JP4352856B2 - A method for producing a catalyst for producing methacrylic acid, a catalyst for producing methacrylic acid obtained thereby, and a method for producing methacrylic acid. - Google Patents

A method for producing a catalyst for producing methacrylic acid, a catalyst for producing methacrylic acid obtained thereby, and a method for producing methacrylic acid. Download PDF

Info

Publication number
JP4352856B2
JP4352856B2 JP2003371969A JP2003371969A JP4352856B2 JP 4352856 B2 JP4352856 B2 JP 4352856B2 JP 2003371969 A JP2003371969 A JP 2003371969A JP 2003371969 A JP2003371969 A JP 2003371969A JP 4352856 B2 JP4352856 B2 JP 4352856B2
Authority
JP
Japan
Prior art keywords
catalyst
methacrylic acid
producing
volume
stage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003371969A
Other languages
Japanese (ja)
Other versions
JP2005131577A (en
Inventor
純也 吉沢
功一 永井
利明 宇井
諭 柴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP2003371969A priority Critical patent/JP4352856B2/en
Publication of JP2005131577A publication Critical patent/JP2005131577A/en
Application granted granted Critical
Publication of JP4352856B2 publication Critical patent/JP4352856B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Description

本発明は、メタクリル酸製造用触媒を製造する方法と、この方法により好適に製造されるメタクリル酸製造用触媒に関するものである。また本発明は、こうして得られる触媒を用いて、メタクリル酸を製造する方法にも関係している。   The present invention relates to a method for producing a catalyst for producing methacrylic acid and a catalyst for producing methacrylic acid which is suitably produced by this method. The present invention also relates to a method for producing methacrylic acid using the catalyst thus obtained.

従来、メタクロレイン等の気相接触酸化反応によりメタクリル酸を製造する際に用いる触媒としては、ヘテロポリ酸やその塩からなるものが有効であることが知られている。この触媒は、通常、触媒原料の水性混合液を乾燥することにより得られる触媒前駆体を、焼成することにより製造され、この焼成条件としては、例えば、酸素濃度5容量%未満の不活性ガス中で400〜550℃にて焼成する方法(特許文献1参照)、0.05〜3容量%のアンモニア及び/又は水蒸気を含むガスの流通下に300〜500℃にて焼成する方法(特許文献2参照)、非酸化性ガスの雰囲気下に150〜400℃にて焼成する方法(特許文献3参照)、不活性ガス中で400〜500℃にて焼成する方法(特許文献4参照)、0.1〜10容量%の酸素を含むガスの流通下に350〜395℃にて焼成する方法(特許文献5参照)等が提案されている。
特開昭57−165040号公報 特開昭58−61833号公報 特開昭59−66349号公報 特開平4−63139号公報 特開平5−279291号公報
Conventionally, as a catalyst used when producing methacrylic acid by a gas phase catalytic oxidation reaction such as methacrolein, it is known that a catalyst comprising a heteropolyacid or a salt thereof is effective. This catalyst is usually produced by calcining a catalyst precursor obtained by drying an aqueous mixture of catalyst raw materials. Examples of the calcining conditions include an inert gas having an oxygen concentration of less than 5% by volume. A method of firing at 400 to 550 ° C. (see Patent Document 1), a method of firing at 300 to 500 ° C. under a gas flow containing 0.05 to 3% by volume of ammonia and / or water vapor (Patent Document 2) A method of firing at 150 to 400 ° C. in a non-oxidizing gas atmosphere (see Patent Document 3), a method of firing at 400 to 500 ° C. in an inert gas (see Patent Document 4), 0. A method of firing at 350 to 395 ° C. under the flow of a gas containing 1 to 10% by volume of oxygen (see Patent Document 5) has been proposed.
JP 57-165040 A JP 58-61833 A JP 59-66349 A JP-A-4-63139 JP-A-5-279291

しかしながら、これら従来の方法により得られるメタクリル酸製造用触媒は、触媒活性の持続性、すなわち触媒寿命が必ずしも十分なものではなかった。   However, the catalyst for producing methacrylic acid obtained by these conventional methods does not always have sufficient catalyst activity, that is, catalyst life.

そこで本発明者等は、優れた触媒寿命を有するメタクリル酸製造用触媒を開発すべく、鋭意研究を行った結果、触媒前駆体を特定のガス・温度条件からなる多段焼成に付すことにより、上記所望の触媒が得られ、かかる触媒を用いてメタクロレイン等の原料を気相接触酸化反応に付すことにより、メタクリル酸を長期間にわたり生産性良く製造しうることを見出し、本発明を完成するに至った。   Therefore, the present inventors have conducted extensive research to develop a catalyst for producing methacrylic acid having an excellent catalyst life, and as a result, the catalyst precursor is subjected to multi-stage calcination consisting of specific gas and temperature conditions. In order to complete the present invention, a desired catalyst is obtained, and methacrylic acid can be produced with good productivity over a long period of time by subjecting a raw material such as methacrolein to a gas phase catalytic oxidation reaction using such a catalyst. It came.

