JP4809692B2 - Method for producing catalyst for synthesis of unsaturated aldehyde and unsaturated carboxylic acid - Google Patents

Method for producing catalyst for synthesis of unsaturated aldehyde and unsaturated carboxylic acid Download PDF

Info

Publication number
JP4809692B2
JP4809692B2 JP2006050434A JP2006050434A JP4809692B2 JP 4809692 B2 JP4809692 B2 JP 4809692B2 JP 2006050434 A JP2006050434 A JP 2006050434A JP 2006050434 A JP2006050434 A JP 2006050434A JP 4809692 B2 JP4809692 B2 JP 4809692B2
Authority
JP
Japan
Prior art keywords
raw material
catalyst
slurry
unsaturated
carboxylic acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006050434A
Other languages
Japanese (ja)
Other versions
JP2007222855A (en
Inventor
耕平 山田
健 大谷内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Chemical Corp
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp, Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Chemical Corp
Priority to JP2006050434A priority Critical patent/JP4809692B2/en
Publication of JP2007222855A publication Critical patent/JP2007222855A/en
Application granted granted Critical
Publication of JP4809692B2 publication Critical patent/JP4809692B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

本発明は、プロピレン、イソブチレン、第三級ブチルアルコール(以下、TBAという)またはメチル第三級ブチルエーテル(以下、MTBEという)を分子状酸素を用いて気相接触酸化することにより、それぞれに対応する不飽和アルデヒドおよび不飽和カルボン酸を合成する際に使用する触媒の製造方法に関する。   The present invention responds to each of the above by vapor-phase catalytic oxidation of propylene, isobutylene, tertiary butyl alcohol (hereinafter referred to as TBA) or methyl tertiary butyl ether (hereinafter referred to as MTBE) using molecular oxygen. The present invention relates to a method for producing a catalyst used in the synthesis of an unsaturated aldehyde and an unsaturated carboxylic acid.

従来、プロピレンを気相接触酸化してアクロレインおよびアクリル酸を製造する際に用いられる触媒や、イソブチレン、TBAまたはMTBEを気相接触酸化してメタクロレインおよびメタクリル酸を製造する際に用いられる触媒については数多くの提案がなされている。例えば、特許文献1には触媒成分を含むスラリーを微粒化した後熱処理する方法が記載されている。また、特許文献2には三酸化ビスマスとモリブデン含有水溶液とを混合し、超音波処理を行い、鉄含有水溶液と混合する触媒製造方法が記載されている。さらに、特許文献3には触媒成分を含むスラリーを熱処理しながら微粒化する方法が記載されている。
特開平7−289902号公報 特開平8−24652号公報 特開平10−258233号公報
Catalysts conventionally used for producing acrolein and acrylic acid by vapor-phase catalytic oxidation of propylene, and catalysts used for producing methacrolein and methacrylic acid by vapor-phase catalytic oxidation of isobutylene, TBA or MTBE Many proposals have been made. For example, Patent Document 1 describes a method in which a slurry containing a catalyst component is atomized and then heat-treated. Patent Document 2 describes a catalyst production method in which bismuth trioxide and a molybdenum-containing aqueous solution are mixed, subjected to ultrasonic treatment, and mixed with an iron-containing aqueous solution. Furthermore, Patent Document 3 describes a method of atomizing a slurry containing a catalyst component while performing a heat treatment.
JP-A-7-289902 Japanese Patent Laid-Open No. 8-24652 JP 10-258233 A

しかしながら、今までに知られていた触媒は、収率の点でまだ十分とは言い難く、不飽和アルデヒドおよび不飽和カルボン酸を高収率で得ることができる触媒の製造方法の開発が望まれている。   However, the catalysts known so far are still not sufficient in terms of yield, and development of a catalyst production method capable of obtaining unsaturated aldehydes and unsaturated carboxylic acids in high yields is desired. ing.

本発明は、プロピレン、イソブチレン、TBAまたはMTBEを分子状酸素を用いて気相接触酸化することにより、それぞれに対応する不飽和アルデヒドおよび不飽和カルボン酸を高収率で製造可能な触媒の製造方法を提供することを目的とする。   The present invention relates to a method for producing a catalyst capable of producing a corresponding unsaturated aldehyde and unsaturated carboxylic acid in high yield by subjecting propylene, isobutylene, TBA or MTBE to vapor phase catalytic oxidation using molecular oxygen. The purpose is to provide.

本発明は、プロピレン、イソブチレン、第三級ブチルアルコールまたはメチル第三級ブチルエーテルを分子状酸素を用いて気相接触酸化することにより、それぞれに対応する不飽和アルデヒドおよび不飽和カルボン酸を合成する際に使用される、少なくとも、モリブデン、ビスマスおよび鉄を触媒成分として含む不飽和アルデヒドおよび不飽和カルボン酸合成用触媒の製造方法であって、
触媒成分の原料のうち、少なくとも水に溶解しない原料を水に分散させた原料スラリーを調製する工程と、
他の原料を水に溶解させた原料溶液を調製する工程と、
前記原料スラリーを微粒化処理しつつ前記原料溶液と混合して、平均メディアン径が0.5〜10μmとなる触媒前駆体を含む触媒前駆体スラリーを調製する工程と、
を有することを特徴とする不飽和アルデヒドおよび不飽和カルボン酸合成用触媒の製造方法である。
In the present invention, propylene, isobutylene, tertiary butyl alcohol or methyl tertiary butyl ether is subjected to gas phase catalytic oxidation using molecular oxygen to synthesize the corresponding unsaturated aldehyde and unsaturated carboxylic acid. A process for producing an unsaturated aldehyde and unsaturated carboxylic acid synthesis catalyst containing at least molybdenum, bismuth and iron as catalyst components, comprising:
A step of preparing a raw material slurry in which at least a raw material that does not dissolve in water among the raw materials of the catalyst component is dispersed in water;
A step of preparing a raw material solution in which other raw materials are dissolved in water;
Mixing the raw material slurry with the raw material solution while atomizing the raw material slurry to prepare a catalyst precursor slurry containing a catalyst precursor having an average median diameter of 0.5 to 10 μm;
It is a manufacturing method of the catalyst for unsaturated aldehyde and unsaturated carboxylic acid synthesis characterized by having.

