JP5024183B2 - Method for producing shaped catalyst comprising heteropolyacid compound - Google Patents

Method for producing shaped catalyst comprising heteropolyacid compound Download PDF

Info

Publication number
JP5024183B2
JP5024183B2 JP2008136376A JP2008136376A JP5024183B2 JP 5024183 B2 JP5024183 B2 JP 5024183B2 JP 2008136376 A JP2008136376 A JP 2008136376A JP 2008136376 A JP2008136376 A JP 2008136376A JP 5024183 B2 JP5024183 B2 JP 5024183B2
Authority
JP
Japan
Prior art keywords
catalyst
molybdenum
heteropolyacid compound
compound containing
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008136376A
Other languages
Japanese (ja)
Other versions
JP2009279555A (en
Inventor
順二 柴田
純也 吉澤
英市 白石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP2008136376A priority Critical patent/JP5024183B2/en
Publication of JP2009279555A publication Critical patent/JP2009279555A/en
Application granted granted Critical
Publication of JP5024183B2 publication Critical patent/JP5024183B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/584Recycling of catalysts

Description

本発明は、リン及びモリブデンを含むヘテロポリ酸化合物からなる成形触媒を製造する方法に関するものである。   The present invention relates to a method for producing a shaped catalyst comprising a heteropolyacid compound containing phosphorus and molybdenum.

リン及びモリブデンを含むヘテロポリ酸化合物は、例えば、アルカン、オレフィン、不飽和アルデヒド等の酸化反応のほか、低級オレフィンと低級脂肪族カルボン酸との縮合反応やグリセリンの脱水反応等に触媒として使用されることが知られている。このヘテロポリ酸化合物を触媒として前記反応を工業的に行う場合、該へテロポリ酸化合物を成形して成形触媒とした後、これを反応管に充填し、次いで該反応管に原料を供給して行う方法が広く採用されている。かかる方法においては、前記成形触媒の形状がほぼ均一に制御されることが要求されるため、通常、篩分けにより選別された成形触媒が反応管に充填される。かかる篩分け操作の際、成形触媒が破砕されて粉体が生じ、これが触媒のロス分となっているため、該粉体を回収し、触媒の材料として使用する方法が要望されている。   Heteropolyacid compounds containing phosphorus and molybdenum are used as catalysts for, for example, oxidation reactions of alkanes, olefins, unsaturated aldehydes, etc., condensation reactions of lower olefins with lower aliphatic carboxylic acids, and dehydration reactions of glycerol. It is known. When the above reaction is carried out industrially using this heteropolyacid compound as a catalyst, the heteropolyacid compound is molded to form a molded catalyst, which is then charged into a reaction tube, and then the raw material is supplied to the reaction tube. The method is widely adopted. In such a method, since the shape of the shaped catalyst is required to be controlled almost uniformly, usually, the shaped catalyst selected by sieving is filled in the reaction tube. During the sieving operation, the molded catalyst is crushed to produce powder, which is a loss of the catalyst. Therefore, there is a demand for a method of collecting the powder and using it as a catalyst material.

かかる方法として、特開2004−351297号公報(特許文献1)には、触媒成分を含有する水性スラリーを乾燥した後、成形し、次いで焼成した後、篩分けを行って、リン及びモリブデンを含むヘテロポリ酸化合物からなる成形触媒を製造する際、篩分けの際に生じた粉体を、前記乾燥により得られる乾燥物と混合することにより、触媒の製造工程に循環させる方法が記載されている。   As such a method, Japanese Patent Application Laid-Open No. 2004-351297 (Patent Document 1) discloses that an aqueous slurry containing a catalyst component is dried, molded, then baked, and sieved to contain phosphorus and molybdenum. In the production of a molded catalyst comprising a heteropolyacid compound, a method is described in which the powder produced during sieving is circulated in the catalyst production process by mixing with the dried product obtained by the drying.

特開2004−351297号公報JP 2004-351297 A

しかしながら、前記方法により得られる成形触媒を、例えば、メタクロレイン等の酸化によるメタクリル酸の製造に使用した場合には、メタクロレインの転化率やメタクリル酸の選択率の点で必ずしも十分ではないことがあった。   However, when the molding catalyst obtained by the above method is used for the production of methacrylic acid by oxidation of methacrolein or the like, it may not always be sufficient in terms of methacrolein conversion and methacrylic acid selectivity. there were.

そこで、本発明の目的は、篩分けの際に生じた粉体を触媒の材料として有効に使用して、リン及びモリブデンを含むヘテロポリ酸化合物からなる成形触媒を製造する方法を提供することにあり、くわえて、得られる成形触媒を、例えば、メタクロレイン等の酸化によるメタクリル酸の製造に使用した場合に、良好な転化率と選択率を与える成形触媒を製造する方法を提供することにある。   Accordingly, an object of the present invention is to provide a method for producing a molded catalyst comprising a heteropolyacid compound containing phosphorus and molybdenum by effectively using the powder generated during sieving as a catalyst material. In addition, an object of the present invention is to provide a method for producing a shaped catalyst which gives a good conversion and selectivity when the obtained shaped catalyst is used for producing methacrylic acid by oxidation of methacrolein or the like.

かかる状況のもと、本発明者らは鋭意検討した結果、リン及びモリブデンを含むヘテロポリ酸化合物からなる粉体に水を吸湿させて得られる吸湿物と、触媒成分を含有する水性スラリーを乾燥して得られる乾燥物とを混合した後、成形し、次いで焼成した後、篩分けを行うことにより、リン及びモリブデンを含むヘテロポリ酸化合物からなる成形触媒を製造するとともに、該篩分け操作で得られた粉体を前述した水による吸湿処理に供給することにより、前記目的を達成しうることを見出し、本発明を完成するに至った。   Under such circumstances, as a result of intensive investigations, the present inventors dried a moisture absorbent obtained by absorbing water into a powder comprising a heteropolyacid compound containing phosphorus and molybdenum, and an aqueous slurry containing a catalyst component. The resulting dried product is mixed, molded, calcined, and then subjected to sieving to produce a molded catalyst composed of a heteropolyacid compound containing phosphorus and molybdenum, and obtained by the sieving operation. It was found that the above object can be achieved by supplying the above powder to the above-described moisture absorption treatment with water, and the present invention has been completed.

すなわち、本発明は、リン及びモリブデンを含むヘテロポリ酸化合物からなる成形触媒の製造方法であって、下記工程(1)〜(6)を含み、かつ工程(6)で得られる粉体を工程(2)の粉体として使用することを特徴とするリン及びモリブデンを含むヘテロポリ酸化合物からなる成形触媒の製造方法を提供するものである。   That is, this invention is a manufacturing method of the shaping | molding catalyst which consists of a heteropolyacid compound containing phosphorus and molybdenum, Comprising: The powder obtained by the process (6) including the following process (1)-(6) (step (6)) The present invention provides a method for producing a shaped catalyst comprising a heteropolyacid compound containing phosphorus and molybdenum, characterized by being used as a powder in 2).