すなわち本発明は、リン及びモリブデンを含むヘテロポリ酸化合物からなるメタクリル酸製造用触媒の製造方法であって、触媒前駆体を10容量%以下の水分を含む酸化性ガスの雰囲気下に300〜400℃で第一段焼成した後、非酸化性ガスの雰囲気下に400〜500℃で第二段焼成し、次いで30容量%以下の水分を含む酸化性ガスの雰囲気下に300〜400℃で第三段焼成することを特徴とするメタクリル酸製造用触媒の製造方法に係るものである。   That is, the present invention is a method for producing a catalyst for producing methacrylic acid comprising a heteropolyacid compound containing phosphorus and molybdenum, and the catalyst precursor is 300 to 400 ° C. in an oxidizing gas atmosphere containing 10% by volume or less of water. After the first stage firing, the second stage firing is performed at 400 to 500 ° C. in a non-oxidizing gas atmosphere, and then the third stage is performed at 300 to 400 ° C. in an oxidizing gas atmosphere containing water of 30% by volume or less. The present invention relates to a method for producing a catalyst for producing methacrylic acid, characterized by performing step firing.

また本発明は、上記製造方法により好適に得ることができる触媒であって、リン及びモリブデンを含むケギン型ヘテロポリ酸の酸性塩からなり、X線回折における面間隔3.38〜3.41Åのピークの強度(I0)に対する面間隔3.24〜3.26Åのピークの強度(I1)の比(I1/I0)が、0.001〜0.01であることを特徴とするメタクリル酸製造用触媒に係るものである。 The present invention is also a catalyst that can be suitably obtained by the above production method, comprising an acid salt of a Keggin type heteropolyacid containing phosphorus and molybdenum, and having a peak with an interplanar spacing of 3.38 to 3.41Å in X-ray diffraction. The ratio (I 1 / I 0 ) of the intensity (I 1 ) of the peak with an interplanar spacing of 3.24 to 3.26 to the intensity (I 0 ) of the methacrylic acid is 0.001 to 0.01. This relates to a catalyst for acid production.

さらに本発明は、こうして得られる触媒の存在下に、メタクロレイン、イソブチルアルデヒド、イソブタン及びイソ酪酸から選ばれる化合物を気相接触酸化反応に付すことにより、メタクリル酸を製造する方法にも関係している。   Furthermore, the present invention relates to a method for producing methacrylic acid by subjecting a compound selected from methacrolein, isobutyraldehyde, isobutane and isobutyric acid to a gas phase catalytic oxidation reaction in the presence of the catalyst thus obtained. Yes.

本発明によれば、触媒活性の持続性、すなわち触媒寿命の点で優れるメタクリル酸製造用触媒が提供され、かかる触媒により、メタクリル酸を長期間にわたり生産性良く製造することができる。   ADVANTAGE OF THE INVENTION According to this invention, the catalyst for methacrylic acid manufacture which is excellent in the sustainability of a catalyst activity, ie, the point of catalyst lifetime, is provided, and methacrylic acid can be manufactured with high productivity over a long period of time with such a catalyst.

以下、本発明を詳細に説明する。本発明が製造の対象とするメタクリル酸製造用触媒は、リン及びモリブデンを必須とするヘテロポリ酸化合物からなるものであり、遊離のヘテロポリ酸からなるものであってもよいし、ヘテロポリ酸の塩からなるものであってもよい。中でも、ヘテロポリ酸の酸性塩(部分中和塩)からなるものが好ましく、さらに好ましくはケギン型ヘテロポリ酸の酸性塩からなるものである。   Hereinafter, the present invention will be described in detail. The catalyst for methacrylic acid production to be produced by the present invention is composed of a heteropolyacid compound essentially containing phosphorus and molybdenum, and may be composed of a free heteropolyacid or from a salt of a heteropolyacid. It may be. Especially, what consists of an acidic salt (partially neutralized salt) of heteropolyacid is preferable, More preferably, it consists of an acidic salt of Keggin type heteropolyacid.

上記触媒には、リン及びモリブデン以外の元素として、バナジウムが含まれるのが望ましく、また、カリウム、ルビジウム、セシウム及びタリウムから選ばれる少なくとも1種の元素(以下、X元素ということがある)や、銅、ヒ素、アンチモン、ホウ素、銀、ビスマス、鉄、コバルト、ランタン及びセリウムから選ばれる少なくとも1種の元素(以下、Y元素ということがある)が含まれるのが望ましい。通常、モリブデン12原子に対して、リン、バナジウム、X元素及びY元素が、それぞれ3原子以下の割合で含まれる触媒が、好適に用いられる。   The catalyst preferably contains vanadium as an element other than phosphorus and molybdenum, and at least one element selected from potassium, rubidium, cesium and thallium (hereinafter sometimes referred to as X element), It is desirable that at least one element selected from copper, arsenic, antimony, boron, silver, bismuth, iron, cobalt, lanthanum and cerium (hereinafter sometimes referred to as Y element) is included. Usually, a catalyst containing phosphorus, vanadium, X element and Y element at a ratio of 3 atoms or less to 12 atoms of molybdenum is preferably used.