また本発明は、上記発明において前記原料スラリーを調製する工程を、微粒化処理しつつ行うことを特徴とする不飽和アルデヒドおよび不飽和カルボン酸合成用触媒の製造方法にある。   The present invention also lies in a method for producing an unsaturated aldehyde and unsaturated carboxylic acid synthesis catalyst, characterized in that the step of preparing the raw slurry in the above invention is performed while atomizing.

本発明によれば、プロピレン、イソブチレン、TBAまたはMTBEを分子状酸素を用いて気相接触酸化することにより、それぞれに対応する不飽和アルデヒドおよび不飽和カルボン酸を高収率で製造可能な触媒の製造方法を提供できる。   According to the present invention, a catalyst capable of producing a corresponding unsaturated aldehyde and unsaturated carboxylic acid in high yield by vapor-phase catalytic oxidation of propylene, isobutylene, TBA or MTBE using molecular oxygen. A manufacturing method can be provided.

本発明で製造される触媒は、プロピレン、イソブチレン、TBAまたはMTBEを分子状酸素を用いて気相接触酸化し、それぞれに対応する不飽和アルデヒドおよび不飽和カルボン酸を合成する際に用いられるもので、触媒を構成する成分(触媒成分)に少なくともモリブデン、ビスマスおよび鉄を含むものである。原料としてプロピレンを用いた場合はアクロレインおよびアクリル酸が製造され、それ以外の原料を用いた場合はメタクロレインおよびメタクリル酸が製造される。   The catalyst produced in the present invention is used when vapor-phase catalytic oxidation of propylene, isobutylene, TBA or MTBE using molecular oxygen to synthesize the corresponding unsaturated aldehyde and unsaturated carboxylic acid. The component constituting the catalyst (catalyst component) contains at least molybdenum, bismuth and iron. When propylene is used as a raw material, acrolein and acrylic acid are produced, and when other raw materials are used, methacrolein and methacrylic acid are produced.

本発明の製造方法は、特に一般式(1)で表される組成を有する複合酸化物を含む触媒を製造する際に好適である。   The production method of the present invention is particularly suitable for producing a catalyst containing a composite oxide having a composition represented by the general formula (1).

MoaBibFecdefgSihi (1)
式中、Mo、Bi、Fe、SiおよびOはそれぞれモリブデン、ビスマス、鉄、ケイ素および酸素を示し、Mはコバルトおよびニッケルからなる群より選ばれた少なくとも1種の元素を示し、Xはクロム、鉛、マンガン、カルシウム、マグネシウム、ニオブ、銀、バリウム、スズ、タンタルおよび亜鉛からなる群より選ばれた少なくとも1種の元素を示し、Yはリン、ホウ素、硫黄、セレン、テルル、セリウム、タングステン、アンチモンおよびチタンからなる群より選ばれた少なくとも1種の元素を示し、Zはリチウム、ナトリウム、カリウム、ルビジウム、セシウムおよびタリウムからなる群より選ばれた少なくとも1種の元素を示す。a、b、c、d、e、f、g、hおよびiは各元素の原子比率を表し、a=12のときb=0.01〜3、c=0.01〜5、d=1〜12、e=0〜8、f=0〜5、g=0.001〜2、h=0〜20であり、iは前記各成分の原子価を満足するのに必要な酸素原子比率である。この複合酸化物の酸素以外の組成は、触媒をアンモニア水に溶解してICP発光分析法と原子吸光分析法で分析することで見積もることができる。
Mo a Bi b Fe c M d X e Y f Z g Si h O i (1)
In the formula, Mo, Bi, Fe, Si and O represent molybdenum, bismuth, iron, silicon and oxygen, respectively, M represents at least one element selected from the group consisting of cobalt and nickel, X represents chromium, At least one element selected from the group consisting of lead, manganese, calcium, magnesium, niobium, silver, barium, tin, tantalum and zinc; Y is phosphorus, boron, sulfur, selenium, tellurium, cerium, tungsten, Z represents at least one element selected from the group consisting of lithium, sodium, potassium, rubidium, cesium and thallium, and represents at least one element selected from the group consisting of antimony and titanium. a, b, c, d, e, f, g, h, and i represent atomic ratios of the respective elements. When a = 12, b = 0.01-3, c = 0.01-5, d = 1 -12, e = 0 to 8, f = 0 to 5, g = 0.001 to 2, h = 0 to 20, and i is an oxygen atomic ratio necessary to satisfy the valence of each component. is there. The composition of the composite oxide other than oxygen can be estimated by dissolving the catalyst in aqueous ammonia and analyzing it by ICP emission analysis and atomic absorption analysis.

以下、上記不飽和アルデヒドおよび不飽和カルボン酸合成用触媒の製造方法について説明する。   Hereinafter, a method for producing the unsaturated aldehyde and unsaturated carboxylic acid synthesis catalyst will be described.

まず、触媒成分の原料のうち、少なくとも水に溶解しない原料を水に分散させた原料スラリーを調製する。また、他の原料を水に溶解させた原料溶液を調製する。すなわち、触媒成分の原料のうち水に溶解しない原料と、水に溶解する原料とに分類し、少なくとも水に溶解しない原料を水に分散させて原料スラリーとする。水に溶解する原料の一部を原料スラリーに混合してもよい。そして、原料スラリーに混合しなかった残りの原料である水に溶解する原料の一部または全部を水に溶解させて原料溶液とする。   First, a raw material slurry in which at least a raw material that does not dissolve in water among the raw materials of the catalyst component is dispersed in water is prepared. Also, a raw material solution in which other raw materials are dissolved in water is prepared. That is, the raw materials for the catalyst component are classified into raw materials that do not dissolve in water and raw materials that dissolve in water, and at least raw materials that do not dissolve in water are dispersed in water to form raw slurry. A part of the raw material dissolved in water may be mixed with the raw material slurry. And a part or all of the raw material melt | dissolved in the water which is the remaining raw material which was not mixed with raw material slurry is dissolved in water, and it is set as a raw material solution.

原料スラリーを調製する方法としては、特殊な方法に限定する必要は無く、成分の著しい偏在を伴わない限り、従来から良く知られている沈殿法、酸化物混合法等の種々の方法を用いることができる。原料スラリーを調製する際に、後述する微粒化処理しつつ行うことが好ましい。こうすることで、得られる触媒の性能がより高くなる。   As a method of preparing the raw slurry, it is not necessary to limit to a special method, and various methods such as a precipitation method and an oxide mixing method that are well known from the past are used unless significant uneven distribution of components is involved. Can do. When preparing the raw material slurry, it is preferable to carry out the atomization treatment described later. By doing so, the performance of the obtained catalyst becomes higher.

触媒成分の原料としては、各元素の酸化物、硫酸塩、硝酸塩、炭酸塩、水酸化物、アンモニウム塩、ハロゲン化物等を使用することができる。モリブデン原料としては、例えばパラモリブデン酸アンモニウム、三酸化モリブデン等が挙げられる。ビスマス原料としては、例えば、三酸化ビスマス、硝酸ビスマス、炭酸ビスマス、水酸化ビスマス等が使用できる。鉄原料としては、例えば、硝酸第二鉄、塩化第二鉄等が使用できる。触媒成分の原料は、各元素について1種でもよく、2種以上を併用してもよい。また、硝酸ビスマス等の水に不溶な原料は、予め硝酸等の酸に溶かして用いてもよい。   As raw materials for the catalyst component, oxides, sulfates, nitrates, carbonates, hydroxides, ammonium salts, halides, and the like of each element can be used. Examples of the molybdenum raw material include ammonium paramolybdate and molybdenum trioxide. Examples of the bismuth raw material that can be used include bismuth trioxide, bismuth nitrate, bismuth carbonate, and bismuth hydroxide. As the iron raw material, for example, ferric nitrate, ferric chloride and the like can be used. The raw material of the catalyst component may be one type for each element, or two or more types may be used in combination. Further, a raw material insoluble in water such as bismuth nitrate may be used by dissolving in an acid such as nitric acid in advance.

なお、触媒成分の原料として、水に溶解しない原料を少なくとも1つと、水に溶解する原料を少なくとも1つと、を選択することになるが、触媒成分の各元素において、水に溶解しない原料を選択しても、水に溶解する原料を選択してもよい。モリブデン原料としては、水に溶解するものを選択することが好ましい。鉄原料としては、水に溶解するものを選択することが好ましい。   As the raw material for the catalyst component, at least one raw material that does not dissolve in water and at least one raw material that dissolves in water will be selected. For each element of the catalyst component, a raw material that does not dissolve in water is selected. Or you may select the raw material which melt | dissolves in water. As the molybdenum raw material, it is preferable to select one that dissolves in water. As the iron raw material, it is preferable to select one that dissolves in water.

次に、原料スラリーを微粒化処理しつつ原料溶液と混合して、触媒前駆体スラリーを調製する。このようにすることで、生成する触媒前駆体の粒径が微細かつ均一になり、高性能な触媒を再現性よく得られるからである。   Next, the raw material slurry is mixed with the raw material solution while being atomized to prepare a catalyst precursor slurry. By doing so, the particle size of the catalyst precursor to be produced becomes fine and uniform, and a high-performance catalyst can be obtained with good reproducibility.

本発明において、原料スラリーを微粒化する方法としては、ホモジナイザー、ビーズミル、ジェットミル或いは超音波照射等の微粒化効率の優れた手段を用いることが実用的である。微粒化に用いる装置としては、回転翼撹拌機、ホモジナイザー等の回転式撹拌装置、振り子式の直線運動型撹拌機、容器ごと振とうする振とう機、超音波などを用いた振動式撹拌機等の常用される撹拌装置を用いることができる。中でも、回転翼撹拌機、ホモジナイザー等の回転式撹拌装置を用いると撹拌の強度を容易に調節することが可能で工業上簡便であるので好ましい。特に、より高活性な触媒が得られる点でホモジナイザーの使用が好ましい。   In the present invention, as a method for atomizing the raw material slurry, it is practical to use means having excellent atomization efficiency such as a homogenizer, a bead mill, a jet mill, or ultrasonic irradiation. As an apparatus used for atomization, a rotary stirring device such as a rotary blade stirrer, a homogenizer, a pendulum type linear motion stirrer, a shaker that shakes the whole container, a vibrating stirrer that uses ultrasonic waves, etc. A commonly used stirring device can be used. Among them, it is preferable to use a rotary stirring device such as a rotary blade stirrer or a homogenizer because the strength of stirring can be easily adjusted and industrially simple. In particular, the use of a homogenizer is preferable in that a highly active catalyst can be obtained.

原料スラリーと原料溶液とを混合する際の温度は、後述する熱処理時の温度より低く設定される。通常40℃より高く、好ましくは50℃以上である。また、通常80℃より低く、70℃以下が好ましい。   The temperature at the time of mixing the raw material slurry and the raw material solution is set lower than the temperature at the time of heat treatment described later. Usually, it is higher than 40 ° C, preferably 50 ° C or higher. Further, it is usually lower than 80 ° C and preferably 70 ° C or lower.

このとき、触媒前駆体スラリーに含まれる触媒前駆体の平均メディアン径が0.5〜10μmとなるまで微粒化処理をする。触媒前駆体の平均メディアン径は0.8μm以上が好ましく、1.0μm以上が特に好ましい。平均メディアン径が小さすぎると触媒活性を制御し難くなる。また、触媒前駆体の平均メディアン径は、8μm以下が好ましく、6μm以下が特に好ましい。平均メディアン径を小さくすると、得られる触媒中の触媒成分が均質化し、安定した触媒活性が得られるようになる。なお、触媒前駆体の平均メディアン径は、例えば、島津製作所製流動分布測定装置SALD−7000(商品名)を用いて測定することができる。   At this time, the atomization process is performed until the average median diameter of the catalyst precursor contained in the catalyst precursor slurry becomes 0.5 to 10 μm. The average median diameter of the catalyst precursor is preferably 0.8 μm or more, and particularly preferably 1.0 μm or more. If the average median diameter is too small, it becomes difficult to control the catalyst activity. The average median diameter of the catalyst precursor is preferably 8 μm or less, and particularly preferably 6 μm or less. When the average median diameter is reduced, the catalyst components in the obtained catalyst are homogenized, and a stable catalytic activity can be obtained. The average median diameter of the catalyst precursor can be measured using, for example, a flow distribution measuring device SALD-7000 (trade name) manufactured by Shimadzu Corporation.

本発明の方法で製造された触媒の性能が高い要因としては、触媒前駆体の粒子径を制御していることだけでなく、触媒前駆体の形成過程で表面活性が変化するためだと推定する。そして、その方法の一つとして、原料スラリーと原料溶液との混合時に微粒化処理して、かつ触媒前駆体スラリーに含まれる触媒前駆体の粒子径を上記のように制御することが効果的だと考えられる。したがって、原料スラリーと原料溶液との混合後に微粒化処理して、結果として触媒前駆体スラリーに含まれる触媒前駆体の粒子径を上記のように制御しても、本発明の効果は得られない。   It is estimated that the high performance of the catalyst produced by the method of the present invention is not only because the particle size of the catalyst precursor is controlled, but also because the surface activity changes during the formation process of the catalyst precursor. . As one of the methods, it is effective to perform the atomization process when mixing the raw material slurry and the raw material solution, and to control the particle size of the catalyst precursor contained in the catalyst precursor slurry as described above. it is conceivable that. Therefore, even if the atomization treatment is performed after mixing the raw material slurry and the raw material solution, and the particle size of the catalyst precursor contained in the catalyst precursor slurry is controlled as described above, the effect of the present invention cannot be obtained. .

そして、必要に応じて前記触媒前駆体スラリーを熱処理する。熱処理とは、加熱して行う処理を言い、熟成、乾燥、焼成等を適宜組み合わせて行うことができる。   And the said catalyst precursor slurry is heat-processed as needed. The heat treatment refers to a treatment performed by heating, and can be performed by appropriately combining aging, drying, firing, and the like.

熟成の温度は80〜105℃が好ましい。熟成の時間は30分以上が好ましく、より好ましくは60分以上である。熟成の時間は長くても構わないが、通常は300分以下で行う。なお、「熟成」とは、上記触媒前駆体スラリーに熱を加えることで、上記触媒前駆体スラリーに含まれる触媒前駆体の分散斑を解消し、均質化させることである。   The aging temperature is preferably 80 to 105 ° C. The aging time is preferably 30 minutes or more, more preferably 60 minutes or more. Although the aging time may be long, it is usually performed in 300 minutes or less. “Aging” is to eliminate the dispersion of the catalyst precursor contained in the catalyst precursor slurry and homogenize it by applying heat to the catalyst precursor slurry.

熟成を終えた触媒前駆体スラリーは、乾燥して粒子状にすることが好ましい。触媒前駆体スラリーを乾燥して粒子状にする方法は特に限定されず、例えば、スプレー乾燥機を用いて乾燥する方法、スラリードライヤーを用いて乾燥する方法、ドラムドライヤーを用いて乾燥する方法、蒸発乾固して塊状の乾燥物を粉砕する方法等が適用できる。中でも、乾燥と同時に粒子が得られる点、得られる粒子の形状が本発明に適し整った球形である点から、スプレー乾燥機を用いて乾燥球状粒子を得ることが好ましい。乾燥条件は乾燥方法により異なるが、スプレー乾燥機を用いる場合、入口温度は通常100〜500℃、出口温度は通常100℃以上、好ましくは105〜200℃である。   The catalyst precursor slurry that has been aged is preferably dried to form particles. The method of drying the catalyst precursor slurry to form particles is not particularly limited. For example, a method of drying using a spray dryer, a method of drying using a slurry dryer, a method of drying using a drum dryer, or evaporation. A method of pulverizing a lump of dried product by drying can be applied. Among them, it is preferable to obtain dry spherical particles using a spray dryer from the viewpoint that particles are obtained simultaneously with drying and the shape of the obtained particles is a spherical shape suitable for the present invention. Although the drying conditions vary depending on the drying method, when a spray dryer is used, the inlet temperature is usually 100 to 500 ° C, and the outlet temperature is usually 100 ° C or higher, preferably 105 to 200 ° C.

得られた乾燥粒子は、触媒原料等に由来する硝酸等の塩を含んでいる場合があり、粒子を成形して触媒成形体とした後にこれらの塩の分解温度以上で焼成すると、触媒成形体の強度が低下する恐れがある。このため、この時点で焼成して焼成粒子としておくことが好ましい。焼成条件は特に限定されず、公知の焼成条件を適用することができる。通常、焼成は200〜600℃の温度範囲で行われる。焼成時間は目的とする触媒によって適宜選択され、例えば1〜5時間とされる。   The obtained dry particles may contain a salt such as nitric acid derived from the catalyst raw material, etc., and when the particles are molded into a catalyst molded body and calcined at a decomposition temperature or higher of these salts, the catalyst molded body There is a risk that the strength of the steel will decrease. For this reason, it is preferable to calcinate at this point to obtain baked particles. The firing conditions are not particularly limited, and known firing conditions can be applied. Usually, baking is performed at a temperature range of 200-600 degreeC. The calcination time is appropriately selected depending on the target catalyst and is, for example, 1 to 5 hours.

得られた焼成粒子は、次いで成形され、触媒成形体とされる。成形方法および形状に特に限定はなく、打錠成型機、押出成形機、転動造粒機等の一般粉体用成形機を用いて、球状、リング状、円柱状、星型状等の任意の形状に成形する。また、焼成粒子は担体に担持された担持型触媒にすることもでき、その際は担体を共存下で成型すればよい。   The obtained calcined particles are then molded into a catalyst molded body. There are no particular limitations on the molding method and shape, and any shape such as a spherical shape, a ring shape, a cylindrical shape, or a star shape can be used using a general powder molding machine such as a tableting molding machine, an extrusion molding machine, or a rolling granulator. Mold to the shape of In addition, the calcined particles can be a supported catalyst supported on a carrier, and in this case, the carrier may be molded in the presence of the carrier.

触媒成形体を製造する際には、公知の添加剤、例えば、ポリビニルアルコール、カルボキシメチルセルロース等の有機化合物を添加しても良い。さらにグラファイトやケイソウ土等の無機化合物、ガラス繊維、セラミックファイバーや炭素繊維等の無機ファイバーを添加しても良い。また、担時を行う際に使用する担体の成分としては、シリカ、アルミナ、シリカ−アルミナ、マグネシア、チタニア等が挙げられる。   When manufacturing a catalyst molded body, you may add well-known additives, for example, organic compounds, such as polyvinyl alcohol and carboxymethylcellulose. Further, inorganic compounds such as graphite and diatomaceous earth, and inorganic fibers such as glass fibers, ceramic fibers and carbon fibers may be added. Moreover, as a component of the support | carrier used when performing loading, a silica, an alumina, a silica-alumina, a magnesia, titania etc. are mentioned.

上記のようにして得られた触媒は再度焼成しても構わない。焼成は通常200〜600℃の温度範囲で、1〜3時間行われる。   The catalyst obtained as described above may be calcined again. Firing is usually performed in a temperature range of 200 to 600 ° C. for 1 to 3 hours.

本発明の方法により製造された触媒の存在下、プロピレン、イソブチレン、TBAまたはMTBEを原料とする分子状酸素による気相接触酸化反応を行うことで、原料に対応する不飽和アルデヒドおよび不飽和カルボン酸を高収率で製造可能となる。原料のプロピレン、イソブチレン、TBAまたはMTBE対分子状酸素のモル比は1:0.5〜3の範囲が好ましい。原料と分子状酸素とを含む原料ガスは、不活性ガスで希釈して用いることが経済的である。原料ガス中の原料の濃度は、2〜40容量%が好ましい。分子状酸素源としては空気を用いることが経済的であるが、必要ならば純酸素で富化した空気も用いうる。原料ガスに水蒸気を加えてもよい。反応圧力は常圧から数気圧までが良い。反応温度は200〜450℃の範囲で選ぶことができるが、特に250〜400℃の範囲が好ましい。反応器中の触媒をシリカ、アルミナ、シリカ−アルミナ、シリコンカーバイト、セラミックボールやステンレス鋼等の不活性物質で希釈しても良い。   An unsaturated aldehyde and an unsaturated carboxylic acid corresponding to the raw material are obtained by performing a gas phase catalytic oxidation reaction with molecular oxygen using propylene, isobutylene, TBA or MTBE as a raw material in the presence of the catalyst produced by the method of the present invention. Can be produced in a high yield. The molar ratio of raw material propylene, isobutylene, TBA or MTBE to molecular oxygen is preferably in the range of 1: 0.5-3. It is economical to use a raw material gas containing a raw material and molecular oxygen diluted with an inert gas. The concentration of the raw material in the raw material gas is preferably 2 to 40% by volume. Although it is economical to use air as the molecular oxygen source, air enriched with pure oxygen can also be used if necessary. Water vapor may be added to the source gas. The reaction pressure is preferably from normal pressure to several atmospheres. The reaction temperature can be selected in the range of 200 to 450 ° C, but the range of 250 to 400 ° C is particularly preferable. The catalyst in the reactor may be diluted with an inert substance such as silica, alumina, silica-alumina, silicon carbide, ceramic balls or stainless steel.

以下、本発明の方法による触媒の製造例およびその触媒を用いた反応例を具体的に説明する。説明中「部」は質量部を意味する。原料ガスおよび生成物の分析はガスクロマトグラフィーによる。微粒化処理には回転式ホモジナイザーは特殊機化工業社製T.K.ホモミクサーMARKII(商品名)(以下、ホモミクサー微粒化装置と称する)を用い、回転数12000rpmの条件で行った。触媒前駆体スラリーに含まれる粒子の平均メディアン径は、島津製作所製流動分布測定装置SALD−7000(商品名)を用いて測定した。触媒の元素の組成(酸素を除く)は、アンモニア水に溶解した触媒をICP発光分析法と原子吸光分析法により見積もった。   Hereinafter, a catalyst production example by the method of the present invention and a reaction example using the catalyst will be specifically described. In the description, “parts” means parts by mass. Source gas and product analysis is by gas chromatography. For atomization, a rotary homogenizer is manufactured by T.K. K. A homomixer MARKII (trade name) (hereinafter referred to as a homomixer atomizer) was used under the condition of a rotational speed of 12000 rpm. The average median diameter of the particles contained in the catalyst precursor slurry was measured using a flow distribution measuring device SALD-7000 (trade name) manufactured by Shimadzu Corporation. The elemental composition of the catalyst (excluding oxygen) was estimated by ICP emission analysis and atomic absorption analysis of the catalyst dissolved in aqueous ammonia.

また、実施例および比較例中の原料(イソブチレン)の反応率、生成する不飽和アルデヒド(メタクロレイン)および不飽和カルボン酸(メタクリル酸)の選択率、生成する不飽和アルデヒドおよび不飽和カルボン酸の合計収率(以下、単に合計収率と称す)は次式により算出した。
原料の反応率(%)=A/B×100
不飽和アルデヒドの選択率(%)=C/A×100
不飽和カルボン酸の選択率(%)=D/A×100
合計収率(%)=(C+D)/B×100
ここで、Aは反応した原料のモル数、Bは供給した原料のモル数、Cは生成した不飽和アルデヒドのモル数、Dは生成した不飽和カルボン酸のモル数である。
Moreover, the reaction rate of the raw material (isobutylene) in an Example and a comparative example, the selectivity of the unsaturated aldehyde (methacrolein) and unsaturated carboxylic acid (methacrylic acid) to produce | generate, the unsaturated aldehyde and unsaturated carboxylic acid to produce | generate The total yield (hereinafter simply referred to as total yield) was calculated according to the following formula.
Raw material reaction rate (%) = A / B × 100
Selectivity of unsaturated aldehyde (%) = C / A × 100
Selectivity of unsaturated carboxylic acid (%) = D / A × 100
Total yield (%) = (C + D) / B × 100
Here, A is the number of moles of the reacted raw material, B is the number of moles of the supplied raw material, C is the number of moles of the generated unsaturated aldehyde, and D is the number of moles of the generated unsaturated carboxylic acid.

〔実施例1〕
60℃の純水1000部に、パラモリブデン酸アンモニウム500部、パラタングステン酸アンモニウム12.4部、硝酸セシウム23.0部、三酸化アンチモン27.4部および三酸化ビスマス33.0部を加え、攪拌してA−1液(原料スラリー)を得た。これとは別に、室温の純水1000部に、硝酸第二鉄209.8部、硝酸ニッケル75.5部、硝酸コバルト453.3部、硝酸鉛31.3部および85質量%リン酸水溶液5.6部を順次加え、溶解してB液(原料溶液)を得た。
[Example 1]
To 1000 parts of pure water at 60 ° C., 500 parts of ammonium paramolybdate, 12.4 parts of ammonium paratungstate, 23.0 parts of cesium nitrate, 27.4 parts of antimony trioxide and 33.0 parts of bismuth trioxide are added. Stir to obtain A-1 liquid (raw material slurry). Separately from this, 1000 parts of pure water at room temperature, 209.8 parts of ferric nitrate, 75.5 parts of nickel nitrate, 453.3 parts of cobalt nitrate, 31.3 parts of lead nitrate, and 85 mass% phosphoric acid aqueous solution 5 .6 parts were sequentially added and dissolved to obtain a liquid B (raw material solution).

A−1液をホモミクサー微粒化装置により回転数12000rpmで微粒化処理しつつB液を混合し、触媒前駆体スラリーを得た。このとき触媒前駆体スラリーに含まれる粒子が平均メディアン径が1.7μmになるまで微粒化処理した。その後、この触媒前駆体スラリーを95℃に加熱、攪拌しながら1.5時間熟成し、回転円板型遠心アトマイザーを備えたスプレー乾燥機にて噴霧乾燥した。このとき、スプレー乾燥機のアトマイザーの回転数は11000rpmであり、入口温度は165℃であり、出口温度は125℃であった。   The liquid B was mixed while the liquid A-1 was atomized at a rotational speed of 12000 rpm with a homomixer atomizer, thereby obtaining a catalyst precursor slurry. At this time, the particles contained in the catalyst precursor slurry were atomized until the average median diameter became 1.7 μm. Thereafter, the catalyst precursor slurry was aged for 1.5 hours while being heated to 95 ° C. and stirred, and then spray-dried by a spray dryer equipped with a rotating disk type centrifugal atomizer. At this time, the rotation speed of the atomizer of the spray dryer was 11000 rpm, the inlet temperature was 165 ° C., and the outlet temperature was 125 ° C.

このようにして得た乾燥球状粒子をロータリーキルンを用いて空気雰囲気下300℃で1時間焼成を行い触媒焼成粉とし、その触媒焼成粉を加圧成型した。その後再び空気雰囲気下500℃で6時間焼成して触媒を得た。得られた触媒の酸素以外の元素の組成は、Mo120.2Bi0.6Fe2.2Sb0.8Ni1.1Co6.6Pb0.40.2Cs0.5であった。 The dried spherical particles thus obtained were calcined for 1 hour at 300 ° C. in an air atmosphere using a rotary kiln to obtain catalyst calcined powder, and the catalyst calcined powder was pressure-molded. Thereafter, it was again calcined at 500 ° C. for 6 hours in an air atmosphere to obtain a catalyst. The composition of elements other than oxygen in the obtained catalyst was Mo 12 W 0.2 Bi 0.6 Fe 2.2 Sb 0.8 Ni 1.1 Co 6.6 Pb 0.4 P 0.2 Cs 0.5 .

この触媒10gを内径15mmのステンレス製反応管に充填し、イソブチレン(原料)5%、分子状酸素12%、水蒸気10%および窒素73%(容量%)の原料ガスを供給し、常圧下、接触時間3.6秒、反応温度340℃の条件で反応させ、イソブチレンを分子状酸素により気相接触酸化した。その結果、イソブチレンの反応率98.5%、メタクロレインの選択率91.5%、メタクリル酸の選択率2.8%、合計収率92.9%であった。   10 g of this catalyst is packed in a stainless steel reaction tube with an inner diameter of 15 mm, and a raw material gas of 5% isobutylene (raw material), 12% molecular oxygen, 10% water vapor and 73% nitrogen (volume%) is supplied and contacted at normal pressure The reaction was carried out under conditions of a time of 3.6 seconds and a reaction temperature of 340 ° C., and isobutylene was vapor-phase contact oxidized with molecular oxygen. As a result, the reaction rate of isobutylene was 98.5%, the selectivity of methacrolein was 91.5%, the selectivity of methacrylic acid was 2.8%, and the total yield was 92.9%.

〔実施例2〕
ホモミクサー微粒化装置により回転数12000rpmで微粒化処理しつつ行ったこと以外は、実施例1におけるA−1液の調製と同様の方法で、A−2液(原料スラリー)を得た。
[Example 2]
A-2 liquid (raw material slurry) was obtained in the same manner as in the preparation of the A-1 liquid in Example 1, except that the atomization was performed with a homomixer atomizer at a rotational speed of 12000 rpm.

A−2液に対し引き続きホモミクサー微粒化装置により微粒化処理しつつB液を混合し、平均メディアン径が1.5μmになるまで微粒化処理したこと以外は、実施例1と同様にして触媒を製造し、実施例1と同様にして気相接触酸化を行った。その結果、イソブチレンの反応率98.5%、メタクロレインの選択率91.9%、メタクリル酸の選択率2.5%、合計収率93.0%であった。   The catalyst B was mixed in the same manner as in Example 1 except that the liquid B was mixed while the liquid A-2 was subsequently atomized by a homomixer atomizer and the average median diameter was 1.5 μm. The gas phase catalytic oxidation was performed in the same manner as in Example 1. As a result, the reaction rate of isobutylene was 98.5%, the selectivity of methacrolein was 91.9%, the selectivity of methacrylic acid was 2.5%, and the total yield was 93.0%.

〔比較例1〕
A−1液とB液との混合時には微粒化処理を行わず、混合後の触媒前駆体スラリーに対してホモミクサー微粒化装置により回転数12000rpmで平均メディアン径が3.5μmになるまで微粒化処理をした以外は、実施例1と同様にして触媒を製造し、実施例1と同様にして気相接触酸化を行った。その結果、イソブチレンの反応率98.1%、メタクロレインの選択率90.5%、メタクリル酸の選択率2.5%、合計収率91.2%であった。
[Comparative Example 1]
Atomization treatment is not performed during mixing of the A-1 liquid and the B liquid, and the catalyst precursor slurry after mixing is atomized by a homomixer atomizer until the average median diameter becomes 3.5 μm at a rotation speed of 12000 rpm. A catalyst was produced in the same manner as in Example 1 except that gas phase catalytic oxidation was performed in the same manner as in Example 1. As a result, the reaction rate of isobutylene was 98.1%, the selectivity of methacrolein was 90.5%, the selectivity of methacrylic acid was 2.5%, and the total yield was 91.2%.

Figure 0004809692
Figure 0004809692

以上のように、本発明の製造方法によれば、不飽和アルデヒドおよび不飽和カルボン酸を高収率で製造可能な触媒の製造方法を提供できる。   As mentioned above, according to the manufacturing method of this invention, the manufacturing method of the catalyst which can manufacture unsaturated aldehyde and unsaturated carboxylic acid with a high yield can be provided.

Claims (2)

プロピレン、イソブチレン、第三級ブチルアルコールまたはメチル第三級ブチルエーテルを分子状酸素を用いて気相接触酸化することにより、それぞれに対応する不飽和アルデヒドおよび不飽和カルボン酸を合成する際に使用される、少なくとも、モリブデン、ビスマスおよび鉄を触媒成分として含む不飽和アルデヒドおよび不飽和カルボン酸合成用触媒の製造方法であって、
触媒成分の原料のうち、少なくとも水に溶解しない原料を水に分散させた原料スラリーを調製する工程と、
他の原料を水に溶解させた原料溶液を調製する工程と、
前記原料スラリーを微粒化処理しつつ前記原料溶液と混合して、平均メディアン径が0.5〜10μmとなる触媒前駆体を含む触媒前駆体スラリーを調製する工程と、
を有することを特徴とする不飽和アルデヒドおよび不飽和カルボン酸合成用触媒の製造方法。
Used in the synthesis of unsaturated aldehydes and carboxylic acids corresponding to propylene, isobutylene, tertiary butyl alcohol or methyl tertiary butyl ether by vapor phase catalytic oxidation with molecular oxygen. A method for producing an unsaturated aldehyde and unsaturated carboxylic acid synthesis catalyst containing at least molybdenum, bismuth and iron as catalyst components,
A step of preparing a raw material slurry in which at least a raw material that does not dissolve in water among the raw materials of the catalyst component is dispersed in water;
A step of preparing a raw material solution in which other raw materials are dissolved in water;
Mixing the raw material slurry with the raw material solution while atomizing the raw material slurry to prepare a catalyst precursor slurry containing a catalyst precursor having an average median diameter of 0.5 to 10 μm;
A process for producing an unsaturated aldehyde and unsaturated carboxylic acid synthesis catalyst characterized by comprising:
前記原料スラリーを調製する工程を、微粒化処理しつつ行うことを特徴とする請求項1に記載の不飽和アルデヒドおよび不飽和カルボン酸合成用触媒の製造方法。   The method for producing an unsaturated aldehyde and unsaturated carboxylic acid synthesis catalyst according to claim 1, wherein the step of preparing the raw slurry is performed while atomizing.
JP2006050434A 2006-02-27 2006-02-27 Method for producing catalyst for synthesis of unsaturated aldehyde and unsaturated carboxylic acid Active JP4809692B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006050434A JP4809692B2 (en) 2006-02-27 2006-02-27 Method for producing catalyst for synthesis of unsaturated aldehyde and unsaturated carboxylic acid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006050434A JP4809692B2 (en) 2006-02-27 2006-02-27 Method for producing catalyst for synthesis of unsaturated aldehyde and unsaturated carboxylic acid

Publications (2)

Publication Number Publication Date
JP2007222855A JP2007222855A (en) 2007-09-06
JP4809692B2 true JP4809692B2 (en) 2011-11-09

Family

ID=38545152

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006050434A Active JP4809692B2 (en) 2006-02-27 2006-02-27 Method for producing catalyst for synthesis of unsaturated aldehyde and unsaturated carboxylic acid

Country Status (1)

Country Link
JP (1) JP4809692B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5344753B2 (en) * 2009-06-30 2013-11-20 三菱レイヨン株式会社 Process for producing catalyst for producing unsaturated aldehyde and unsaturated carboxylic acid
JP5626583B2 (en) * 2010-01-28 2014-11-19 三菱レイヨン株式会社 Catalyst for producing methacrylic acid, method for producing the same, and method for producing methacrylic acid
KR20240128939A (en) * 2022-01-27 2024-08-27 미쯔비시 케미컬 주식회사 Catalyst, method for producing catalyst, and method for producing α,β-unsaturated aldehyde and/or α,β-unsaturated carboxylic acid using the same

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07289902A (en) * 1994-04-27 1995-11-07 Mitsubishi Rayon Co Ltd Production of catalyst for synthesizing unsaturated aldehyde and unsaturated carboxylic acid
JP3321300B2 (en) * 1994-07-18 2002-09-03 三菱レイヨン株式会社 Process for producing oxide catalyst containing molybdenum, bismuth and iron
JP3288197B2 (en) * 1995-05-19 2002-06-04 三菱レイヨン株式会社 Method for producing catalyst for synthesizing methacrolein and methacrylic acid
JP3370548B2 (en) * 1997-03-19 2003-01-27 三菱レイヨン株式会社 Method for producing catalyst for synthesis of unsaturated aldehyde and unsaturated carboxylic acid
JPH1133403A (en) * 1997-07-22 1999-02-09 Mitsubishi Rayon Co Ltd Production of catalyst for synthesis of methacrylic acid and production of methacrylic acid

Also Published As

Publication number Publication date
JP2007222855A (en) 2007-09-06

Similar Documents

Publication Publication Date Title
JP4856579B2 (en) Catalyst for producing methacrylic acid, method for producing the same, and method for producing methacrylic acid
JP5678476B2 (en) Process for producing unsaturated aldehyde and unsaturated carboxylic acid
JP2008155126A (en) Method for producing metal component-containing catalyst
JP2018521851A (en) Method for producing mixed metal oxide catalyst containing molybdenum and bismuth
JP4809692B2 (en) Method for producing catalyst for synthesis of unsaturated aldehyde and unsaturated carboxylic acid
JP4863436B2 (en) Catalysts for the synthesis of unsaturated aldehydes and unsaturated carboxylic acids
CN103170362B (en) Heteropolyacid catalyst, and preparation method and application thereof
JP7006477B2 (en) A method for producing a catalyst for producing methacrylic acid, and a method for producing methacrylic acid.
JP2002233758A (en) Method for producing catalyst for synthesizing methacrylic acid, catalyst for synthesizing methacrylic acid, and method for manufacturing methacrylic acid
JP5344753B2 (en) Process for producing catalyst for producing unsaturated aldehyde and unsaturated carboxylic acid
JP4745766B2 (en) Catalyst for producing methacrylic acid, method for producing the same, and method for producing methacrylic acid
JP2005058909A (en) Production method for catalyst for synthesizing methacrylic acid
JP4372573B2 (en) Method for producing a catalyst for methacrylic acid production
JP4875480B2 (en) Method for producing metal-containing catalyst
JP2011115681A (en) Catalyst for synthesizing unsaturated aldehyde and unsaturated carboxylic acid
JP5789917B2 (en) Method for producing catalyst for producing methacrylic acid, and method for producing methacrylic acid
JP5090796B2 (en) Catalyst for producing methacrylic acid, method for producing the same, and method for producing methacrylic acid
JP5024183B2 (en) Method for producing shaped catalyst comprising heteropolyacid compound
JP2003001111A (en) Method for manufacturing catalyst for synthesizing methacrylic acid
JPH10258233A (en) Preparation of catalyst for synthesizing of unsaturated aldehyde and unsaturated carboxylic acid
JP5070089B2 (en) Catalyst for producing unsaturated aldehyde and unsaturated carboxylic acid and method for producing the same
JP2010207803A (en) Compound oxide catalyst
CN106881128B (en) Heteropolyacid salt catalyst, preparation method and application thereof
JP3347246B2 (en) Method for producing catalyst for the synthesis of unsaturated aldehydes and unsaturated carboxylic acids
JP7105395B1 (en) Catalyst precursor, catalyst using the same, method for producing compound, and method for producing catalyst

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090226

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110810

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110819

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140826

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4809692

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140826

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140826

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140826

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140826

Year of fee payment: 3

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250