JP5793345B2 - Method for producing catalyst for producing methacrylic acid and method for producing methacrylic acid - Google Patents

Method for producing catalyst for producing methacrylic acid and method for producing methacrylic acid Download PDF

Info

Publication number
JP5793345B2
JP5793345B2 JP2011116925A JP2011116925A JP5793345B2 JP 5793345 B2 JP5793345 B2 JP 5793345B2 JP 2011116925 A JP2011116925 A JP 2011116925A JP 2011116925 A JP2011116925 A JP 2011116925A JP 5793345 B2 JP5793345 B2 JP 5793345B2
Authority
JP
Japan
Prior art keywords
catalyst
methacrylic acid
producing
firing
oxidizing gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011116925A
Other languages
Japanese (ja)
Other versions
JP2012245432A (en
Inventor
純也 吉澤
純也 吉澤
順二 柴田
順二 柴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP2011116925A priority Critical patent/JP5793345B2/en
Priority to SG2012037750A priority patent/SG185914A1/en
Priority to DE102012010194A priority patent/DE102012010194A1/en
Priority to KR1020120054573A priority patent/KR101925641B1/en
Publication of JP2012245432A publication Critical patent/JP2012245432A/en
Application granted granted Critical
Publication of JP5793345B2 publication Critical patent/JP5793345B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/10Heat treatment in the presence of water, e.g. steam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/24Chromium, molybdenum or tungsten
    • B01J23/28Molybdenum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/14Phosphorus; Compounds thereof
    • B01J27/186Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J27/195Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium with vanadium, niobium or tantalum
    • B01J27/198Vanadium
    • B01J27/199Vanadium with chromium, molybdenum, tungsten or polonium
    • B01J35/58
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • B01J37/0027Powdering
    • B01J37/0045Drying a slurry, e.g. spray drying
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/16Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation
    • C07C51/21Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen
    • C07C51/23Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen of oxygen-containing groups to carboxyl groups
    • C07C51/235Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen of oxygen-containing groups to carboxyl groups of —CHO groups or primary alcohol groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/16Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation
    • C07C51/21Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen
    • C07C51/25Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen of unsaturated compounds containing no six-membered aromatic ring
    • C07C51/252Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen of unsaturated compounds containing no six-membered aromatic ring of propene, butenes, acrolein or methacrolein
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/54Preparation of carboxylic acid anhydrides
    • C07C51/573Separation; Purification; Stabilisation; Use of additives
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C57/00Unsaturated compounds having carboxyl groups bound to acyclic carbon atoms
    • C07C57/02Unsaturated compounds having carboxyl groups bound to acyclic carbon atoms with only carbon-to-carbon double bonds as unsaturation
    • C07C57/03Monocarboxylic acids
    • C07C57/04Acrylic acid; Methacrylic acid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts

Description

本発明は、メタクリル酸製造用触媒の製造方法に関し、さらにこの方法で得られた触媒を用いてメタクリル酸を製造する方法に関する。   The present invention relates to a method for producing a catalyst for producing methacrylic acid, and further relates to a method for producing methacrylic acid using a catalyst obtained by this method.

従来、メタクロレインなどの気相接触酸化反応によりメタクリル酸を製造する際に用いる触媒としては、リンおよびモリブデンを含むヘテロポリ酸やその塩からなるものが有効であることが知られている。この触媒は通常、触媒の原料を含む水性混合物を乾燥した後、焼成することにより製造される。特許文献1〜5には、この焼成方法に関して記載されている。   Conventionally, it has been known that a catalyst comprising a heteropolyacid containing phosphorus and molybdenum or a salt thereof is effective as a catalyst used in producing methacrylic acid by a gas phase catalytic oxidation reaction such as methacrolein. This catalyst is usually produced by drying and then calcining an aqueous mixture containing the catalyst raw material. Patent Documents 1 to 5 describe this firing method.

特許文献1は、非酸化性ガスの雰囲気下に400〜500℃で焼成した後、酸化性ガスの雰囲気下に300〜400℃で焼成することを開示している。特許文献2は、酸化性ガスまたは非酸化性ガスの雰囲気下に360〜410℃で焼成した後、非酸化性ガスの雰囲気下に420〜500℃で焼成し、次いで酸化性ガスの雰囲気下に300〜400℃で焼成する方法を開示している。特許文献3は、10容量%以下の水分を含む酸化性ガスの雰囲気下に300〜400℃で焼成した後、非酸化性ガスの雰囲気下に400〜500℃で焼成し、次いで30容量%以下の水分を含む酸化性ガスの雰囲気下に300〜400℃で焼成する方法を開示している。特許文献4は、酸化性ガスの雰囲気下に300〜400℃で焼成した後、非酸化性ガスの雰囲気下に400〜500℃で焼成し、次いで非酸化性ガスの雰囲気下のままで280℃以下に冷却する方法を開示している。特許文献5は、酸化性ガスの雰囲気下に300〜400℃で第一段焼成し、次いで、0.1〜10容量%の水を含む非酸化性ガスの雰囲気下に420℃以上に昇温した後、非酸化性ガスの雰囲気下に420〜500℃で第二段焼成する方法を開示している。   Patent Document 1 discloses that after firing at 400 to 500 ° C. in a non-oxidizing gas atmosphere, firing is performed at 300 to 400 ° C. in an oxidizing gas atmosphere. In Patent Document 2, after firing at 360 to 410 ° C. in an atmosphere of oxidizing gas or non-oxidizing gas, firing is performed at 420 to 500 ° C. in atmosphere of non-oxidizing gas, and then in the atmosphere of oxidizing gas. A method of firing at 300-400 ° C. is disclosed. In Patent Document 3, after baking at 300 to 400 ° C. in an atmosphere of oxidizing gas containing 10% by volume or less of moisture, baking is performed at 400 to 500 ° C. in an atmosphere of non-oxidizing gas, and then 30% by volume or less. Discloses a method of baking at 300 to 400 ° C. in an atmosphere of an oxidizing gas containing water. In Patent Document 4, after baking at 300 to 400 ° C. in an oxidizing gas atmosphere, baking is performed at 400 to 500 ° C. in a non-oxidizing gas atmosphere, and then in the non-oxidizing gas atmosphere at 280 ° C. The cooling method is disclosed below. In Patent Document 5, first-stage firing is performed at 300 to 400 ° C. in an oxidizing gas atmosphere, and then the temperature is raised to 420 ° C. or more in a non-oxidizing gas atmosphere containing 0.1 to 10% by volume of water. After that, a second-stage firing method is disclosed at 420 to 500 ° C. in a non-oxidizing gas atmosphere.