上記触媒の原料としては、通常、上記触媒に含まれる各元素を含む化合物、例えば、各元素のオキソ酸、オキソ酸塩、酸化物、硝酸塩、炭酸塩、水酸化物、ハロゲン化物等が、所望の原子比を満たすような割合で用いられる。例えば、リンを含む化合物としては、リン酸、リン酸塩等が用いられ、モリブデンを含む化合物としては、モリブデン酸、モリブデン酸塩、酸化モリブデン、塩化モリブデン等が用いられ、バナジウムを含む化合物としては、バナジン酸、バナジン酸塩、酸化バナジウム、塩化バナジウム等が用いられる。また、X元素を含む化合物としては、酸化物、硝酸塩、炭酸塩、水酸化物、ハロゲン化物等が用いられ、Y元素を含む化合物としては、オキソ酸、オキソ酸塩、硝酸塩、炭酸塩、水酸化物、ハロゲン化物等が用いられる。   As the raw material of the catalyst, a compound containing each element contained in the catalyst, for example, an oxo acid, oxo acid salt, oxide, nitrate, carbonate, hydroxide, halide or the like of each element is desired. It is used at a ratio that satisfies the atomic ratio of For example, phosphoric acid, phosphate, etc. are used as the compound containing phosphorus, and molybdic acid, molybdate, molybdenum oxide, molybdenum chloride, etc. are used as the compound containing molybdenum, and as the compound containing vanadium, Vanadic acid, vanadate, vanadium oxide, vanadium chloride and the like are used. In addition, oxides, nitrates, carbonates, hydroxides, halides and the like are used as the compounds containing the X element, and oxo acids, oxoacid salts, nitrates, carbonates, water, and the like as the compounds containing the Y element. Oxides, halides and the like are used.

本発明の触媒の製造方法は、上記の触媒原料から調製される触媒前駆体を、特定のガス・温度条件からなる多段焼成に付すことにより行われる。この触媒前駆体は、通常、触媒原料を水中で混合して水溶液又は水性スラリーを得、次いでこの水性混合液を乾燥することにより調製することができ、例えば、該乾燥物を成形したものであってもよいし、該乾燥物を熱処理(前焼成)した後、成形したものであってもよいし、該乾燥物を成形した後、熱処理したものであってもよい。ここで、水性混合液の乾燥は、スプレードライヤー等を用いた噴霧乾燥により行うのが好ましく、乾燥物の成形は、必要に応じて成形助剤を用いて、円柱状、球状、リング状等にするのが好ましい。また、乾燥物の熱処理は、酸化性ガス又は非酸化性ガスの雰囲気下に、180〜300℃程度の温度で行うのが望ましい。   The method for producing a catalyst of the present invention is performed by subjecting a catalyst precursor prepared from the above catalyst raw material to multistage calcination comprising specific gas and temperature conditions. This catalyst precursor can be usually prepared by mixing catalyst raw materials in water to obtain an aqueous solution or an aqueous slurry, and then drying the aqueous mixture, for example, by molding the dried product. Alternatively, the dried product may be heat-treated (pre-fired) and then molded, or the dried product may be molded and then heat-treated. Here, drying of the aqueous mixed solution is preferably performed by spray drying using a spray dryer or the like, and molding of the dried product is performed in a cylindrical shape, a spherical shape, a ring shape, or the like using a molding aid as necessary. It is preferable to do this. The heat treatment of the dried product is desirably performed at a temperature of about 180 to 300 ° C. in an oxidizing gas or non-oxidizing gas atmosphere.

触媒前駆体の調製方法としては、触媒原料としてアンモニウム化合物を用いたり、アンモニアやアンモニウム塩を添加したりして、アンモニウム根を含む水性混合液を得、これを乾燥した後、熱処理してから成形するか、成形してから熱処理するのが望ましい。これらの処方によれば、乾燥物としてドーソン型ヘテロポリ酸塩からなる触媒前駆体を得ることができ、次いでその熱処理により、ドーソン型からケギン型への転移反応が起こって、ケギン型ヘテロポリ酸塩からなる触媒前駆体を得ることができる。こうして得られた触媒前駆体は、本発明による多段焼成に対し、特に好適な対象となる。   As a catalyst precursor preparation method, an ammonium compound is used as a catalyst raw material or ammonia or an ammonium salt is added to obtain an aqueous mixed solution containing ammonium roots. It is desirable to heat-treat after molding. According to these formulations, a catalyst precursor composed of a Dawson type heteropolyacid salt can be obtained as a dried product, and then the heat treatment causes a transition reaction from the Dawson type to the Keggin type, resulting in the conversion from the Keggin type heteropolyacid salt. A catalyst precursor can be obtained. The catalyst precursor thus obtained is a particularly suitable target for the multistage calcination according to the present invention.

以上のようにして得られる触媒前駆体を、水分を含む酸化性ガスの雰囲気下に、所定の温度で第一段焼成した後、非酸化性ガスの雰囲気下に、所定の温度で第二段焼成し、次いで、水分を含む酸化性ガスの雰囲気下に、所定の温度で第三段焼成する。かかる多段焼成により、優れた触媒寿命を有するメタクリル酸製造用触媒を製造することができる。   The catalyst precursor obtained as described above is first-stage calcined at a predetermined temperature in an atmosphere of an oxidizing gas containing moisture, and then the second stage at a predetermined temperature in an atmosphere of a non-oxidizing gas. Baking, and then third-stage baking at a predetermined temperature in an atmosphere of an oxidizing gas containing moisture. By such multistage calcination, a catalyst for producing methacrylic acid having an excellent catalyst life can be produced.

