジルコニウム、テルル、銀、セレン、ケイ素、タングステン及びホウ素からなる群から選択される少なくとも1種の元素を表し、Eは鉄、亜鉛、クロム、マグネシウム、カルシウム、ストロンチウム、タンタル、コバルト、ニッケル、マンガン、バリウム、チタン、スズ、鉛、ニオブ、インジウム、硫黄、パラジウム、ガリウム、セリウム及びランタンからなる群から選択される少なくとも1種の元素を表し、Gはリチウム、ナトリウム、カリウム、ルビジウム、セシウム及びタリウムからなる群から選択される少なくとも1種の元素を表す。a〜hは、各元素の原子比率を表し、b=12のとき、a=0.5〜3、c=0.01〜3、d=0.01〜2、e=0〜3、f=0〜3、g=0.01〜3であり、hは前記各元素の原子価を満足するのに必要な酸素の原子比率である。)
The α, β-unsaturated carboxylic acid production catalyst according to any one of claims 1 to 4 , wherein the α, β-unsaturated carboxylic acid production catalyst has a composition represented by the following formula (1). Method for producing catalyst.
P a Mo b V c Cu d A e E f G g Oh (1)
(In formula (1), P, Mo, V, Cu and O are element symbols indicating phosphorus, molybdenum, vanadium, copper and oxygen, respectively. A is antimony, bismuth, arsenic, germanium, zirconium, tellurium, respectively. Represents at least one element selected from the group consisting of silver, selenium, silicon, tungsten and boron, where E represents iron, zinc, chromium, magnesium, calcium, strontium, tantalum, cobalt, nickel, manganese, barium, titanium, Represents at least one element selected from the group consisting of tin, lead, niobium, indium, sulfur, palladium, gallium, cerium and lanthanum, where G is selected from the group consisting of lithium, sodium, potassium, rubidium, cesium and tarium. Represents at least one element to be formed. A to h represent the atomic ratio of each element, and when b = 12, a = 0.5 to 3, c = 0.01 to 3, d = 0.01. ~ 2, e = 0-3, f = 0-3, g = 0.01-3, and h is the atomic ratio of oxygen required to satisfy the atomic value of each element.)
前記モリブデン原料として三酸化モリブデンを50質量%以上使用する、請求項1からのいずれか1項に記載のα,β−不飽和カルボン酸製造用触媒の製造方法。 The method for producing an α, β-unsaturated carboxylic acid production catalyst according to any one of claims 1 to 5 , wherein 50% by mass or more of molybdenum trioxide is used as the molybdenum raw material. 前記モリブデン原料として三酸化モリブデンを70質量%以上使用する、請求項に記載のα,β−不飽和カルボン酸製造用触媒の製造方法。 The method for producing an α, β-unsaturated carboxylic acid production catalyst according to claim 6 , wherein 70% by mass or more of molybdenum trioxide is used as the molybdenum raw material. 前記α,β−不飽和カルボン酸製造用触媒は、α,β−不飽和アルデヒドを分子状酸素により気相接触酸化してα,β−不飽和カルボン酸を製造する際に用いられる触媒であって、前記α,β−不飽和アルデヒドが(メタ)アクロレインであり、かつ前記α,β−不飽和カルボン酸が(メタ)アクリル酸である、請求項1からのいずれか1項に記載のα,β−不飽和カルボン酸製造用触媒の製造方法。 The α, β-unsaturated carboxylic acid production catalyst is a catalyst used for producing α, β-unsaturated carboxylic acid by vapor-phase catalytic oxidation of α, β-unsaturated aldehyde with molecular oxygen. The method according to any one of claims 1 to 7 , wherein the α, β-unsaturated aldehyde is (meth) acrolein, and the α, β-unsaturated carboxylic acid is (meth) acrylic acid. A method for producing a catalyst for producing α, β-unsaturated carboxylic acid. 請求項1からのいずれか1項に記載の方法によりα,β−不飽和カルボン酸製造用触媒を製造し、該触媒を用いてα,β−不飽和アルデヒドを分子状酸素により気相接触酸化してα,β−不飽和カルボン酸を製造するα,β−不飽和カルボン酸の製造方法。 A catalyst for producing an α, β-unsaturated carboxylic acid is produced by the method according to any one of claims 1 to 8 , and the α, β-unsaturated aldehyde is vapor-phase contacted with molecular oxygen using the catalyst. A method for producing an α, β-unsaturated carboxylic acid, which is oxidized to produce an α, β-unsaturated carboxylic acid. 請求項1からのいずれか1項に記載の方法により製造されたα,β−不飽和カルボン酸製造用触媒を用いて、α,β−不飽和アルデヒドを分子状酸素により気相接触酸化してα,β−不飽和カルボン酸を製造するα,β−不飽和カルボン酸の製造方法。 Using the α, β-unsaturated carboxylic acid production catalyst produced by the method according to any one of claims 1 to 8 , the α, β-unsaturated aldehyde is vapor-phase catalytically oxidized with molecular oxygen. A method for producing an α, β-unsaturated carboxylic acid. 請求項又は10に記載の方法により製造されたα,β−不飽和カルボン酸をエステル化するα,β−不飽和カルボン酸エステルの製造方法。 A method for producing an α, β-unsaturated carboxylic acid ester, which esterifies the α, β-unsaturated carboxylic acid produced by the method according to claim 9 or 10. 請求項又は10に記載の方法によりα,β−不飽和カルボン酸を製造し、該α,β−不飽和カルボン酸をエステル化するα,β−不飽和カルボン酸エステルの製造方法。 A method for producing an α, β-unsaturated carboxylic acid ester, wherein the α, β-unsaturated carboxylic acid is produced by the method according to claim 9 or 10, and the α, β-unsaturated carboxylic acid is esterified.
JP2019549315A 2017-10-20 2018-10-17 A method for producing a catalyst for producing α, β-unsaturated carboxylic acid, a method for producing α, β-unsaturated carboxylic acid, and a method for producing an α, β-unsaturated carboxylic acid ester. Active JP6922993B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2017203592 2017-10-20
JP2017203592 2017-10-20
PCT/JP2018/038646 WO2019078244A1 (en) 2017-10-20 2018-10-17 METHOD FOR PRODUCING CATALYST FOR PRODUCTION OF α,β-UNSATURATED CARBOXYLIC ACID, METHOD FOR PRODUCING α,β-UNSATURATED CARBOXYLIC ACID, AND METHOD FOR PRODUCING α,β-UNSATURATED CARBOXYLIC ACID ESTER

Publications (2)

Publication Number Publication Date
JPWO2019078244A1 JPWO2019078244A1 (en) 2020-04-09
JP6922993B2 true JP6922993B2 (en) 2021-08-18

Family

ID=66174155

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019549315A Active JP6922993B2 (en) 2017-10-20 2018-10-17 A method for producing a catalyst for producing α, β-unsaturated carboxylic acid, a method for producing α, β-unsaturated carboxylic acid, and a method for producing an α, β-unsaturated carboxylic acid ester.

Country Status (5)

Country Link
JP (1) JP6922993B2 (en)
KR (1) KR102318486B1 (en)
CN (2) CN116603547A (en)
SG (1) SG11202002211PA (en)
WO (1) WO2019078244A1 (en)

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19814449A1 (en) * 1998-03-31 1999-10-07 Basf Ag Process for the preparation of (meth) acrylic acid and (meth) acrylic acid esters
JP4222721B2 (en) * 2000-12-25 2009-02-12 三菱レイヨン株式会社 Method for producing methacrylic acid
JP2004008834A (en) 2002-06-03 2004-01-15 Mitsubishi Rayon Co Ltd Method for producing catalyst for use in manufacturing methacrylic acid
JP4633339B2 (en) * 2003-05-26 2011-02-16 三洋化成工業株式会社 Method for producing carboxylic acid ester
EP1633467B1 (en) * 2003-06-04 2017-02-22 Basf Se Method for the thermal treatment of an active catalytic mass
JP2005336110A (en) * 2004-05-27 2005-12-08 Mitsubishi Chemicals Corp Method for producing (meth)acrylic acid and (meth)acrylic acid ester
JP5030438B2 (en) 2006-02-28 2012-09-19 三菱レイヨン株式会社 Method for producing catalyst and method for producing methacrylic acid
DE102007010422A1 (en) * 2007-03-01 2008-09-04 Basf Se Preparation of a catalyst, useful in the heterogeneously catalyzed partial gas phase oxidation of acrolein to acrylic acid, comprises attaching one of the active mass to the surface of the carrier body with the help of a binding agent
JP5838613B2 (en) * 2011-06-27 2016-01-06 三菱レイヨン株式会社 Method for producing catalyst for producing methacrylic acid and method for producing methacrylic acid
EP2781260A4 (en) * 2011-11-17 2015-07-08 Nippon Kayaku Kk Catalyst for production of methacrylic acid and method for producing methacrylic acid using same
CN105749944A (en) * 2016-03-23 2016-07-13 重庆紫光海力催化剂有限公司 Catalyst for preparing alpha-methacrylic acid from 2-methylacrolein with gas-phase catalytic oxidation method

Also Published As

Publication number Publication date
CN111050906A (en) 2020-04-21
KR102318486B1 (en) 2021-10-27
CN116603547A (en) 2023-08-18
JPWO2019078244A1 (en) 2020-04-09
SG11202002211PA (en) 2020-04-29
KR20200069340A (en) 2020-06-16
WO2019078244A1 (en) 2019-04-25

Similar Documents

Publication Publication Date Title
JP4856579B2 (en) Catalyst for producing methacrylic acid, method for producing the same, and method for producing methacrylic acid
CN110300622B (en) Catalyst for methacrylic acid production, catalyst precursor for methacrylic acid production, processes for producing these, process for producing methacrylic acid, and process for producing methacrylic acid ester
JP5030438B2 (en) Method for producing catalyst and method for producing methacrylic acid
JP6653871B2 (en) Catalyst for producing methacrylic acid, method for producing the same, and method for producing methacrylic acid
JP4022047B2 (en) Method for producing methacrylic acid synthesis catalyst, methacrylic acid synthesis catalyst and methacrylic acid production method
JP7006477B2 (en) A method for producing a catalyst for producing methacrylic acid, and a method for producing methacrylic acid.
JP6922993B2 (en) A method for producing a catalyst for producing α, β-unsaturated carboxylic acid, a method for producing α, β-unsaturated carboxylic acid, and a method for producing an α, β-unsaturated carboxylic acid ester.
JP5100520B2 (en) Method for producing catalyst for synthesizing α, β-unsaturated carboxylic acid
JP4809692B2 (en) Method for producing catalyst for synthesis of unsaturated aldehyde and unsaturated carboxylic acid
JP6680367B2 (en) Method for producing catalyst precursor for producing α, β-unsaturated carboxylic acid, method for producing catalyst for producing α, β-unsaturated carboxylic acid, method for producing α, β-unsaturated carboxylic acid and α, β-unsaturation Method for producing carboxylic acid ester
JP5344753B2 (en) Process for producing catalyst for producing unsaturated aldehyde and unsaturated carboxylic acid
JP2000342974A (en) Catalyst for synthesizing methacrylic acid and manufacture of methacrylic acid
JP2002306970A (en) Catalyst for manufacturing methacrylic acid, method for manufacturing the catalyst and method for manufacturing methacrylic acid
JP2011115681A (en) Catalyst for synthesizing unsaturated aldehyde and unsaturated carboxylic acid
CN111770795B (en) Method for producing catalyst for producing alpha, beta-unsaturated carboxylic acid, and method for producing alpha, beta-unsaturated carboxylic acid
JP7031737B2 (en) A method for producing a catalyst for producing methacrylic acid, and a method for producing methacrylic acid and a methacrylic acid ester.
JP5070089B2 (en) Catalyst for producing unsaturated aldehyde and unsaturated carboxylic acid and method for producing the same
JP2013128878A (en) Method for producing catalyst for producing methacrylic acid
JP2008149263A (en) Method for manufacturing oxide catalyst containing molybdenum, bismuth and iron
US20240017247A1 (en) Catalyst, Method for Producing Catalyst, and Method for Producing alpha,beta-Unsaturated Aldehyde, alpha,beta-Unsaturated Carboxylic Acid and alpha,beta-Unsaturated Carboxylic Acid Ester
JPWO2019026640A1 (en) Catalyst precursor, method for producing catalyst, method for producing methacrylic acid and acrylic acid, and method for producing methacrylic acid ester and acrylic acid ester

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210119

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210226

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210629

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210712

R151 Written notification of patent or utility model registration

Ref document number: 6922993

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151