工程(1):触媒成分を含有する水性スラリーを乾燥して乾燥物を得る工程
工程(2):リン及びモリブデンを含むヘテロポリ酸化合物からなる粉体に水を吸湿させて吸湿物を得る工程
工程(3):工程(1)で得られる乾燥物と、工程(2)で得られる吸湿物とを混合して混合物を得る工程
工程(4):工程(3)で得られる混合物を成形して成形体を得る工程
工程(5):工程(4)で得られる成形体を焼成して焼成物を得る工程
工程(6):工程(5)で得られる焼成物を篩分けすることにより、リン及びモリブデンを含むヘテロポリ酸化合物からなる成形触媒と、リン及びモリブデンを含むヘテロポリ酸化合物からなる粉体とに分離する工程
Step (1): Step of drying an aqueous slurry containing a catalyst component to obtain a dried product Step (2): Step of obtaining moisture by absorbing water into a powder comprising a heteropolyacid compound containing phosphorus and molybdenum (3): The dried product obtained in step (1) and the hygroscopic product obtained in step (2) are mixed to obtain a mixture. Step (4): The mixture obtained in step (3) is molded. Step (5) for obtaining a molded body: Step (6) for obtaining a baked product by baking the molded body obtained in step (4): By screening the baked product obtained in step (5), phosphorus And separating into a molding catalyst comprising a heteropolyacid compound containing molybdenum and molybdenum and a powder comprising a heteropolyacid compound containing phosphorus and molybdenum

本発明によれば、前記粉体を触媒の材料として有効に使用して、リン及びモリブデンを含むヘテロポリ酸化合物からなる成形触媒を製造することができ、くわえて、得られる成形触媒を、例えば、メタクロレイン等の酸化によるメタクリル酸の製造に使用した場合には、メタクロレインを良好な転化率で酸化して、良好な選択率でメタクリル酸を製造することができる。   According to the present invention, it is possible to produce a molded catalyst composed of a heteropolyacid compound containing phosphorus and molybdenum by effectively using the powder as a catalyst material. When used for the production of methacrylic acid by oxidation of methacrolein or the like, methacrolein can be oxidized with a good conversion rate to produce methacrylic acid with a good selectivity.

以下、本発明を詳細に説明する。本発明が製造の対象とする成形触媒は、リン及びモリブデンを必須とするヘテロポリ酸化合物からなるものであり、遊離のヘテロポリ酸からなるものであってもよいし、ヘテロポリ酸の塩からなるものであってもよい。中でも、ヘテロポリ酸の酸性塩(部分中和塩)からなるものが好ましく、さらに好ましくはケギン型ヘテロポリ酸の酸性塩からなるものである。   Hereinafter, the present invention will be described in detail. The molding catalyst to be produced by the present invention is composed of a heteropolyacid compound essentially containing phosphorus and molybdenum, and may be composed of a free heteropolyacid or a salt of a heteropolyacid. There may be. Especially, what consists of an acidic salt (partially neutralized salt) of heteropolyacid is preferable, More preferably, it consists of an acidic salt of Keggin type heteropolyacid.

前記触媒には、リン及びモリブデン以外の元素として、バナジウムが含まれるのが望ましく、また、カリウム、ルビジウム、セシウム及びタリウムから選ばれる少なくとも1種の元素(以下、X元素ということがある)や、銅、ヒ素、アンチモン、ホウ素、銀、ビスマス、鉄、コバルト、亜鉛、ランタン及びセリウムから選ばれる少なくとも1種の元素(以下、Y元素ということがある)が含まれるのが望ましい。通常、モリブデン12原子に対して、リン、バナジウム、X元素及びY元素が、それぞれ3原子以下の割合で含まれる触媒が、好適に用いられる。   The catalyst preferably contains vanadium as an element other than phosphorus and molybdenum, and at least one element selected from potassium, rubidium, cesium and thallium (hereinafter sometimes referred to as X element), It is desirable that at least one element selected from copper, arsenic, antimony, boron, silver, bismuth, iron, cobalt, zinc, lanthanum and cerium (hereinafter sometimes referred to as Y element) is included. Usually, a catalyst containing phosphorus, vanadium, X element and Y element at a ratio of 3 atoms or less to 12 atoms of molybdenum is preferably used.

前記触媒の原料としては、通常、前記触媒に含まれる各元素を含む化合物、例えば、各元素のオキソ酸、オキソ酸塩、酸化物、硝酸塩、炭酸塩、水酸化物、ハロゲン化物等が、所望の原子比を満たすような割合で用いられる。例えば、リンを含む化合物としては、リン酸、リン酸塩等が用いられ、モリブデンを含む化合物としては、モリブデン酸、モリブデン酸塩、酸化モリブデン、塩化モリブデン等が用いられ、バナジウムを含む化合物としては、バナジン酸、バナジン酸塩、酸化バナジウム、塩化バナジウム等が用いられる。また、X元素を含む化合物としては、酸化物、硝酸塩、炭酸塩、水酸化物、ハロゲン化物等が用いられ、Y元素を含む化合物としては、オキソ酸、オキソ酸塩、硝酸塩、炭酸塩、水酸化物、ハロゲン化物等が用いられる。   As the catalyst raw material, a compound containing each element contained in the catalyst, for example, an oxo acid, oxo acid salt, oxide, nitrate, carbonate, hydroxide, halide, or the like of each element is desired. It is used at a ratio that satisfies the atomic ratio of For example, phosphoric acid, phosphate, etc. are used as the compound containing phosphorus, and molybdic acid, molybdate, molybdenum oxide, molybdenum chloride, etc. are used as the compound containing molybdenum, and as the compound containing vanadium, Vanadic acid, vanadate, vanadium oxide, vanadium chloride and the like are used. In addition, oxides, nitrates, carbonates, hydroxides, halides and the like are used as the compounds containing the X element, and oxo acids, oxoacid salts, nitrates, carbonates, water, and the like as the compounds containing the Y element. Oxides, halides and the like are used.

本発明では、まず、前述した触媒の原料を含有する水性スラリー、すなわち触媒成分を含有する水性スラリーを乾燥して乾燥物を得る〔工程(1)〕。この水性スラリーは、前述した触媒の原料と水とを混合することにより得ることができる。この際、水の使用量や混合温度は適宜選択される。また、前記乾燥は、蒸発乾固法、噴霧乾燥法、ドラム乾燥法など公知の方法により行うことができる。中でも、スプレードライヤー等を用いて噴霧乾燥し、粉末状の乾燥物とするのが好ましい。尚、乾燥時間や乾燥温度は適宜選択される。   In the present invention, first, the aqueous slurry containing the catalyst raw material, that is, the aqueous slurry containing the catalyst component, is dried to obtain a dried product (step (1)). This aqueous slurry can be obtained by mixing the above-mentioned catalyst raw material and water. At this time, the amount of water used and the mixing temperature are appropriately selected. Moreover, the said drying can be performed by well-known methods, such as an evaporative drying method, a spray drying method, and a drum drying method. Especially, it is preferable to spray-dry using a spray dryer etc. and to make a powdery dried material. The drying time and drying temperature are selected as appropriate.