第一段焼成及び第三段焼成で用いられる酸化性ガスとしては、例えば、酸素を1〜21容量%の濃度で含む酸素含有ガスが挙げられ、この酸素源としては、通常、空気や純酸素が用いられる。また、第二段焼成で用いられる非酸化性ガスとしては、例えば、窒素、二酸化炭素、ヘリウム、アルゴン等の不活性ガスが挙げられる。   Examples of the oxidizing gas used in the first stage firing and the third stage firing include an oxygen-containing gas containing oxygen at a concentration of 1 to 21% by volume, and the oxygen source is usually air or pure oxygen. Is used. Examples of the non-oxidizing gas used in the second stage baking include inert gases such as nitrogen, carbon dioxide, helium, and argon.

第一段焼成及び第三段焼成における酸化性ガスには、触媒寿命の向上のために、水分を存在させるのが必須であるが、水分があまり多いと逆効果となる。そこで、第一段焼成における酸化性ガス中の水分は10容量%以下、好ましくは5容量%以下であり、また通常1容量%以上である。一方、第三段焼成における酸化性ガス中の水分は30容量%以下、好ましくは20容量%以下であり、また通常1容量%以上である。なお、第二段焼成における非酸化性ガスには、水分は任意であるが、存在させる場合は通常10容量%までである。   It is essential for the oxidizing gas in the first stage firing and the third stage firing to have moisture present in order to improve the catalyst life. However, if there is too much moisture, the reverse effect is obtained. Therefore, the moisture in the oxidizing gas in the first stage firing is 10% by volume or less, preferably 5% by volume or less, and usually 1% by volume or more. On the other hand, the water content in the oxidizing gas in the third stage firing is 30% by volume or less, preferably 20% by volume or less, and usually 1% by volume or more. The non-oxidizing gas in the second-stage firing can have any water content, but if present, it is usually up to 10% by volume.

各焼成の温度は、第一段焼成が300〜400℃、好ましくは350〜400℃であり、第二段焼成が400〜500℃、好ましくは400〜450℃であり、第三段焼成が300〜400℃、好ましくは350〜400℃である。これら各焼成温度が所定値に満たないと、得られる触媒の活性が十分にならなかったり、触媒寿命の向上効果が十分でなかったりすることがあり、一方、所定値を越えると、触媒が分解・焼結しやすいため、得られる触媒の活性が十分にならないことがある。   The firing temperature is 300 to 400 ° C., preferably 350 to 400 ° C. for the first stage firing, 400 to 500 ° C., preferably 400 to 450 ° C. for the second stage firing, and 300 for the third stage firing. It is -400 degreeC, Preferably it is 350-400 degreeC. If each of these calcination temperatures is less than a predetermined value, the activity of the resulting catalyst may not be sufficient, or the effect of improving the catalyst life may not be sufficient.・ Since it is easy to sinter, the resulting catalyst may not have sufficient activity.

なお、各焼成の時間は、それぞれ適宜調整されるが、通常1〜20時間程度である。また、これら各焼成は、雰囲気ガスとして使用されるガスを流通させながら行うのが望ましい。   In addition, although each baking time is each adjusted suitably, it is about 1 to 20 hours normally. Moreover, it is desirable to perform each of these firings while circulating a gas used as an atmospheric gas.

以上の方法により好適に製造することができる触媒は、先に述べたとおり、リン及びモリブデンを含むケギン型ヘテロポリ酸の酸性塩からなる触媒であって、さらに製造時、特に焼成時における触媒の分解等による三酸化モリブデン(MoO3)の生成が抑制された、三酸化モリブデン存在量の低い触媒である。この触媒におけるケギン型ヘテロポリ酸の酸性塩に対する三酸化モリブデンの存在割合は、X線回折(XRD)の測定、すなわち、ケギン型ヘテロポリ酸の酸性塩に特徴的な面間隔3.38〜3.41Åのピークの強度(I0)に対する、三酸化モリブデンに特徴的な面間隔3.24〜3.26Åのピークの強度(I1)の比(I1/I0)で表すことができる。そして、かかるピーク強度比(I1/I0)は、触媒寿命の点から、好ましくは0.01以下、さらに好ましくは0.005以下であり、また通常0.001以上である。 As described above, the catalyst that can be preferably produced by the above method is a catalyst comprising an acid salt of a Keggin type heteropolyacid containing phosphorus and molybdenum, and further decomposes the catalyst during production, particularly during calcination. This is a catalyst having a low amount of molybdenum trioxide, in which the production of molybdenum trioxide (MoO 3 ) due to the above is suppressed. The proportion of molybdenum trioxide present in the catalyst relative to the acid salt of the Keggin heteropolyacid is determined by X-ray diffraction (XRD) measurement, that is, the interplanar spacing of 3.38 to 3.41Å characteristic of the acid salt of the Keggin heteropolyacid. for the peak intensity (I 0), can be expressed as the ratio of the intensity of the peak of the characteristic interplanar spacing 3.24~3.26Å molybdenum trioxide (I 1) (I 1 / I 0). The peak intensity ratio (I 1 / I 0 ) is preferably 0.01 or less, more preferably 0.005 or less, and usually 0.001 or more from the viewpoint of catalyst life.