特開2004−188231号公報JP 2004-188231 A 特開2005−21727号公報JP 2005-21727 A 特開2005−131577号公報JP-A-2005-131577 特開2007−90193号公報JP 2007-90193 A 特開2008−284508号公報JP 2008-284508 A

しかしながら、従来の方法によって得られるメタクリル酸製造用触媒は、触媒活性や触媒寿命の点で、必ずしも満足のいくものではなかった。
本発明の課題は、優れた触媒活性および触媒寿命を有するメタクリル酸製造用触媒を製造する方法を提供することにある。さらに、この方法によって製造された触媒を用いて、原料を良好な転化率で転化して長期間にわたり安定してメタクリル酸を製造する方法を提供することにある。
However, the methacrylic acid production catalyst obtained by the conventional method is not always satisfactory in terms of catalyst activity and catalyst life.
The subject of this invention is providing the method of manufacturing the catalyst for methacrylic acid manufacture which has the outstanding catalyst activity and catalyst lifetime. Another object of the present invention is to provide a method for producing methacrylic acid stably over a long period of time by converting a raw material at a good conversion rate using a catalyst produced by this method.

本発明者らは、上記課題を解決するべく鋭意検討を行った結果、以下の構成からなる解決手段を見出し、本発明を完成するに至った。
(1)リンおよびモリブデンを含むヘテロポリ酸化合物からなるメタクリル酸製造用触媒の製造方法であって、
触媒前駆体を、0.1容量%以上2.0容量%未満の水分を含むガス雰囲気下にて、360〜410℃で焼成する第1焼成工程;
前記第1焼成工程で得られた焼成物を、非酸化性ガス雰囲気下にて、420〜500℃でさらに焼成する第2焼成工程;および
前記第2焼成工程で得られた焼成物を、非酸化性ガス雰囲気下にて、280℃以下となるように冷却する工程;
を含むことを特徴とする、メタクリル酸製造用触媒の製造方法。
(2)前記ヘテロポリ酸化合物が、さらに、
バナジウムと;
カリウム、ルビジウム、セシウムおよびタリウムからなる群より選択される少なくとも1種の元素と;
銅、ヒ素、アンチモン、ホウ素、銀、ビスマス、鉄、コバルト、ランタンおよびセリウムからなる群より選択される少なくとも1種の元素と;
を含むことを特徴とする、(1)に記載の方法。
(3)前記触媒前駆体が、第1焼成工程において、1〜20時間焼成される、(1)または(2)に記載の方法。
(4)前記第1焼成工程で得られる焼成物が、第2焼成工程において、1〜20時間焼成される、(1)〜(3)のいずれかの項に記載の方法。
(5)前記非酸化性ガスが、窒素、アルゴン、ヘリウムおよび二酸化炭素からなる群より選択される少なくとも1種である、(1)〜(4)のいずれかの項に記載の方法。
(6)(1)〜(5)のいずれかの項に記載の製造方法によって得られたメタクリル酸製造用触媒の存在下で、メタクロレイン、イソブチルアルデヒド、イソブタンおよびイソ酪酸からなる群より選択される少なくとも1種の化合物を、気相接触酸化反応に供することを特徴とする、メタクリル酸の製造方法。
As a result of intensive studies to solve the above problems, the present inventors have found a solution means having the following configuration, and have completed the present invention.
(1) A method for producing a catalyst for producing methacrylic acid comprising a heteropolyacid compound containing phosphorus and molybdenum,
A first calcining step of calcining the catalyst precursor at 360 to 410 ° C. in a gas atmosphere containing moisture of 0.1% by volume or more and less than 2.0% by volume;
A second firing step of further firing the fired product obtained in the first firing step at 420 to 500 ° C. in a non-oxidizing gas atmosphere; and a fired product obtained in the second firing step. A step of cooling to 280 ° C. or lower in an oxidizing gas atmosphere;
A process for producing a catalyst for producing methacrylic acid, comprising:
(2) The heteropolyacid compound further comprises:
With vanadium;
At least one element selected from the group consisting of potassium, rubidium, cesium and thallium;
At least one element selected from the group consisting of copper, arsenic, antimony, boron, silver, bismuth, iron, cobalt, lanthanum and cerium;
The method as described in (1) characterized by including.
(3) The method according to (1) or (2), wherein the catalyst precursor is calcined for 1 to 20 hours in the first calcining step.
(4) The method according to any one of (1) to (3), wherein the fired product obtained in the first firing step is fired for 1 to 20 hours in the second firing step.
(5) The method according to any one of (1) to (4), wherein the non-oxidizing gas is at least one selected from the group consisting of nitrogen, argon, helium and carbon dioxide.
(6) selected from the group consisting of methacrolein, isobutyraldehyde, isobutane and isobutyric acid in the presence of the catalyst for producing methacrylic acid obtained by the production method according to any one of (1) to (5) A method for producing methacrylic acid, comprising subjecting at least one kind of compound to a gas phase catalytic oxidation reaction.

本発明によれば、優れた触媒活性および触媒寿命を有するメタクリル酸製造用触媒が得られるという効果を奏する。さらに、この触媒を用いると、原料を良好な転化率で転化して長期間にわたり安定してメタクリル酸を製造することができるという効果を奏する。   According to the present invention, there is an effect that a catalyst for producing methacrylic acid having excellent catalytic activity and catalyst life can be obtained. Furthermore, when this catalyst is used, the raw material can be converted at a good conversion rate, and methacrylic acid can be produced stably over a long period of time.

本発明の製造方法によって得られるメタクリル酸製造用触媒は、リンおよびモリブデンを含むヘテロポリ酸化合物からなる。このようなヘテロポリ酸化合物は、遊離のヘテロポリ酸からなるものであってもよいし、ヘテロポリ酸の塩からなるものであってもよい。これらの中でも、ヘテロポリ酸の酸性塩(部分中和塩)からなるものが好ましく、ケギン型ヘテロポリ酸の酸性塩からなるものがより好ましい。   The catalyst for methacrylic acid production obtained by the production method of the present invention comprises a heteropolyacid compound containing phosphorus and molybdenum. Such a heteropolyacid compound may be composed of a free heteropolyacid or a salt of a heteropolyacid. Among these, what consists of acidic salt (partially neutralized salt) of heteropolyacid is preferable, and what consists of acidic salt of Keggin type heteropolyacid is more preferable.