一方、リン及びモリブデンを含むヘテロポリ酸化合物からなる粉体に水を吸湿させて吸湿物を得る〔工程(2)〕。ここでいう粉体は、成形触媒を最終的に得る前の篩分け操作の際に得られる粉体であり、その詳細は後述する。本発明では、かかる粉体に水による吸湿処理を行い、得られる吸湿物を前記乾燥物と混合して触媒の製造工程の一部に循環させることにより、該粉体を有効に使用することができる。くわえて、触媒性能に優れた成形触媒を製造することができる。   On the other hand, water is absorbed into the powder composed of a heteropolyacid compound containing phosphorus and molybdenum to obtain a hygroscopic material [step (2)]. The powder here is a powder obtained in the sieving operation before finally obtaining the molded catalyst, and details thereof will be described later. In the present invention, it is possible to effectively use the powder by subjecting the powder to moisture absorption treatment with water, and mixing the obtained moisture-absorbed material with the dried product and circulating it in a part of the catalyst production process. it can. In addition, a molded catalyst having excellent catalyst performance can be produced.

吸湿処理に用いる水としては、気体状の水(水蒸気)、液体状の水、固体状の水(氷)のいずれを用いてもよく、必要に応じてこれらの2種以上を用いてもよい。取り扱いの簡便さからは、気体状の水(水蒸気)や液体状の水が好ましい。水蒸気を用いる場合は、水蒸気を含むガスの雰囲気下で吸湿処理を行ってもよく、水蒸気を含むガスの流通下で吸湿処理を行ってもよい。液体状の水を用いる場合は、例えば、前記粉体に水を噴霧させることにより、吸湿させることができる。尚、吸湿処理の時間や温度は適宜選択される。   As water used for the moisture absorption treatment, any of gaseous water (water vapor), liquid water, and solid water (ice) may be used, and two or more of these may be used as necessary. . From the viewpoint of ease of handling, gaseous water (water vapor) or liquid water is preferred. When water vapor is used, the moisture absorption treatment may be performed in an atmosphere of a gas containing water vapor, or the moisture absorption treatment may be performed under the circulation of a gas containing water vapor. When liquid water is used, moisture can be absorbed, for example, by spraying water on the powder. In addition, the time and temperature of a moisture absorption process are selected suitably.

吸湿物の含水量は、前記乾燥物と十分に混合しうる程度であればよいが、触媒性能の点から吸湿物の全量に対して2重量%以上であるのが好ましい。一方、かかる含水量が高すぎると吸湿物を移送しにくくなるため、かかる含水量は吸湿物の全量に対して20重量%以下であるのが好ましい。かかる含水量は、前述した吸湿処理における水の使用量を調整することにより、制御することができる。   The moisture content of the hygroscopic material may be such that it can be sufficiently mixed with the dried product, but it is preferably 2% by weight or more based on the total amount of the hygroscopic material from the viewpoint of catalyst performance. On the other hand, when the water content is too high, it becomes difficult to transfer the hygroscopic material. Therefore, the water content is preferably 20% by weight or less with respect to the total amount of the hygroscopic material. Such water content can be controlled by adjusting the amount of water used in the moisture absorption treatment described above.

前記吸湿物の含水量Xは、吸湿物の全重量をWとし、吸湿物から水分を除いた固形分重量をW0としたとき、下記(I)により求めることができる。   The moisture content X of the hygroscopic material can be obtained from the following (I), where W is the total weight of the hygroscopic material and W0 is the solid weight obtained by removing moisture from the hygroscopic material.

X=(W−W0)/W×100(%) 式(I) X = (W−W0) / W × 100 (%) Formula (I)

(式中、Xは吸湿物に占める水の含有量を表し、Wは吸湿物の全重量を表し、W0は吸湿物から水分を除いた固形分重量を表す。) (In the formula, X represents the content of water in the hygroscopic material, W represents the total weight of the hygroscopic material, and W0 represents the solid content weight obtained by removing moisture from the hygroscopic material.)

また、前記固形分重量は、吸湿物を空気雰囲気下、300℃で3時間加熱処理を行うことにより求めることができる。   Moreover, the said solid content weight can be calculated | required by heat-treating a moisture absorption thing at 300 degreeC in an air atmosphere for 3 hours.

次いで、前記乾燥物と前記吸湿物とを混合して混合物を得る〔工程(3)〕。この際、吸湿物の使用量は、特に制限はないが、後の成形工程における成形の容易性から、乾燥物100重量部に対して、吸湿物から水分を除いた固形分重量換算で100重量部以下になるように調整されるのが好ましい。尚、混合温度や混合時間は適宜選択される。   Next, the dried product and the hygroscopic product are mixed to obtain a mixture [step (3)]. At this time, the use amount of the hygroscopic material is not particularly limited, but from the ease of molding in the subsequent molding step, the weight of the dry matter is 100 parts by weight in terms of the solid content excluding moisture from the hygroscopic material. It is preferable to adjust so that it may become below a part. The mixing temperature and mixing time are appropriately selected.

かくして得られる混合物を成形して成形体を得る〔工程(4)〕。かかる成形方法については、従来公知の方法を採用することができ、必要に応じて、円柱状、球状、リング状等にすることができる。   The mixture thus obtained is molded to obtain a molded body [step (4)]. About this shaping | molding method, a conventionally well-known method can be employ | adopted and can be made into a column shape, spherical shape, a ring shape etc. as needed.

引き続き、前記成形体を焼成して焼成物を得る〔工程(5)〕。かかる焼成は、従来公知の方法を採用することができ、酸素等の酸化性ガスの雰囲気下で行ってもよいし、窒素等の非酸化性ガスの雰囲気下で行ってもよい。また、酸化性ガスの雰囲気下で行う場合には、その温度は300〜400℃程度でよく、非酸化性ガスの雰囲気下であれば400〜500℃程度であればよい。焼成温度が高すぎると成形触媒が分解することがあり、焼成温度が低すぎると十分な触媒活性が得られないことがある。   Subsequently, the molded body is fired to obtain a fired product [step (5)]. Such firing may be performed by a conventionally known method, and may be performed in an atmosphere of an oxidizing gas such as oxygen, or may be performed in an atmosphere of a non-oxidizing gas such as nitrogen. Moreover, when performing in the atmosphere of oxidizing gas, the temperature may be about 300-400 degreeC, and if it is in the atmosphere of non-oxidizing gas, what is necessary is just about 400-500 degreeC. If the calcination temperature is too high, the formed catalyst may be decomposed, and if the calcination temperature is too low, sufficient catalytic activity may not be obtained.

尚、前記焼成の前に、酸化性ガス又は非酸化性ガスの雰囲気下に、180〜300℃程度の温度で保持して、熱処理(前焼成)を行うのが好ましい。   In addition, before the said baking, it is preferable to hold | maintain at the temperature of about 180-300 degreeC in the atmosphere of oxidizing gas or non-oxidizing gas, and to perform heat processing (pre-baking).