こうして本発明により提供されるメタクリル酸製造用触媒は、優れた触媒寿命を有しており、この触媒を用いて、メタクロレイン、イソブチルアルデヒド、イソブタン、イソ酪酸等の原料化合物を気相接触酸化反応させることにより、メタクリル酸を長期間にわたり生産性良く製造することができる。   Thus, the catalyst for producing methacrylic acid provided by the present invention has an excellent catalyst life, and by using this catalyst, a raw material compound such as methacrolein, isobutyraldehyde, isobutane, and isobutyric acid is subjected to a gas phase catalytic oxidation reaction. Thus, methacrylic acid can be produced with good productivity over a long period of time.

メタクリル酸の製造は、通常、固定床多管式反応器に触媒を充填し、これに原料化合物と酸素を含む原料ガスを供給することにより行われるが、流動床や移動床のような反応形式を採用することもできる。酸素源としては、通常、空気が用いられ、また原料ガス中には、原料化合物及び酸素以外の成分として、窒素、二酸化炭素、一酸化炭素、水蒸気等が含まれうる。   The production of methacrylic acid is usually carried out by filling a fixed bed multi-tubular reactor with a catalyst and supplying a raw material gas containing a raw material compound and oxygen to this. It can also be adopted. As the oxygen source, air is usually used, and the raw material gas may contain nitrogen, carbon dioxide, carbon monoxide, water vapor and the like as components other than the raw material compound and oxygen.

例えば、メタクロレインを原料として用いる場合、通常、原料ガス中のメタクロレイン濃度は1〜10容量%、メタクロレインに対する酸素のモル比は1〜5、空間速度は500〜5000h-1(標準状態基準)、反応温度は250〜350℃、反応圧力は0.1〜0.3MPa、の条件下に反応が行われる。なお、原料のメタクロレインは必ずしも高純度の精製品である必要はなく、例えば、イソブチレンやt−ブチルアルコールの気相接触酸化反応により得られたメタクロレインを含む反応生成ガスを用いることもできる。 For example, when methacrolein is used as a raw material, the concentration of methacrolein in the raw material gas is usually 1 to 10% by volume, the molar ratio of oxygen to methacrolein is 1 to 5, and the space velocity is 500 to 5000 h −1 (standard condition standard ), The reaction temperature is 250 to 350 ° C., and the reaction pressure is 0.1 to 0.3 MPa. The raw material methacrolein is not necessarily a highly purified product, and for example, a reaction product gas containing methacrolein obtained by a gas phase catalytic oxidation reaction of isobutylene or t-butyl alcohol can be used.

また、イソブタンを原料として用いる場合、通常、原料ガス中のイソブタン濃度は1〜85容量%、水蒸気濃度は3〜30容量%、イソブタンに対する酸素のモル比は0.05〜4、空間速度は400〜5000h-1(標準状態基準)、反応温度は250〜400℃、反応圧力は0.1〜1MPa、の条件下に反応が行われる。イソ酪酸やイソブチルアルデヒドを原料として用いる場合には、通常、メタクロレインを原料として用いる場合と、ほぼ同様の反応条件が採用される。 When isobutane is used as a raw material, the isobutane concentration in the raw material gas is usually 1 to 85% by volume, the water vapor concentration is 3 to 30% by volume, the molar ratio of oxygen to isobutane is 0.05 to 4, and the space velocity is 400. The reaction is carried out under conditions of ˜5000 h −1 (standard condition standard), reaction temperature of 250 to 400 ° C., and reaction pressure of 0.1 to 1 MPa. When isobutyric acid or isobutyraldehyde is used as a raw material, generally the same reaction conditions are employed as when methacrolein is used as a raw material.

以下、本発明の実施例を示すが、本発明はこれらによって限定されるものではない。   Examples of the present invention will be described below, but the present invention is not limited thereto.

実施例1、2、比較例1、2
(a)触媒前駆体の調製
40℃に加熱したイオン交換水224kgに、硝酸セシウム[CsNO3]38.2kg、85重量%オルトリン酸24.2kg、及び70重量%硝酸25.2kgを溶解し、これをA液とした。一方、40℃に加熱したイオン交換水330kgに、モリブデン酸アンモニウム4水和物[(NH4)6Mo724・4H2O]297kgを溶解した後、メタバナジン酸アンモニウム[NH4VO3]8.19kgを懸濁させ、これをB液とした。A液とB液を50℃に調整し、攪拌下、B液にA液を滴下した後、密閉容器中で120℃にて8.5時間攪拌し、次いで、三酸化アンチモン[Sb23]10.2kg及び硝酸銅3水和物[Cu(NO3)2・3H2O]10.2kgを、イオン交換水23kgに懸濁させて添加した後、密封容器中で120℃にて5時間攪拌した。こうして得られたスラリーをスプレードライヤーにて乾燥し、ドーソン型ヘテロポリ酸塩からなる触媒前駆体粉末を得た。この粉末100重量部に対して、セラミックファイバー[東芝モノフラックス(株)製、FIBERFRAX RFC400SL]4重量部、硝酸アンモニウム13重量部、及びイオン交換水9.7重量部を加えて混練し、直径5mm、高さ5mmの円柱状に押出成形した。この成形体を、温度90℃、湿度30%RHにて3時間乾燥した後、空気気流中で220℃にて22時間、空気気流中で250℃にて1時間の順に熱処理して、ケギン型ヘテロポリ酸塩からなる触媒前駆体とした。
Examples 1 and 2 and Comparative Examples 1 and 2
(A) Preparation of catalyst precursor In 224 kg of ion-exchanged water heated to 40 ° C, 38.2 kg of cesium nitrate [CsNO 3 ], 24.2 kg of 85 wt% orthophosphoric acid, and 25.2 kg of 70 wt% nitric acid were dissolved. This was designated as liquid A. On the other hand, after dissolving 297 kg of ammonium molybdate tetrahydrate [(NH 4 ) 6 Mo 7 O 24 · 4H 2 O] in 330 kg of ion-exchanged water heated to 40 ° C., ammonium metavanadate [NH 4 VO 3 ] 8.19 kg was suspended and this was used as B liquid. The liquid A and the liquid B were adjusted to 50 ° C., and the liquid A was added dropwise to the liquid B with stirring, followed by stirring at 120 ° C. for 8.5 hours, and then antimony trioxide [Sb 2 O 3 ] 10.2 kg and 10.2 kg of copper nitrate trihydrate [Cu (NO 3 ) 2 .3H 2 O] were suspended in 23 kg of ion-exchanged water and then added at 120 ° C. in a sealed container. Stir for hours. The slurry thus obtained was dried with a spray dryer to obtain a catalyst precursor powder composed of a Dawson type heteropolyacid salt. To 100 parts by weight of this powder, 4 parts by weight of ceramic fiber [manufactured by Toshiba Monoflux Co., Ltd., FIBERFRAX RFC400SL], 13 parts by weight of ammonium nitrate, and 9.7 parts by weight of ion-exchanged water were added and kneaded. It was extruded into a cylindrical shape with a height of 5 mm. This molded body was dried at a temperature of 90 ° C. and a humidity of 30% RH for 3 hours, and then heat-treated in an air stream at 220 ° C. for 22 hours and in an air stream at 250 ° C. for 1 hour in order. A catalyst precursor comprising a heteropolyacid salt was obtained.

(b)触媒の製造
この前駆体を、表1に示す水分濃度(容量%)の空気/スチーム混合ガス(1)の気流中で、390℃にて3時間、第一段焼成した後、表1に示す水分濃度(容量%)の窒素/スチーム混合ガス(2)の気流中で、435℃にて3時間、第二段焼成し、次いで、表1に示す水分濃度(容量%)の空気/スチーム混合ガス(3)の気流中で、390℃にて3時間、第三段焼成して、触媒を得た。この触媒は、リン、モリブデン、バナジウム、アンチモン、銅及びセシウムをそれぞれ1.5、12、0.5、0.5、0.3及び1.4の原子比で含むケギン型ヘテロポリ酸の酸性塩からなるものであった。また、この触媒のXRD測定(粉末法、Cu−Kα線)を、理学電機(株)製のMiniFlexを用いて、対陰極Cu、管電圧30kV、管電流15mA、スキャン速度2°/分、サンプリング幅0.01°、積算回数20回の条件で行い、面間隔3.38〜3.41Åのピークの強度(I0)に対する面間隔3.24〜3.26Åのピークの強度(I1)の比(I1/I0)を求めた。その値を表1に示す。
(B) Production of catalyst The precursor was first-stage calcined at 390 ° C. for 3 hours in an air / steam mixed gas (1) having a water concentration (volume%) shown in Table 1, Second-stage firing at 435 ° C. for 3 hours in a stream of nitrogen / steam mixed gas (2) having a moisture concentration (volume%) shown in FIG. 1, and then air having a moisture concentration (volume%) shown in Table 1 / The third stage calcination was performed at 390 ° C. for 3 hours in a stream of steam mixed gas (3) to obtain a catalyst. This catalyst is an acid salt of a Keggin type heteropolyacid containing phosphorus, molybdenum, vanadium, antimony, copper and cesium in atomic ratios of 1.5, 12, 0.5, 0.5, 0.3 and 1.4, respectively. It consisted of. In addition, XRD measurement (powder method, Cu-Kα ray) of this catalyst was performed by using MiniFlex manufactured by Rigaku Corporation, counter-cathode Cu, tube voltage 30 kV, tube current 15 mA, scan speed 2 ° / min, sampling performed in width 0.01 °, integration number 20 times the conditions, the intensity of the peak of the interplanar spacing 3.38~3.41Å (I 0) the intensity of the peak of the interplanar spacing 3.24~3.26Å for (I 1) The ratio (I 1 / I 0 ) was determined. The values are shown in Table 1.