ヘテロポリ酸化合物は、リンおよびモリブデンを必須の元素として含むものであれば、触媒活性を阻害しない限り、他の元素を含んでいてもよい。他の元素としては、バナジウム、カリウム、ルビジウム、セシウム、タリウム、銅、ヒ素、アンチモン、ホウ素、銀、ビスマス、鉄、コバルト、ランタン、セリウムなどが挙げられる。例えば、ヘテロポリ酸化合物は、以下の元素を含むものが好ましい。
リン;
モリブデン;
バナジウム;
カリウム、ルビジウム、セシウムおよびタリウムからなる群より選択される少なくとも1種の元素(以下、「X元素」と記載する場合がある);ならびに
銅、ヒ素、アンチモン、ホウ素、銀、ビスマス、鉄、コバルト、ランタンおよびセリウムからなる群より選択される少なくとも1種の元素(以下、「Y元素」と記載する場合がある)。
As long as the heteropolyacid compound contains phosphorus and molybdenum as essential elements, it may contain other elements as long as the catalytic activity is not inhibited. Examples of other elements include vanadium, potassium, rubidium, cesium, thallium, copper, arsenic, antimony, boron, silver, bismuth, iron, cobalt, lanthanum, and cerium. For example, the heteropolyacid compound preferably contains the following elements.
Rin;
molybdenum;
vanadium;
At least one element selected from the group consisting of potassium, rubidium, cesium and thallium (hereinafter sometimes referred to as “element X”); and copper, arsenic, antimony, boron, silver, bismuth, iron, cobalt , At least one element selected from the group consisting of lanthanum and cerium (hereinafter sometimes referred to as “Y element”).

特に、ヘテロポリ酸化合物は、モリブデン12原子に対して、リン、バナジウム、X元素およびY元素を、それぞれ3原子以下の割合で含むものが好ましい。   In particular, the heteropolyacid compound preferably contains phosphorus, vanadium, an X element and a Y element at a ratio of 3 atoms or less to 12 atoms of molybdenum.

本発明に係るメタクリル酸製造用触媒の製造方法(以下、「本発明の製造方法」と記載する場合がある)は、上記のように、第1焼成工程、第2焼成工程および冷却工程を含む。   The method for producing a catalyst for producing methacrylic acid according to the present invention (hereinafter sometimes referred to as “the production method of the present invention”) includes the first firing step, the second firing step, and the cooling step as described above. .

(第1焼成工程)
第1焼成工程は、触媒前駆体を、0.1容量%以上2.0容量%未満の水分を含むガス雰囲気下にて、360〜410℃で焼成する工程である。
(First firing step)
The first firing step is a step of firing the catalyst precursor at 360 to 410 ° C. in a gas atmosphere containing moisture of 0.1 volume% or more and less than 2.0 volume%.

触媒前駆体は、メタクリル酸製造用触媒に含まれる各元素を含有する化合物の混合物である。このような化合物としては、各元素のオキソ酸、オキソ酸塩、酸化物、硝酸塩、炭酸塩、重炭酸塩、水酸化物、ハロゲン化物などが挙げられる。例えば、リンを含有する化合物としては、リン酸、リン酸塩などが挙げられる。モリブデンを含有する化合物としては、モリブデン酸、モリブデン酸塩、酸化モリブデン、塩化モリブデンなどが挙げられる。バナジウムを含有する化合物としては、バナジン酸、バナジン酸塩、酸化バナジウム、塩化バナジウムなどが挙げられる。上記X元素を含有する化合物としては、酸化物、硝酸塩、炭酸塩、重炭酸塩、水酸化物、ハロゲン化物などが挙げられる。上記Y元素を含有する化合物としては、オキソ酸、オキソ酸塩、硝酸塩、炭酸塩、水酸化物、ハロゲン化物などが挙げられる。   The catalyst precursor is a mixture of compounds containing each element contained in the methacrylic acid production catalyst. Examples of such compounds include oxo acids, oxo acid salts, oxides, nitrates, carbonates, bicarbonates, hydroxides, halides and the like of each element. For example, phosphoric acid, a phosphate, etc. are mentioned as a compound containing phosphorus. Examples of the compound containing molybdenum include molybdic acid, molybdate, molybdenum oxide, and molybdenum chloride. Examples of the compound containing vanadium include vanadic acid, vanadate, vanadium oxide, and vanadium chloride. Examples of the compound containing X element include oxides, nitrates, carbonates, bicarbonates, hydroxides, halides, and the like. Examples of the compound containing the Y element include oxo acids, oxo acid salts, nitrates, carbonates, hydroxides, halides, and the like.

この触媒前駆体は、通常、上記の化合物を、水と混合して水溶液や懸濁液とし、これらの水溶液や懸濁液を乾燥させることによって得られる。乾燥は、スプレードライヤーを用いた噴霧乾燥などが挙げられる。通常、乾燥物は、所望の形状(例えば、円柱状、球状、リング状など)に成形され、成形の際に、必要に応じて成形助剤を用いてもよい。得られた成形体は、好ましくは、酸化性ガスまたは非酸化性ガスの雰囲気下にて180〜300℃程度の温度で熱処理(前焼成)が施される。なお、乾燥物に熱処理(前焼成)を施した後、成形を行ってもよい。   This catalyst precursor is usually obtained by mixing the above compound with water to form an aqueous solution or suspension, and drying these aqueous solutions or suspensions. Examples of the drying include spray drying using a spray dryer. Usually, the dried product is formed into a desired shape (for example, a columnar shape, a spherical shape, a ring shape, etc.), and a forming aid may be used as necessary at the time of forming. The obtained molded body is preferably subjected to heat treatment (pre-baking) at a temperature of about 180 to 300 ° C. in an oxidizing gas or non-oxidizing gas atmosphere. In addition, you may shape | mold after heat-processing (pre-baking) to a dried material.

上記水溶液や懸濁液を調製する際、さらにアンモニアやアンモニウム塩を添加して、アンモニウム根を含む水溶液や懸濁液とするのが好ましい。アンモニアやアンモニウム塩を添加する代わりに、リン、モリブデン、バナジウム、X元素またはY元素を含む上記の化合物の少なくとも1種に、アンモニウム化合物を用いてもよい。このような処方の場合、乾燥物としては非ケギン型ヘテロポリ酸塩からなる触媒前駆体が得られ、熱処理(前焼成)を施すことによって、非ケギン型からケギン型への転移反応が生じ、ケギン型ヘテロポリ酸塩からなる触媒前駆体を得ることができる。   When preparing the aqueous solution or suspension, it is preferable to further add ammonia or an ammonium salt to obtain an aqueous solution or suspension containing an ammonium root. Instead of adding ammonia or an ammonium salt, an ammonium compound may be used for at least one of the above compounds containing phosphorus, molybdenum, vanadium, X element or Y element. In the case of such a formulation, a catalyst precursor composed of a non-Keggin type heteropolyacid salt is obtained as a dried product, and by performing a heat treatment (pre-calcination), a transition reaction from the non-Keggin type to the Keggin type occurs. A catalyst precursor comprising a type heteropolyacid salt can be obtained.