前記焼成により得られる焼成物を篩分けすることにより、リン及びモリブデンを含むヘテロポリ酸化合物からなる成形触媒と、リン及びモリブデンを含むヘテロポリ酸化合物からなる粉体とに分離する〔工程(6)〕。かかる篩分け操作を行うことにより、形状がほぼ均一である前記成形触媒を選別すると共に、該篩分け操作により生じた粉体や、篩分けする前の焼成物の中に含まれていた粉体を分離、回収する。本発明では、ここで得られた粉体を、前記工程(2)における粉体として使用することにより、該粉体を有効使用するものである。尚、篩を通過した粉体のうち、比較的大きな形状のものがある場合には、それを破砕して粉体とすることができる。また、粉体の粒径は1mm以下であるのが好ましい。   By sieving the fired product obtained by the firing, it is separated into a molding catalyst made of a heteropolyacid compound containing phosphorus and molybdenum and a powder made of a heteropolyacid compound containing phosphorus and molybdenum [Step (6)]. . By performing the sieving operation, the molded catalyst having a substantially uniform shape is selected, and the powder produced by the sieving operation or the powder contained in the fired product before sieving. Is separated and recovered. In the present invention, the powder obtained here is effectively used by using it as the powder in the step (2). In addition, when there exists a thing of comparatively big shape among the powder which passed the sieve, it can be crushed and can be made into a powder. The particle size of the powder is preferably 1 mm or less.

かくしてリン及びモリブデンを含むヘテロポリ酸化合物からなる成形触媒を製造することができる。この成形触媒は、不飽和アルデヒド等の酸化による不飽和カルボン酸の製造(特開2004−351297号公報;特許文献1)、アルカンの酸化によるアルコール及び/又はケトンの製造(特開2000−319211号公報)、オレフィンの酸化によるエポキシドの製造(特開2005−104902号公報、及び特開平5−255292号公報)、低級オレフィンと低級脂肪族カルボン酸との反応による低級脂肪酸エステルの製造(特開2002−79090号公報)、又はグリセリンの脱水反応によるアクロレインの製造(特開2008−88149号公報)等に使用することができ、好ましくはメタクリル酸の製造に使用することができる。   Thus, a molded catalyst composed of a heteropolyacid compound containing phosphorus and molybdenum can be produced. This molding catalyst is produced by producing an unsaturated carboxylic acid by oxidation of an unsaturated aldehyde or the like (Japanese Patent Laid-Open No. 2004-351297; Patent Document 1), or by producing an alcohol and / or a ketone by oxidizing an alkane (Japanese Patent Laid-Open No. 2000-319211 Publication), production of epoxides by oxidation of olefins (Japanese Patent Laid-Open Nos. 2005-104902 and 5-255292), production of lower fatty acid esters by reaction of lower olefins and lower aliphatic carboxylic acids (JP 2002-2002). No. -79090), or the production of acrolein by dehydration reaction of glycerin (Japanese Patent Laid-Open No. 2008-88149), and the like, preferably for the production of methacrylic acid.

本発明における成形触媒を使用して工業的に前記製造を行う場合、通常、該成形触媒を反応管に充填し、この反応管に原料を供給することにより行う。反応温度や反応時間、反応溶媒などは、上記公知の方法に基づいて適宜選択することができる。   When the production is carried out industrially using the shaped catalyst in the present invention, it is usually carried out by filling the shaped catalyst into a reaction tube and supplying the raw material to the reaction tube. The reaction temperature, reaction time, reaction solvent, and the like can be appropriately selected based on the above known methods.

本発明における成形触媒は、好ましくは、メタクロレイン、イソブチルアルデヒド、イソブタン及びイソ酪酸から選ばれる少なくとも1種の化合物を気相接触酸化反応に付してメタクリル酸を製造する際に使用される。以下、本発明における成形触媒をメタクリル酸の製造に使用する場合を例に挙げて、さらに説明する。   The forming catalyst in the present invention is preferably used when producing methacrylic acid by subjecting at least one compound selected from methacrolein, isobutyraldehyde, isobutane and isobutyric acid to a gas phase catalytic oxidation reaction. Hereinafter, the case where the shaping | molding catalyst in this invention is used for manufacture of methacrylic acid is mentioned as an example, and it demonstrates further.

メタクリル酸の製造は、通常、固定床多管式反応器に成形触媒を充填し、これに原料化合物と酸素を含む原料ガスを供給することにより行われる。酸素源としては、通常、空気が用いられ、また原料ガス中には、原料化合物及び酸素以外の成分として、窒素、二酸化炭素、一酸化炭素、水蒸気等が含まれうる。   The production of methacrylic acid is usually carried out by filling a fixed bed multi-tubular reactor with a forming catalyst and supplying a raw material gas containing a raw material compound and oxygen thereto. As the oxygen source, air is usually used, and the raw material gas may contain nitrogen, carbon dioxide, carbon monoxide, water vapor and the like as components other than the raw material compound and oxygen.

例えば、メタクロレインを原料として用いる場合、通常、原料ガス中のメタクロレイン濃度は1〜10容量%、メタクロレインに対する酸素のモル比は1〜5、空間速度は500〜5000h-1(標準状態基準)、反応温度は250〜350℃、反応圧力は0.1〜0.3MPaの条件下に反応が行われる。なお、原料のメタクロレインは必ずしも高純度の精製品である必要はなく、例えば、イソブチレンやt−ブチルアルコールの気相接触酸化反応により得られたメタクロレインを含む反応生成ガスを用いることもできる。 For example, when methacrolein is used as a raw material, the concentration of methacrolein in the raw material gas is usually 1 to 10% by volume, the molar ratio of oxygen to methacrolein is 1 to 5, and the space velocity is 500 to 5000 h −1 (standard condition standard ), The reaction temperature is 250 to 350 ° C., and the reaction pressure is 0.1 to 0.3 MPa. The raw material methacrolein is not necessarily a highly purified product, and for example, a reaction product gas containing methacrolein obtained by a gas phase catalytic oxidation reaction of isobutylene or t-butyl alcohol can be used.

また、イソブタンを原料として用いる場合、通常、原料ガス中のイソブタン濃度は1〜85容量%、水蒸気濃度は3〜30容量%、イソブタンに対する酸素のモル比は0.05〜4、空間速度は400〜5000h-1(標準状態基準)、反応温度は250〜400℃、反応圧力は0.1〜1MPaの条件下に反応が行われる。イソ酪酸やイソブチルアルデヒドを原料として用いる場合には、通常、メタクロレインを原料として用いる場合と、ほぼ同様の反応条件が採用される。 When isobutane is used as a raw material, the isobutane concentration in the raw material gas is usually 1 to 85% by volume, the water vapor concentration is 3 to 30% by volume, the molar ratio of oxygen to isobutane is 0.05 to 4, and the space velocity is 400. The reaction is carried out under conditions of ˜5000 h −1 (standard condition standard), reaction temperature of 250 to 400 ° C., and reaction pressure of 0.1 to 1 MPa. When isobutyric acid or isobutyraldehyde is used as a raw material, generally the same reaction conditions are employed as when methacrolein is used as a raw material.

以下、本発明の実施例を示すが、本発明はこれらによって限定されるものではない。   Examples of the present invention will be described below, but the present invention is not limited thereto.