(c)触媒の活性試験
上記(b)で得た触媒9gを、内径15mmのガラス製マイクロリアクターに充填し、この中に、メタクロレイン、空気、スチーム及び窒素を混合して調製したメタクロレイン4容量%、分子状酸素12容量%、水蒸気17容量%の組成の原料ガスを、空間速度670h-1で供給して、炉温(マイクロリアクターを加熱するための炉の温度)280℃にて反応を行い、反応開始から1時間経過時のメタクロレイン転化率とメタクリル酸選択率を求めた。次に、上記と同じ組成の原料ガスを、上記と同じ空間速度で供給して、炉温355℃にて反応を行い、触媒を強制劣化させた後、再度、上記と同じ組成の原料ガスを、上記と同じ空間速度で供給して、炉温280℃にて反応を行い、この反応開始から1時間経過時のメタクロレイン転化率とメタクリル酸選択率を求めた。強制劣化前後でのメタクロレイン転化率とメタクリル酸選択率を表1に示す。
(C) Catalyst activity test 9 g of the catalyst obtained in (b) above was charged into a glass microreactor having an inner diameter of 15 mm, and methacrolein 4 prepared by mixing methacrolein, air, steam and nitrogen. A raw material gas having a composition of volume%, molecular oxygen 12 volume%, and water vapor 17 volume% is supplied at a space velocity of 670 h −1 and reacted at a furnace temperature (furnace temperature for heating the microreactor) of 280 ° C. The methacrolein conversion rate and methacrylic acid selectivity after 1 hour from the start of the reaction were determined. Next, a raw material gas having the same composition as above is supplied at the same space velocity as described above, and reacted at a furnace temperature of 355 ° C. to forcibly deteriorate the catalyst. The reaction was carried out at the same space velocity as described above, and the reaction was carried out at a furnace temperature of 280 ° C., and the methacrolein conversion rate and methacrylic acid selectivity after 1 hour from the start of the reaction were determined. Table 1 shows methacrolein conversion and methacrylic acid selectivity before and after forced deterioration.

(d)触媒の寿命試験
上記(b)で得た触媒4.5gを、内径15mmのガラス製マイクロリアクターに充填し、この中に、メタクロレイン、空気、スチーム及び窒素を混合して調製したメタクロレイン4容量%、分子状酸素12容量%、水蒸気17容量%の組成の原料ガスを、空間速度1340h-1で供給して、炉温310℃にて50日以上反応を行い、この間、7〜10日おきにメタクロレイン転化率を求めた。反応時間を縦軸、転化率を横軸としてプロットしたところ、ほぼ直線関係にあったので、最小二乗法により傾きを求め、転化率の低下速度(%/日)を算出した。その値を表1に示す。
(D) Catalyst life test 4.5 g of the catalyst obtained in (b) above was charged into a glass microreactor having an inner diameter of 15 mm, and methacrolein, air, steam and nitrogen were mixed therein. A raw material gas having a composition of 4% by volume of rain, 12% by volume of molecular oxygen, and 17% by volume of water vapor was supplied at a space velocity of 1340h −1 and reacted at a furnace temperature of 310 ° C. for 50 days or more. The methacrolein conversion was determined every 10 days. When the reaction time was plotted on the vertical axis and the conversion rate was plotted on the horizontal axis, there was a substantially linear relationship, so the slope was determined by the least square method, and the rate of decrease in conversion rate (% / day) was calculated. The values are shown in Table 1.

Figure 0004352856
Figure 0004352856

Claims (2)

リン及びモリブデンを含むヘテロポリ酸化合物からなるメタクリル酸製造用触媒の製造方法であって、触媒原料として触媒に含まれる各元素を含む硝酸塩又はアンモニウム塩を用いこれらを水中で混合して水溶液又は水性スラリーを得、次いでこの水性混合液を乾燥した後、180〜300℃で熱処理することにより得られるケギン型へテロポリ酸塩からなる触媒前駆体を10容量%以下の水分を含む酸化性ガスの雰囲気下に350〜400℃で第一段焼成した後、非酸化性ガスの雰囲気下に400〜500℃で第二段焼成し、次いで30容量%以下の水分を含む酸化性ガスの雰囲気下に300〜400℃で第三段焼成することを特徴とするメタクリル酸製造用触媒の製造方法。 A method for producing a catalyst for producing methacrylic acid comprising a heteropolyacid compound containing phosphorus and molybdenum, wherein a nitrate or ammonium salt containing each element contained in the catalyst is used as a catalyst raw material, and these are mixed in water to form an aqueous solution or aqueous slurry Then, after drying this aqueous mixture, the catalyst precursor comprising a Keggin type heteropoly acid salt obtained by heat treatment at 180 to 300 ° C. is obtained in an oxidizing gas atmosphere containing 10% by volume or less of moisture. 3 after firing the first stage at 50 to 400 ° C., and calcined second stage at 400 to 500 ° C. under an atmosphere of non-oxidizing gas, and then under an atmosphere of an oxidizing gas containing 30% by volume water 300 A method for producing a catalyst for producing methacrylic acid, comprising performing third-stage calcination at ˜400 ° C. 請求項1に記載の製造方法によりメタクリル酸製造用触媒を製造し、この触媒の存在下に、メタクロレイン、イソブチルアルデヒド、イソブタン及びイソ酪酸から選ばれる化合物を気相接触酸化反応に付す、メタクリル酸の製造方法。   A methacrylic acid production catalyst is produced by the production method according to claim 1, and a compound selected from methacrolein, isobutyraldehyde, isobutane and isobutyric acid is subjected to a gas phase catalytic oxidation reaction in the presence of the catalyst. Manufacturing method.
JP2003371969A 2003-10-31 2003-10-31 A method for producing a catalyst for producing methacrylic acid, a catalyst for producing methacrylic acid obtained thereby, and a method for producing methacrylic acid. Expired - Fee Related JP4352856B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003371969A JP4352856B2 (en) 2003-10-31 2003-10-31 A method for producing a catalyst for producing methacrylic acid, a catalyst for producing methacrylic acid obtained thereby, and a method for producing methacrylic acid.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003371969A JP4352856B2 (en) 2003-10-31 2003-10-31 A method for producing a catalyst for producing methacrylic acid, a catalyst for producing methacrylic acid obtained thereby, and a method for producing methacrylic acid.