得られた触媒前駆体は、0.1容量%以上2.0容量%未満の水分を含むガス雰囲気下にて、360〜410℃で焼成される。本発明の製造方法では、特定量の水分を含むガスであれば、特に限定されない。このようなガスとしては、酸化性ガス(空気、酸素など)、非酸化性ガス(不活性ガス(窒素、アルゴン、ヘリウム、ネオンなど)、還元性ガス(二酸化炭素、水素、アンモニアなど)など)などが挙げられる。これらの中でも、窒素、空気、アルゴン、ヘリウムおよび二酸化炭素が好ましく、窒素および空気がより好ましい。これらのガスは、単独で用いてもよく、2種以上を併用してもよい。   The obtained catalyst precursor is calcined at 360 to 410 ° C. in a gas atmosphere containing moisture of 0.1 volume% or more and less than 2.0 volume%. In the manufacturing method of this invention, if it is a gas containing a specific amount of water | moisture content, it will not specifically limit. Such gases include oxidizing gases (air, oxygen, etc.), non-oxidizing gases (inert gases (nitrogen, argon, helium, neon, etc.), reducing gases (carbon dioxide, hydrogen, ammonia, etc.), etc.) Etc. Among these, nitrogen, air, argon, helium and carbon dioxide are preferable, and nitrogen and air are more preferable. These gases may be used alone or in combination of two or more.

上記ガスは、0.1容量%以上2.0容量%未満の水分を含む。特定の範囲で水分を含むことによって、得られる触媒の触媒活性および触媒寿命を効果的に向上させることができる。水分は、好ましくは0.8〜1.8容量%の割合で含まれる。   The gas contains moisture of 0.1% by volume or more and less than 2.0% by volume. By containing moisture in a specific range, the catalytic activity and catalyst life of the resulting catalyst can be effectively improved. The moisture is preferably contained at a ratio of 0.8 to 1.8% by volume.

第1焼成は、360〜410℃で行われる。360〜410℃で第1焼成を行うことによって、得られる触媒の触媒活性および触媒寿命を効果的に向上させることができる。第1焼成は、好ましくは380〜400℃で行われる。   The first baking is performed at 360 to 410 ° C. By performing the first calcination at 360 to 410 ° C., the catalytic activity and catalyst life of the obtained catalyst can be effectively improved. The first firing is preferably performed at 380 to 400 ° C.

第1焼成は、好ましくは1〜20時間、より好ましくは1〜5時間行われる。第1焼成を1〜20時間行うことによって、触媒前駆体の組成に関係なく十分に焼成が行われる。   The first baking is preferably performed for 1 to 20 hours, more preferably 1 to 5 hours. By performing the first baking for 1 to 20 hours, the baking is sufficiently performed regardless of the composition of the catalyst precursor.

このようにして第1焼成工程で得られた焼成物は、第2焼成工程に供される。   Thus, the fired product obtained in the first firing step is subjected to the second firing step.

(第2焼成工程)
第2焼成工程は、第1焼成工程で得られた焼成物を、非酸化性ガス雰囲気下にて、420〜500℃でさらに焼成する工程である。
(Second firing step)
The second firing step is a step of further firing the fired product obtained in the first firing step at 420 to 500 ° C. in a non-oxidizing gas atmosphere.

第2焼成工程で用いられる非酸化性ガスは、上述の非酸化性ガス(不活性ガス(窒素、アルゴン、ヘリウム、ネオンなど)、還元性ガス(二酸化炭素、水素、アンモニアなど)など)などが挙げられる。これらの非酸化性ガスの中でも、窒素、アルゴン、ヘリウムおよび二酸化炭素が好ましく、窒素がより好ましい。非酸化性ガスは、単独で用いてもよく、2種以上を併用してもよい。また、第2焼成工程で用いられる非酸化性ガスは、水分を含んでいても含まなくてもよいが、水分を含まない乾燥状態のガスが好ましい。   Examples of the non-oxidizing gas used in the second firing step include the above-described non-oxidizing gases (inert gases (nitrogen, argon, helium, neon, etc.), reducing gases (carbon dioxide, hydrogen, ammonia, etc.), etc.) Can be mentioned. Among these non-oxidizing gases, nitrogen, argon, helium and carbon dioxide are preferable, and nitrogen is more preferable. A non-oxidizing gas may be used independently and may use 2 or more types together. The non-oxidizing gas used in the second firing step may or may not contain moisture, but is preferably a dry gas that does not contain moisture.

第2焼成は、420〜500℃で行われる。420〜500℃で第2焼成を行うことによって、得られる触媒の触媒活性および触媒寿命を効果的に向上させることができる。第2焼成は、好ましくは430〜440℃で行われる。   The second baking is performed at 420 to 500 ° C. By performing the second calcination at 420 to 500 ° C., the catalytic activity and catalyst life of the resulting catalyst can be effectively improved. The second baking is preferably performed at 430 to 440 ° C.

第2焼成は、好ましくは1〜20時間、より好ましくは1〜5時間行われる。第2焼成を1〜20時間行うことによって、触媒前駆体の組成に関係なく十分に焼成が行われる。   The second baking is preferably performed for 1 to 20 hours, more preferably 1 to 5 hours. By performing the second baking for 1 to 20 hours, the baking is sufficiently performed regardless of the composition of the catalyst precursor.

第2焼成工程で得られた焼成物は、冷却工程に供される。   The fired product obtained in the second firing step is subjected to a cooling step.

(冷却工程)
冷却工程は、第2焼成工程で得られた焼成物を、非酸化性ガス雰囲気下にて、280℃以下となるように冷却する工程である。
(Cooling process)
The cooling step is a step of cooling the fired product obtained in the second firing step to 280 ° C. or lower in a non-oxidizing gas atmosphere.

冷却工程で用いられる非酸化性ガスは、上述の非酸化性ガス(不活性ガス(窒素、アルゴン、ヘリウム、ネオンなど)、還元性ガス(二酸化炭素、水素、アンモニアなど)など)などが挙げられる。これらの非酸化性ガスの中でも、窒素、アルゴン、ヘリウムおよび二酸化炭素が好ましく、窒素がより好ましい。冷却工程で用いられる非酸化性ガスは、作業性の観点から、第2焼成工程で用いた非酸化性ガスと同一のガスを用いる(すなわち、第2焼成工程で用いた非酸化性ガスをそのまま用いる)ことが好ましい。非酸化性ガスは、単独で用いてもよく、2種以上を併用してもよい。また、冷却工程で用いられる非酸化性ガスは、水分を含んでいても含まなくてもよいが、水分を含まない乾燥状態のガスが好ましい。   Examples of the non-oxidizing gas used in the cooling step include the above-mentioned non-oxidizing gases (inert gases (nitrogen, argon, helium, neon, etc.), reducing gases (carbon dioxide, hydrogen, ammonia, etc.), etc.). . Among these non-oxidizing gases, nitrogen, argon, helium and carbon dioxide are preferable, and nitrogen is more preferable. The non-oxidizing gas used in the cooling step is the same as the non-oxidizing gas used in the second firing step from the viewpoint of workability (that is, the non-oxidizing gas used in the second firing step is used as it is). Preferably used). A non-oxidizing gas may be used independently and may use 2 or more types together. The non-oxidizing gas used in the cooling step may or may not contain moisture, but is preferably a dry gas that does not contain moisture.

冷却は、280℃以下となるように行なわれ、好ましくは250℃以下となるように行なわれる。280℃を超える高い温度で酸化性ガスに曝されないようにすることにより、触媒活性および触媒寿命を効果的に向上させることができる。   Cooling is performed so that it may become 280 degrees C or less, Preferably it is performed so that it may become 250 degrees C or less. By preventing exposure to an oxidizing gas at a high temperature exceeding 280 ° C., the catalyst activity and the catalyst life can be effectively improved.

(メタクリル酸の製造方法)
本発明の製造方法によって得られたメタクリル酸製造用触媒は、優れた触媒活性および触媒寿命を有する。このメタクリル酸製造用触媒を用いて、例えば、メタクロレイン、イソブチルアルデヒド、イソブタン、イソ酪酸などの原料化合物を、気相接触酸化反応に供することにより、原料化合物を良好な転化率で転化して、メタクリル酸を長期間にわたり安定して製造することができる。
(Method for producing methacrylic acid)
The catalyst for methacrylic acid production obtained by the production method of the present invention has excellent catalytic activity and catalyst life. Using this methacrylic acid production catalyst, for example, by subjecting raw material compounds such as methacrolein, isobutyraldehyde, isobutane, and isobutyric acid to a gas phase catalytic oxidation reaction, the raw material compounds are converted at a good conversion rate, Methacrylic acid can be produced stably over a long period of time.

メタクリル酸の製造は、通常、固定床多管式反応器に触媒を充填し、この反応器に原料化合物と酸素を含むガスとを供給することによって行われる。また、固定床の代わりに、流動床や移動床の形態も採用され得る。酸素を含むガスとしては、一般的に空気や純酸素が用いられる。酸素を含むガスおよび原料化合物の他に、窒素、二酸化炭素、一酸化炭素、水蒸気などを、反応器に供給してもよい。   The production of methacrylic acid is usually carried out by filling a fixed bed multitubular reactor with a catalyst and supplying a raw material compound and a gas containing oxygen to the reactor. Moreover, the form of a fluidized bed or a moving bed can be adopted instead of the fixed bed. As the gas containing oxygen, air or pure oxygen is generally used. In addition to the gas containing oxygen and the raw material compound, nitrogen, carbon dioxide, carbon monoxide, water vapor, and the like may be supplied to the reactor.

メタクロレインを原料化合物として用いる場合、好ましくは、反応は以下の条件下で行われる。なお、空間速度は、反応器内を通過する1時間当たりの原料(原料化合物およびその他のガス)供給量(L/h)を、反応器内の触媒容量(L)で除して求められる。
原料中のメタクロレインの濃度:1〜10容量%
原料中の水蒸気の濃度:1〜30容量%
メタクロレインと酸素とのモル比:1/1〜1/5(メタクロレイン/酸素)
空間速度:500〜5000h-1(標準状態基準)
反応温度:250〜350℃
反応圧力:0.1〜0.3MPa
When using methacrolein as a raw material compound, the reaction is preferably carried out under the following conditions. The space velocity is obtained by dividing the supply amount (L / h) of raw materials (raw material compounds and other gases) per hour passing through the reactor by the catalyst capacity (L) in the reactor.
Concentration of methacrolein in the raw material: 1 to 10% by volume
Concentration of water vapor in raw material: 1-30% by volume
Molar ratio of methacrolein to oxygen: 1/1 to 1/5 (methacrolein / oxygen)
Space velocity: 500-5000h -1 (standard condition standard)
Reaction temperature: 250-350 ° C
Reaction pressure: 0.1-0.3 MPa

イソブタンを原料化合物として用いる場合、好ましくは、反応は以下の条件下で行われる。
原料中のイソブタンの濃度:1〜85容量%
原料中の水蒸気の濃度:3〜30容量%
イソブタンと酸素とのモル比:1/0.05〜1/4(イソブタン/酸素)
空間速度:400〜5000h-1(標準状態基準)
反応温度:250〜400℃
反応圧力:0.1〜1MPa
When isobutane is used as a starting compound, the reaction is preferably carried out under the following conditions.
Concentration of isobutane in the raw material: 1 to 85% by volume
Concentration of water vapor in raw material: 3 to 30% by volume
Molar ratio of isobutane to oxygen: 1 / 0.05 to 1/4 (isobutane / oxygen)
Space velocity: 400-5000h -1 (standard condition standard)
Reaction temperature: 250-400 ° C
Reaction pressure: 0.1-1 MPa

なお、イソブチルアルデヒドおよびイソ酪酸を原料化合物として用いる場合は、メタクロレインを原料化合物として用いる場合と、ほぼ同様の条件下で反応が行われる。また、これらの原料化合物は、精製された高純度品である必要はない。例えば、メタクロレインの場合、イソブチレンやt−ブチルアルコールの気相接触酸化反応によって得られたメタクロレインを未精製のまま用いてもよい。   When isobutyraldehyde and isobutyric acid are used as raw material compounds, the reaction is carried out under substantially the same conditions as when methacrolein is used as the raw material compound. Moreover, these raw material compounds do not need to be purified high-purity products. For example, in the case of methacrolein, methacrolein obtained by a gas phase catalytic oxidation reaction of isobutylene or t-butyl alcohol may be used without purification.

以下、実施例および比較例を挙げて本発明を具体的に説明するが、本発明はこれらの実施例に限定されるものではない。なお、各実施例および各比較例で使用した窒素は、実質的に水分を含まないものである。   EXAMPLES Hereinafter, although an Example and a comparative example are given and this invention is demonstrated concretely, this invention is not limited to these Examples. The nitrogen used in each example and each comparative example is substantially free of moisture.

(調製例1:触媒前駆体の調整)
まず、以下のそれぞれの原料を混合して、A液およびB液を調製した。
<A液(溶液)>
イオン交換水(40℃):224kg
硝酸セシウム(CsNO3):38.2kg
オルトリン酸(85重量%品):24.2kg
硝酸(70重量%品):25.2kg
<B液(懸濁液)>
イオン交換水(40℃):330kg
モリブデン酸アンモニウム4水和物((NH46Mo724・4H2O):297kg
メタバナジン酸アンモニウム(NH4VO3):8.19kg
(Preparation Example 1: Preparation of catalyst precursor)
First, the following raw materials were mixed to prepare liquid A and liquid B.
<Liquid A (solution)>
Ion-exchanged water (40 ° C): 224kg
Cesium nitrate (CsNO 3 ): 38.2 kg
Orthophosphoric acid (85% by weight product): 24.2 kg
Nitric acid (70% by weight product): 25.2kg
<Liquid B (suspension)>
Ion exchange water (40 ° C): 330 kg
Ammonium molybdate tetrahydrate ((NH 4 ) 6 Mo 7 O 24 · 4H 2 O): 297 kg
Ammonium metavanadate (NH 4 VO 3 ): 8.19 kg

次いで、撹拌しながら、A液をB液に滴下した。滴下後、密閉容器中で120℃にて5.8時間撹拌した。次いで、10.2kgの三酸化アンチモン(Sb23)および10.2kgの硝酸銅3水和物(Cu(NO32・3H2O)を23kgのイオン交換水に懸濁させて上記密閉容器中に添加し、120℃にてさらに5時間撹拌した。 Subsequently, A liquid was dripped at B liquid, stirring. After dropping, the mixture was stirred in a sealed container at 120 ° C. for 5.8 hours. Then, 10.2 kg of antimony trioxide (Sb 2 O 3 ) and 10.2 kg of copper nitrate trihydrate (Cu (NO 3 ) 2 .3H 2 O) were suspended in 23 kg of ion-exchanged water and It added in the airtight container and stirred at 120 degreeC for further 5 hours.

得られたスラリーをスプレードライヤーで噴霧乾燥し、得られた乾燥物100重量部に対して、4重量部のセラミックファイバー(SiO2−Al23系、繊維直径2〜4μm、繊維平均長400μm)、13重量部の硝酸アンモニウム、および9.7重量部のイオン交換水を加えて混練し、円柱状(直径5mm、高さ6mm)に押出成形した。次いで、得られた成形体を、温度90℃および湿度30%RH雰囲気下で3時間乾燥した。得られた乾燥物に、220℃の空気気流中で22時間、その後250℃で1時間熱処理(前焼成)を施し、ケギン型ヘテロポリ酸塩からなる前焼成された触媒前駆体を得た。 The obtained slurry was spray-dried with a spray dryer, and 4 parts by weight of ceramic fiber (SiO 2 -Al 2 O 3 type, fiber diameter 2 to 4 μm, fiber average length 400 μm with respect to 100 parts by weight of the obtained dried product. ), 13 parts by weight of ammonium nitrate, and 9.7 parts by weight of ion-exchanged water were added and kneaded and extruded into a cylindrical shape (diameter 5 mm, height 6 mm). Next, the obtained molded body was dried for 3 hours in an atmosphere of a temperature of 90 ° C. and a humidity of 30% RH. The obtained dried product was heat-treated (pre-calcined) for 22 hours in an air stream at 220 ° C. and then for 1 hour at 250 ° C. to obtain a pre-calcined catalyst precursor comprising a Keggin heteropolyacid salt.

(実施例1)
上記調製例1で得られた触媒前駆体を、空気とスチームとの混合ガス(含水量:1.0容量%)気流中で、390℃にて3時間保持した(第1段焼成)。次いで、空気とスチームとの混合ガスを窒素に換えて、窒素気流中で435℃にてさらに3時間保持した(第2段焼成)。第2段焼成後、焼成物を窒素気流中で70℃まで冷却し、大気中に取り出した。得られた焼成物(触媒1)は、リン(1.5)、モリブデン(12)、バナジウム(0.5)、アンチモン(0.5)、銅(0.3)およびセシウム(1.4)を含むケギン型ヘテロポリ酸の酸性塩であった。なお、かっこ内の数値は原子比である。
Example 1
The catalyst precursor obtained in Preparation Example 1 was held at 390 ° C. for 3 hours in a mixed gas of air and steam (water content: 1.0% by volume) (first stage calcination). Next, the mixed gas of air and steam was changed to nitrogen, and the mixture was further maintained at 435 ° C. for 3 hours in a nitrogen stream (second stage firing). After the second stage firing, the fired product was cooled to 70 ° C. in a nitrogen stream and taken out into the atmosphere. The obtained calcined product (catalyst 1) contains phosphorus (1.5), molybdenum (12), vanadium (0.5), antimony (0.5), copper (0.3) and cesium (1.4). The acid salt of the Keggin type heteropolyacid containing The numbers in parentheses are atomic ratios.

(実施例2)
第1段焼成において、含水量を1.4容量%としたこと以外は、実施例1と同様の手順で焼成物(触媒2)を得た。
(Example 2)
In the first stage firing, a fired product (catalyst 2) was obtained in the same procedure as in Example 1 except that the water content was 1.4% by volume.

(実施例3)
第1段焼成において、含水量を1.8容量%としたこと以外は、実施例1と同様の手順で焼成物(触媒3)を得た。
(Example 3)
In the first stage firing, a fired product (catalyst 3) was obtained in the same procedure as in Example 1 except that the water content was 1.8% by volume.

(実施例4)
第1段焼成において、空気とスチームとの混合ガスの代わりに、窒素とスチームとの混合ガス(含水量:1.8容量%)としたこと以外は、実施例1と同様の手順で焼成物(触媒4)を得た。
Example 4
In the first stage firing, the fired product was obtained in the same procedure as in Example 1 except that instead of the mixed gas of air and steam, a mixed gas of nitrogen and steam (water content: 1.8% by volume) was used. (Catalyst 4) was obtained.

(比較例1)
第1段焼成において、空気とスチームとの混合ガスの代わりに、空気のみ(含水量:0.0容量%)としたこと以外は、実施例1と同様の手順で焼成物(触媒5)を得た。
(Comparative Example 1)
In the first stage calcination, the calcined product (catalyst 5) was prepared in the same procedure as in Example 1 except that only air (water content: 0.0% by volume) was used instead of the mixed gas of air and steam. Obtained.

(比較例2)
第1段焼成において、空気とスチームとの混合ガスの代わりに、窒素のみ(含水量:0.0容量%)としたこと以外は、実施例1と同様の手順で焼成物(触媒6)を得た。
(Comparative Example 2)
In the first stage calcination, the calcined product (catalyst 6) was prepared in the same procedure as in Example 1 except that instead of the mixed gas of air and steam, only nitrogen (water content: 0.0% by volume) was used. Obtained.

(比較例3)
第1段焼成において、含水量を2.8容量%としたこと以外は、実施例1と同様の手順で焼成物(触媒7)を得た。
(Comparative Example 3)
In the first stage firing, a fired product (catalyst 7) was obtained by the same procedure as in Example 1 except that the water content was 2.8% by volume.

(比較例4)
第1段焼成において、含水量を3.5容量%としたこと以外は、実施例1と同様の手順で焼成物(触媒8)を得た。
(Comparative Example 4)
In the first stage firing, a fired product (catalyst 8) was obtained by the same procedure as in Example 1 except that the water content was 3.5% by volume.

(比較例5)
第1段焼成において、含水量を4.0容量%としたこと以外は、実施例1と同様の手順で焼成物(触媒9)を得た。
(Comparative Example 5)
In the first stage firing, a fired product (catalyst 9) was obtained in the same procedure as in Example 1 except that the water content was 4.0% by volume.

各実施例および各比較例で得られた触媒(触媒1〜9)について、以下の方法によって触媒の活性試験を行った。   About the catalyst (catalysts 1-9) obtained by each Example and each comparative example, the activity test of the catalyst was done with the following method.

(触媒の活性試験)
得られた触媒を9g秤量して、16mmの内径を有するガラス製マイクロリアクターに充填し、炉温(マイクロリアクターを加熱するための炉の温度)を280℃まで昇温した。次いで、メタクロレイン、空気、水蒸気および窒素を混合して調製した原料ガス(メタクロレイン4容量%、分子状酸素12容量%、水蒸気17容量%、窒素67容量%)を、670h-1の空間速度でマイクロリアクター内に供給し、反応を開始した。反応開始から1時間後に、マイクロリアクター出口からの流出ガス(反応後のガス)をサンプリングし、ガスクロマトグラフィーにて分析して、以下の式に基づいてメタクロレイン転化率を求めた。
メタクロレイン転化率(%)=(A/B)×100
ここで、
Aは、反応したメタクロレインのモル数。
Bは、供給したメタクロレインのモル数。
(Catalyst activity test)
9 g of the obtained catalyst was weighed and filled in a glass microreactor having an inner diameter of 16 mm, and the furnace temperature (furnace temperature for heating the microreactor) was raised to 280 ° C. Subsequently, a raw material gas (4% by volume of methacrolein, 12% by volume of molecular oxygen, 17% by volume of water vapor, 67% by volume of nitrogen) prepared by mixing methacrolein, air, water vapor, and nitrogen was converted into a space velocity of 670 h −1 . Was fed into the microreactor to start the reaction. One hour after the start of the reaction, the outflow gas (gas after reaction) from the microreactor outlet was sampled and analyzed by gas chromatography, and methacrolein conversion was determined based on the following formula.
Conversion rate of methacrolein (%) = (A / B) × 100
here,
A is the number of moles of reacted methacrolein.
B is the number of moles of methacrolein supplied.

次いで、炉温を355℃まで昇温し、上記の原料ガスを上記の空間速度(670h-1)で供給して1時間反応を行い、触媒を強制的に劣化させた。再度、炉温を280℃にして、この劣化触媒に、上記の原料ガスを上記の空間速度(670h-1)で供給し、反応を開始した。反応開始から1時間後に、マイクロリアクター出口からの流出ガス(反応後のガス)をサンプリングし、上記と同様にして、ガスクロマトグラフィーにて分析し、メタクロレイン転化率を求めた。各触媒(触媒1〜9)の強制劣化前後におけるメタクロレイン転化率を、表1に示す。 Next, the furnace temperature was raised to 355 ° C., the above raw material gas was supplied at the above space velocity (670 h −1 ), and the reaction was carried out for 1 hour to forcibly deteriorate the catalyst. Again, the furnace temperature was set to 280 ° C., and the raw material gas was supplied to the deteriorated catalyst at the space velocity (670 h −1 ) to start the reaction. One hour after the start of the reaction, the outflow gas from the microreactor outlet (the gas after the reaction) was sampled and analyzed by gas chromatography in the same manner as described above to determine the methacrolein conversion rate. Table 1 shows the methacrolein conversion rate before and after forced deterioration of each catalyst (catalysts 1 to 9).

Figure 0005793345
Figure 0005793345

表1に示すように、実施例1〜4で得られた触媒(触媒1〜4)は、比較例1〜5で得られた触媒(触媒5〜9)と比較して、強制劣化後も高いメタクロレイン転化率が維持され、良好な転化率で長期間にわたりメタクリル酸を製造し得ることがわかる。   As shown in Table 1, the catalysts (catalysts 1 to 4) obtained in Examples 1 to 4 were compared with the catalysts (catalysts 5 to 9) obtained in Comparative Examples 1 to 5, even after forced deterioration. It can be seen that a high methacrolein conversion rate is maintained and methacrylic acid can be produced over a long period of time with a good conversion rate.

Claims (6)

リンおよびモリブデンを含むヘテロポリ酸化合物からなるメタクリル酸製造用触媒の製造方法であって、
触媒前駆体を、0.8〜1.8容量%の水分を含むガス雰囲気下にて、360〜410℃で焼成する第1焼成工程;
前記第1焼成工程で得られた焼成物を、非酸化性ガス雰囲気下にて、420〜500℃でさらに焼成する第2焼成工程;および
前記第2焼成工程で得られた焼成物を、非酸化性ガス雰囲気下にて、280℃以下となるように冷却する工程;
を含むことを特徴とする、メタクリル酸製造用触媒の製造方法。
A method for producing a methacrylic acid production catalyst comprising a heteropolyacid compound containing phosphorus and molybdenum,
A first calcining step of calcining the catalyst precursor at 360 to 410 ° C. in a gas atmosphere containing 0.8 to 1.8 % by volume of water;
A second firing step of further firing the fired product obtained in the first firing step at 420 to 500 ° C. in a non-oxidizing gas atmosphere; and a fired product obtained in the second firing step. A step of cooling to 280 ° C. or lower in an oxidizing gas atmosphere;
A process for producing a catalyst for producing methacrylic acid, comprising:
前記ヘテロポリ酸化合物が、さらに、
バナジウムと;
カリウム、ルビジウム、セシウムおよびタリウムからなる群より選択される少なくとも1種の元素と;
銅、ヒ素、アンチモン、ホウ素、銀、ビスマス、鉄、コバルト、ランタンおよびセリウムからなる群より選択される少なくとも1種の元素と;
を含むことを特徴とする、請求項1に記載の方法。
The heteropolyacid compound is further
With vanadium;
At least one element selected from the group consisting of potassium, rubidium, cesium and thallium;
At least one element selected from the group consisting of copper, arsenic, antimony, boron, silver, bismuth, iron, cobalt, lanthanum and cerium;
The method of claim 1, comprising:
前記触媒前駆体が、第1焼成工程において、1〜20時間焼成される、請求項1または2に記載の方法。   The method according to claim 1 or 2, wherein the catalyst precursor is calcined for 1 to 20 hours in the first calcining step. 前記第1焼成工程で得られる焼成物が、第2焼成工程において、1〜20時間焼成される、請求項1〜3のいずれかの項に記載の方法。   The method according to any one of claims 1 to 3, wherein the fired product obtained in the first firing step is fired for 1 to 20 hours in the second firing step. 前記非酸化性ガスが、窒素、アルゴン、ヘリウムおよび二酸化炭素からなる群より選択される少なくとも1種である、請求項1〜4のいずれかの項に記載の方法。   The method according to claim 1, wherein the non-oxidizing gas is at least one selected from the group consisting of nitrogen, argon, helium and carbon dioxide. 請求項1〜5のいずれかの項に記載の製造方法によって得られたメタクリル酸製造用触媒の存在下で、メタクロレイン、イソブチルアルデヒド、イソブタンおよびイソ酪酸からなる群より選択される少なくとも1種の化合物を、気相接触酸化反応に供することを特徴とする、メタクリル酸の製造方法。   In the presence of the catalyst for producing methacrylic acid obtained by the production method according to any one of claims 1 to 5, at least one selected from the group consisting of methacrolein, isobutyraldehyde, isobutane and isobutyric acid. A method for producing methacrylic acid, comprising subjecting a compound to a gas phase catalytic oxidation reaction.
JP2011116925A 2011-05-25 2011-05-25 Method for producing catalyst for producing methacrylic acid and method for producing methacrylic acid Active JP5793345B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2011116925A JP5793345B2 (en) 2011-05-25 2011-05-25 Method for producing catalyst for producing methacrylic acid and method for producing methacrylic acid
SG2012037750A SG185914A1 (en) 2011-05-25 2012-05-23 Method of producing catalyst used in the production of methacrylic acid and method of producing methacrylic acid
DE102012010194A DE102012010194A1 (en) 2011-05-25 2012-05-23 Preparing catalyst, useful to prepare methacrylic acid, comprises first calcination of catalyst precursor comprising heteropolyacid compound containing phosphorus and molybdenum, second calcination of obtained calcined product and cooling
KR1020120054573A KR101925641B1 (en) 2011-05-25 2012-05-23 Method of producing catalyst used in the production of methacrylic acid and method of producing methacrylic acid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011116925A JP5793345B2 (en) 2011-05-25 2011-05-25 Method for producing catalyst for producing methacrylic acid and method for producing methacrylic acid

Publications (2)

Publication Number Publication Date
JP2012245432A JP2012245432A (en) 2012-12-13
JP5793345B2 true JP5793345B2 (en) 2015-10-14

Family

ID=47140519

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011116925A Active JP5793345B2 (en) 2011-05-25 2011-05-25 Method for producing catalyst for producing methacrylic acid and method for producing methacrylic acid

Country Status (4)

Country Link
JP (1) JP5793345B2 (en)
KR (1) KR101925641B1 (en)
DE (1) DE102012010194A1 (en)
SG (1) SG185914A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102364540B1 (en) 2017-07-10 2022-02-17 미쯔비시 케미컬 주식회사 A method for preparing a catalyst, a method for preparing an unsaturated carboxylic acid, a method for preparing an unsaturated aldehyde and an unsaturated carboxylic acid, and a method for preparing an unsaturated carboxylic acid ester
JP7356923B2 (en) 2020-01-30 2023-10-05 住友化学株式会社 Method for producing heteropolyacid compound, method for producing heteropolyacid compound and methacrylic acid
JP2023147925A (en) 2022-03-30 2023-10-13 住友化学株式会社 Manufacturing equipment of catalyst for producing (meth)acrylic acid and manufacturing method of catalyst for producing (meth)acrylic acid

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4200744B2 (en) 2002-10-15 2008-12-24 住友化学株式会社 Method for producing catalyst for producing methacrylic acid and method for producing methacrylic acid
JP2005021727A (en) 2003-06-30 2005-01-27 Sumitomo Chem Co Ltd Method for producing catalyst for producing methacrylic acid method for producing methacrylic acid
JP4352856B2 (en) 2003-10-31 2009-10-28 住友化学株式会社 A method for producing a catalyst for producing methacrylic acid, a catalyst for producing methacrylic acid obtained thereby, and a method for producing methacrylic acid.
JP4595769B2 (en) 2005-09-28 2010-12-08 住友化学株式会社 Method for producing catalyst for producing methacrylic acid and method for producing methacrylic acid
JP2008284508A (en) 2007-05-21 2008-11-27 Sumitomo Chemical Co Ltd Production method of catalyst for methacrylic-acid production and production method of methacrylic acid
JP2011116925A (en) 2009-12-04 2011-06-16 Nihon Sentan Kagaku Kk Method for producing dispersion of electroconductive composition comprising composite of conjugated double bond polymer with polystyrenesulfonate or polyvinylsulfonate

Also Published As

Publication number Publication date
KR101925641B1 (en) 2018-12-05
DE102012010194A1 (en) 2012-11-29
SG185914A1 (en) 2012-12-28
JP2012245432A (en) 2012-12-13
KR20140121908A (en) 2014-10-17

Similar Documents

Publication Publication Date Title
JP5919870B2 (en) Method for producing acrylonitrile production catalyst and method for producing acrylonitrile using the acrylonitrile production catalyst
JP4900449B2 (en) Method for producing catalyst for producing methacrylic acid and method for producing methacrylic acid
JP4957628B2 (en) Method for regenerating catalyst for methacrylic acid production and method for producing methacrylic acid
JP4957627B2 (en) Method for regenerating catalyst for methacrylic acid production and method for producing methacrylic acid
JP2008093595A (en) Method of regenerating catalyst for manufacturing methacrylic acid and method of manufacturing methacrylic acid
JP4848813B2 (en) A method for producing a catalyst for producing methacrylic acid and a method for producing methacrylic acid.
JP5335490B2 (en) Method for regenerating catalyst for methacrylic acid production and method for producing methacrylic acid
JP4715699B2 (en) Method for regenerating catalyst for methacrylic acid production and method for producing methacrylic acid
JP5793345B2 (en) Method for producing catalyst for producing methacrylic acid and method for producing methacrylic acid
JP5214500B2 (en) Method for producing catalyst for producing methacrylic acid and method for producing methacrylic acid
JP4200744B2 (en) Method for producing catalyst for producing methacrylic acid and method for producing methacrylic acid
JP4595769B2 (en) Method for producing catalyst for producing methacrylic acid and method for producing methacrylic acid
JP2012245433A (en) Method for producing catalyst for producing methacrylic acid method for producing methacrylic acid
JP2008229515A (en) Method for manufacturing catalyst for producing methacrylic acid
JP4352856B2 (en) A method for producing a catalyst for producing methacrylic acid, a catalyst for producing methacrylic acid obtained thereby, and a method for producing methacrylic acid.
JP2005161309A (en) Method for manufacturing compound oxide catalyst
JP4207531B2 (en) Method for producing catalyst for producing methacrylic acid and method for producing methacrylic acid
JP2005021727A (en) Method for producing catalyst for producing methacrylic acid method for producing methacrylic acid
JP2008284508A (en) Production method of catalyst for methacrylic-acid production and production method of methacrylic acid
JP2013091016A (en) Method for producing catalyst for producing methacrylic acid, and method for producing methacrylic acid
JP2013086008A (en) Method for producing catalyst for producing methacrylic acid, and method for producing methacrylic acid
JP3797146B2 (en) Method for producing catalyst for producing methacrylic acid and method for producing methacrylic acid
JP2015120133A (en) Catalyst for producing acrylic acid, and method for producing acrylic acid by using catalyst
JP2013000734A (en) Method for regenerating catalyst for producing methacrylic acid and method for producing methacrylic acid
JP4900532B2 (en) Method for producing catalyst for producing methacrylic acid and method for producing methacrylic acid

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140312

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150224

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150416

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150804

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150810

R150 Certificate of patent or registration of utility model

Ref document number: 5793345

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350