〔成形触媒の活性試験法〕
成形触媒9gを、内径16mmのガラス製マイクロリアクターに充填し、この中に、メタクロレイン、空気、スチーム及び窒素を混合して調製したメタクロレイン4容量%、分子状酸素12容量%、水蒸気17容量%の組成の原料ガスを、空間速度670h-1で供給して、炉温(マイクロリアクターを加熱するための炉の温度)355℃にて反応を行うことにより、成形触媒を熱処理した。その後、上記と同じ組成の原料ガスを、上記と同じ空間速度で供給して、炉温280℃にて反応を行い、この反応開始から1時間経過時のメタクロレイン転化率、メタクリル酸選択率及びメタクリル酸収率を求めた。
[Activity test method of molded catalyst]
9 g of the formed catalyst was filled in a glass microreactor having an inner diameter of 16 mm, and 4% by volume of methacrolein prepared by mixing methacrolein, air, steam and nitrogen, 12% by volume of molecular oxygen, and 17% by volume of steam. The molded catalyst was heat-treated by supplying a raw material gas having a composition of% at a space velocity of 670 h −1 and reacting at a furnace temperature (furnace temperature for heating the microreactor) of 355 ° C. Thereafter, a raw material gas having the same composition as described above is supplied at the same space velocity as described above, and the reaction is performed at a furnace temperature of 280 ° C., methacrolein conversion, methacrylic acid selectivity, The methacrylic acid yield was determined.

参考例1(a)
〔粉末状の乾燥物の調製〕
40℃に加熱したイオン交換水224kgに、硝酸セシウム[CsNO3]38.2kg、75重量%オルトリン酸27.4kg、及び67.5重量%硝酸26.1kgを溶解し、これをA液とした。一方、40℃に加熱したイオン交換水330kgに、モリブデン酸アンモニウム4水和物[(NH4)6Mo724・4H2O]297kgを溶解した後、メタバナジン酸アンモニウム[NH4VO3]8.19kgを懸濁させ、これをB液とした。A液とB液を40℃に調整し、攪拌下、B液にA液を滴下した後、密閉容器中で120℃にて5.8時間攪拌し、次いで、三酸化アンチモン[Sb23]10.2kg及び硝酸銅3水和物[Cu(NO3)2・3H2O]10.2kgを、イオン交換水23kgに懸濁させて添加した後、密封容器中で120℃にて5時間攪拌した。こうして得られたスラリーをスプレードライヤーにて乾燥して、粉末状の乾燥物を得た。
Reference Example 1 (a)
(Preparation of dry powder)
In 224 kg of ion-exchanged water heated to 40 ° C., 38.2 kg of cesium nitrate [CsNO 3 ], 27.4 kg of 75 wt% orthophosphoric acid, and 26.1 kg of 67.5 wt% nitric acid were dissolved, and this was used as solution A. . On the other hand, after dissolving 297 kg of ammonium molybdate tetrahydrate [(NH 4 ) 6 Mo 7 O 24 · 4H 2 O] in 330 kg of ion-exchanged water heated to 40 ° C., ammonium metavanadate [NH 4 VO 3 ] 8.19 kg was suspended and this was used as B liquid. The liquid A and liquid B were adjusted to 40 ° C., and the liquid A was added dropwise to the liquid B with stirring. The liquid was stirred in a sealed container at 120 ° C. for 5.8 hours, and then antimony trioxide [Sb 2 O 3 ] 10.2 kg and 10.2 kg of copper nitrate trihydrate [Cu (NO 3 ) 2 .3H 2 O] were suspended in 23 kg of ion-exchanged water and then added at 120 ° C. in a sealed container. Stir for hours. The slurry thus obtained was dried with a spray dryer to obtain a powdery dried product.

参考例1(b)
〔成形触媒の調製〕
参考例1(a)で得られた乾燥物100重量部に対して、セラミックファイバー4重量部、硝酸アンモニウム13重量部、及びイオン交換水9.7重量部を加えて混練し、直径5mm、高さ6mmの円柱状に押出成形した。この成形体を、温度90℃、湿度30%RHにて3時間乾燥した後、空気気流中で220℃にて22時間、空気気流中で250℃にて1時間の順に熱処理して、ケギン型ヘテロポリ酸塩からなる成形体を得た。この成形体を、窒素気流中で435℃にて4時間、空気(水分2容量%)気流中で390℃にて3時間の順に焼成して焼成物を得た。この焼成物を、目開き1mm(16メッシュ)の篩にのせた後、該篩を振動させて、リン及びモリブデンを含むヘテロポリ酸化合物からなる成形触媒を篩上に得るとともに、篩を通過したリン及びモリブデンを含むヘテロポリ酸化合物からなる粉体(粒径1mm以下)を篩の下に得た。この成形触媒は、リン、モリブデン、バナジウム、アンチモン、銅及びセシウムをそれぞれ1.5、12、0.5、0.5、0.3及び1.4の原子比で含むケギン型ヘテロポリ酸の酸性塩からなるものであった。
Reference Example 1 (b)
(Preparation of molded catalyst)
To 100 parts by weight of the dried product obtained in Reference Example 1 (a), 4 parts by weight of ceramic fiber, 13 parts by weight of ammonium nitrate, and 9.7 parts by weight of ion-exchanged water are added and kneaded. Extruded into a 6 mm cylinder. This molded body was dried at a temperature of 90 ° C. and a humidity of 30% RH for 3 hours, and then heat-treated in an air stream at 220 ° C. for 22 hours and in an air stream at 250 ° C. for 1 hour in order. A molded body made of a heteropolyacid salt was obtained. This molded body was fired in the nitrogen stream at 435 ° C. for 4 hours and in an air stream (water 2% by volume) at 390 ° C. for 3 hours in order to obtain a fired product. After placing the calcined product on a sieve having an opening of 1 mm (16 mesh), the sieve is vibrated to obtain a molded catalyst composed of a heteropolyacid compound containing phosphorus and molybdenum on the sieve, and the phosphorus that has passed through the sieve. And the powder (particle size of 1 mm or less) which consists of a heteropoly acid compound containing molybdenum was obtained under the sieve. This shaped catalyst is an acid of Keggin heteropolyacid containing phosphorus, molybdenum, vanadium, antimony, copper and cesium in atomic ratios of 1.5, 12, 0.5, 0.5, 0.3 and 1.4, respectively. It consisted of salt.

参考例1(c)
〔成形触媒の活性試験〕
参考例1(b)で得られた成形触媒を用い、前記活性試験法により、メタクロレイン転化率、メタクリル酸選択率及びメタクリル酸収率を求めた。それらの結果を表1に示す。
Reference Example 1 (c)
[Activity test of molded catalyst]
Using the molded catalyst obtained in Reference Example 1 (b), methacrolein conversion, methacrylic acid selectivity and methacrylic acid yield were determined by the activity test method. The results are shown in Table 1.

実施例1(a)
〔粉末状の乾燥物の調製;工程(1)〕
参考例1(a)と同じ方法により、粉末状の乾燥物を得た。
Example 1 (a)
[Preparation of powdery dried product; step (1)]
A powdery dried product was obtained by the same method as in Reference Example 1 (a).