Publications (2)

Publication Number Publication Date
JP2005131577A JP2005131577A (en) 2005-05-26
JP4352856B2 true JP4352856B2 (en) 2009-10-28

Family

ID=34648476

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003371969A Expired - Fee Related JP4352856B2 (en) 2003-10-31 2003-10-31 A method for producing a catalyst for producing methacrylic acid, a catalyst for producing methacrylic acid obtained thereby, and a method for producing methacrylic acid.

Country Status (1)

Country Link
JP (1) JP4352856B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4756890B2 (en) * 2005-03-29 2011-08-24 日本化薬株式会社 Catalyst for producing methacrylic acid and method for producing the same
JP2006314923A (en) 2005-05-12 2006-11-24 Nippon Kayaku Co Ltd Manufacturing method of catalyst for producing methacrylic acid
JP2008284508A (en) * 2007-05-21 2008-11-27 Sumitomo Chemical Co Ltd Production method of catalyst for methacrylic-acid production and production method of methacrylic acid
JP5793345B2 (en) 2011-05-25 2015-10-14 住友化学株式会社 Method for producing catalyst for producing methacrylic acid and method for producing methacrylic acid
SG11201900754XA (en) * 2016-09-14 2019-02-27 Mitsubishi Chem Corp Catalyst for production of methacrylic acid, method of producing the same, method of producing methacrylic acid, and method of producing methacrylic acid ester

Also Published As

Publication number Publication date
JP2005131577A (en) 2005-05-26

Similar Documents

Publication Publication Date Title
JP4715712B2 (en) A method for regenerating a catalyst for producing methacrylic acid and a method for producing methacrylic acid.
JP4900449B2 (en) Method for producing catalyst for producing methacrylic acid and method for producing methacrylic acid
JP4957628B2 (en) Method for regenerating catalyst for methacrylic acid production and method for producing methacrylic acid
JP4957627B2 (en) Method for regenerating catalyst for methacrylic acid production and method for producing methacrylic acid
JP5335490B2 (en) Method for regenerating catalyst for methacrylic acid production and method for producing methacrylic acid
JP4848813B2 (en) A method for producing a catalyst for producing methacrylic acid and a method for producing methacrylic acid.
JP4715699B2 (en) Method for regenerating catalyst for methacrylic acid production and method for producing methacrylic acid
JP4595769B2 (en) Method for producing catalyst for producing methacrylic acid and method for producing methacrylic acid
JP5214500B2 (en) Method for producing catalyst for producing methacrylic acid and method for producing methacrylic acid
JP4200744B2 (en) Method for producing catalyst for producing methacrylic acid and method for producing methacrylic acid
JP3799660B2 (en) Oxidation catalyst, method for producing the same, and method for producing methacrylic acid
JP4352856B2 (en) A method for producing a catalyst for producing methacrylic acid, a catalyst for producing methacrylic acid obtained thereby, and a method for producing methacrylic acid.
JP5793345B2 (en) Method for producing catalyst for producing methacrylic acid and method for producing methacrylic acid
JP2008229515A (en) Method for manufacturing catalyst for producing methacrylic acid
JP2012245433A (en) Method for producing catalyst for producing methacrylic acid method for producing methacrylic acid
JP2008284508A (en) Production method of catalyst for methacrylic-acid production and production method of methacrylic acid
JP2005021727A (en) Method for producing catalyst for producing methacrylic acid method for producing methacrylic acid
JP5024183B2 (en) Method for producing shaped catalyst comprising heteropolyacid compound
JPH09299802A (en) Manufacture of oxidation catalyst and preparation of methacrylic acid
JP4207531B2 (en) Method for producing catalyst for producing methacrylic acid and method for producing methacrylic acid
JP2013091016A (en) Method for producing catalyst for producing methacrylic acid, and method for producing methacrylic acid
JP2013086008A (en) Method for producing catalyst for producing methacrylic acid, and method for producing methacrylic acid
JP4900532B2 (en) Method for producing catalyst for producing methacrylic acid and method for producing methacrylic acid
JP5214499B2 (en) Method for regenerating catalyst for methacrylic acid production and method for producing methacrylic acid
JP2012196608A (en) Method for regenerating methacrylic acid producing catalyst and method for producing methacrylic acid

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060523

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20080130

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20080513

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090203

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090406

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090707

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090720

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120807

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120807

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130807

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees