JP2008149263A - Method for manufacturing oxide catalyst containing molybdenum, bismuth and iron - Google Patents

Method for manufacturing oxide catalyst containing molybdenum, bismuth and iron Download PDF

Info

Publication number
JP2008149263A
JP2008149263A JP2006339801A JP2006339801A JP2008149263A JP 2008149263 A JP2008149263 A JP 2008149263A JP 2006339801 A JP2006339801 A JP 2006339801A JP 2006339801 A JP2006339801 A JP 2006339801A JP 2008149263 A JP2008149263 A JP 2008149263A
Authority
JP
Japan
Prior art keywords
bismuth
raw material
catalyst
iron
firing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006339801A
Other languages
Japanese (ja)
Inventor
Takeshi Ooyanai
健 大谷内
Kohei Yamada
耕平 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP2006339801A priority Critical patent/JP2008149263A/en
Publication of JP2008149263A publication Critical patent/JP2008149263A/en
Pending legal-status Critical Current

Links

Landscapes

  • Catalysts (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing a catalyst excellent in catalytic activity and selectivity. <P>SOLUTION: When the catalyst which contains molybdenum, bismuth and iron and is used for synthesizing unsaturated aldehyde and unsaturated carboxylic acid is manufactured by drying slurry containing a molybdenum raw material, a bismuth raw material and an iron raw material and firing the obtained dried material, bismuth trioxide and/or bismuth subcarbonate are used as the bismuth raw material and the height of a layer of the dried material is adjusted to <20 mm in the initial stage of the firing work and the firing work is continued. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、モリブデン、ビスマス、及び鉄を含む酸化物触媒の製造方法に関する。   The present invention relates to a method for producing an oxide catalyst containing molybdenum, bismuth, and iron.

モリブデン、ビスマスおよび鉄を含む触媒は、例えば、プロピレン、イソブチレンまたは第三級ブチルアルコール(以下、TBAと略すことがある)を気相接触酸化して不飽和アルデヒドおよび不飽和カルボン酸を製造する際に用いられる酸化触媒として知られている。   A catalyst containing molybdenum, bismuth and iron is used for producing unsaturated aldehydes and unsaturated carboxylic acids by vapor phase catalytic oxidation of propylene, isobutylene or tertiary butyl alcohol (hereinafter sometimes abbreviated as TBA), for example. It is known as an oxidation catalyst used in

触媒の製造方法についてはいくつもの技術が開示されている。例えば、焼成条件として特許文献1には、触媒原料として硝酸ビスマスを用い、焼成段階で乾燥物の30重量%以上の層高さが20mm以上になるように保つことが開示されている。また、特許文献2には触媒原料として三酸化ビスマスを用いる方法が開示されている。
特開平5−253480号公報 特開平8−24652号公報
A number of techniques have been disclosed for a method for producing a catalyst. For example, Patent Literature 1 discloses that bismuth nitrate is used as a catalyst raw material as a firing condition, and the layer height of 30% by weight or more of the dried product is kept at 20 mm or more in the firing step. Patent Document 2 discloses a method using bismuth trioxide as a catalyst raw material.
JP-A-5-253480 Japanese Patent Laid-Open No. 8-24652

しかしながら、従来の方法で得られる触媒では、触媒活性、選択性が必ずしも十分ではなく、更なる性能の向上が望まれているのが実状である。   However, in the catalyst obtained by the conventional method, the catalytic activity and selectivity are not always sufficient, and it is the actual situation that further improvement in performance is desired.

本発明の目的は、触媒活性、選択性に優れた触媒の製造方法を提供することにある。   The objective of this invention is providing the manufacturing method of the catalyst excellent in catalyst activity and selectivity.

本発明は、モリブデン原料、ビスマス原料、及び鉄原料を含むスラリーを乾燥し、得られた乾燥物を焼成することによりモリブデン、ビスマス及び鉄を含有する不飽和アルデヒド及び不飽和カルボン酸合成用触媒を製造する方法において、該ビスマス原料として三酸化ビスマス及び/又は次炭酸ビスマスを使用し、かつ焼成の初期段階で乾燥物の層高を20mm未満にして焼成を行うことを特徴とする不飽和アルデヒド及び不飽和カルボン酸合成用触媒の製造方法である。   The present invention provides a catalyst for synthesizing an unsaturated aldehyde and unsaturated carboxylic acid containing molybdenum, bismuth and iron by drying a slurry containing a molybdenum raw material, a bismuth raw material, and an iron raw material, and firing the resulting dried product. An unsaturated aldehyde characterized by using bismuth trioxide and / or bismuth carbonate as a bismuth raw material and calcining with a layer height of a dried product of less than 20 mm in the initial stage of calcining, This is a method for producing an unsaturated carboxylic acid synthesis catalyst.

本発明によれば、触媒活性、選択性に優れた触媒の製造方法を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the manufacturing method of the catalyst excellent in catalyst activity and selectivity can be provided.

本発明で製造する、モリブデン、ビスマスおよび鉄含有酸化物触媒としては、プロピレン、イソブチレン、及びTBAのいずれかを分子状酸素により気相接触酸化して、対応する不飽和アルデヒドおよび不飽和カルボン酸を製造する際に好適に用いられる。   As the molybdenum, bismuth, and iron-containing oxide catalyst produced in the present invention, any one of propylene, isobutylene, and TBA is subjected to gas phase catalytic oxidation with molecular oxygen to produce the corresponding unsaturated aldehyde and unsaturated carboxylic acid. It is suitably used when manufacturing.

以下、本発明の不飽和アルデヒドおよび不飽和カルボン酸製造用の、モリブデン、ビスマス、及び鉄含有酸化物触媒(以下、触媒と略すことがある)の製造方法について説明する。   Hereinafter, the manufacturing method of molybdenum, bismuth, and an iron containing oxide catalyst (henceforth abbreviate | omitting a catalyst) for unsaturated aldehyde and unsaturated carboxylic acid manufacture of this invention is demonstrated.

製造される触媒は、モリブデン、ビスマス、及び鉄を含む酸化物触媒であれば、特に限定されないが、下記式(1)で表される組成のものが好ましい。   The catalyst to be produced is not particularly limited as long as it is an oxide catalyst containing molybdenum, bismuth, and iron, but a catalyst represented by the following formula (1) is preferable.

MoaBibFecdefgSihi (1)
式(1)中、Mo、Bi、Fe、SiおよびOは、それぞれモリブデン、ビスマス、鉄、ケイ素および酸素を示し、Mはコバルトおよびニッケルからなる群より選ばれた少なくとも1種の元素を示し、Xはクロム、鉛、マンガン、カルシウム、マグネシウム、ニオブ、銀、バリウム、スズ、タンタルおよび亜鉛からなる群より選ばれた少なくとも1種の元素を示し、Yはリン、ホウ素、硫黄、セレン、テルル、セリウム、タングステン、アンチモンおよびチタンからなる群より選ばれた少なくとも1種の元素を示し、Zはリチウム、ナトリウム、カリウム、ルビジウム、セシウムおよびタリウムからなる群より選ばれた少なくとも1種の元素を示す。a、b、c、d、e、f、g、hおよびiは、各元素の原子比率を表し、a=12のとき、b=0.01〜3、c=0.01〜5、d=1〜12、e=0〜8、f=0〜5、g=0.001〜2、h=0〜20であり、iは前記各成分の原子価を満足するのに必要な酸素原子比率である。
Mo a Bi b Fe c M d X e Y f Z g Si h O i (1)
In the formula (1), Mo, Bi, Fe, Si and O each represent molybdenum, bismuth, iron, silicon and oxygen, M represents at least one element selected from the group consisting of cobalt and nickel, X represents at least one element selected from the group consisting of chromium, lead, manganese, calcium, magnesium, niobium, silver, barium, tin, tantalum and zinc, and Y represents phosphorus, boron, sulfur, selenium, tellurium, Z indicates at least one element selected from the group consisting of cerium, tungsten, antimony and titanium, and Z indicates at least one element selected from the group consisting of lithium, sodium, potassium, rubidium, cesium and thallium. a, b, c, d, e, f, g, h, and i represent the atomic ratio of each element, and when a = 12, b = 0.01-3, c = 0.01-5, d = 1 to 12, e = 0 to 8, f = 0 to 5, g = 0.001 to 2, h = 0 to 20, and i is an oxygen atom necessary for satisfying the valence of each component. It is a ratio.

本発明において、触媒を構成するビスマス及び酸素以外の元素の原料(以下、触媒原料と略すことがある)は、特に限定されないが、通常は、酸化物、強熱することにより酸化物になり得る塩化物、水酸化物、硫酸塩、硝酸塩、炭酸塩、アンモニウム塩、又はそれらの混合物が用いられる。ビスマス原料としては、三酸化ビスマス及び/または次炭酸ビスマスを用いることが必須である。これらは単独で用いても併用しても構わない。ビスマス原料として硝酸ビスマスはこの触媒系ではよく用いられるが、硝酸ビスマスを多量使用すると、後述する本発明の条件を用いた焼成により活性、選択性が低下するので、硝酸ビスマスは使用しないことが好ましい。もし使用する場合でも、例えば全ビスマス原料の20質量%以下に抑えることが好ましい。   In the present invention, the raw material of elements other than bismuth and oxygen constituting the catalyst (hereinafter sometimes abbreviated as catalyst raw material) is not particularly limited, but is usually an oxide, which can be converted into an oxide by ignition. Chlorides, hydroxides, sulfates, nitrates, carbonates, ammonium salts, or mixtures thereof are used. As the bismuth raw material, it is essential to use bismuth trioxide and / or bismuth subcarbonate. These may be used alone or in combination. Bismuth nitrate is often used in this catalyst system as a bismuth raw material. However, when a large amount of bismuth nitrate is used, activity and selectivity are reduced by firing using the conditions of the present invention described later, so it is preferable not to use bismuth nitrate. . Even if it is used, for example, it is preferably suppressed to 20% by mass or less of the total bismuth raw material.

本発明では、まず、必要な触媒原料を用いて、少なくとも、モリブデン原料、ビスマス原料、及び鉄原料を含有するスラリー(D液)を調製する。そのD液の調製は、前記式(1)で表される組成の触媒を製造する場合には以下の方法により行うことが好ましい。   In the present invention, first, a slurry (Liquid D) containing at least a molybdenum raw material, a bismuth raw material, and an iron raw material is prepared using a necessary catalyst raw material. The preparation of the liquid D is preferably carried out by the following method when a catalyst having the composition represented by the formula (1) is produced.

まず、少なくともモリブデン原料を含有する溶液又はスラリー(A液)を調製する(工程(a))。すなわち、少なくともモリブデン原料を溶媒中に溶解又は分散させる。モリブデン原料としてパラモリブデン酸アンモニウムを用いることが好ましいが、三酸化モリブデン及び塩化モリブデン等の種々の原料を使用することもできる。更にA液に、上記記載の式(1)で表される触媒を製造する場合における、M成分、X成分、Y成分、Z成分、及びケイ素に対応する触媒原料の一部又は全部を、A液の調製途中又は調製後に添加することもできる。ただし、鉄原料は添加しないことが好ましく、A液は鉄原料を含有しないことが好ましい。   First, a solution or slurry (liquid A) containing at least a molybdenum raw material is prepared (step (a)). That is, at least a molybdenum raw material is dissolved or dispersed in a solvent. It is preferable to use ammonium paramolybdate as the molybdenum raw material, but various raw materials such as molybdenum trioxide and molybdenum chloride can also be used. Furthermore, in the case where the catalyst represented by the above formula (1) is produced in the liquid A, part or all of the catalyst raw materials corresponding to the M component, the X component, the Y component, the Z component, and silicon are It can also be added during or after the preparation of the liquid. However, it is preferable not to add an iron raw material, and it is preferable that A liquid does not contain an iron raw material.

A液の溶媒としては、少なくとも水を溶媒として用い、さらにアルコール、アセトン等を使用することができる。溶媒全体の50質量%以上は水であることが好ましい。また、溶媒として水単独を使用しても構わない。   As a solvent for the liquid A, at least water is used as a solvent, and alcohol, acetone, or the like can be used. It is preferable that 50 mass% or more of the whole solvent is water. Moreover, you may use water alone as a solvent.

A液を調製する際に使用する溶媒の質量は、A液に添加する触媒原料の合計100質量部に対して、70〜270質量部が好ましい。   As for the mass of the solvent used when preparing A liquid, 70-270 mass parts is preferable with respect to a total of 100 mass parts of the catalyst raw material added to A liquid.

一方で、少なくとも鉄原料を含有する溶液又はスラリー(B液)を調製する(工程(b))。すなわち、少なくとも鉄原料を溶媒中に溶解又は分散させる。鉄原料として硝酸第二鉄を用いることが好ましいが、水酸化鉄、三酸化鉄等の種々の原料を使用することもできる。更にB液に、上記記載の式(1)で表される触媒を製造する場合における、M成分、X成分、Y成分、Z成分、及びケイ素に対応する触媒原料の一部又は全部を、B液の調製途中又は調製後に添加することもできる。ただし、モリブデン原料は添加しないことが好ましく、B液はモリブデン原料を含有しないことが好ましい。   On the other hand, a solution or slurry (liquid B) containing at least an iron raw material is prepared (step (b)). That is, at least an iron raw material is dissolved or dispersed in a solvent. Ferric nitrate is preferably used as the iron raw material, but various raw materials such as iron hydroxide and iron trioxide can also be used. Furthermore, in the case where the catalyst represented by the above formula (1) is produced in the B liquid, part or all of the catalyst raw materials corresponding to the M component, X component, Y component, Z component, and silicon are It can also be added during or after the preparation of the liquid. However, it is preferable not to add a molybdenum raw material, and the liquid B preferably does not contain a molybdenum raw material.

B液の溶媒としては、少なくとも水を溶媒として用い、さらにアルコール、アセトン等を使用することができる。溶媒全体の50質量%以上は水であることが好ましい。また、溶媒として水単独を使用しても構わない。   As a solvent for the liquid B, at least water is used as a solvent, and alcohol, acetone and the like can be used. It is preferable that 50 mass% or more of the whole solvent is water. Moreover, you may use water alone as a solvent.

B液を調製する際に使用する溶媒の質量は、B液に添加する触媒原料の合計100質量部に対して、30〜230質量部が好ましい。   As for the mass of the solvent used when preparing B liquid, 30-230 mass parts is preferable with respect to a total of 100 mass parts of the catalyst raw material added to B liquid.

なお、上の説明では工程(a)、工程(b)の順で調製するよう説明したが、これらの工程は逆順または同時進行的に行ってもよい。   In the above description, the preparation is performed in the order of the step (a) and the step (b). However, these steps may be performed in reverse order or simultaneously.

そして、上記のように調製したA液とB液とを混合した溶液又はスラリー(C液)を調製する(工程(c))。更にC液に、上記記載の式(1)で表される触媒を製造する場合における、M成分、X成分、Y成分、Z成分、及びケイ素に対応する触媒原料の一部又は全部を、C液の調製途中又は調製後に添加することも可能である。   And the solution or slurry (C liquid) which mixed A liquid and B liquid prepared as mentioned above are prepared (process (c)). Furthermore, in the case where the catalyst represented by the above formula (1) is produced in the liquid C, part or all of the catalyst raw materials corresponding to the M component, the X component, the Y component, the Z component, and silicon are added to the C solution. It is also possible to add during or after the preparation of the liquid.

なお、M成分、X成分、Y成分、Z成分、及びケイ素の原料としては、酸化物、炭酸塩、塩化物、アンモニウム塩、硝酸塩、酢酸塩、及び硫酸塩等の種々の原料を使用することができる。更に、本発明においては、一般によく用いられる水溶性化合物だけでなく、特に金属及び難溶性化合物等を使用することも可能である。各触媒原料は、最終的に得られるD液中に必要な量の元素が含まれるように添加されていればよく、それぞれの触媒原料について、全量を一度に添加してもよく、複数回に分けて添加してもよい。   In addition, as raw materials for M component, X component, Y component, Z component, and silicon, various raw materials such as oxide, carbonate, chloride, ammonium salt, nitrate, acetate, and sulfate should be used. Can do. Furthermore, in the present invention, it is possible to use not only water-soluble compounds that are commonly used, but also metals and poorly soluble compounds. Each catalyst raw material only needs to be added so that the required amount of elements is contained in the finally obtained D solution. For each catalyst raw material, the entire amount may be added at once, or multiple times. It may be added separately.

ビスマス原料を添加する方法としては、前記の調製方法においては、例えば、調製途中又は調製後のA液、B液、C液の少なくともいずれかに添加することができる(工程(d))。例えば、A液の調製途中又は調製後に添加する方法、B液の調製途中又は調製後に添加する方法、C液の調製途中又は調製後に添加する方法等が挙げられ、いずれでも好ましい結果が得られる。ビスマス原料は、最終的に得られるD液中に必要な量のビスマスが含まれるように添加されていればよく、全量を一度に添加してもよく、複数回および/または複数の液に分けて添加してもよい。また、添加後にホモジナイザーによる微粒化、均一化を行うこともできる。   As a method for adding the bismuth raw material, in the preparation method described above, for example, it can be added to at least one of liquid A, liquid B, and liquid C during or after preparation (step (d)). For example, a method of adding during or after the preparation of the liquid A, a method of adding during or after the preparation of the liquid B, a method of adding during or after the preparation of the liquid C, and the like. The bismuth raw material only needs to be added so that the necessary amount of bismuth is contained in the finally obtained D solution, and the whole amount may be added at once, and is divided into a plurality of times and / or a plurality of solutions. May be added. Moreover, atomization and homogenization by a homogenizer can also be performed after addition.

以上のような方法により、必要な触媒原料を用いて、少なくとも、モリブデン原料、ビスマス原料、及び鉄原料を含有するスラリー(D液)を調製することができる。そして、そのD液から、少なくとも、モリブデン、ビスマス、及び鉄を含有する酸化触媒を得ることができる。   By the above method, slurry (D liquid) containing at least a molybdenum raw material, a bismuth raw material, and an iron raw material can be prepared using a necessary catalyst raw material. An oxidation catalyst containing at least molybdenum, bismuth, and iron can be obtained from the liquid D.

又、本発明においては、必要な触媒原料を用いて調製されたD液を80〜120℃の温度範囲に保持することが好ましく、90〜110℃の温度範囲に保持することがより好ましい。(工程(e))。混合液をこの温度範囲に保持することにより、触媒性能を更に向上させることができる。   Moreover, in this invention, it is preferable to hold | maintain the D liquid prepared using the required catalyst raw material in the temperature range of 80-120 degreeC, and it is more preferable to hold | maintain in the temperature range of 90-110 degreeC. (Step (e)). By maintaining the mixed solution in this temperature range, the catalyst performance can be further improved.

なお、D液を前記の温度範囲に保持する保持時間としては特に限定されないが、1秒〜30時間の範囲が適当であり、好ましくは1分〜20時間の範囲、特に好ましくは3分〜15時間の範囲である。保持時間が短すぎると、保持により触媒性能を向上させる効果が得られにくい。又、保持時間をあまり長くしても、保持によるそれ以上の効果は得られにくい。   The holding time for keeping the liquid D in the above temperature range is not particularly limited, but is suitably in the range of 1 second to 30 hours, preferably in the range of 1 minute to 20 hours, particularly preferably in the range of 3 minutes to 15 hours. It is a range of time. If the holding time is too short, it is difficult to obtain the effect of improving the catalyst performance by holding. Even if the holding time is too long, it is difficult to obtain a further effect by holding.

上述のように保持することにより触媒性能が更に向上する理由については明らかではないが、必要とする複合酸化物の形成を有利に促進することにより、触媒性能が向上するものと考えている。   The reason why the catalyst performance is further improved by holding as described above is not clear, but it is considered that the catalyst performance is improved by advantageously promoting the formation of the required complex oxide.

次に、少なくとも、モリブデン原料、ビスマス原料、及び鉄原料を含有するスラリー(D液)の乾燥を行う。乾燥には、箱形乾燥機、蒸発乾燥機、噴霧乾燥機等種々の乾燥装置を用いることができる。乾燥条件は、例えば箱形乾燥機の場合は30〜150℃、噴霧乾燥機の場合は入口温度で100〜400℃が好ましい。   Next, the slurry (D liquid) containing at least a molybdenum raw material, a bismuth raw material, and an iron raw material is dried. For drying, various drying devices such as a box dryer, an evaporation dryer, and a spray dryer can be used. For example, in the case of a box dryer, the drying conditions are preferably 30 to 150 ° C., and in the case of a spray dryer, the inlet temperature is preferably 100 to 400 ° C.

次いで、乾燥して得られた乾燥物(触媒前駆体)の焼成を行う。焼成する際の焼成装置の形式及びその方法については特に限定はなく、例えば箱型焼成炉、トンネル炉型焼成炉等の焼成炉を用いて、乾燥物を固定した状態で焼成しても良いし、また、回転焼成炉等を用いて、乾燥物を流動させながら焼成しても良い。   Next, the dried product (catalyst precursor) obtained by drying is calcined. There are no particular limitations on the type of firing apparatus and the method for firing, and the firing may be performed in a fixed state using a firing furnace such as a box-type firing furnace or a tunnel furnace-type firing furnace. Further, it may be fired while flowing the dried product using a rotary firing furnace or the like.

本発明では、焼成段階の初期段階で乾燥物の層高を20mm未満、好ましくは15mm以下にすると触媒活性、選択性に優れた触媒を製造することができる。層高を20mm以上にすると、触媒活性、選択性が低下する。一般に焼成温度を下げることで活性を向上させることができるが、層高を本範囲より高くすると焼成温度を下げても層高を本範囲内にした場合のような高活性にすることができなくなる。層高の下限は触媒性能としては特に低下しないが、製造の生産効率を考えると、1mm以上が好ましい。   In the present invention, when the layer height of the dried product is less than 20 mm, preferably 15 mm or less in the initial stage of the calcination stage, a catalyst having excellent catalytic activity and selectivity can be produced. When the layer height is 20 mm or more, catalytic activity and selectivity are lowered. In general, the activity can be improved by lowering the firing temperature, but if the layer height is made higher than this range, even if the firing temperature is lowered, it becomes impossible to achieve high activity as when the layer height is within this range. . The lower limit of the layer height is not particularly lowered as catalyst performance, but it is preferably 1 mm or more in view of production efficiency.

箱型焼成炉やトンネル炉型焼成炉の場合、ステンレス製バット等に仕込み焼成を行うが、そのバットに入れた乾燥物の体積(mm3)を、乾燥物を敷き詰めた面積(mm2)で割った値を層高とする。回転焼成炉の場合は、回転が定常状態になった時の回転体内の乾燥物の体積を回転体内壁の乾燥物の接触面積で割った値を層高とする。 If a box-fired furnace or a tunnel furnace type firing furnace, performs the charged firing a stainless steel vat, etc., the volume (mm 3) of the dried product was placed in the vat, with paved dried product area (mm 2) The divided value is the layer height. In the case of a rotary firing furnace, the bed height is a value obtained by dividing the volume of the dried product in the rotating body when the rotation is in a steady state by the contact area of the dried product on the wall of the rotating body.

本発明の効果発現のメカニズムについてははっきりわかっていないが、三酸化ビスマス及び/又は次炭酸ビスマスとモリブデン化合物等が焼成工程において複合酸化物を生成し、その生成過程がビスマス化合物として硝酸ビスマスを用いる時と生成挙動が異なり、硝酸ビスマスを用いる時とは異なるガス雰囲気等の焼成条件で最適な複合酸化物を生成するものと思われる。   Although the mechanism of manifestation of the effect of the present invention is not clearly understood, bismuth trioxide and / or bismuth carbonate and a molybdenum compound form a composite oxide in the firing step, and the formation process uses bismuth nitrate as the bismuth compound. The formation behavior is different from that at the time, and it seems that the optimum composite oxide is produced under firing conditions such as a gas atmosphere different from the case of using bismuth nitrate.

焼成温度は200℃〜600℃が好ましい。焼成段階の初期段階(1次焼成)の時間は焼成温度によって変わり、焼成温度が高いほどその時間は短くなる。200℃以上300℃未満では、10分〜2時間、好ましくは30分〜1時間、300℃以上600℃以下では、1分〜1時間、好ましくは10分〜30分である。   The firing temperature is preferably 200 ° C to 600 ° C. The time for the initial stage (primary firing) of the firing stage varies depending on the firing temperature, and the higher the firing temperature, the shorter the time. When it is 200 ° C. or more and less than 300 ° C., it is 10 minutes to 2 hours, preferably 30 minutes to 1 hour, and when it is 300 ° C. or more and 600 ° C. or less, it is 1 minute to 1 hour, preferably 10 minutes to 30 minutes.