実施例1(b)
〔吸湿処理工程;工程(2)〕
参考例1(b)で得られた粉体を、2容量%の水蒸気を含むデシケーター内で21時間保管して吸湿物を得た。前記式(I)より求めた該吸湿物の含水量は3重量%であった。この結果を表1に示す。
Example 1 (b)
[Hygroscopic treatment step; step (2)]
The powder obtained in Reference Example 1 (b) was stored for 21 hours in a desiccator containing 2% by volume of water vapor to obtain a hygroscopic material. The water content of the hygroscopic material determined from the formula (I) was 3% by weight. The results are shown in Table 1.

実施例1(c)
〔成形触媒の調製;工程(3)〜(6)〕
実施例1(b)で得られた吸湿物を、該吸湿物から水分を除いた固形分換算で10重量部採取し、これと実施例1(a)で得られた乾燥物100重量部とを混合した後、セラミックファイバー4重量部、硝酸アンモニウム13重量部、及びイオン交換水9.7重量部を加えて混練し、直径5mm、高さ6mmの円柱状に押出成形した。この成形体に対し、これ以降、参考例1(b)と同様の操作を行い、リン及びモリブデンを含むヘテロポリ酸化合物からなる成形触媒を得た。
Example 1 (c)
[Preparation of molded catalyst; steps (3) to (6)]
10 parts by weight of the hygroscopic product obtained in Example 1 (b) was collected in terms of solid content obtained by removing moisture from the hygroscopic product, and 100 parts by weight of the dried product obtained in Example 1 (a). After mixing, 4 parts by weight of ceramic fiber, 13 parts by weight of ammonium nitrate, and 9.7 parts by weight of ion-exchanged water were added and kneaded and extruded into a cylindrical shape having a diameter of 5 mm and a height of 6 mm. Thereafter, the same operation as in Reference Example 1 (b) was performed on this molded body to obtain a molded catalyst composed of a heteropolyacid compound containing phosphorus and molybdenum.

実施例1(d)
〔成形触媒の活性試験〕
実施例1(c)で得られた成形触媒を用い、前記活性試験法により、メタクロレイン転化率、メタクリル酸選択率及びメタクリル酸収率を求めた。それらの結果を表1に示す。
Example 1 (d)
[Activity test of molded catalyst]
Using the shaped catalyst obtained in Example 1 (c), methacrolein conversion, methacrylic acid selectivity, and methacrylic acid yield were determined by the activity test method. The results are shown in Table 1.

実施例2(a)
〔成形触媒の調製;工程(1)〜(6)〕
実施例1(b)において、デシケーター内での保管時間を21時間から65時間にかえた以外は、実施例1(a)〜(c)と同様の操作を行い、リン及びモリブデンを含むヘテロポリ酸化合物からなる成形触媒を得た。尚、この際、吸湿物の含水量は6重量%であった。この結果を表1に示す。
Example 2 (a)
[Preparation of molded catalyst; steps (1) to (6)]
In Example 1 (b), except that the storage time in the desiccator was changed from 21 hours to 65 hours, the same operation as in Examples 1 (a) to (c) was performed, and the heteropolyacid containing phosphorus and molybdenum A molded catalyst comprising a compound was obtained. At this time, the moisture content of the hygroscopic material was 6% by weight. The results are shown in Table 1.

実施例2(b)
〔成形触媒の活性試験〕
実施例2(a)で得られた成形触媒を用い、前記活性試験法により、メタクロレイン転化率、メタクリル酸選択率及びメタクリル酸収率を求めた。それらの結果を表1に示す。
Example 2 (b)
[Activity test of molded catalyst]
Using the molded catalyst obtained in Example 2 (a), methacrolein conversion, methacrylic acid selectivity and methacrylic acid yield were determined by the activity test method. The results are shown in Table 1.

比較例1(a)
〔成形触媒の調製;工程(1)〜(6)〕
実施例1(b)においてデシケーター内での保管を行わず、実施例1(c)において粉体と乾燥物を直接混合した以外は、実施例(a)〜(c)と同様の操作を行い、リン及びモリブデンを含むヘテロポリ酸化合物からなる成形触媒を得た。尚、この際、使用した粉体の含水量は0重量%であった。この結果を表1に示す。
Comparative Example 1 (a)
[Preparation of molded catalyst; steps (1) to (6)]
The same operation as in Examples (a) to (c) was performed except that the storage in the desiccator was not performed in Example 1 (b), and the powder and the dried product were directly mixed in Example 1 (c). A molded catalyst comprising a heteropolyacid compound containing phosphorus and molybdenum was obtained. At this time, the water content of the used powder was 0% by weight. The results are shown in Table 1.

比較例1(b)
〔成形触媒の活性試験〕
比較例1(a)で得られた成形触媒を用い、前記活性試験法により、メタクロレイン転化率、メタクリル酸選択率及びメタクリル酸収率を求めた。それらの結果を表1に示す。
Comparative Example 1 (b)
[Activity test of molded catalyst]
Using the molded catalyst obtained in Comparative Example 1 (a), methacrolein conversion, methacrylic acid selectivity and methacrylic acid yield were determined by the activity test method. The results are shown in Table 1.

実施例3(a)
〔成形触媒の調製;工程(1)〜(6)〕
実施例1(b)において、デシケーター内での保管時間を21時間から65時間にかえ、実施例1(c)において、吸湿物の使用量を、該吸湿物から水分を除いた固形分換算で10重量部から30重量部にかえた以外は、実施例1(a)〜(c)と同様の操作を行い、リン及びモリブデンを含むヘテロポリ酸化合物からなる成形触媒を得た。尚、この際、吸湿物の含水量は6重量%であった。この結果を表1に示す。
Example 3 (a)
[Preparation of molded catalyst; steps (1) to (6)]
In Example 1 (b), the storage time in the desiccator was changed from 21 hours to 65 hours. In Example 1 (c), the amount of the hygroscopic material used was calculated in terms of solid content excluding moisture from the hygroscopic material. Except for changing from 10 parts by weight to 30 parts by weight, the same operation as in Examples 1 (a) to (c) was performed to obtain a molded catalyst composed of a heteropolyacid compound containing phosphorus and molybdenum. At this time, the moisture content of the hygroscopic material was 6% by weight. The results are shown in Table 1.

実施例3(b)
〔成形触媒の活性試験〕
実施例3(a)で得られた成形触媒を用い、前記活性試験法により、メタクロレイン転化率、メタクリル酸選択率及びメタクリル酸収率を求めた。それらの結果を表1に示す。
Example 3 (b)
[Activity test of molded catalyst]
Using the molded catalyst obtained in Example 3 (a), methacrolein conversion, methacrylic acid selectivity and methacrylic acid yield were determined by the activity test method. The results are shown in Table 1.