前記の焼成に引き続き酸素流通下でさらに2次焼成を行うことが好ましく、酸素源として空気を用いるのが最も経済的である。2次焼成温度は通常400〜600℃の温度範囲が好ましい。また、所定の温度に達してから2次焼成を持続する時間については特に限定されないが、より高性能な触媒が得られることから、10分以上が好ましい。焼成装置の形式及びその方法については特に限定はなく、例えば通常の箱型焼成炉、トンネル炉型焼成炉等を用いて、1次焼成物を固定した状態で焼成しても良いし、また、回転焼成炉を用いて、1次焼成物を流動させながら焼成しても良い。2次焼成の際の1次焼成物の層高は特に限定されない。   Subsequent to the calcination, secondary calcination is preferably performed under oxygen flow, and it is most economical to use air as an oxygen source. The secondary firing temperature is usually preferably in the temperature range of 400 to 600 ° C. Moreover, although it does not specifically limit about the time which secondary calcination is continued after reaching predetermined | prescribed temperature, since a higher performance catalyst is obtained, 10 minutes or more are preferable. There are no particular limitations on the type and method of the firing apparatus, and for example, the primary fired product may be fired in a fixed state using a normal box firing furnace, tunnel furnace firing furnace, or the like. The primary fired product may be fired while flowing using a rotary firing furnace. The layer height of the primary fired product in the secondary firing is not particularly limited.

その後、得られた焼成物(触媒)を成形することができる。なお、触媒を成形する方法は特に限定されるものではなく、打錠成型機、押出成形機、転動造粒機等の一般粉体用成形機を用いて、球状、リング状、円柱状、星型状等の任意の形状に成形できる。   Thereafter, the fired product (catalyst) obtained can be molded. The method of molding the catalyst is not particularly limited, and using a general powder molding machine such as a tableting molding machine, an extrusion molding machine, a rolling granulator, etc., a spherical shape, a ring shape, a cylindrical shape, It can be formed into any shape such as a star shape.

触媒を成形する際には、従来公知の添加剤、例えば、ポリビニルアルコール、カルボキシメチルセルロース等の有機化合物を更に添加してもよい。更には、グラファイト及びケイソウ土等の無機化合物、ガラス繊維、セラミックファイバー及び炭素繊維等の無機ファイバーを添加してもよい。又、触媒を担体に担持させることもできる。担持を行う際に使用する担体としては、シリカ、アルミナ、シリカ−アルミナ、マグネシア、チタニア、シリコンカーバイト等が挙げられる。   When molding the catalyst, conventionally known additives such as organic compounds such as polyvinyl alcohol and carboxymethyl cellulose may be further added. Furthermore, inorganic compounds such as graphite and diatomaceous earth, and inorganic fibers such as glass fiber, ceramic fiber and carbon fiber may be added. Further, the catalyst can be supported on a carrier. Examples of the carrier used when carrying the carrier include silica, alumina, silica-alumina, magnesia, titania, silicon carbide and the like.

本発明の製造法による触媒は、シリカ、アルミナ、シリカ−アルミナ、マグネシア、チタニア、シリコンカーバイト等の不活性物質で希釈して用いることもできる。   The catalyst according to the production method of the present invention can be diluted with an inert substance such as silica, alumina, silica-alumina, magnesia, titania, silicon carbide and the like.

本発明の製造方法で製造された触媒は、プロピレン、イソブチレン、及びTBAのいずれかを分子状酸素により気相接触酸化する反応を行う際に用いることができる。具体的には、プロピレン、イソブチレン、及びTBAの少なくとも1種の原料と分子状酸素を含む原料ガスを用いて、前記の触媒の存在下に気相接触酸化を行う。気相接触酸化反応を行うにあたっては、原料対分子状酸素のモル比は1:0.5〜3の範囲が好ましい。   The catalyst produced by the production method of the present invention can be used when a reaction in which any one of propylene, isobutylene, and TBA is vapor-phase catalytically oxidized with molecular oxygen is performed. Specifically, gas phase catalytic oxidation is performed in the presence of the catalyst using a raw material gas containing at least one raw material of propylene, isobutylene, and TBA and molecular oxygen. In carrying out the gas phase catalytic oxidation reaction, the molar ratio of the raw material to molecular oxygen is preferably in the range of 1: 0.5-3.

原料ガスは希釈のために不活性ガスが含まれていることが好ましい。分子状酸素源としては空気を用いることが経済的であるが、必要ならば純酸素で富化した空気を用いうる。反応圧力は、大気圧から数気圧までがよい。反応温度は200〜450℃の範囲で選ぶことができる。特に250〜400℃の範囲が好ましい。   The source gas preferably contains an inert gas for dilution. It is economical to use air as the molecular oxygen source, but if necessary, air enriched with pure oxygen can be used. The reaction pressure is preferably from atmospheric pressure to several atmospheres. The reaction temperature can be selected in the range of 200 to 450 ° C. The range of 250-400 degreeC is especially preferable.

以下、本発明による触媒の製造例、及びそれを用いての反応例を、比較例と共に説明する。説明中「部」は質量部を意味する。反応評価における分析はガスクロマトグラフィーにて行った。実施例及び比較例中の触媒の活性試験は、イソブチレンの分子状酸素による気相接触酸化を例として行った。原料の反応率、生成する不飽和アルデヒド及び不飽和カルボン酸の選択率はそれぞれ以下のように定義される。
原料の反応率(%)=(反応した原料のモル数/供給した原料のモル数)×100
不飽和アルデヒドの選択率(%)=(生成した不飽和アルデヒドのモル数/反応した原料のモル数)×100
不飽和カルボン酸の選択率(%)=(生成した不飽和カルボン酸のモル数/反応した原料のモル数)×100
<実施例1>
60℃に加温した水1,000部にパラモリブデン酸アンモニウム500部、パラタングステン酸アンモニウム6.2部、硝酸セシウム23.2部、三酸化ビスマス38.8部を混合してA液とした。これとは別に純水1,000部に、硝酸第二鉄201.9部、硝酸ニッケル171.9部、及び硝酸コバルト346.3部を順次加えて溶解しB液とした。次いでA液にB液を加えC液とした。その後これに三酸化アンチモン24.3部を加えてD液とし、80℃で1時間熟成した。その後、スプレードライヤーを用いて乾燥し、粉体状の乾燥物を得た。
Hereinafter, the manufacture example of the catalyst by this invention and the reaction example using it are demonstrated with a comparative example. In the description, “parts” means parts by mass. Analysis in the reaction evaluation was performed by gas chromatography. The activity tests of the catalysts in the examples and comparative examples were conducted by taking gas phase catalytic oxidation of isobutylene with molecular oxygen as an example. The reaction rate of the raw material and the selectivity of the unsaturated aldehyde and unsaturated carboxylic acid produced are respectively defined as follows.
Reaction rate of raw material (%) = (number of moles of reacted raw material / number of moles of supplied raw material) × 100
Selectivity of unsaturated aldehyde (%) = (number of moles of unsaturated aldehyde produced / number of moles of reacted raw material) × 100
Selectivity of unsaturated carboxylic acid (%) = (number of moles of unsaturated carboxylic acid produced / number of moles of reacted raw material) × 100
<Example 1>
Liquid A was prepared by mixing 500 parts of ammonium paramolybdate, 6.2 parts of ammonium paratungstate, 23.2 parts of cesium nitrate, and 38.8 parts of bismuth trioxide with 1,000 parts of water heated to 60 ° C. . Separately, 201.9 parts of ferric nitrate, 171.9 parts of nickel nitrate, and 346.3 parts of cobalt nitrate were sequentially added and dissolved in 1,000 parts of pure water to obtain a liquid B. Next, liquid B was added to liquid A to obtain liquid C. Thereafter, 24.3 parts of antimony trioxide was added thereto to prepare a solution D, which was aged at 80 ° C. for 1 hour. Then, it dried using the spray dryer and obtained the powdery dried material.

得られた乾燥物をステンレス製バットに、層高が15mmになるようにほぼ均一の層高で仕込み、空気雰囲気下300℃で2時間焼成し、粉砕した。その後、加圧成型したものを破砕し、目開きが2.36mmと0.71mmの2つの篩を用いて篩い分け操作を行い、分級された粒子を再び空気雰囲気下500℃で6時間焼成したものを触媒として用いた。   The obtained dried product was charged into a stainless steel vat with a substantially uniform layer height so that the layer height was 15 mm, fired at 300 ° C. for 2 hours in an air atmosphere, and pulverized. Thereafter, the pressure-molded product was crushed, and sieving was performed using two sieves having openings of 2.36 mm and 0.71 mm, and the classified particles were again fired at 500 ° C. for 6 hours in an air atmosphere. Was used as the catalyst.

こうして得られた触媒の元素の組成(酸素以外)は、Mo120.1Bi0.7Fe2.1Ni2.5Co5.0Sb0.7Cs0.5であった。 The elemental composition (other than oxygen) of the catalyst thus obtained was Mo 12 W 0.1 Bi 0.7 Fe 2.1 Ni 2.5 Co 5.0 Sb 0.7 Cs 0.5 .

この触媒をステンレス製反応管に充填し、イソブチレン5%、酸素12.5%、水蒸気10%、及び窒素72.5%(容量%)の原料混合ガスをイソブチレンの反応率が約96.5%になるように原料混合ガスを、接触時間1.5秒で触媒層を通過させ、340℃で反応させた。その結果、イソブチレンの反応率96.5%、メタクロレイン(MAL)の選択率89.1%、メタクリル酸(MAA)の選択率3.0%、MALとMAAの合計選択率は92.1%であった。   This catalyst is packed in a stainless steel reaction tube, and the reaction rate of isobutylene is about 96.5% using a raw material mixed gas of 5% isobutylene, 12.5% oxygen, 10% water vapor, and 72.5% (volume%) nitrogen. The raw material mixed gas was allowed to pass through the catalyst layer with a contact time of 1.5 seconds and reacted at 340 ° C. As a result, the reaction rate of isobutylene was 96.5%, the selectivity of methacrolein (MAL) was 89.1%, the selectivity of methacrylic acid (MAA) was 3.0%, and the total selectivity of MAL and MAA was 92.1%. Met.

<実施例2>
焼成初期段階の層高を2mmにして、接触時間を1.1秒にした以外は、実施例1と同じ方法で触媒の調製及び反応評価を行った。その結果、イソブチレンの反応率96.4%、メタクロレインの選択率89.3%、メタクリル酸の選択率3.2%、MALとMAAの合計選択率は92.5%であった。
<Example 2>
The catalyst was prepared and the reaction was evaluated in the same manner as in Example 1 except that the layer height at the initial stage of firing was 2 mm and the contact time was 1.1 seconds. As a result, the reaction rate of isobutylene was 96.4%, the selectivity of methacrolein was 89.3%, the selectivity of methacrylic acid was 3.2%, and the total selectivity of MAL and MAA was 92.5%.

<実施例3>
焼成初期段階の層高を5mmにして、接触時間を1.0秒にした以外は、実施例1と同じ方法で触媒の調製及び反応評価を行った。その結果、イソブチレンの反応率96.5%、メタクロレインの選択率89.6%、メタクリル酸の選択率3.0%、MALとMAAの合計選択率は92.6%であった。
<Example 3>
Catalyst preparation and reaction evaluation were performed in the same manner as in Example 1 except that the layer height in the initial stage of firing was 5 mm and the contact time was 1.0 second. As a result, the reaction rate of isobutylene was 96.5%, the selectivity of methacrolein was 89.6%, the selectivity of methacrylic acid was 3.0%, and the total selectivity of MAL and MAA was 92.6%.

<実施例4>
三酸化ビスマスの代わりに次炭酸ビスマスを用い、接触時間を1.2秒にした以外は、実施例2と同じ方法で触媒の調製及び反応評価を行った。その結果、イソブチレンの反応率96.5%、メタクロレインの選択率89.2%、メタクリル酸の選択率3.1%、MALとMAAの合計選択率は92.3%であった。
<Example 4>
The catalyst was prepared and the reaction was evaluated in the same manner as in Example 2 except that bismuth carbonate was used instead of bismuth trioxide and the contact time was 1.2 seconds. As a result, the reaction rate of isobutylene was 96.5%, the selectivity of methacrolein was 89.2%, the selectivity of methacrylic acid was 3.1%, and the total selectivity of MAL and MAA was 92.3%.

<比較例1>
焼成初期段階の層高を60mmにして、接触時間を2.4秒にした以外は、実施例1と同じ方法で触媒の調製及び反応評価を行った。その結果、イソブチレンの反応率96.4%、メタクロレインの選択率88.1%、メタクリル酸の選択率2.7%、MALとMAAの合計選択率は90.8%であり、実施例1〜3に比べて、接触時間が長いことからわかるように活性が低く、MALとMAAの合計選択率も低かった。
<Comparative Example 1>
The catalyst was prepared and the reaction was evaluated in the same manner as in Example 1 except that the layer height at the initial stage of firing was 60 mm and the contact time was 2.4 seconds. As a result, the reaction rate of isobutylene was 96.4%, the selectivity of methacrolein was 88.1%, the selectivity of methacrylic acid was 2.7%, and the total selectivity of MAL and MAA was 90.8%. Compared to ˜3, the activity was low as shown by the long contact time, and the total selectivity of MAL and MAA was also low.

<比較例2>
焼成温度を470℃、接触時間を2.3秒にした以外は比較例1と同じ方法で触媒の調製及び反応評価を行った。その結果、イソブチレンの反応率96.6%、メタクロレインの選択率87.5%、メタクリル酸の選択率3.1%、MALとMAAの合計選択率は90.6%であり、比較例1とほとんど活性、MALとMAAの合計選択率ともに変わらず、焼成温度を下げることによる活性向上が認められなかった。
<Comparative example 2>
A catalyst was prepared and the reaction was evaluated in the same manner as in Comparative Example 1 except that the calcination temperature was 470 ° C. and the contact time was 2.3 seconds. As a result, the reaction rate of isobutylene was 96.6%, the selectivity of methacrolein was 87.5%, the selectivity of methacrylic acid was 3.1%, and the total selectivity of MAL and MAA was 90.6%. The activity and the total selectivity of MAL and MAA did not change, and the activity was not improved by lowering the firing temperature.

<比較例3>
三酸化ビスマスの代わりに硝酸ビスマスを用い、焼成初期段階の層高を2mmにして、接触時間を1.5秒にした以外は実施例2と同じ方法で触媒の調製及び反応評価を行った。その結果、イソブチレンの反応率96.4%、メタクロレインの選択率86.9%、メタクリル酸の選択率3.3%、MALとMAAの合計選択率は90.2%であり、硝酸ビスマスを用いると、活性、MALとMAAの合計選択率ともに低かった。
<Comparative Example 3>
Catalyst preparation and reaction evaluation were performed in the same manner as in Example 2, except that bismuth nitrate was used instead of bismuth trioxide, the layer height at the initial stage of firing was 2 mm, and the contact time was 1.5 seconds. As a result, the reaction rate of isobutylene was 96.4%, the selectivity of methacrolein was 86.9%, the selectivity of methacrylic acid was 3.3%, the total selectivity of MAL and MAA was 90.2%. When used, the activity and the total selectivity of MAL and MAA were both low.

Figure 2008149263
Figure 2008149263

Claims (1)

モリブデン原料、ビスマス原料、及び鉄原料を含むスラリーを乾燥し、得られた乾燥物を焼成することによりモリブデン、ビスマス及び鉄を含有する不飽和アルデヒド及び不飽和カルボン酸合成用触媒を製造する方法において、該ビスマス原料として三酸化ビスマス及び/又は次炭酸ビスマスを使用し、かつ焼成の初期段階において乾燥物の層高を20mm未満にして焼成を行うことを特徴とする不飽和アルデヒド及び不飽和カルボン酸合成用触媒の製造方法。   In a method for producing a catalyst for synthesizing unsaturated aldehyde and unsaturated carboxylic acid containing molybdenum, bismuth and iron by drying a slurry containing a molybdenum raw material, a bismuth raw material, and an iron raw material, and firing the obtained dried product An unsaturated aldehyde and an unsaturated carboxylic acid characterized in that bismuth trioxide and / or bismuth carbonate is used as the bismuth raw material and calcining is performed at an initial stage of calcining with a layer height of the dried product of less than 20 mm. A method for producing a catalyst for synthesis.
JP2006339801A 2006-12-18 2006-12-18 Method for manufacturing oxide catalyst containing molybdenum, bismuth and iron Pending JP2008149263A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006339801A JP2008149263A (en) 2006-12-18 2006-12-18 Method for manufacturing oxide catalyst containing molybdenum, bismuth and iron

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006339801A JP2008149263A (en) 2006-12-18 2006-12-18 Method for manufacturing oxide catalyst containing molybdenum, bismuth and iron

Publications (1)

Publication Number Publication Date
JP2008149263A true JP2008149263A (en) 2008-07-03

Family

ID=39652042

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006339801A Pending JP2008149263A (en) 2006-12-18 2006-12-18 Method for manufacturing oxide catalyst containing molybdenum, bismuth and iron

Country Status (1)

Country Link
JP (1) JP2008149263A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170125827A (en) 2015-02-27 2017-11-15 닛뽄 가야쿠 가부시키가이샤 Catalyst for manufacturing unsaturated aldehyde and/or unsaturated carboxylic acid and manufacturing method of same, and manufacturing method of unsaturated aldehyde and/or unsaturated carboxylic acid
CN108745393A (en) * 2018-04-28 2018-11-06 西安前沿材料研究院有限公司 A kind of bismuth-bismuthyl carbonate heterojunction structure catalysis material and preparation method thereof

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5348095A (en) * 1976-09-14 1978-05-01 Rhone Poulenc Ind Novel catalysts for manufacturing alpha* betaaunsaturated aldehyde by gas phase oxidation of olefine and manufacture thereof
JPH05253480A (en) * 1992-03-12 1993-10-05 Mitsubishi Rayon Co Ltd Production of catalyst for synthesis of unsaturated aldehyde and unsaturated carboxylic acid
JPH0824652A (en) * 1994-07-18 1996-01-30 Mitsubishi Rayon Co Ltd Preparation of oxide catalyst containing molybdenum, bismuth, and iron
JPH0910587A (en) * 1995-06-30 1997-01-14 Sumitomo Chem Co Ltd Preparation of catalyst for synthesis of unsaturated aldehyde and unsaturated carboxylic acid
JP2000070719A (en) * 1998-09-01 2000-03-07 Mitsubishi Rayon Co Ltd Catalyst for synthesis of unsaturated aldehyde and unsaturated carboxylic acid, its production and method for synthesizing unsaturated aldehyde and unsaturated carboxylic acid using same
JP2002282695A (en) * 2001-03-27 2002-10-02 Mitsubishi Rayon Co Ltd Catalyst for synthesizing unsaturated aldehyde and unsaturated carboxylic acid, method for producing the same, and method for synthesizing unsaturated aldehyde and unsaturated carboxylic acid using the same
JP2003220334A (en) * 2001-11-08 2003-08-05 Mitsubishi Chemicals Corp Compound oxide catalyst and method for manufacturing the same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5348095A (en) * 1976-09-14 1978-05-01 Rhone Poulenc Ind Novel catalysts for manufacturing alpha* betaaunsaturated aldehyde by gas phase oxidation of olefine and manufacture thereof
JPH05253480A (en) * 1992-03-12 1993-10-05 Mitsubishi Rayon Co Ltd Production of catalyst for synthesis of unsaturated aldehyde and unsaturated carboxylic acid
JPH0824652A (en) * 1994-07-18 1996-01-30 Mitsubishi Rayon Co Ltd Preparation of oxide catalyst containing molybdenum, bismuth, and iron
JPH0910587A (en) * 1995-06-30 1997-01-14 Sumitomo Chem Co Ltd Preparation of catalyst for synthesis of unsaturated aldehyde and unsaturated carboxylic acid
JP2000070719A (en) * 1998-09-01 2000-03-07 Mitsubishi Rayon Co Ltd Catalyst for synthesis of unsaturated aldehyde and unsaturated carboxylic acid, its production and method for synthesizing unsaturated aldehyde and unsaturated carboxylic acid using same
JP2002282695A (en) * 2001-03-27 2002-10-02 Mitsubishi Rayon Co Ltd Catalyst for synthesizing unsaturated aldehyde and unsaturated carboxylic acid, method for producing the same, and method for synthesizing unsaturated aldehyde and unsaturated carboxylic acid using the same
JP2003220334A (en) * 2001-11-08 2003-08-05 Mitsubishi Chemicals Corp Compound oxide catalyst and method for manufacturing the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170125827A (en) 2015-02-27 2017-11-15 닛뽄 가야쿠 가부시키가이샤 Catalyst for manufacturing unsaturated aldehyde and/or unsaturated carboxylic acid and manufacturing method of same, and manufacturing method of unsaturated aldehyde and/or unsaturated carboxylic acid
US10300463B2 (en) 2015-02-27 2019-05-28 Nippon Kayaku Kabushiki Kaisha Catalyst for manufacturing unsaturated aldehyde and/or unsaturated carboxylic acid and manufacturing method of same, and manufacturing method of unsaturated aldehyde and/or unsaturated carboxylic acid
CN108745393A (en) * 2018-04-28 2018-11-06 西安前沿材料研究院有限公司 A kind of bismuth-bismuthyl carbonate heterojunction structure catalysis material and preparation method thereof
CN108745393B (en) * 2018-04-28 2021-03-16 西安前沿材料研究院有限公司 Bismuth-bismuth oxycarbonate heterostructure photocatalytic material and preparation method thereof

Similar Documents

Publication Publication Date Title
JP4242597B2 (en) Unsaturated aldehyde synthesis catalyst, production method thereof, and production method of unsaturated aldehyde using the catalyst
JP4588533B2 (en) Catalyst for acrylonitrile synthesis
JP2007283265A (en) Method of manufacturing catalyst for producing methacrylic acid
JP4863436B2 (en) Catalysts for the synthesis of unsaturated aldehydes and unsaturated carboxylic acids
JP2016168591A (en) Catalyst for manufacturing methacrylic acid and manufacturing method therefor, and manufacturing method of methacrylic acid
JP2008284416A (en) Method for manufacturing metal oxide catalyst
JP4022047B2 (en) Method for producing methacrylic acid synthesis catalyst, methacrylic acid synthesis catalyst and methacrylic acid production method
JP2005058909A (en) Production method for catalyst for synthesizing methacrylic acid
JP2008149263A (en) Method for manufacturing oxide catalyst containing molybdenum, bismuth and iron
JP5344753B2 (en) Process for producing catalyst for producing unsaturated aldehyde and unsaturated carboxylic acid
JP2009131776A (en) Catalyst for producing acrylic acid and method for producing acrylic acid by using the catalyst
JP4809692B2 (en) Method for producing catalyst for synthesis of unsaturated aldehyde and unsaturated carboxylic acid
JP4811977B2 (en) Method for producing catalyst for synthesis of methacrylic acid
JP4745766B2 (en) Catalyst for producing methacrylic acid, method for producing the same, and method for producing methacrylic acid
JP4225530B2 (en) Process for producing methacrolein and methacrylic acid synthesis catalyst
JP2005066476A (en) Method for producing catalyst for producing methacrylic acid, catalyst produced by the method, and method for producing metacrylic acid
JP4875480B2 (en) Method for producing metal-containing catalyst
JP2011115681A (en) Catalyst for synthesizing unsaturated aldehyde and unsaturated carboxylic acid
JP4902991B2 (en) Method for producing oxide catalyst
JPH10258233A (en) Preparation of catalyst for synthesizing of unsaturated aldehyde and unsaturated carboxylic acid
JP5070089B2 (en) Catalyst for producing unsaturated aldehyde and unsaturated carboxylic acid and method for producing the same
JP2010207803A (en) Compound oxide catalyst
JP2003251188A (en) Catalyst for synthesizing methacrylic acid and manufacturing method for methacrylic acid
JP7024194B2 (en) A method for producing a composite metal oxide catalyst for producing unsaturated aldehyde and unsaturated carboxylic acid, and a method for producing unsaturated aldehyde and unsaturated carboxylic acid using the same.
JP2006263677A (en) Catalyst for synthesizing unsaturated aldehyde and unsaturated carboxylic acid

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090709

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100607

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110119

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110317

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110510