実施例4(a)
〔成形触媒の調製;工程(1)〜(6)〕
実施例1(b)において、デシケーター内での保管時間を21時間から148時間にかえ、実施例1(c)において、吸湿物の使用量を、該吸湿物から水分を除いた固形分換算で10重量部から31重量部にかえた以外は、実施例1(a)〜(c)と同様の操作を行い、リン及びモリブデンを含むヘテロポリ酸化合物からなる成形触媒を得た。尚、この際、吸湿物の含水量は8重量%であった。この結果を表1に示す。
Example 4 (a)
[Preparation of molded catalyst; steps (1) to (6)]
In Example 1 (b), the storage time in the desiccator was changed from 21 hours to 148 hours, and in Example 1 (c), the amount of hygroscopic material used was calculated in terms of solid content excluding moisture from the hygroscopic material. Except having changed from 10 weight part to 31 weight part, operation similar to Example 1 (a)-(c) was performed, and the shaping | molding catalyst which consists of a heteropolyacid compound containing phosphorus and molybdenum was obtained. At this time, the moisture content of the hygroscopic material was 8% by weight. The results are shown in Table 1.

実施例4(b)
〔成形触媒の活性試験〕
実施例4(a)で得られた成形触媒を用い、前記活性試験法により、メタクロレイン転化率、メタクリル酸選択率及びメタクリル酸収率を求めた。それらの結果を表1に示す。
Example 4 (b)
[Activity test of molded catalyst]
Using the shaped catalyst obtained in Example 4 (a), methacrolein conversion, methacrylic acid selectivity, and methacrylic acid yield were determined by the activity test method. The results are shown in Table 1.

比較例2(a)
〔成形触媒の調製;工程(1)〜(6)〕
比較例1(a)において、粉体の使用量を10重量部から29重量部にかえた以外は、比較例1(a)と同様の操作を行い、リン及びモリブデンを含むヘテロポリ酸化合物からなる成形触媒を得た。尚、この際、使用した粉体の含水量は0重量%であった。この結果を表1に示す。
Comparative Example 2 (a)
[Preparation of molded catalyst; steps (1) to (6)]
In Comparative Example 1 (a), except that the amount of powder used was changed from 10 parts by weight to 29 parts by weight, the same operation as in Comparative Example 1 (a) was performed, and it was composed of a heteropolyacid compound containing phosphorus and molybdenum. A shaped catalyst was obtained. At this time, the water content of the used powder was 0% by weight. The results are shown in Table 1.

比較例2(b)
〔成形触媒の活性試験〕
比較例2(a)で得られた成形触媒を用い、前記活性試験法により、メタクロレイン転化率、メタクリル酸選択率及びメタクリル酸収率を求めた。それらの結果を表1に示す。
Comparative Example 2 (b)
[Activity test of molded catalyst]
Using the molded catalyst obtained in Comparative Example 2 (a), methacrolein conversion, methacrylic acid selectivity, and methacrylic acid yield were determined by the activity test method. The results are shown in Table 1.

実施例5(a)
〔成形触媒の調製;工程(1)〜(6)〕
実施例1(c)において、吸湿物の使用量を、該吸湿物から水分を除いた固形分換算で10重量部から5重量部にかえた以外は、実施例1(a)〜(c)と同様の操作を行い、リン及びモリブデンを含むヘテロポリ酸化合物からなる成形触媒を得た。尚、この際、吸湿物の含水量は3重量%であった。この結果を表1に示す。
Example 5 (a)
[Preparation of molded catalyst; steps (1) to (6)]
In Example 1 (c), Examples 1 (a) to (c) except that the amount of hygroscopic material used was changed from 10 parts by weight to 5 parts by weight in terms of solid content obtained by removing moisture from the hygroscopic material. The same operation as in Example 1 was performed to obtain a molded catalyst composed of a heteropolyacid compound containing phosphorus and molybdenum. At this time, the moisture content of the hygroscopic material was 3% by weight. The results are shown in Table 1.

実施例5(b)
〔成形触媒の活性試験〕
実施例5(a)で得られた成形触媒を用い、前記活性試験法により、メタクロレイン転化率、メタクリル酸選択率及びメタクリル酸収率を求めた。それらの結果を表1に示す。
Example 5 (b)
[Activity test of molded catalyst]
Using the shaped catalyst obtained in Example 5 (a), methacrolein conversion, methacrylic acid selectivity, and methacrylic acid yield were determined by the activity test method. The results are shown in Table 1.

実施例6(a)
〔成形触媒の調製;工程(1)〜(6)〕
実施例1(b)において、デシケーター内での保管時間を21時間から530時間にかえ、実施例1(c)において、吸湿物の使用量を、該吸湿物から水分を除いた固形分換算で10重量部から5重量部にかえた以外は、実施例1(a)〜(c)と同様の操作を行い、リン及びモリブデンを含むヘテロポリ酸化合物からなる成形触媒を得た。尚、この際、吸湿物の含水量は10重量%であった。この結果を表1に示す。
Example 6 (a)
[Preparation of molded catalyst; steps (1) to (6)]
In Example 1 (b), the storage time in the desiccator was changed from 21 hours to 530 hours, and in Example 1 (c), the amount of hygroscopic material used was calculated in terms of solid content excluding moisture from the hygroscopic material. Except for changing from 10 parts by weight to 5 parts by weight, the same operation as in Examples 1 (a) to (c) was performed to obtain a molded catalyst composed of a heteropolyacid compound containing phosphorus and molybdenum. At this time, the moisture content of the hygroscopic material was 10% by weight. The results are shown in Table 1.

実施例6(b)
〔成形触媒の活性試験〕
実施例6(a)で得られた成形触媒を用い、前記活性試験法により、メタクロレイン転化率、メタクリル酸選択率及びメタクリル酸収率を求めた。それらの結果を表1に示す。
Example 6 (b)
[Activity test of molded catalyst]
Using the shaped catalyst obtained in Example 6 (a), methacrolein conversion, methacrylic acid selectivity, and methacrylic acid yield were determined by the activity test method. The results are shown in Table 1.

Figure 0005024183
Figure 0005024183

Claims (5)

リン及びモリブデンを含むヘテロポリ酸化合物からなる成形触媒の製造方法であって、下記工程(1)〜(6)を含み、かつ工程(6)で得られる粉体を工程(2)の粉体として使用することを特徴とするリン及びモリブデンを含むヘテロポリ酸化合物からなる成形触媒の製造方法。
工程(1):触媒成分を含有する水性スラリーを乾燥して乾燥物を得る工程
工程(2):リン及びモリブデンを含むヘテロポリ酸化合物からなる粉体に水を吸湿させて吸湿物を得る工程
工程(3):工程(1)で得られる乾燥物と、工程(2)で得られる吸湿物とを混合して混合物を得る工程
工程(4):工程(3)で得られる混合物を成形して成形体を得る工程
工程(5):工程(4)で得られる成形体を焼成して焼成物を得る工程
工程(6):工程(5)で得られる焼成物を篩分けすることにより、リン及びモリブデンを含むヘテロポリ酸化合物からなる成形触媒と、リン及びモリブデンを含むヘテロポリ酸化合物からなる粉体とに分離する工程
A method for producing a molded catalyst comprising a heteropolyacid compound containing phosphorus and molybdenum, comprising the following steps (1) to (6), wherein the powder obtained in step (6) is used as the powder in step (2) A method for producing a shaped catalyst comprising a heteropolyacid compound containing phosphorus and molybdenum, which is characterized by being used.
Step (1): Step of drying an aqueous slurry containing a catalyst component to obtain a dried product Step (2): Step of obtaining moisture by absorbing water into a powder comprising a heteropolyacid compound containing phosphorus and molybdenum (3): The dried product obtained in step (1) and the hygroscopic product obtained in step (2) are mixed to obtain a mixture. Step (4): The mixture obtained in step (3) is molded. Step (5) for obtaining a molded body: Step (6) for obtaining a baked product by baking the molded body obtained in step (4): By screening the baked product obtained in step (5), phosphorus And separating into a molding catalyst comprising a heteropolyacid compound containing molybdenum and molybdenum and a powder comprising a heteropolyacid compound containing phosphorus and molybdenum
前記成形触媒が、メタクリル酸製造用触媒である請求項1に記載の方法。   The method according to claim 1, wherein the shaping catalyst is a catalyst for producing methacrylic acid. 前記吸湿物に占める水の含有量が、該吸湿物全量に対して2重量%以上である請求項1又は2に記載の製造方法。   The production method according to claim 1 or 2, wherein the content of water in the hygroscopic material is 2% by weight or more based on the total amount of the hygroscopic material. ヘテロポリ酸化合物が、さらにバナジウムと、カリウム、ルビジウム、セシウム及びタリウムから選ばれる少なくとも1種の元素と、銅、ヒ素、アンチモン、ホウ素、銀、ビスマス、鉄、コバルト、亜鉛、ランタン及びセリウムから選ばれる少なくとも1種の元素とを含む請求項1〜3のいずれかに記載の製造方法。   The heteropolyacid compound is further selected from vanadium, at least one element selected from potassium, rubidium, cesium and thallium, and copper, arsenic, antimony, boron, silver, bismuth, iron, cobalt, zinc, lanthanum and cerium. The manufacturing method in any one of Claims 1-3 containing an at least 1 sort (s) of element. 請求項1〜4のいずれかに記載の方法によりリン及びモリブデンを含むヘテロポリ酸化合物からなる成形触媒を製造し、この成形触媒の存在下に、メタクロレイン、イソブチルアルデヒド、イソブタン及びイソ酪酸から選ばれる少なくとも1種の化合物を気相接触酸化反応に付すメタクリル酸の製造方法。   A shaped catalyst comprising a heteropolyacid compound containing phosphorus and molybdenum is produced by the method according to any one of claims 1 to 4, and is selected from methacrolein, isobutyraldehyde, isobutane and isobutyric acid in the presence of the shaped catalyst. A method for producing methacrylic acid, comprising subjecting at least one compound to a gas phase catalytic oxidation reaction.
JP2008136376A 2008-05-26 2008-05-26 Method for producing shaped catalyst comprising heteropolyacid compound Expired - Fee Related JP5024183B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008136376A JP5024183B2 (en) 2008-05-26 2008-05-26 Method for producing shaped catalyst comprising heteropolyacid compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008136376A JP5024183B2 (en) 2008-05-26 2008-05-26 Method for producing shaped catalyst comprising heteropolyacid compound

Publications (2)

Publication Number Publication Date
JP2009279555A JP2009279555A (en) 2009-12-03
JP5024183B2 true JP5024183B2 (en) 2012-09-12

Family

ID=41450586

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008136376A Expired - Fee Related JP5024183B2 (en) 2008-05-26 2008-05-26 Method for producing shaped catalyst comprising heteropolyacid compound

Country Status (1)

Country Link
JP (1) JP5024183B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012110806A (en) * 2010-11-22 2012-06-14 Nippon Kayaku Co Ltd Method for producing catalyst for producing methacrylic acid and method for producing methacrylic acid
SG11201809651RA (en) 2016-06-21 2018-11-29 Mitsubishi Chem Corp Method for producing methacrylic acid production catalyst, method for producing methacrylic acid, and method for producing methacrylic acid ester

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4285084B2 (en) * 2003-05-28 2009-06-24 住友化学株式会社 Method for producing catalyst for producing methacrylic acid and method for producing methacrylic acid
JP2005329362A (en) * 2004-05-21 2005-12-02 Mitsubishi Chemicals Corp Manufacturing method of catalyst for producing unsaturated carboxylic acid

Also Published As

Publication number Publication date
JP2009279555A (en) 2009-12-03

Similar Documents

Publication Publication Date Title
JP4957628B2 (en) Method for regenerating catalyst for methacrylic acid production and method for producing methacrylic acid
JP4715712B2 (en) A method for regenerating a catalyst for producing methacrylic acid and a method for producing methacrylic acid.
JP4957627B2 (en) Method for regenerating catalyst for methacrylic acid production and method for producing methacrylic acid
US8586499B2 (en) Method for producing catalyst for preparation of methacrylic acid and method for preparing methacrylic acid
KR101640255B1 (en) Method for regenerating catalyst for the production of methacrylic acid and process for preparing methacrylic acid
JP4715699B2 (en) Method for regenerating catalyst for methacrylic acid production and method for producing methacrylic acid
JP5214500B2 (en) Method for producing catalyst for producing methacrylic acid and method for producing methacrylic acid
JP4595769B2 (en) Method for producing catalyst for producing methacrylic acid and method for producing methacrylic acid
JP4200744B2 (en) Method for producing catalyst for producing methacrylic acid and method for producing methacrylic acid
JP4715707B2 (en) Method for regenerating catalyst for methacrylic acid production and method for producing methacrylic acid
JP5024183B2 (en) Method for producing shaped catalyst comprising heteropolyacid compound
JP3797148B2 (en) Method for producing catalyst for producing methacrylic acid and method for producing methacrylic acid
JP5793345B2 (en) Method for producing catalyst for producing methacrylic acid and method for producing methacrylic acid
JP4745766B2 (en) Catalyst for producing methacrylic acid, method for producing the same, and method for producing methacrylic acid
JP4352856B2 (en) A method for producing a catalyst for producing methacrylic acid, a catalyst for producing methacrylic acid obtained thereby, and a method for producing methacrylic acid.
JP3797146B2 (en) Method for producing catalyst for producing methacrylic acid and method for producing methacrylic acid
JP4207531B2 (en) Method for producing catalyst for producing methacrylic acid and method for producing methacrylic acid
JP2008284508A (en) Production method of catalyst for methacrylic-acid production and production method of methacrylic acid
JP2013000734A (en) Method for regenerating catalyst for producing methacrylic acid and method for producing methacrylic acid
JP2013086008A (en) Method for producing catalyst for producing methacrylic acid, and method for producing methacrylic acid
JPWO2018110126A1 (en) Method for producing catalyst precursor for producing α, β-unsaturated carboxylic acid, method for producing catalyst for producing α, β-unsaturated carboxylic acid, method for producing α, β-unsaturated carboxylic acid, and α, β-unsaturated Method for producing carboxylic acid ester
JP2005021727A (en) Method for producing catalyst for producing methacrylic acid method for producing methacrylic acid
JP5214499B2 (en) Method for regenerating catalyst for methacrylic acid production and method for producing methacrylic acid
JP4900532B2 (en) Method for producing catalyst for producing methacrylic acid and method for producing methacrylic acid
JP5063493B2 (en) Method for producing catalyst for synthesis of unsaturated carboxylic acid

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110303

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120516

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120522

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120604

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150629

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees